WO1999048304A2 - Remote xdsl transceiver unit and method of operation - Google Patents

Remote xdsl transceiver unit and method of operation Download PDF

Info

Publication number
WO1999048304A2
WO1999048304A2 PCT/US1999/005984 US9905984W WO9948304A2 WO 1999048304 A2 WO1999048304 A2 WO 1999048304A2 US 9905984 W US9905984 W US 9905984W WO 9948304 A2 WO9948304 A2 WO 9948304A2
Authority
WO
WIPO (PCT)
Prior art keywords
xdsl
transceiver unit
physical layer
remote
profile information
Prior art date
Application number
PCT/US1999/005984
Other languages
French (fr)
Inventor
John F. Mchale
Robert H. Locklear, Jr.
James R. Sisk
Craig S. Cantrell
Kip Mcclanahan
Jonathan L. Harrod
Original Assignee
Cisco Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cisco Technology, Inc. filed Critical Cisco Technology, Inc.
Priority to AU31926/99A priority Critical patent/AU3192699A/en
Publication of WO1999048304A2 publication Critical patent/WO1999048304A2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/062Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data

Abstract

A remote XDSL transceiver unit (16) includes an XDSL transceiver (19) and a control block (18). The XSDL transceiver (19) is operable to establish and communicate across an XDSL physical layer. The control block (18) is coupled to the XDSL transceiver (19) and operates to transmit a request for service to a loop termination point. The control block (18) also operates to identify a signal received from the loop termination point (14) and respond based upon a current context of the remote XSDL transceiver unit (16). Further, the control block (18) operates to control power-up and training of the XDSL transceiver (19) such that the XDSL physical layer can be dynamically brought up and down. In one embodiment, the control block (18) operates to store profile information for an established XDSL physical layer to use for future re-establishing of the XDSL physical layer.

Description

REMOTE XDSL TRANSCEIVER UNIT AND METHOD OF OPERATION
TECHNICAL FIELD OF THE INVENTION
This invention relates in general to digital subscriber line (XDSL) communication systems, and more particularly to a remote XDSL transceiver unit and method of operation.
BACKGROUND OF THE INVENTION
Conventional XDSL transceiver units (xTU's) are located remotely as customer premises equipment (CPE) as well as being located at the loop termination point
(e.g., central office, remote terminal). Conventional
XDSL transceiver units typically turn on the XDSL transceiver and train the XDSL physical layer connection at power up of the unit. This conventional operation is appropriate for conventional XDSL communication schemes in which each subscriber has a dedicated XDSL transceiver unit at the loop termination point.
SUMMARY OF THE INVENTION In accordance with the present invention, a remote
XDSL transceiver unit having digital off-hook control and a method of operation are disclosed that provide advantages over conventional remote XDSL transceiver units . According to one aspect of the present invention, the remote XDSL transceiver unit includes an XDSL transceiver and a control block. The XDSL transceiver is operable to establish and communicate across an XDSL physical layer. The control block is coupled to the XDSL transceiver and operates to initiate a request for service to a loop termination point. The control block also operates to control power-up and training of the XDSL transceiver such that the XDSL physical layer can be dynamically brought up and down. In one embodiment, the control block operates to store profile information for an established XDSL physical layer to use for future re- establishment of the XDSL physical layer.
According to another aspect of the present invention, a method is provided for operating a remote XDSL transceiver unit. A first state is provided corresponding to a digital on-hook condition. A second state is provided corresponding to a pending request for service to a loop termination point, and a third state is provided corresponding to a digital off-hook condition. The method includes responding to a busy signal, when in the second state, by moving to the first state. Further, the method includes responding to a grant signal, when in the second state, by moving to the third state. The method also includes training and establishing an XDSL physical layer after moving to the third state. As mentioned above, in one embodiment profile information from the XDSL physical layer can be stored for later use.
A technical advantage of the present invention is the provision of a remote XDSL transceiver unit that has the ability to control transmission and training of the XDSL physical layer. The XDSL physical layer can be dynamically brought up and down based upon data traffic or other conditions . Another technical advantage of the present invention is the storing of profile information defining the XDSL physical layer after training so that the XDSL physical layer can be quickly brought back up after having been dropped. The XDSL transceiver unit can include an XDSL chipset and a number of registers associated with the XDSL chipset. A control block coupled to the XDSL chipset and the registers can receive profile information and store the profile information in preparation for XDSL communication. The profile information may specify filter coefficients, equalizer tap values, sub-band weighting, data rates, margins, and other information that reflects electrical and/or physical parameters of the twisted pair lines. In a particular embodiment, the XDSL transceiver unit performs a training session at a variety of bands and rates to generate profile information. The profile information can be stored in an appropriate non-volatile memory. The XDSL transceiver unit retrieves the stored profile information to engage in XDSL communication without a protracted training period. The XDSL transceiver unit may also perform a full or partial retraining of the line as needed. The profile information may include, for example, digital filter coefficients used in carrier-less amplitude phase (CAP) modulation, discrete multi-tone (DMT) modulation, or other suitable modulation.
An additional technical advantage of the present invention is the ability to communicate and exchange information between the loop termination point and the customer premises equipment regarding the intent to take down the physical layer to insure that the physical layer is dropped only with the consent of both end points. This can be important for the ability to allow a data link to remain open while the physical link is dropped and restored.
Other technical advantages of the present invention should be apparent from the drawings, description and claims .
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete understanding of the present invention and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
FIGURE 1 is a block diagram of one embodiment of an XDSL link between a customer premises and a loop termination point according to the present invention; and
FIGURE 2 is a state diagram of one embodiment of a method of operation of a remote XDSL transceiver unit according to the present invention;
FIGURE 3 is a flowchart of a method for training a line according to the present invention; and
FIGURE 4 is a flowchart of a method for retrieving profile information in preparation for XDSL communication according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
FIGURE 1 is a block diagram of one embodiment of an XDSL communication system, indicated generally at 10, providing an XDSL link between a customer premises 12 and a loop termination point 14. Customer premises 12 can include a residence, business or other remote termination point of the XDSL physical layer. Loop termination point 14 can include a central office, remote terminal or other network termination point for the XDSL physical layer. One XDSL communication system including a communication server is disclosed and described in U.S. Patent No. (Serial No. 08/625,769), entitled
"Communication Server Apparatus and Method." In the embodiment of FIGURE 1, customer premises 12 includes a remote XDSL transceiver unit 16. According to the present invention, XDSL transceiver unit 16 includes a control block 18 coupled to the XDSL transceiver 19. Control block 18 provides important features for XDSL transceiver unit 16 and allows the XDSL physical layer to be dynamically controlled from the remote end point as well as providing other technical advantages. As shown, loop termination point 14 can include a digital subscriber line access multiplexer (DSLAM) 20 that provides the network termination point for the XDSL physical layer. Conventional operation of XDSL transceiver- unit 16 and access multiplexer 20 are well known. One particular embodiment of an access multiplexer is disclosed and described in U.S. Patent No. (Serial No. 08/625,769). In that embodiment, access multiplexer 20 allows oversubscription of the XDSL transceiver units in access multiplexer 20. The access multiplexer 20 then uses requests for service from remote XDSL transceiver units to initiate assignment of XDSL transceiver units to requesting customers.
Returning to FIGURE 1, according to the present invention, control block 18 provides the ability for XDSL transceiver unit 16 to dynamically control XDSL transceiver 19 and the XDSL physical layer. In contrast, conventional XDSL transceiver units located at the customer premises 12 would typically turn on the XDSL transceiver and train the XDSL physical layer at power up of the XDSL transceiver unit 16. This is appropriate for an arrangement in which customer premises 12 has a dedicated XDSL transceiver unit allocated within access multiplexer 20. However, in a scheme where there is oversubscription of XDSL transceiver units, a dedicated XDSL link between customer premises 12 and loop termination point 14 is not desirable. Consequently, according to the present invention, control block 18 enables XDSL transceiver unit 16 to provide control of establishing and training the XDSL physical layer. Further, control block 18 can control the XDSL physical layer being brought up and down based upon data traffic or other conditions. Control block 18 can communicate and exchange information with access multiplexer 20 regarding the intent to take down the physical layer due to a lack of data traffic or certain other conditions. This exchange of information insures that the deactivation of the physical layer occurs with the consent of both access multiplexer 20 and XDSL transceiver unit 16. This prevents the XDSL physical layer from being dropped without the consent of both end points .
According to the present invention, control block 18 can store profile information determined after training and establishing the XDSL physical layer. This profile information can then be used in quickly bringing back the XDSL physical layer back after termination. For example, after the physical layer has been brought down due to low data traffic, it can be quickly brought back up by loading the profile information from storage. Typically, XDSL transceiver unit 16 can include an XDSL chipset used to implement transceiver 19 and can include a number of registers associated with the XDSL chipset. Control block 18 can include a microcontroller coupled to the XDSL chipset that receives profile information and stores the profile information in the registers in preparation for XDSL communication. The profile information may specify filter coefficients, equalizer tap values, sub-band weighting, data rates, margins, and other information that reflects electrical and/or physical parameters of the twisted pair lines. In a particular embodiment, the XDSL transceiver unit 16 performs a training session at a variety of bands and rates to generate profile information. The profile information is stored in an appropriate non-volatile memory. The XDSL transceiver unit 16 receives the stored profile information to engage in XDSL communication without a protracted training period. The XDSL transceiver unit 16 may also perform a full or partial retraining of the line as needed. The profile information may include, for example, digital filter coefficients used in carrier-less amplitude phase (CAP) modulation, discrete multi-tone (DMT) modulation, or other suitable modulation.
FIGURE 2 is a state diagram of one embodiment of a method of operation of a remote XDSL transceiver unit according to the present invention. As shown, the remote XDSL transceiver unit can initially be in a digital on- hook condition in a first state 30. In state 30, the control block can allow the remote XDSL transceiver unit to respond to an alert signal from the loop termination point. The alert signal can, for example, be an in-band 300 kHz sine tone transmitted by the loop termination point equipment. According to the present invention, the remote XDSL transceiver unit's response to the signal can be context sensitive. After a request by the remote XDSL transceiver unit to the loop termination point for data service, the remote XDSL transceiver unit interprets the signal as a busy indication that there are no XDSL transceiver units available at the loop termination point. On the other hand, if the remote XDSL transceiver unit is not transmitting (i.e., in an on-hook condition), the remote XDSL transceiver unit can interpret the signal as an alert indication that a data transmission is available. The control block can then respond by enabling the remote XDSL transceiver and responding to the train sequence from the loop termination point equipment .
As shown in FIGURE 2, when in state 30, the control block can initiate a request for digital service to the loop termination point. After such a request, the remote XDSL transceiver unit moves to a second state 32 corresponding to the pending request for service. When in state 32, the remote XDSL transceiver unit can receive a busy signal response from the loop termination point. If a busy signal is received, the control block identifies the busy signal and returns the remote XDSL transceiver unit to the digital off-hook state 30. When in state 32, the remote XDSL transceiver unit alternately may receive a grant signal from the loop termination point. If so, the control block responds to the grant of the request for service by moving to a third state 34 which represents a digital off-hook condition. As shown, the remote XDSL transceiver unit can also move directly from state 30 to state 34 in response to an alert signal from the loop termination point. When in state 34, the remote XDSL transceiver unit can initiate a XDSL physical communication layer by moving to state 36 in which the physical layer is trained and established. After the physical layer is established, the control block can store the resulting profile information for later use in re-establishing the physical layer. The remote XDSL transceiver unit remains in state 36 until the physical layer needs to be brought down, for example due to low data traffic or other conditions. When the physical layer is going to be brought down, the transceiver unit moves to state 38 in which dropping of the physical layer is negotiated between the remote XDSL transceiver unit and the loop termination point. However, if the transceiver unit desires to disconnect, then negotiation is not necessarily needed. After the negotiation has been completed, the physical layer can be dropped (even without dropping the data layer) , and the remote XDSL transceiver unit can return to the digital on-hook condition of state 30.
According to the present invention, when the remote XDSL transceiver unit again wants to train and establish a physical layer, the stored profile information can be used as a starting point to more quickly return the XDSL physical layer to operation. This can be particularly beneficial in a situation where it is desired to manage connections between customer premises equipment and an access multiplexer to dynamically bring up and bring down physical layers to better utilize oversubscribed resources at the loop termination point.
The following TABLE illustrates in more detail an exemplary embodiment of a variety of profile information.
TABLE 1
MAXIMUM RATE MARGIN COEFFICIENTS/ (UP/DOWN) (UP/DOWN) PARAMETERS
Figure imgf000012_0001
This profile information can involve a variety of digital signal processor (DSP) filter coefficients, parameters, configuration, and line training parameters used by XDSL modems or transceiver units to establish an XDSL communication session. Generally, the profile information shown in TABLE 1 includes maximum rates, margins, and a variety of coefficients/parameters. Maximum rates specify both upstream and downstream maximum baud rates for the identified line. Maximum rates may be based on the tariffed rate for the subscriber, physical limitations on the line, or other factors. For example, the line maintains a maximum upstream rate of one megabit per second (1Mbps) and a maximum downstream rate of 4Mbps based, for example, on a particular class of service for the subscriber. Alternatively, the line may have a maximum rate as obtainable by the hardware and software.
The margin represents the difference between a current or expected signal strength and a minimum signal strength to maintain communication at the specified maximum rate over the designated line. In a particular embodiment, margin is the difference between the achievable or current signal-to-noise ratio and the minimum signal-to-noise ratio to maintain communication for a given bit error rate (BER) such as 10E-7. Margin may be expressed in dB and generally represents the quality of data communication on the line at maximum rates .
Coefficients/parameters comprise digital filter coefficients, equalizer tap coefficients, sub-band weights, quadrature amplitude modulation (QAM) constellation configuration, bit capacity, or other coefficients and/or parameters that reflect physical and/or electrical characteristics of the line. The profile information maintains coefficients/parameters for each band (e.g., upstream, downstream, sub-band) for each line at one or more selected rates.
In a particular embodiment, the XDSL transceiver unit includes one or more chipsets that have registers for receiving profile information in preparation for XDSL communication. The registers may be associated with digital filters implemented by DSPs in the chipset. Using CAP, DMT, or other appropriate modulation technique, the profile information characterizes or fashions the XDSL unit for communication over a particular line.
The maintenance of profile information provides a particular advantage in training lines and quickly establishing XDSL sessions. Each line includes a number of physical parameters, such as length, gauge, bridge taps, or other impairments or characteristics that govern the transmission of electric signals along the line. In addition, adjacent wires may contribute to interference on the line. Many of these characteristics and parameters are static as the physical structure of the line remains unchanged. The present invention takes advantage of this by initially training the line to generate profile information for storage. The profile information can then be retrieved and provided to the XDSL transceiver unit in preparation for XDSL communication. The use of stored profile information significantly decreases the amount of time needed to establish XDSL communication, and may substantially reduce or eliminate any need for retraining the line. By storing and selectively loading profile information, the present invention eliminates or hastens convergence of various adaptive elements (e.g., equalizers, filters) to improve access and performance.
FIGURE 3 is a flowchart of a method for training a line to generate or modify the profile information. The method begins at step 60 where the XDSL transceiver unit establishes a physical connection with an associated line. The XDSL transceiver unit retrieves profile information from a profile table associated with the line at step 62. This may be performed by a microcontroller in the transceiver unit. In step 64, the transceiver unit selects a band for training, which could include the upstream, downstream, or sub-band supported by the particular modulation technique used. For example, using CAP modulation, the transceiver unit may select an upstream or a downstream band to train. Using DMT modulation, the transceiver unit may select a discrete sub-band used by the DMT modulation technique.
Alternatively, the transceiver unit may train two or more bands simultaneously. After selecting a band at step 64, the method can reset a training flag at step 65 to indicate that the selected band of the selected line has not been trained.
To begin a training session, the transceiver unit can select an initial baud rate at step 66, which may be included in or derived from the profile information (e.g., the maximum rates) or generated locally. The transceiver unit then runs a test to determine the quality or characteristics of the line at step 68. This test may be a measure of signal strength and/or noise to determine a line margin, a bit error rate (BER) test, or any other measurement or method to determine the quality or characteristics of the line. In a particular embodiment, a BER test sends and receives known information on the line using the chipset. The transceiver unit can adjust profile information in response to the test at step 70 to improve signal quality. For example, the transceiver unit may adjust filter coefficients, equalizer tap coefficients, sub-band weights, QAM constellation configurations, bit rate, or any other coefficient or parameter that enables the chipset to communicate data more effectively over the line. If more adjustments need to be made as determined at step 72, the transceiver unit continues to run tests (step 68) and adjust the profile information (step 70) until achieving satisfactory performance from the chipset. In particular, the transceiver unit may make adjustments until it achieves a bit error rate of less than a particular threshold, such as 10E-7.
After making adjustments, the transceiver unit determines if it passed the training session at step 74. Again, this pass/fail determination may be based on the computed bit error rate being above or below a predefined threshold. Upon passing, the transceiver unit can compute the margin at step 76. The margin may be expressed in dB and represents the difference between a current or expected signal strength and a minimum signal strength to maintain communication at the selected baud rate (step 66) in one or more selected bands (step 64) . If the transceiver unit determines that the margin is sufficient at step 78, then the profile information can be stored in the profile table. The method can then set the training flag at step 82 to indicate successful training of one or more selected bands of the line. If the transceiver unit does not pass the training session (step 74) or does not achieve sufficient margin 56 (step 78), then the transceiver unit determines if it has previously trained successfully at this band by checking the status of the training flag at step 84. If the training flag indicates successful training at step 84, the transceiver unit proceeds if necessary to select another band for training at step 64. If the training flag indicates no successful training at step 84, the transceiver unit selects a lower baud rate at step 86 and proceeds with another training session at the lower baud rate at step 68.
Upon storing the profile information at step 80 and setting the training flag at step 82, the transceiver unit may determine at step 88 to attempt training at a higher rate as selected at step 90. Training at a higher rate may depend upon the maximum rate or other subscriber information that limits the maximum data rate for a particular line. Also, the selection of a higher baud rate at step 90 may depend on the margin computed at step 76. In a particular embodiment, a large margin may cause the transceiver unit to skip an interim baud rate and select a higher baud rate at step 90 to further decrease training time. Upon selecting a higher baud rate, the transceiver unit proceeds with a training session at the higher baud rate at step 68.
If the transceiver unit cannot or does not select a higher baud rate for training at step 88, the method determines if all bands have been trained at step 92 and, if not, continues with step 64 to select the next band for training. The method ends after all bands for the line are trained and all associated profile information for each band stored. FIGURE 4 is a flow chart of a method for establishing data communication using stored profile information. The method begins at step 110 after the transceiver unit has received a response to a request for service and desires to establish the XDSL link. In step 110, the transceiver unit retrieves the profile information from the profile table. As described above with reference to TABLE 1, this information may include maximum rate, margin, or any variety of coefficients/parameters (e.g., filter coefficients, equalizer tab coefficients, sub-band weights) , or other suitable information that characterizes the line and the appropriate communication parameters for the transceiver unit . Upon receiving the profile information, the transceiver unit loads this information at step 112. In a particular embodiment, a microcontroller passes the profile information to registers associated with a digital signal processor in the chipset. Upon receiving and loading the profile information from the profile table, the transceiver unit prepares to communicate data using the maximum rate, margin 56, and coefficients/parameters specific to the line.
In a particular embodiment, the transceiver unit performs a test at a selected baud rate to confirm the quality of the line and the accuracy or effectiveness of the profile information retrieved from the profile table at step 114. This test may be a measure of signal strength and/or noise to determine a line margin, a bit error rate (BER) test, or any other measurement or method to determine the quality or characteristics of the line. If the transceiver unit passes the test as determined at step 116, then the transceiver unit proceeds to communicate data associated with the session at step 118. If the transceiver unit does not pass the test as determined at step 116, then the method determines whether the baud rate and/or the profile information should be adjusted at step 120. If the baud rate and/or the profile information are to be adjusted, the transceiver unit proceeds to lower the baud rate and/or adjust the profile information at step 122 in preparation for another test. For example, the transceiver unit may simply lower the baud rate at step 122 and perform a confirming test at step 114 without a significant sacrifice in time to train the line. The transceiver unit may also make adjustments in the profile information, with or without a baud rate adjustment, to retrain the line.
If the baud rate and/or profile information should not or cannot be adjusted at step 120, then the method determines whether full retraining of the line is appropriate at step 123. If full retraining is appropriate, the method proceeds to step 64 in FIGURE 3 to perform retraining to update and modify the profile information maintained in the profile table. Retraining of the line may be performed at periodic intervals or when physical or electrical characteristics of the line indicate a need for retraining.
After communicating data at step 118, the method can determine if the transceiver unit has been idle for a predetermined period of time at step 124. If the transceiver unit has been idle, the profile information can be retrieved from the registers and stored in the profile table at step 126. It can be important that the transceiver unit retrieve modified or updated profile information from the registers to maintain the most recent information for the line in the profile table. In step 128, either due to an idle period or the end of a session, the transceiver unit is released.
Although the invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made thereto without departing from the spirit and scope of the invention as defined by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A remote XDSL transceiver unit, comprising: an XDSL transceiver operable to establish and communicate across an XDSL physical layer; and a control block coupled to the XDSL transceiver, the control block operable: to transmit a request for service to a loop termination point; to identify a signal received from the loop termination point and respond based upon a current context of the remote XDSL transceiver unit; and to control power-up and training of the XDSL transceiver such that the XDSL physical layer can be dynamically brought up and down.
2. The remote XDSL transceiver unit of Claim 1, wherein the control block is further operable to store profile information for an established XDSL physical layer to use for future re-establishment of the XDSL physical layer.
3. The remote XDSL transceiver unit of Claim 1, wherein the control block identifies the signal as indicating no available service when the current context is a pending request for service.
4. The remote XDSL transceiver unit of Claim 1, wherein the control block identifies the signal as indicating an opportunity for digital transmission when the current context is a digital on-hook condition.
5. The remote XDSL transceiver unit of Claim 1, wherein the busy/alert signal is an in-band 300 kHz sine tone transmitted by the loop termination point.
6. A method of operation for a remote XDSL transceiver unit, comprising: providing a first state corresponding to a digital on-hook condition; providing a second state corresponding to a pending request for service to a loop termination point; providing a third state corresponding to a digital off-hook condition; responding to a busy signal, when in the second state, by moving to the first state; responding to a grant signal, when in the second state, by moving to the third state; and training and establishing an XDSL physical layer after moving to the third state.
7. The method of Claim 6, further comprising, after training and establishing the XDSL physical layer, store profile information for the XDSL physical layer to use for future re-establishing of the XDSL physical layer.
8. The method of Claim 6, further comprising, when the XDSL physical layer is to be dropped, negotiating the dropping of the XDSL physical layer between the remote XDSL profile information and the loop termination point.
9. The method of Claim 6, wherein the busy/alert signal is an in-band 300 kHz sine tone transmitted by the loop termination point.
PCT/US1999/005984 1998-03-18 1999-03-18 Remote xdsl transceiver unit and method of operation WO1999048304A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU31926/99A AU3192699A (en) 1998-03-18 1999-03-18 Remote xdsl transceiver unit and method of operation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/040,884 US6278728B1 (en) 1998-03-18 1998-03-18 Remote XDSL transceiver unit and method of operation
US09/040,884 1998-03-18

Publications (1)

Publication Number Publication Date
WO1999048304A2 true WO1999048304A2 (en) 1999-09-23

Family

ID=21913510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/005984 WO1999048304A2 (en) 1998-03-18 1999-03-18 Remote xdsl transceiver unit and method of operation

Country Status (3)

Country Link
US (1) US6278728B1 (en)
AU (1) AU3192699A (en)
WO (1) WO1999048304A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052464A1 (en) * 2000-01-13 2001-07-19 Siemens Aktiengesellschaft Method for adaptively adjusting a table of data rate options for xdsl data transmission methods, said table being adapted to lines and disturbances
EP1223719A2 (en) * 2001-01-16 2002-07-17 Altocom Inc. Selectable training signals based on previously stored connection information for DMT-based system
EP1223723A2 (en) * 1999-07-27 2002-07-17 Conexant Systems, Inc. Connection on hold mechanism
DE10129397A1 (en) * 2001-06-19 2003-01-02 Siemens Ag High bit-rate data transmission monitoring method for subscriber terminals, provides error message when transmission rate fails to attain threshold value
US6693998B2 (en) 1999-04-12 2004-02-17 Conexant Systems, Inc. Error correction and compression parameter exchange during modem training phase
US6731726B1 (en) 1999-04-12 2004-05-04 Conexant Systems, Inc. Communication on hold
US6768791B1 (en) 1999-04-12 2004-07-27 Pctel, Inc. Method and apparatus for quick modem reconnect
US6785371B1 (en) 1999-04-12 2004-08-31 Conexant Systems, Inc. Signaling mechanism for modem connection holding and reconnecting
US6947441B1 (en) * 2000-07-27 2005-09-20 Cisco Technology, Inc. Method and system for verifying spectral compatibility of digital subscriber line connections
USRE42661E1 (en) 1999-04-12 2011-08-30 V-Dot Technologies, Llc Method and apparatus for fast V.90 modem startup
US11205960B2 (en) 2018-06-20 2021-12-21 Viviware Japan, Inc. Electronic device with a module using power line communication

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6647058B1 (en) * 1997-06-23 2003-11-11 Paradyne Corporation Performance customization system and process for optimizing XDSL performance
US6366644B1 (en) * 1997-09-15 2002-04-02 Cisco Technology, Inc. Loop integrity test device and method for digital subscriber line (XDSL) communication
US6873652B1 (en) 1998-04-01 2005-03-29 Panasonic Communications Co., Ltd. Activation of multiple xDSL modems with implicit channel probe
ATE513401T1 (en) * 2000-04-18 2011-07-15 Aware Inc MULTI CARRIER SYSTEM WITH A MULTIPLE SNR SPACING
DE60208022T2 (en) * 2001-06-07 2007-02-15 Aware, Inc., Bedford Condition initialization with variable length for DSL systems
DE10154935A1 (en) * 2001-11-08 2003-05-22 Siemens Ag Method and device for optimized xDSL data transmission
US7539758B2 (en) * 2002-05-16 2009-05-26 Adc Dsl Systems, Inc. Method and system for triggering an automatic log-off of data link layer pass-through application
IL156018A0 (en) * 2003-05-20 2003-12-23 Surf Comm Solutions Ltd Long range broadband modem
US8189686B2 (en) 2006-03-03 2012-05-29 David John Boyes Systems and methods for visualizing errors in video signals
US8842556B2 (en) * 2007-04-13 2014-09-23 Lantiq Deutschland Gmbh Method and system for transmitting and receiving data over a communication channel between two transceiver stations

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532827A (en) 1967-10-19 1970-10-06 Bell Telephone Labor Inc Scanner arrangement for identifying circuits changing their states,storing the times of such change,and determining the character of the change in a communication switching system
US3821484A (en) 1971-03-15 1974-06-28 North Electric Co Time sharing of a supervisory receiver unit
US4002849A (en) 1975-10-14 1977-01-11 Gte Sylvania Incorporated Scanning apparatus for detecting and analyzing supervisory and signaling information
US4282408A (en) 1979-10-25 1981-08-04 Western Electric Company, Inc. On-hook/off-hook detector circuit
US4438511A (en) 1980-11-10 1984-03-20 Telebit Corporation Packetized ensemble modem
US4833706A (en) 1985-05-20 1989-05-23 Telebit Corporation Ensemble modem structure for imperfect transmission media
US5054034A (en) 1985-05-20 1991-10-01 Telebit Corporation Ensemble modem structure for imperfect transmission media
US4679227A (en) 1985-05-20 1987-07-07 Telebit Corporation Ensemble modem structure for imperfect transmission media
US4665514A (en) 1985-08-02 1987-05-12 American Telephone And Telegraph Company, At&T Bell Laboratories Integrated voice/data network
GB8530916D0 (en) 1985-12-16 1986-01-29 British Telecomm Connecting modems to switched network
US4757495A (en) 1986-03-05 1988-07-12 Telebit Corporation Speech and data multiplexor optimized for use over impaired and bandwidth restricted analog channels
CA1299706C (en) * 1987-08-27 1992-04-28 Yasutaka Sasaki Concentrator system capable of completing emergency calls under congested traffic
US4841561A (en) 1987-12-08 1989-06-20 General Datacomm, Inc. Operating default group selectable data communication equipment
GB8802533D0 (en) 1988-02-04 1988-03-02 Plessey Co Plc Data packet switching
US4975906A (en) 1988-02-15 1990-12-04 Hitachi, Ltd. Network system
US4980897A (en) 1988-08-12 1990-12-25 Telebit Corporation Multi-channel trellis encoder/decoder
JPH0759011B2 (en) 1988-09-27 1995-06-21 エヌ・ティ・ティ・データ通信株式会社 Modem mode matching apparatus and method for matching by PBX dial-in
US5134611A (en) 1988-09-30 1992-07-28 Microcom, Inc. Analog/digital data device and method
US4949355A (en) 1989-01-23 1990-08-14 Rockwell International Corporation Test access system for a digital loop carrier system
JPH0710116B2 (en) 1989-06-14 1995-02-01 松下電器産業株式会社 Home bus system and equipment used for this system
US5408527A (en) 1989-06-28 1995-04-18 Canon Kabushiki Kaisha Exchange system and method of connecting calls in said exchange system
US5025469A (en) 1990-02-06 1991-06-18 Bingham John A C Method and apparatus for reducing the turn-around time in facsimile transmission
US5206886A (en) 1990-04-16 1993-04-27 Telebit Corporation Method and apparatus for correcting for clock and carrier frequency offset, and phase jitter in mulicarrier modems
US5228062A (en) 1990-04-16 1993-07-13 Telebit Corporation Method and apparatus for correcting for clock and carrier frequency offset, and phase jitter in multicarrier modems
JP2823320B2 (en) 1990-05-23 1998-11-11 株式会社東芝 Modem pooling system
JP2766382B2 (en) 1990-06-19 1998-06-18 株式会社東芝 Modem pooling system
JP2766380B2 (en) 1990-06-19 1998-06-18 株式会社東芝 Modem pooling system
US5119402A (en) 1990-06-26 1992-06-02 Digital Equipment Corporation Method and apparatus for transmission of local area network signals over unshielded twisted pairs
US5214650A (en) 1990-11-19 1993-05-25 Ag Communication Systems Corporation Simultaneous voice and data system using the existing two-wire inter-face
US5210530A (en) 1991-01-04 1993-05-11 Codex Corporation Network management interface with internal dsd
US5119403A (en) 1991-04-09 1992-06-02 Racal Data Communications Inc. Superframes
US5222077A (en) 1991-04-09 1993-06-22 Racal-Datacom, Inc. Radix mapping with variable number of symbols in mapping period
US5185763A (en) 1991-04-09 1993-02-09 Racal-Datacom, Inc. Data bit to constellation symbol mapper
US5293402A (en) 1991-05-02 1994-03-08 Bell Communications Research, Inc. Wideband digital equalizers for subscriber loops
US5444703A (en) 1991-05-24 1995-08-22 Gagliardi; Ugo O. ISDN interfacing of personal computers
FR2677831B1 (en) 1991-06-17 1994-12-09 Apple Computer MODEM WITH AN IMPROVED LINE INTERFACE CIRCUIT, ESPECIALLY FOR A COMPUTER.
US5202884A (en) 1991-06-28 1993-04-13 Digital Equipment Corporation Multiplexing scheme for modem control signals
US5434863A (en) 1991-08-30 1995-07-18 Hitachi, Ltd. Internetworking apparatus for connecting plural network systems and communication network system composed of plural network systems mutually connected
US5247347A (en) 1991-09-27 1993-09-21 Bell Atlantic Network Services, Inc. Pstn architecture for video-on-demand services
US5198818A (en) 1991-11-07 1993-03-30 Pairgain Technologies, Inc. Oversampled digital-to-analog converter for multilevel data transmission
US5367540A (en) 1992-01-16 1994-11-22 Fujitsu Limited Transversal filter for use in a digital subscriber line transmission interface
US5331670A (en) 1992-01-31 1994-07-19 At&T Bell Laboratories Synchronization scheme for a digital communications system
CA2092134C (en) 1992-03-24 1998-07-21 Anthony J. Mazzola Distributed routing network element
US5295159A (en) 1992-04-17 1994-03-15 Bell Communications Research, Inc. Coordinated coding for digital transmission
US5504736A (en) 1992-05-11 1996-04-02 At&T Corp. Non-invasive link monitor
JPH05316063A (en) 1992-05-12 1993-11-26 Fujitsu Ltd Multiplex control system for frequency multiplexing modem
US5341474A (en) 1992-05-15 1994-08-23 Bell Communications Research, Inc. Communications architecture and buffer for distributing information services
US5371532A (en) 1992-05-15 1994-12-06 Bell Communications Research, Inc. Communications architecture and method for distributing information services
US5285474A (en) 1992-06-12 1994-02-08 The Board Of Trustees Of The Leland Stanford, Junior University Method for equalizing a multicarrier signal in a multicarrier communication system
JPH066362A (en) 1992-06-23 1994-01-14 Hitachi Ltd Message processing load distribution system for host system in lan
ATE174180T1 (en) 1992-07-30 1998-12-15 Siemens Ag CONTROL METHOD FOR A TEST SYSTEM
US5410264A (en) 1992-10-13 1995-04-25 Bell Communications Research, Inc. Adaptive impulse noise canceler for digital subscriber lines
US5438571A (en) 1992-11-06 1995-08-01 Hewlett-Packard Company High speed data transfer over twisted pair cabling
US5550836A (en) 1992-11-06 1996-08-27 Hewlett-Packard Company High speed data transfer over twisted pair cabling
US5282155A (en) 1992-11-19 1994-01-25 Bell Communications Resarch, Inc. Adaptive digital filter architecture for parallel output/update computations
US5404388A (en) 1993-03-03 1995-04-04 Northern Telecom Limited Digital measurement of amplitude and phase of a sinusoidal signal and detection of load coil based on said measurement
US5479447A (en) 1993-05-03 1995-12-26 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for adaptive, variable bandwidth, high-speed data transmission of a multicarrier signal over digital subscriber lines
US5440335A (en) 1993-05-28 1995-08-08 U S West Advanced Technologies, Inc. Method and apparatus for delivering passband and telephony signals in a coaxial cable network
RO111887B1 (en) 1993-05-28 1997-02-28 Us West Technologies Inc Method and network for the separation of telephonic services from special services
US5414455A (en) 1993-07-07 1995-05-09 Digital Equipment Corporation Segmented video on demand system
US5442390A (en) 1993-07-07 1995-08-15 Digital Equipment Corporation Video on demand with memory accessing and or like functions
US5400322A (en) 1993-08-20 1995-03-21 Amati Communications Corp. Updating of bit allocations in a multicarrier modulation transmission system
JPH0774846A (en) 1993-09-01 1995-03-17 Fujitsu Ltd Asymmetrical digital subscriber line control system
US5452306A (en) 1993-09-07 1995-09-19 Southwestern Bell Technology Resources, Inc. Out-of-band embedded overhead architecture for a transmission network
US5422876A (en) 1993-09-07 1995-06-06 Southwestern Bell Technology Resources, Inc. Out-of-band loopback control scheme
US5412660A (en) 1993-09-10 1995-05-02 Trimble Navigation Limited ISDN-to-ISDN communication via satellite microwave radio frequency communications link
US5546383A (en) 1993-09-30 1996-08-13 Cooley; David M. Modularly clustered radiotelephone system
US5631897A (en) 1993-10-01 1997-05-20 Nec America, Inc. Apparatus and method for incorporating a large number of destinations over circuit-switched wide area network connections
US5475735A (en) 1993-12-02 1995-12-12 Motorola, Inc. Method of providing wireless local loop operation with local mobility for a subscribed unit
US5408614A (en) 1993-12-17 1995-04-18 Xircom, Inc. Modem adapter for use with standard PC parallel port
US5414733A (en) 1993-12-20 1995-05-09 Adtran Decision feedback equalizer employing fixed ratio postcursor taps for minimizing noise and intersymbol interference in signals conveyed over high speed data service loop
US5428608A (en) 1993-12-30 1995-06-27 At&T Corp. Call connection technique
US5513251A (en) 1993-12-30 1996-04-30 At&T Corp. Method for providing call waiting service
US5408260A (en) 1994-01-11 1995-04-18 Northern Telecom Limited Customer premises ADSL signal distribution arrangement
US5621731A (en) * 1994-02-04 1997-04-15 Omnilink Communications Corporation Private exchange for ISDN
US5737364A (en) 1994-02-18 1998-04-07 Telebit Corporation Serial communications interface that supports multiple interface standards
US5430793A (en) 1994-02-25 1995-07-04 Intel Corporation Apparatus and method for configuring a computer system and a modem for use in a particular country
US5453779A (en) 1994-03-15 1995-09-26 International Business Machines Corporation Scheduling policies with grouping for providing VCR control functions in a video server
US5461415A (en) 1994-03-15 1995-10-24 International Business Machines Corporation Look-ahead scheduling to support video-on-demand applications
US5390239A (en) 1994-03-17 1995-02-14 Morris; Gregory A. Method for increasing digital data throughput over telephone lines
US5473599A (en) 1994-04-22 1995-12-05 Cisco Systems, Incorporated Standby router protocol
US5555244A (en) 1994-05-19 1996-09-10 Integrated Network Corporation Scalable multimedia network
US5477263A (en) 1994-05-26 1995-12-19 Bell Atlantic Network Services, Inc. Method and apparatus for video on demand with fast forward, reverse and channel pause
US5461640A (en) 1994-06-03 1995-10-24 Texas Instruments Incorporated Method and system for optimizing an equalizer in a data transmission system
US5526358A (en) 1994-08-19 1996-06-11 Peerlogic, Inc. Node management in scalable distributed computing enviroment
CA2159845A1 (en) 1994-11-03 1996-05-04 Bruce Lowell Hanson Enabling technique for quickly establishing high speed pstn connections in telecommuting applications
US5495483A (en) 1995-01-26 1996-02-27 Motorola, Inc. Method and apparatus for allocating carrier channels
US5604741A (en) 1995-03-16 1997-02-18 Broadcom Corporation Ethernet system
US5602902A (en) 1995-03-24 1997-02-11 Intel Corporation Four wire modem signal switching for voice and data applications
US5649001A (en) 1995-03-24 1997-07-15 U.S. Robotics Mobile Communications Corp. Method and apparatus for adapting a communication interface device to multiple networks
US5583862A (en) 1995-03-28 1996-12-10 Bay Networks, Inc. Method and apparatus for routing for virtual networks
US5574724A (en) 1995-05-26 1996-11-12 Lucent Technologies Inc. Adjustment of call bandwidth during a communication call
US5687176A (en) 1995-06-09 1997-11-11 Hubbell Incorporated Zero byte substitution method and apparatus for telecommunications equipment
US5812786A (en) 1995-06-21 1998-09-22 Bell Atlantic Network Services, Inc. Variable rate and variable mode transmission system
US5770950A (en) 1995-09-28 1998-06-23 Cisco Systems, Inc. Minimizing signal reflection along a transmission line without terminating the transmission line
US5756280A (en) 1995-10-03 1998-05-26 International Business Machines Corporation Multimedia distribution network including video switch
US5905781A (en) * 1996-03-29 1999-05-18 Cisco Technology, Inc. Communication server apparatus and method
US5852655A (en) 1996-03-29 1998-12-22 Cisco Systems, Inc. Communication server apparatus having distributed switching and method
US5668857A (en) 1996-03-29 1997-09-16 Netspeed, Inc. Communication server apparatus and method
US5781617A (en) 1996-03-29 1998-07-14 Netspeed, Inc. Communication server apparatus using frequency multiplexing and method
US6084881A (en) * 1997-05-22 2000-07-04 Efficient Networks, Inc. Multiple mode xDSL interface
US5999540A (en) * 1998-12-22 1999-12-07 Cisco Technology, Inc. Rate adaptive XDSL communication system and method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305072B2 (en) 1999-04-12 2007-12-04 Silicon Laboratories Inc. Method and apparatus for quick modern reconnect
US6768791B1 (en) 1999-04-12 2004-07-27 Pctel, Inc. Method and apparatus for quick modem reconnect
US7443966B2 (en) 1999-04-12 2008-10-28 Silicon Laboratories Inc. Using modems to place modem connections on hold and to maintain upper layer network connection
US6842509B2 (en) 1999-04-12 2005-01-11 Conexant Systems, Inc. Signaling mechanism for modem connection holding and reconnecting
USRE42661E1 (en) 1999-04-12 2011-08-30 V-Dot Technologies, Llc Method and apparatus for fast V.90 modem startup
US6912276B1 (en) 1999-04-12 2005-06-28 Silicon Laboratories, Inc. Modem on hold
US7027573B2 (en) 1999-04-12 2006-04-11 Silicon Laboratories Inc. Method and apparatus for quick modem reconnect
US6693998B2 (en) 1999-04-12 2004-02-17 Conexant Systems, Inc. Error correction and compression parameter exchange during modem training phase
US6731726B1 (en) 1999-04-12 2004-05-04 Conexant Systems, Inc. Communication on hold
US7277531B2 (en) 1999-04-12 2007-10-02 Mindspeed Technologies, Inc. Method and apparatus for fast V.90 modem startup
US6785371B1 (en) 1999-04-12 2004-08-31 Conexant Systems, Inc. Signaling mechanism for modem connection holding and reconnecting
US6819749B1 (en) 1999-04-12 2004-11-16 Mindspeed Technologies, Inc. Method and apparatus for fast V.90 modem startup
US7634070B2 (en) 1999-04-12 2009-12-15 Silicon Laboratories Inc. Modem with hold and quick connect functionality
US7587034B2 (en) 1999-04-12 2009-09-08 Silicon Laboratories Inc. Use of modem on hold for network management and telephone access
US7062022B2 (en) 1999-04-12 2006-06-13 Mindspeed Technologies, Inc. Method and apparatus for fast V.90 modem startup
US6922467B2 (en) 1999-04-12 2005-07-26 Conexant Systems, Inc. Quick connect parameter exchange
EP1223723A3 (en) * 1999-07-27 2004-01-07 Conexant Systems, Inc. Connection on hold mechanism
EP1223723A2 (en) * 1999-07-27 2002-07-17 Conexant Systems, Inc. Connection on hold mechanism
WO2001052464A1 (en) * 2000-01-13 2001-07-19 Siemens Aktiengesellschaft Method for adaptively adjusting a table of data rate options for xdsl data transmission methods, said table being adapted to lines and disturbances
US6947441B1 (en) * 2000-07-27 2005-09-20 Cisco Technology, Inc. Method and system for verifying spectral compatibility of digital subscriber line connections
US7957308B2 (en) 2001-01-16 2011-06-07 Broadcom Corporation Selectable training signals based on stored previous connection information for DMT-based system
US7187696B2 (en) 2001-01-16 2007-03-06 Broadcom Corporation Selectable training signals based on stored previous connection information for DMT-based system
US6922397B1 (en) 2001-01-16 2005-07-26 Broadcom Corporation Selectable training signals based on stored previous connection information for DMT-based system
EP1223719A2 (en) * 2001-01-16 2002-07-17 Altocom Inc. Selectable training signals based on previously stored connection information for DMT-based system
EP1223719A3 (en) * 2001-01-16 2003-05-07 Altocom Inc. Selectable training signals based on previously stored connection information for DMT-based system
DE10129397C2 (en) * 2001-06-19 2003-11-27 Siemens Ag Method for monitoring a high bit rate data transmission and associated components
DE10129397A1 (en) * 2001-06-19 2003-01-02 Siemens Ag High bit-rate data transmission monitoring method for subscriber terminals, provides error message when transmission rate fails to attain threshold value
US11205960B2 (en) 2018-06-20 2021-12-21 Viviware Japan, Inc. Electronic device with a module using power line communication

Also Published As

Publication number Publication date
AU3192699A (en) 1999-10-11
US6278728B1 (en) 2001-08-21

Similar Documents

Publication Publication Date Title
US6278728B1 (en) Remote XDSL transceiver unit and method of operation
AU763810B2 (en) Splitterless multicarrier modem
US6345071B1 (en) Fast retrain based on communication profiles for a digital modem
US7317754B1 (en) Rate agile rate-adaptive digital subscriber line
KR100955169B1 (en) Multicarrier communication with variable overhead rate
US6567464B2 (en) Fast retrain based on communication profiles for a digital modem
EP3127314B1 (en) Data communication
US7664522B2 (en) Adjusting a transmit power of a subscriber device of a communication network by a transmit/receive means
US6542581B2 (en) Method for controlling the transmission power in a digital subscriber line
JP6006314B2 (en) Method for initiating a non-standard mode for an XDSL transmission system and a residential gateway using the method
Cisco System Operation and Performance with a Digital Off-Hook Configuration
Cisco System Operation and Performance with a Digital Off-Hook Configuration
Cisco System Operation and Performance (DOH)
Cisco System Operation and Performance (Direct Connect)
Cisco System Operation and Performance (DOH)
Cisco System Operation and Performance (Direct Connect)
Cisco System Operation and Performance (Direct Connect)
Cisco System Operation and Performance with a Direct Connect Configuration
Cisco System Operation and Performance (DOH)
JP2014531809A5 (en)
JP2003524945A (en) Method and apparatus for activating digital and analog modems using PCM
CN112543039B (en) Method, device and system for improving noise immunity of copper wire transmission network
US7415062B1 (en) Switching system supporting data communications supported by multiple power spectra
EP2582110A1 (en) Method for selecting an XDSL transmission mode and residential gateway using the method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642