WO1999033392A1 - Deformable probe with automatic detection of the position of the probe - Google Patents

Deformable probe with automatic detection of the position of the probe Download PDF

Info

Publication number
WO1999033392A1
WO1999033392A1 PCT/AT1998/000320 AT9800320W WO9933392A1 WO 1999033392 A1 WO1999033392 A1 WO 1999033392A1 AT 9800320 W AT9800320 W AT 9800320W WO 9933392 A1 WO9933392 A1 WO 9933392A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
sensors
probe according
deformation
computer
Prior art date
Application number
PCT/AT1998/000320
Other languages
German (de)
French (fr)
Inventor
Falko Skrabal
Jürgen FORTIN
Original Assignee
Falko Skrabal
Fortin Juergen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Falko Skrabal, Fortin Juergen filed Critical Falko Skrabal
Publication of WO1999033392A1 publication Critical patent/WO1999033392A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/31Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the rectum, e.g. proctoscopes, sigmoidoscopes, colonoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00057Operational features of endoscopes provided with means for testing or calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/009Flexible endoscopes with bending or curvature detection of the insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
    • A61B5/036Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs by means introduced into body tracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings

Definitions

  • FR 2 732 225 AI (MAZARS) describes a probe that automatically inserts into the hollow body.
  • this probe is equipped with bimetallic lamellae or with piezo elements and divided into individual segments, which deform independently of one another, in the same way as the foremost segment specified for the subsequent segments. This is dangerous and not feasible because it would presuppose that the cavity examined did not undergo any natural deformation during the entire examination period. This is not the case in the case of the intestine, since the intestine is equipped with muscle cells and has natural movement due to the peristalsis. This cannot be detected with the device described.
  • WO 95/04556 (ACTIVE CONTROL) describes a cardiac catheter, the deformation of which is observed on the X-ray screen, it being possible for piezoelectric elements to produce difficult curvatures which cannot be accomplished with conventional cable pulls.
  • EP 0 077 526 A2 (OLYMPUS) describes a servo device for operating an endoscope, the manual rotation of the operating levers being detected by stretching a piezoelectric rubber, as a result of which the servo device is controlled.
  • the device cannot detect the position of the probe.
  • TKAYAMA the bending of the control head of an endoscope is brought about by an alloy which, when heated, reaches a defined angle. This saves the cables for the endoscope, but the deformation of the probe cannot be detected.
  • the object of the present invention is to avoid the disadvantages shown and to create a probe which allows the position of a cavity or a probe (for example an endoscope) which is inserted into this cavity to be recognized from the outside with any loops and loops .
  • this object is achieved in that a plurality of deformation sensors are attached over the length of the probe, these sensors either transmitting their signals via electrical lines or by radio to a computer which calculates the exact deformation and position of the probe from the signals of the individual sensors .
  • These deformation sensors can either transmit the curvature of the probe to the examining person via electrical lines or also wirelessly, a screen preferably being offered on which the position of the probe with all its windings and loops is displayed.
  • Either strain gauges or piezoelectric elements which are distributed over the length of the probe and are attached to the probe, are preferably used as sensors. These strain gauges or piezoelectric elements are connected to a computer outside the body via wires. This computer can preferably graphically display the exact position and curvature of the probe on the screen. The number of sensors required results from the minimum radius of curvature, i.e. from the steepness of the device. The smaller the radius of curvature and the more flexible the device, the more sensors are necessary over the course.
  • a flexible probe which can remain in the device during the entire examination process, is preferably inserted into a possible cavity of the probe (eg working channel of an endoscope).
  • the outer diameter of this probe is through the Given the diameter of the cavity of the outer probe and is, for example, normally 3 mm for the endoscope.
  • This probe is preferably manufactured in such a way that the piezoelectric elements or the strain gauges are completed with the electrical connections and then a thin plastic or rubber skin is placed over the sensors in a vulcanization, shrinking or spraying process. A smooth surface of the device can then be achieved.
  • a multiplex circuit is also suitable, with which the sensors are linked to one another, and as is well known from the literature. This means that up to x * (x-l) / 2 sensors can be supplied from x electrical lines (e.g. 28 sensors from 8 lines).
  • sensors strain gauges or piezoelectric elements
  • the signals from the sensors must indicate the curvature of the probe in three-dimensional space, whereby two sensors offset by approx. 90 degrees from the circumference of the device are sufficient to calculate a three-dimensional deformation.
  • sensors are also suitable that can record deformation in more than one plane. In this case, only one sensor would have to be distributed over the respective length of the probe.
  • AD converters For the computing process, it is favorable to transmit the analog signals of the individual sensors to the computer in a known manner via AD converters.
  • FIG. 1 shows a probe according to the invention
  • FIG. 2 shows a section of the probe in the area of the deformation sensors
  • FIG. 3 shows a phantom for calibrating the probe
  • FIG. 4 shows a circuit diagram (multiplex circuit) for the measurement value acquisition.
  • FIG. 1 shows a probe 1 which contains the electrical leads 3 of the deformation sensors 4 in its inner lumen 2. Since the deformation of the probe 1 can be very strong, but the deformation sensors 4 are only slightly expandable, it can be advantageous that the deformation sensors 4 are applied to a rigid medium which has essentially a similar deformability as the sensors themselves Fig. 1 is used as a rigid medium, for example, a short hollow plastic body 5, which is informed of the deformation by the outer probe 1. This hollow plastic body 5 must accordingly be kept short so as not to endanger the deformability of the entire probe.
  • the feed lines 3 are connected to a computer 9, which calculates the deformation from the signals from the deformation sensors 4 distributed over the length of the probe 1 and advantageously displays them in three dimensions on the screen 10.
  • the probe 1 can be cleaned or washed in the usual manner after use, provision is made for the electrical supply lines 3 to the computer 9 to end in a plug 11, for example, which can be closed with a tight cover 12 or is automatically closed when the computer 9 is removed.
  • the examiner knows which part of the probe 1 has already been inserted into the living body, preferably only the inserted part of the probe 1 should be displayed on the screen 10.
  • the examiner could only enter the length of the part of the inserted probe 1 into the computer.
  • a spacer (not shown) could be attached to the opening of the hollow body, which detects the length of the inserted probe 1. This could be, for example, a mechanical or electronic motion sensor.
  • it could prove useful to display the sections of the probe 1 on the screen 10 at equidistant intervals with an indication of cm.
  • the wire 8 shown in FIG. 1 is connected to a soft deformable material 13 (for example soft rubber) at the tip of the probe, the wire 8 stretching this deformable material when it is advanced and thus reducing the diameter and shortening the deformable material when it is withdrawn, so that the probe tip can be fixed in the desired position in the cavity of the outer probe (not shown).
  • a soft deformable material 13 for example soft rubber
  • two deformation sensors 4a and 4b in the example shown strain gauges 4a and 4b, are attached offset by approximately 90 ° to the circumference of the hollow body 5 in order to be able to detect the deformation of the probe 1 in three-dimensional space .
  • a third deformation sensor 4c offset by approximately 135 ° from the other two deformation sensors 4a and 4b in order to compensate for fluctuations in measured values.
  • the circuit diagram for the measured value acquisition is an analog multiplex circuit.
  • the resistance of the strain gauges 4a, 4b, 4c is advantageously determined using the 4-wire measurement method.
  • the measuring current is kept low in accordance with the medical regulations (e.g. EN 60-601-1), e.g. in the order of 400 ⁇ A.
  • the measuring current is advantageously kept as an alternating current in a medical application, the frequency being approximately 40 kHz.

Abstract

The invention relates to a deformable probe (1) which can be placed in cavities or mediums which cannot be observed. The probe comprises a plurality of deformation and distortion sensors (4, 7) which are distributed along the length of the probe (1). The supply lines (3) are preferably guided outward in a multiplex circuit and are connected to a computer (9). A differential iterative computing method is used for calculating the deformation and position of the probe, and the position of the probe is displayed on a screen (10).

Description

V e rfo r m b a r e S o n d e m it a u to m a ti s c h e r D e te kti o n d e r S o n d en l a g eV e rfo r m b a r e S o n d e m it a u to m a ti s c h e r D e te kti o n d e r S o n d en l a g e
In der Technik bzw. in der Medizin besteht häufig die Notwendigkeit in nicht einsehbaren Hohlräumen, die in ihrer Lage bzw. Verkümmung unbekannt sind, oder in nicht einsehbaren Medien von außen die Form und Position des Hohlraumes bzw. von dort lokalisierten verformbaren Sonden zu erkennen.In technology or medicine, there is often the need to recognize the shape and position of the cavity or the deformable probes located in cavities that are not visible, the location or curvature of which are unknown, or in non-visible media.
Speziell in der Endoskopie (Colonoskopie),besteht häufig die Notwendigkeit, die Lage des Endoskopes im Körper zu kontrollieren, um so Schlingen oder Schleifen des Endoskopes zu erkennen, die einen weiteren Vorschub erschweren. Derzeit wird dafür ein teures Röntgengerät verwendet, das den meisten Ärzten, die diese Untersuchung durchfuhren, nicht zur Verfügung steht. Deswegen muß häufig diese Untersuchung abgebrochen werden, bzw. ist der Untersuchungsvorgang äußerst erschwert und für den Patienten schmerzhaft.Especially in endoscopy (colonoscopy), there is often a need to control the position of the endoscope in the body in order to identify loops or loops of the endoscope, which make further advancement difficult. Currently, an expensive X-ray machine is used for this, which is not available to most doctors who carry out this examination. For this reason, this examination often has to be stopped, or the examination process is extremely difficult and painful for the patient.
Gegenwärtig gibt es kein System, das die geschilderten Nachteile aufhebt und die Lage des Endoskopes in einer einfachen Weise dem Untersuchenden bekannt gibt. In der FR 2 732 225 AI (MAZARS) wird eine Sonde beschrieben, die sich selbständig in den Hohlkörper einfuhrt. Dazu ist diese Sonde mit Bimetallamellen bzw. mit Piezoelementen ausgestattet und in einzelne Segmente unterteilt, die sich selbständig gegeneinander verformen und zwar so, wie das vorderste Segment es den nachfolgenden Segmenten vorgegeben hat. Dies ist deswegen gefährlich und nicht durchführbar, weil es voraussetzen würde, daß der untersuchte Hohlraum während der gesamten Untersuchungsdauer keine natürliche Verformung mitmacht. Gerade im Falles des Darms trifft dies nicht zu, da der Darm mit Muskelzellen ausgestattet ist und durch die Peristaltik eine natürliche Bewegung aufweist. Diese ist mit der beschriebenen Vorrichtung nicht zu erfassen.There is currently no system that overcomes the disadvantages described and makes the position of the endoscope known to the examiner in a simple manner. FR 2 732 225 AI (MAZARS) describes a probe that automatically inserts into the hollow body. For this purpose, this probe is equipped with bimetallic lamellae or with piezo elements and divided into individual segments, which deform independently of one another, in the same way as the foremost segment specified for the subsequent segments. This is dangerous and not feasible because it would presuppose that the cavity examined did not undergo any natural deformation during the entire examination period. This is not the case in the case of the intestine, since the intestine is equipped with muscle cells and has natural movement due to the peristalsis. This cannot be detected with the device described.
In der WO 95/04556 (ACTIVE CONTROL) wird ein Herz-Katheder beschrieben, dessen Verformung am Röntgenschirm beobachtet wird, wobei durch piezoelektrische Elemente schwierige Krümmungen erzeugt werden können, die mit den herkömmlichen Seilzügen nicht zu Bewerkstelligen sind.WO 95/04556 (ACTIVE CONTROL) describes a cardiac catheter, the deformation of which is observed on the X-ray screen, it being possible for piezoelectric elements to produce difficult curvatures which cannot be accomplished with conventional cable pulls.
In der EP 0 077 526 A2 (OLYMPUS) ist eine Servoeinrichtung für die Bedienung eines Endoskopes beschrieben, wobei die manuelle Drehung der Bedienungshebel durch Dehnung eines piezoelektrischen Gummis detektiert wird, wodurch die Servoeinrichtung gesteuert wird. Eine Detektion der Sondenlage ist mit dieser Vorrichtung jedoch nicht durchfuhrbar. In der US 4 899 731 A (TAKAYAMA) wird die Biegung des Steuerkopfes eines Endoskopes durch eine Legierung bewirkt, die durch Erwärmung einen definierten Winkel erreicht. Dadurch kann man sich zwar die Seilzüge für das Endoskop ersparen, die Verformung der Sonde kann allerdings nicht erfaßt werden.EP 0 077 526 A2 (OLYMPUS) describes a servo device for operating an endoscope, the manual rotation of the operating levers being detected by stretching a piezoelectric rubber, as a result of which the servo device is controlled. However, the device cannot detect the position of the probe. In US 4,899,731 A (TAKAYAMA) the bending of the control head of an endoscope is brought about by an alloy which, when heated, reaches a defined angle. This saves the cables for the endoscope, but the deformation of the probe cannot be detected.
In der US 4 930 494 A (TAKEHANA) wird in ähnlicher Weise der Winkel des Insertionsteiles eines Endoskopes verändert, wobei die Erwärmung durch Hitzespulen erreicht wird. Auch hier ist eine Detektion der Sondenlage nicht möglich.In US 4 930 494 A (TAKEHANA) the angle of the insertion part of an endoscope is changed in a similar way, the heating being achieved by means of heat coils. Detection of the probe position is also not possible here.
Aufgabe der vorliegenden Erfindung ist es, die dargestellten Nachteile zu vermeiden und eine Sonde zu schaffen, die die Position eines Hohlraumes bzw. einer Sonde (z.B. eines Endoskopes), die in diesen Hohlraum eingeführt ist, mit allfälligen Schleifen- und Schlingenbildungen von außen erkennen läßt.The object of the present invention is to avoid the disadvantages shown and to create a probe which allows the position of a cavity or a probe (for example an endoscope) which is inserted into this cavity to be recognized from the outside with any loops and loops .
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß über die Länge der Sonde mehrere Verformungssensoren angebracht sind, wobei diese Sensoren entweder über elektrische Leitungen oder über Funk ihre Signale an einen Rechner übermitteln, der aus den Signalen der einzelnen Sensoren die exakte Verformung und Lage der Sonde errechnet. Diese Verformungssensoren können entweder über elektrische Leitungen bzw. auch drahtlos die Verkrümmung der Sonde an die untersuchende Person weitergeben, wobei sich vorzugsweise ein Bildschirm anbietet, auf dem die Lage der Sonde mit allen seinen Windungen und Schleifen angezeigt ist.According to the invention, this object is achieved in that a plurality of deformation sensors are attached over the length of the probe, these sensors either transmitting their signals via electrical lines or by radio to a computer which calculates the exact deformation and position of the probe from the signals of the individual sensors . These deformation sensors can either transmit the curvature of the probe to the examining person via electrical lines or also wirelessly, a screen preferably being offered on which the position of the probe with all its windings and loops is displayed.
Vorzugsweise werden als Sensoren entweder Dehnungsmeßstreifen bzw. piezoelektrische Elemente verwendet, die über die Sondenlänge verteilt, an der Sonde angebracht sind. Diese Dehnungsmeßstreifen bzw. piezoelektrischen Elemente sind über Drähte mit einem Rechner außerhalb des Körpers verbunden. Dieser Rechner kann bevorzugt graphisch auf dem Bildschirm die exakte Position und Verkrümmung der Sonde darstellen. Die Anzahl der notwendigen Sensoren ergibt sich aus dem minimalen Krümmungsradius d.h. aus der Steilheit des Gerätes. Je kleiner der Krümmungsradius und um so flexibler das Gerät, desto mehr Sensoren sind über den Verlauf notwendig.Either strain gauges or piezoelectric elements, which are distributed over the length of the probe and are attached to the probe, are preferably used as sensors. These strain gauges or piezoelectric elements are connected to a computer outside the body via wires. This computer can preferably graphically display the exact position and curvature of the probe on the screen. The number of sensors required results from the minimum radius of curvature, i.e. from the steepness of the device. The smaller the radius of curvature and the more flexible the device, the more sensors are necessary over the course.
Für ein übliches Colonoskop mit einem Krümmungsdurchmesser von 5 cm im vorderen, 20cm langen Teil und von 12 cm im restlichen Teil, ergibt sich bei einer Gerätelänge von ca. 1,3 Meter eine Anzahl von 25 bis 150 Sensoren, die alle Verformungen des Gerätes genau ausrechnen lassen.For a conventional colonoscope with a curvature diameter of 5 cm in the front, 20 cm long part and of 12 cm in the rest of the part, with a device length of approx. 1.3 meters, there are a number of 25 to 150 sensors that accurately measure all deformations of the device have it calculated.
Bevorzugterweise wird für fertige Sonden, bzw. herkömmliche Untersuchungsgeräte, an denen keine Sensoren mehr angebracht werden können, in einen allfälligen Hohlraum der Sonde (z.B. Arbeitskanal eines Endoskopes) eine biegsame Sonde eingeführt, die während des gesamten Untersuchungsvorganges im Gerät bleiben kann. Der äußere Durchmesser dieser Sonde ist durch den Durchmesser des Hohlraumes der äußeren Sonde gegeben und beträgt z.B. im Normalfall für das Endoskop 3 mm.For finished probes or conventional examination devices to which sensors can no longer be attached, a flexible probe, which can remain in the device during the entire examination process, is preferably inserted into a possible cavity of the probe (eg working channel of an endoscope). The outer diameter of this probe is through the Given the diameter of the cavity of the outer probe and is, for example, normally 3 mm for the endoscope.
Die Herstellung dieser Sonde erfolgt bevorzugt so, daß die piezoelektrischen Elemente bzw. die Dehnungsmeßstreifen mit den elektrischen Verbindungen fertiggestellt werden und anschließend in einem Vulkanisierungs-, Schrumpfungs- oder Besprühungsverfahren eine dünne Kunststoff- oder Gummihaut über den Sensoren plaziert wird. So ist dann ein glatte Oberfläche des Gerätes zu erzielen. Um möglichst wenig elektrische Leitungen nach außen führen zu müssen, eignet sich auch eine Multiplexschaltung, mit der die Sensoren untereinander verknüpft sind, und wie sie aus der Literatur gut bekannt ist. Dadurch können bis x*(x-l)/2 Sensoren von x elektrischen Leitungen (z.B. 28 Sensoren von 8 Leitungen) versorgt werden.This probe is preferably manufactured in such a way that the piezoelectric elements or the strain gauges are completed with the electrical connections and then a thin plastic or rubber skin is placed over the sensors in a vulcanization, shrinking or spraying process. A smooth surface of the device can then be achieved. In order to have as little electrical lines to the outside as possible, a multiplex circuit is also suitable, with which the sensors are linked to one another, and as is well known from the literature. This means that up to x * (x-l) / 2 sensors can be supplied from x electrical lines (e.g. 28 sensors from 8 lines).
Die Signale von den Sensoren ( Dehnungsmeßstreifen bzw. piezoelektrische Elemente ) müssen die Krümmung der Sonde im dreidimensionalen Raum angeben, wobei jeweils 2 Sensoren um ca. 90 Grad an der Zirkumferenz des Gerätes versetzt ausreichen, um eine dreidimensionale Verformung errechnen zu können. Alternativ eignen sich auch Sensoren, die eine Verformung in mehr als einer Ebene aufnehmen können. In diesem Fall müßte nur jeweils ein Sensor auf der jeweiligen Länge der Sonde verteilt, angebracht werden.The signals from the sensors (strain gauges or piezoelectric elements) must indicate the curvature of the probe in three-dimensional space, whereby two sensors offset by approx. 90 degrees from the circumference of the device are sufficient to calculate a three-dimensional deformation. Alternatively, sensors are also suitable that can record deformation in more than one plane. In this case, only one sensor would have to be distributed over the respective length of the probe.
Aus dem Input aller Sensoren bzw. aus dem Krümmungsdurchmesser des Gerätes ergibt sich dann - auch trotz Plazierung von nur wenigen Sensoren auf die Sondenlänge verteilt - ein genaues dreidimensionales Bild der Lage der Sonde im Hohlraum oder im nicht einsichtigen Medium.From the input of all sensors or from the curvature diameter of the device, an exact three-dimensional image of the position of the probe in the cavity or in the non-transparent medium is obtained - even though only a few sensors are placed over the length of the probe.
Für den Rechenvorgang ist es günstig, in bekannter Weise die Analogsignale der einzelnen Sensoren über AD-Wandler an den Rechner zu übertragen.For the computing process, it is favorable to transmit the analog signals of the individual sensors to the computer in a known manner via AD converters.
Zur genauen Bestimmung der Position der Sonde aus den gewonnenen Krümmungsradien bietet sich z.B. folgende Formel zur Berechnung an, wobei man vorteilsweise den Ursprung der graphischen und rechnerischen Darstellung bei der Einführstelle annimmt.For precise determination of the position of the probe from the radii of curvature obtained, e.g. the following formula for the calculation, advantageously assuming the origin of the graphical and mathematical representation at the insertion point.
Krümmung ω und Krümmungsrichtung φ am Ort i der Verformungssensoren:Curvature ω and curvature direction φ at location i of the deformation sensors:
ω ΔZ ξi + ΔZ r - Z ψlω ΔZ ξi + ΔZ r - Z ψl
φ. = arctanφ. = arctan
ΔZ ψl J
Figure imgf000005_0001
Verwindung α am Ort j der Verwindungssensoren: cti . Verwtndungswtnkel an der StelleL , ∑d . distaler Widerstandswert ι .. proxtmaler Widerstandswert
Figure imgf000006_0001
ΔZ ψl J
Figure imgf000005_0001
Torsion α at location j of the torsion sensors: cti. Use angle at the point L, ∑d. distal resistance value ι .. proximal resistance value
Figure imgf000006_0001
Interpolierte Krümmung ω(l) bzw. Verwindung (l) entlang der Sondenlänge 1: gi(l) . InterpoiationsfunkttonInterpolated curvature ω (l) or twist (l) along the probe length 1: gi (l). Interpo functio
... Anzahl der Verformungssensoren
Figure imgf000006_0002
lineare und cos2 Interpolartionsfunktion:
... number of deformation sensors
Figure imgf000006_0002
linear and cos 2 interpolation function:
Figure imgf000006_0003
Figure imgf000006_0003
Generell muß die Interpolationsgleichung g,(l) folgende Eigenschaft aufweisen:In general, the interpolation equation g, (l) must have the following property:
s(/)= ∑sf (/)= ιs ( / ) = ∑s f ( / ) = ι
/=0 differenzielle Verkrümmung bezüglich des Ursprungs:/ = 0 differential curvature with respect to the origin:
dl - d - siπ(α(/)+ φ(,)) dl . « d&. ∞s(a(,)+ φ(,))dl - d - siπ (α (/) + φ (,)) dl. « D &. ∞s ( a (,) + φ (,))
Iterative Berechnung der Sondenkoordinaten für jeden Abschnitt Δl: x(θ) = 0 v(θ) = 0 z(θ) = 0 dr x(l + Al) = x{l)+ — - Al dl y(l + Al) = y(l)+ ^ . Al dlIterative calculation of the probe coordinates for each section Δl: x (θ) = 0 v (θ) = 0 z (θ) = 0 dr x (l + Al) = x {l) + - - Al dl y (l + Al) = y (l) + ^. Al dl
Figure imgf000006_0004
Figure imgf000006_0004
Es ist offensichtlich, daß die beschriebene Vorrichtung auch auf andere Applikationen in der Medizin, aber auch auf technische Bereiche übertragen werden kann und der Schutz auch auf diese anderen Applikationen auszudehnen ist. Die Erfindung wird im folgenden anhand von schematischen Zeichnungen näher erläutert. Es zeigen Fig. 1 eine erfindungsgemäße Sonde, Fig. 2 einen Schnitt der Sonde im Bereich der Verformungssensoren, Fig. 3 ein Phantom zur Kalibrierung der Sonde sowie Fig. 4 ein Schaltbild (Multiplexschaltung) für die Meßwerterfassung.It is obvious that the device described can also be transferred to other applications in medicine, but also to technical areas, and the protection can also be extended to these other applications. The invention is explained in more detail below with the aid of schematic drawings. 1 shows a probe according to the invention, FIG. 2 shows a section of the probe in the area of the deformation sensors, FIG. 3 shows a phantom for calibrating the probe, and FIG. 4 shows a circuit diagram (multiplex circuit) for the measurement value acquisition.
In Fig. 1 ist eine Sonde 1 dargestellt, die in ihrem inneren Lumen 2 die elektrischen Zuleitungen 3 der Verformungssensoren 4 enthält. Da die Verformung der Sonde 1 sehr stark sein kann, jedoch die Verformungssensoren 4 nur gering dehnbar sind, kann es vorteilhaft sein, daß die Verformungssensoren 4 auf ein steifes Medium aufgebracht werden, das im wesentlichen eine ähnliche Verformbarkeit aufweist wie die Sensoren selbst. In der Fig. 1 wird als steifes Medium beispielsweise ein kurzer Kunststoffhohlkörper 5 verwendet, der von der äußeren Sonde 1 die Verformung mitgeteilt bekommt. Dieser Kunststoffhohlkörper 5 muß dementsprechend kurz gehalten sein um die Verformbarkeit der ganzen Sonde nicht zu gefährden. Damit gewährleistet ist, daß die Lage der Sonde 1 im Verhältnis zur Lage des eingeführten Gerätes - im gegenständlichen Fall die Lage des Colonosko- pes (nicht dargestellt) - konstant ist, wird vorgeschlagen, eine Asymmetrie (z.B. Nase 6 bzw. Nut) an der Sonde anzubringen.FIG. 1 shows a probe 1 which contains the electrical leads 3 of the deformation sensors 4 in its inner lumen 2. Since the deformation of the probe 1 can be very strong, but the deformation sensors 4 are only slightly expandable, it can be advantageous that the deformation sensors 4 are applied to a rigid medium which has essentially a similar deformability as the sensors themselves Fig. 1 is used as a rigid medium, for example, a short hollow plastic body 5, which is informed of the deformation by the outer probe 1. This hollow plastic body 5 must accordingly be kept short so as not to endanger the deformability of the entire probe. In order to ensure that the position of the probe 1 is constant in relation to the position of the inserted device - in this case the position of the colonoscope (not shown) - it is proposed that an asymmetry (eg nose 6 or groove) on the To attach the probe.
Um auch eine allfällige Längsverwindung der Sonde 1 erfassen zu können, könnte es vorteilhaft sein, zusätzliche diagonal zur Achse mit Abweichungen in beiden entgegengesetzten Richtungen angebrachte Dehnungsmeßstreifen als Verwindungssensoren 7 an der Sonde anzubringen. Bei den gegebenen geringen Außendurchmesser im Verhältnis zur Länge der Sonde wird eine Verwindung nicht ganz auszuschließen sein, obwohl man darauf wertlegen wird, durch Verwendung von ver- windungsfreien bzw. verwindungsarmen Materialien ein Verwinden zu verhindern. So könnte es sich als günstig erweisen, in der Mitte der Sonde 1 ein verwindungssteifes Material z.B. einen Metalldraht 8 einzubringen, der Verwindungen verhindert aber die Krümmung erlaubt.In order to also be able to detect a possible longitudinal twist of the probe 1, it could be advantageous to attach additional strain gauges diagonally to the axis with deviations in both opposite directions as torsion sensors 7 on the probe. Given the small outer diameter in relation to the length of the probe, twisting cannot be completely ruled out, although it will be important to prevent twisting by using torsion-free or low-torsion materials. So it could prove to be beneficial to have a torsionally rigid material in the middle of the probe 1, e.g. insert a metal wire 8, which prevents twisting but allows the curvature.
Die Zuleitungen 3 sind mit einem Rechner 9 verbunden, der aus den Signalen der auf der Länge der Sonde 1 verteilten Verformungssensoren 4 die Verformung errechnet und auf dem Bildschirm 10 günstigerweise dreidimensional darstellt.The feed lines 3 are connected to a computer 9, which calculates the deformation from the signals from the deformation sensors 4 distributed over the length of the probe 1 and advantageously displays them in three dimensions on the screen 10.
Damit die Sonde 1 in üblicher Weise nach der Verwendung gereinigt, bzw. gewaschen werden kann, ist vorgesehen, beispielsweise die elektrischen Zuleitungen 3 zum Rechner 9 in einem Stecker 11 enden zu lassen, der bei Bedarf mit einer dichten Abdeckung 12 verschlossen werden kann bzw. automatisch bei Abziehen vom Rechner 9 verschlossen wird.So that the probe 1 can be cleaned or washed in the usual manner after use, provision is made for the electrical supply lines 3 to the computer 9 to end in a plug 11, for example, which can be closed with a tight cover 12 or is automatically closed when the computer 9 is removed.
Damit der Untersucher weiß, welcher Teil der Sonde 1 bereits im lebenden Körper eingeführt ist, sollte vorzugsweise nur der eingeführte Teil der Sonde 1 am Bildschirm 10 dargestellt werden. Da- zu könnte z.B. der Untersucher nur die Länge des Teils der eingeführten Sonde 1 in den Rechner eingeben. Zusätzlich könnte eventuell an der Öffnung des Hohlkörpers ein Distanzabnehmer (nicht dargestellt) angebracht sein, der die Länge der eingeführten Sonde 1 registriert. Dabei könnte es sich z.B. um einen mechanischen oder elektronischen Bewegungssensor handeln. Zusätzlich könnte es sich bewähren, die Teilstrecken der Sonde 1 am Bildschirm 10 in äquidistanten Abständen mit cm-Angabe darzustellen.So that the examiner knows which part of the probe 1 has already been inserted into the living body, preferably only the inserted part of the probe 1 should be displayed on the screen 10. There- For example, the examiner could only enter the length of the part of the inserted probe 1 into the computer. In addition, a spacer (not shown) could be attached to the opening of the hollow body, which detects the length of the inserted probe 1. This could be, for example, a mechanical or electronic motion sensor. In addition, it could prove useful to display the sections of the probe 1 on the screen 10 at equidistant intervals with an indication of cm.
In Fig. 1 ist weiters eine Ausführung der Sondenspitze gezeigt, die im Hohlraum einer weiteren Sonde verwindungsfrei gegenüber dem der rechnerzugewandten Seite der Sonde 1 fixiert werden kann. Dazu ist der in Fig. 1 dargestellte Draht 8 an der Spitze der Sonde mit einem weichen verformbaren Material 13 (z.B. Weichgummi) verbunden, wobei der Draht 8 bei Vorschieben dieses verformbare Material streckt und damit den Durchmesser verringert und bei Zurückziehen das verformbare Material verkürzt, so daß die Sondenspitze in der gewünschten Position im Hohlraum der äußeren Sonde (nicht gezeigt) fixiert werden kann.1 also shows an embodiment of the probe tip which can be fixed in the cavity of another probe without twisting relative to that of the side of the probe 1 facing the computer. For this purpose, the wire 8 shown in FIG. 1 is connected to a soft deformable material 13 (for example soft rubber) at the tip of the probe, the wire 8 stretching this deformable material when it is advanced and thus reducing the diameter and shortening the deformable material when it is withdrawn, so that the probe tip can be fixed in the desired position in the cavity of the outer probe (not shown).
Wie in Fig. 1 und 2 dargestellt, sind zwei Verformungssensoren 4a und 4b, im dargestellten Beispiel Dehnungsmeßstreifen 4a und 4b, um ca. 90° versetzt an die Zirkumferenz des Hohlkörpers 5 angebracht, um die Verformung der Sonde 1 im dreidimensionalen Raum erfassen zu können. Hier kann es sich als günstig erweisen, einen dritten Verformungssensor 4c um ca. 135° versetzt von den beiden anderen Verformungssensoren 4a und 4b anzubringen um Meßwertschwankungen auszugleichen.As shown in FIGS. 1 and 2, two deformation sensors 4a and 4b, in the example shown strain gauges 4a and 4b, are attached offset by approximately 90 ° to the circumference of the hollow body 5 in order to be able to detect the deformation of the probe 1 in three-dimensional space . Here it can prove to be advantageous to mount a third deformation sensor 4c offset by approximately 135 ° from the other two deformation sensors 4a and 4b in order to compensate for fluctuations in measured values.
Wie in Fig. 3 dargestellt, kann es sich als günstig erweisen, die Sonde 1 mit Hilfe eines Phantoms 14, in das die Sonde eingeführt wird und das der Sonde konstante und bekannte Krümmungen vorgibt, zu kalibrieren. Diese Kalibrierung kann einmalig erfolgen (Eichung) bzw. vor einer Verwendung erfolgen. Zur Berechnung der Krümmung aus den Signalen der Sensoren kann es sich als günstig erweisen, moderne mathematische Verfahren wie z.B. neuronale Netze, Fuzzy Logic oder diffe- renzielle Geometrie zu verwenden.As shown in FIG. 3, it may prove advantageous to calibrate the probe 1 with the aid of a phantom 14, into which the probe is inserted and which gives the probe constant and known curvatures. This calibration can be done once (calibration) or before use. To calculate the curvature from the signals from the sensors, it can prove to be advantageous to use modern mathematical methods such as to use neural networks, fuzzy logic or differential geometry.
In Fig. 4 ist das Schaltbild für die Meßwerterfassung dargestellt. Es handelt sich beispielsweise um eine analoge Multiplexschaltung. Der Widerstand der Dehnungsmeßstreifen 4a, 4b, 4c wird vorteilsweise mit der 4-Drahtmeßmethode bestimmt. Bei einem Einsatz in lebenden Körpern wird der Meßstrom gemäß den medizintechnischen Vorschriften (z.B. EN 60-601-1) gering gehalten, z.B. in der Größenordnung von 400μA. Ebenso ist der Meßstrom bei einer medizinischen Anwendung vorteilsweise als Wechselstrom gehalten, wobei die Frequenz ca. 40 kHz betragen kann. 4 shows the circuit diagram for the measured value acquisition. For example, it is an analog multiplex circuit. The resistance of the strain gauges 4a, 4b, 4c is advantageously determined using the 4-wire measurement method. When used in living bodies, the measuring current is kept low in accordance with the medical regulations (e.g. EN 60-601-1), e.g. in the order of 400μA. Likewise, the measuring current is advantageously kept as an alternating current in a medical application, the frequency being approximately 40 kHz.

Claims

PATENTANSPRÜCHE PATENT CLAIMS
1. Verformbare Sonde ( z. B. ein Endoskop ), dadurch gekennzeichnet, daß über die Länge der Sonde (1) mehrere Verformungssensoren (4) angebracht sind, wobei diese Sensoren entweder über elektrische Leitungen (3) oder über Funk ihre Signale an einen Rechner (9) übermitteln, der aus den Signalen der einzelnen Sensoren (4) die exakte Verformung und Lage der Sonde (1) errechnet.1. Deformable probe (z. B. an endoscope), characterized in that several deformation sensors (4) are attached over the length of the probe (1), these sensors either via electrical lines (3) or via radio their signals to one Transmit computer (9), which calculates the exact deformation and position of the probe (1) from the signals of the individual sensors (4).
2. Sonde nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei den Sensoren (4) um Dehnungsmeßstreifen (4a, 4b, 4c) handelt, wobei jeweils zwei Dehnungsmeßstreifen (4a, 4b) um ca.90 Grad versetzt an der Zirkumferenz der Sonde (1) angebracht sind.2. Probe according to claim 1, characterized in that the sensors (4) are strain gauges (4a, 4b, 4c), two strain gauges (4a, 4b) offset by approximately 90 degrees at the circumference of the probe (1) are attached.
3. Sonde nach Anspruch 2, dadurch gekennzeichnet, daß ein dritter Dehnungsmeßstreifen (4c) am größeren Kreissektor zwischen den beiden Dehnungsmeßstreifen (4a, 4b) angebracht ist.3. Probe according to claim 2, characterized in that a third strain gauge (4c) is attached to the larger circular sector between the two strain gauges (4a, 4b).
4. Sonde nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei den Sensoren (4) um piezoelektrische Elemente handelt, die die Verkrümmung der Sonde (1) über elektrische Leitungen (3) an das äußere Ende der Sonde (1) und an einen dort befindlichen Rechner (9) weiterleiten.4. A probe according to claim 1, characterized in that the sensors (4) are piezoelectric elements which control the curvature of the probe (1) via electrical lines (3) to the outer end of the probe (1) and to one forward the computer (9) located there.
5. Sonde nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die elektrischen Leitungen (3) in Multiplexschaltung ausgeführt sind.5. Probe according to one of claims 1 to 4, characterized in that the electrical lines (3) are designed in a multiplex circuit.
6. Sonde nach Anpruch 5, dadurch gekennzeichnet, daß es sich bei der Mulitplexschal- tung um eine Mischung aus Raum- und Zeitmultiplex handelt.6. A probe according to claim 5, characterized in that the multiplex circuit is a mixture of space and time multiplex.
7. Sonde nach Anspruch 6, dadurch gekennzeichnet, daß für x elektrische Leitungen (3), die in die Sonde (1) hineinführen, x*(x-l)/2 Sensoren (4) angesteuert werden können.7. Probe according to claim 6, characterized in that for x electrical lines (3) leading into the probe (1), x * (x-l) / 2 sensors (4) can be controlled.
8. Sonde nach Anspruch 5, dadurch gekennzeichnet, daß bei frequenzdefinierten Sensoren (4) die Multiplexschaltung als Frequenzmultiplex ausgeführt ist.8. A probe according to claim 5, characterized in that in the case of frequency-defined sensors (4) the multiplex circuit is designed as a frequency division multiplex.
9. Sonde nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß über den Sensoren (4) und elektrischen Leitungen (3) eine biegsame Membran, z. B. aus Kunststoff oder Gummi angebracht ist, die eine glatte Oberfläche aufweist. 9. Probe according to one of claims 1 to 8, characterized in that a flexible membrane, for. B. made of plastic or rubber, which has a smooth surface.
10. Sonde nach Anspruch 9, dadurch gekennzeichnet, daß die biegsame Membran, die die Sensoren (4) und die elektrischen Leitungen (3) umgibt, aufgeschrumpft, aufgesprüht oder aufvulkanisiert wird.10. Probe according to claim 9, characterized in that the flexible membrane which surrounds the sensors (4) and the electrical lines (3) is shrunk, sprayed or vulcanized.
11. Sondenach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Sonde (1) zumindest 130cm lang ist, einen Durchmesser von max.3mm aufweist, an der Spitze der Sonde (1) über eine Länge von ca.20cm die Sensoren (4) im Abstand von ca.2 cm angebracht sind und auf der restlichen Länge der Sonde (1) der Abstand zwischen den Sensoren (4) ca.5 cm beträgt.11. Probe according to one of claims 1 to 10, characterized in that the probe (1) is at least 130 cm long, has a diameter of max. 3 mm, at the tip of the probe (1) over a length of approx. 20 cm the sensors ( 4) are attached at a distance of approx. 2 cm and the distance between the sensors (4) is approx. 5 cm along the remaining length of the probe (1).
12. Sonde nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß am dem Rechner (9) zugewandten Ende der Sonde (1) eine Verformung (z.B. Nase (6) oder Nut) angebracht ist.12. Probe according to one of claims 1 to 11, characterized in that a deformation (e.g. nose (6) or groove) is attached to the end of the probe (1) facing the computer (9).
13. Sonde nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß innerhalb der Sonde (1) ein möglichst verwindungssteifer Draht (8) angebracht ist.13. Probe according to one of claims 1 to 12, characterized in that within the probe (1) a torsionally rigid wire (8) is attached.
14. Sondenach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß ein Phantom (14) für die Eichung/Kalibrierung der Sonde (1) vorhanden ist, das, bei Plazierung der Sonde (1) im Phantom (14), bekannte Krümmungen der Sonde (1) vorgibt.14. Probe according to one of claims 1 to 13, characterized in that a phantom (14) for the calibration / calibration of the probe (1) is present, which, when the probe (1) is placed in the phantom (14), known curvatures of the Specifies probe (1).
15. Sonde nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß am Bildschirm (10) des Rechners (9) die Längenangabe der Sonde (1) an mehren Stellen angezeigbar ist.15. Probe according to one of claims 1 to 14, characterized in that on the screen (10) of the computer (9) the length of the probe (1) can be displayed in several places.
16. Sonde nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Berechnung der Koordinaten der Sonde (1) nach dem iterativen Gleichungssystem erfolgt:16. Probe according to one of claims 1 to 15, characterized in that the coordinates of the probe (1) are calculated according to the iterative system of equations:
«
Figure imgf000010_0001
«
Figure imgf000010_0001
z(/ + Δ/) = z(/) + Δ/-z (/ + Δ /) = z (/) + Δ / -
Figure imgf000010_0002
Figure imgf000010_0002
17. Sonde nach Anspruch 16, dadurch gekennzeichnet, daß die Inteφolationsgleichung g,(l) folgende Eigenschaft aufweist:17. A probe according to claim 16, characterized in that the interpolation equation g, (l) has the following property:
Figure imgf000011_0001
Figure imgf000011_0001
18. Sonde nach Anspruch 17, dadurch gekennzeichnet, daß eine lineare Inteφolationsgleichung g,(l) verwendet wird:18. A probe according to claim 17, characterized in that a linear interpolation equation g, (l) is used:
1<L i-l l-L1 <L i-l l-L
L , (-1 <1<L ι -L i-l g « = l-LL, (-1 <1 <L ι -L i-l g «= l-L
L ι <1<LL ι <1 <L
L . -L i+ .lL. -L i + .l
(+1 i(+1 i
1>L i+l1> L i + l
19. Sonde nach Anspruch 17, dadurch gekennzeichnet, daß eine cos2 Inteφolationsgleichung g,(l) verwendet wird:19. A probe according to claim 17, characterized in that a cos 2 interpolation equation g, (l) is used:
Figure imgf000011_0002
Figure imgf000011_0002
20. Sonde nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß für die Sonde (1) eine weitere Sonde mit einem inneren Lumen, das in seinem Durchmesser größer ist als die Sonde (1) (z.B. Arbeitskanal eines Endoskop) zur Verfügung steht.20. Probe according to one of claims 1 to 19, characterized in that for the probe (1) a further probe with an inner lumen which is larger in diameter than the probe (1) (eg working channel of an endoscope) is available .
21. Sonde nach Anspruch 20, dadurch gekennzeichnet, daß die Sonde (1) an der rech- nerabgewandten Seite im inneren Lumen der äußeren Sonde verwindungsfrei justiert ist.21. Probe according to claim 20, characterized in that the probe (1) on the side remote from the computer is adjusted in the inner lumen of the outer probe without twisting.
22. Sondenach Anspruch 21, dadurch gekennzeichnet, daß die Sonde (1) an der Spitze aus einem verformbaren Teil (13) besteht, der durch einen im Inneren der Sonde (1) liegenden steifen Draht (8) im Durchmesser vergrößert oder verkleinert werden kann. 22. Probe according to claim 21, characterized in that the probe (1) at the tip consists of a deformable part (13) which can be enlarged or reduced in diameter by a stiff wire (8) lying inside the probe (1) .
23. Sonde nach Anspruch 22, dadurch gekennzeichnet, daß der verformbare Teil (13) aus einem Weichgummi besteht, der durch den Draht (8) verlängert oder verkürzt werden kann. 23. A probe according to claim 22, characterized in that the deformable part (13) consists of a soft rubber which can be lengthened or shortened by the wire (8).
PCT/AT1998/000320 1997-12-29 1998-12-23 Deformable probe with automatic detection of the position of the probe WO1999033392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT219097 1997-12-29
ATA2190/97 1997-12-29

Publications (1)

Publication Number Publication Date
WO1999033392A1 true WO1999033392A1 (en) 1999-07-08

Family

ID=3529644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1998/000320 WO1999033392A1 (en) 1997-12-29 1998-12-23 Deformable probe with automatic detection of the position of the probe

Country Status (1)

Country Link
WO (1) WO1999033392A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517477B1 (en) 2000-01-27 2003-02-11 Scimed Life Systems, Inc. Catheter introducer system for exploration of body cavities
EP1530943A1 (en) * 2000-04-03 2005-05-18 Neoguide Systems, Inc. Steerable endoscope and improved method of insertion
WO2005084542A1 (en) * 2004-03-04 2005-09-15 Agency For Science, Technology And Research Apparatus for medical and/or simulation procedures
US7172552B2 (en) 2000-01-27 2007-02-06 Boston Scientific Scimed, Inc. Catheter introducer system for exploration of body cavities
WO2008094949A2 (en) 2007-01-29 2008-08-07 Neoguide Systems, Inc. System for controlling an instrument using shape sensors
EP2064984A3 (en) * 2007-11-29 2009-09-02 Olympus Medical Systems Corporation Therapeutic device system and manipulator system
US8083879B2 (en) 2005-11-23 2011-12-27 Intuitive Surgical Operations, Inc. Non-metallic, multi-strand control cable for steerable instruments
US8182418B2 (en) 2008-02-25 2012-05-22 Intuitive Surgical Operations, Inc. Systems and methods for articulating an elongate body
US8361090B2 (en) 2002-01-09 2013-01-29 Intuitive Surgical Operations, Inc. Apparatus and method for endoscopic colectomy
US8517923B2 (en) 2000-04-03 2013-08-27 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US8568299B2 (en) 2006-05-19 2013-10-29 Intuitive Surgical Operations, Inc. Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope
US8721530B2 (en) 2000-04-03 2014-05-13 Intuitive Surgical Operations, Inc. Tendon-driven endoscope and methods of use
US8758232B2 (en) 2008-06-30 2014-06-24 Oliver Crispin Robotics Limited Robotic arm
WO2014110118A1 (en) * 2013-01-10 2014-07-17 Ohio University Method and device for evaluating a colonoscopy procedure
US8845524B2 (en) 2000-04-03 2014-09-30 Intuitive Surgical Operations, Inc. Steerable segmented endoscope and method of insertion
US8882657B2 (en) 2003-03-07 2014-11-11 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US9220398B2 (en) 2007-10-11 2015-12-29 Intuitive Surgical Operations, Inc. System for managing Bowden cables in articulating instruments
CN105283115A (en) * 2013-05-29 2016-01-27 奥林巴斯株式会社 Calibration assisting device, bending system and calibration method
EP3031385A4 (en) * 2013-08-06 2017-03-22 Olympus Corporation Insertion system and method for adjusting shape detection characteristics of shape sensor
US10512392B2 (en) 2008-02-06 2019-12-24 Intuitive Surgical Operations, Inc. Segmented instrument having braking capabilities
US11096563B2 (en) 2005-11-22 2021-08-24 Intuitive Surgical Operations, Inc. Method of determining the shape of a bendable instrument

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643653A (en) * 1968-12-24 1972-02-22 Olympus Optical Co Endoscopic apparatus
US4366810A (en) * 1980-08-28 1983-01-04 Slanetz Jr Charles A Tactile control device for a remote sensing device
EP0077526A2 (en) 1981-10-15 1983-04-27 Olympus Optical Co., Ltd. Endoscope system with an electric bending mechanism
US4873990A (en) * 1988-09-23 1989-10-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Circumferential pressure probe
EP0342249A1 (en) * 1988-05-14 1989-11-23 Hewlett-Packard GmbH Blood pressure monitor
US4899731A (en) 1986-10-16 1990-02-13 Olympus Optical Co., Ltd. Endoscope
US4930494A (en) 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
US5060632A (en) * 1989-09-05 1991-10-29 Olympus Optical Co., Ltd. Endoscope apparatus
WO1995004556A2 (en) 1993-07-28 1995-02-16 Active Control Experts, Inc. Remotely steered catheterization device
FR2732225A1 (en) 1995-03-27 1996-10-04 Mazars Paul Catheter with externally controlled deformation
WO1997010746A1 (en) * 1995-09-20 1997-03-27 University Of Wales College Of Medicine Anorectal angle measurement
US5728044A (en) * 1995-03-10 1998-03-17 Shan; Yansong Sensor device for spacial imaging of endoscopes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643653A (en) * 1968-12-24 1972-02-22 Olympus Optical Co Endoscopic apparatus
US4366810A (en) * 1980-08-28 1983-01-04 Slanetz Jr Charles A Tactile control device for a remote sensing device
EP0077526A2 (en) 1981-10-15 1983-04-27 Olympus Optical Co., Ltd. Endoscope system with an electric bending mechanism
US4899731A (en) 1986-10-16 1990-02-13 Olympus Optical Co., Ltd. Endoscope
US4930494A (en) 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
EP0342249A1 (en) * 1988-05-14 1989-11-23 Hewlett-Packard GmbH Blood pressure monitor
US4873990A (en) * 1988-09-23 1989-10-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Circumferential pressure probe
US5060632A (en) * 1989-09-05 1991-10-29 Olympus Optical Co., Ltd. Endoscope apparatus
WO1995004556A2 (en) 1993-07-28 1995-02-16 Active Control Experts, Inc. Remotely steered catheterization device
US5728044A (en) * 1995-03-10 1998-03-17 Shan; Yansong Sensor device for spacial imaging of endoscopes
FR2732225A1 (en) 1995-03-27 1996-10-04 Mazars Paul Catheter with externally controlled deformation
WO1997010746A1 (en) * 1995-09-20 1997-03-27 University Of Wales College Of Medicine Anorectal angle measurement

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699771B2 (en) 2000-01-27 2010-04-20 Boston Scientific Scimed, Inc. Catheter introducer system for exploration of body cavities
US6517477B1 (en) 2000-01-27 2003-02-11 Scimed Life Systems, Inc. Catheter introducer system for exploration of body cavities
US8747301B2 (en) 2000-01-27 2014-06-10 Boston Scientific Scimed, Inc. Catheter introducer system for exploration of body cavities
US7066880B2 (en) 2000-01-27 2006-06-27 Boston Scientific Scimed, Inc. Catheter introducer system for exploration of body cavities
US7172552B2 (en) 2000-01-27 2007-02-06 Boston Scientific Scimed, Inc. Catheter introducer system for exploration of body cavities
US8602973B2 (en) 2000-01-27 2013-12-10 Boston Scientific Scimed, Inc. Catheter introducer system for exploration of body cavities
US10327625B2 (en) 2000-04-03 2019-06-25 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US8834354B2 (en) 2000-04-03 2014-09-16 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US9138132B2 (en) 2000-04-03 2015-09-22 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US8062212B2 (en) 2000-04-03 2011-11-22 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US11026564B2 (en) 2000-04-03 2021-06-08 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US10893794B2 (en) 2000-04-03 2021-01-19 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US8226546B2 (en) 2000-04-03 2012-07-24 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US10736490B2 (en) 2000-04-03 2020-08-11 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
EP1530943A1 (en) * 2000-04-03 2005-05-18 Neoguide Systems, Inc. Steerable endoscope and improved method of insertion
US8517923B2 (en) 2000-04-03 2013-08-27 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US10105036B2 (en) 2000-04-03 2018-10-23 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US9808140B2 (en) 2000-04-03 2017-11-07 Intuitive Surgical Operations, Inc. Steerable segmented endoscope and method of insertion
US9427282B2 (en) 2000-04-03 2016-08-30 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US8641602B2 (en) 2000-04-03 2014-02-04 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US8721530B2 (en) 2000-04-03 2014-05-13 Intuitive Surgical Operations, Inc. Tendon-driven endoscope and methods of use
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US8845524B2 (en) 2000-04-03 2014-09-30 Intuitive Surgical Operations, Inc. Steerable segmented endoscope and method of insertion
US10349816B2 (en) 2002-01-09 2019-07-16 Intuitive Surgical Operations, Inc. Apparatus and method for endoscopic colectomy
US8696694B2 (en) 2002-01-09 2014-04-15 Intuitive Surgical Operations, Inc. Apparatus and method for endoscopic colectomy
US8361090B2 (en) 2002-01-09 2013-01-29 Intuitive Surgical Operations, Inc. Apparatus and method for endoscopic colectomy
US9421016B2 (en) 2002-01-09 2016-08-23 Intuitive Surgical Operations, Inc. Apparatus and method for endoscopic colectomy
US9980778B2 (en) 2003-03-07 2018-05-29 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
US10959807B2 (en) 2003-03-07 2021-03-30 Intuitive Surgical Operations, Inc. Systems and methods for determining the state of motion of an instrument
US8882657B2 (en) 2003-03-07 2014-11-11 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
WO2005084542A1 (en) * 2004-03-04 2005-09-15 Agency For Science, Technology And Research Apparatus for medical and/or simulation procedures
US11617499B2 (en) 2005-11-22 2023-04-04 Intuitive Surgical Operations, Inc. System for determining the shape of a bendable instrument
US11096563B2 (en) 2005-11-22 2021-08-24 Intuitive Surgical Operations, Inc. Method of determining the shape of a bendable instrument
US8083879B2 (en) 2005-11-23 2011-12-27 Intuitive Surgical Operations, Inc. Non-metallic, multi-strand control cable for steerable instruments
US8568299B2 (en) 2006-05-19 2013-10-29 Intuitive Surgical Operations, Inc. Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope
US10426412B2 (en) 2006-05-19 2019-10-01 Intuitive Surgical Operations, Inc. Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope
US9357901B2 (en) 2006-05-19 2016-06-07 Intuitive Surgical Operations, Inc. Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope
US9737198B2 (en) 2007-01-29 2017-08-22 Intuitive Surgical Operations, Inc. System for controlling an instrument using shape sensors
WO2008094949A2 (en) 2007-01-29 2008-08-07 Neoguide Systems, Inc. System for controlling an instrument using shape sensors
US11039736B2 (en) 2007-01-29 2021-06-22 Intuitive Surgical Operations, Inc. System for controlling an instrument using shape sensors
US8784303B2 (en) 2007-01-29 2014-07-22 Intuitive Surgical Operations, Inc. System for controlling an instrument using shape sensors
EP3542701A1 (en) * 2007-01-29 2019-09-25 Intuitive Surgical Operations Inc. System for controlling an instrument using shape sensors
WO2008094949A3 (en) * 2007-01-29 2008-11-27 Neoguide Systems Inc System for controlling an instrument using shape sensors
US10660509B2 (en) 2007-01-29 2020-05-26 Intuitive Surgical Operations, Inc. System for controlling an instrument using shape sensors
US9220398B2 (en) 2007-10-11 2015-12-29 Intuitive Surgical Operations, Inc. System for managing Bowden cables in articulating instruments
EP2064984A3 (en) * 2007-11-29 2009-09-02 Olympus Medical Systems Corporation Therapeutic device system and manipulator system
CN101444415B (en) * 2007-11-29 2012-08-22 奥林巴斯医疗株式会社 Therapeutic device system and manipulator system
US10952594B2 (en) 2008-02-06 2021-03-23 Intuitive Surgical Operations, Inc. Segmented instrument having braking capabilities
US10512392B2 (en) 2008-02-06 2019-12-24 Intuitive Surgical Operations, Inc. Segmented instrument having braking capabilities
US8608647B2 (en) 2008-02-25 2013-12-17 Intuitive Surgical Operations, Inc. Systems and methods for articulating an elongate body
US8182418B2 (en) 2008-02-25 2012-05-22 Intuitive Surgical Operations, Inc. Systems and methods for articulating an elongate body
US8758232B2 (en) 2008-06-30 2014-06-24 Oliver Crispin Robotics Limited Robotic arm
WO2014110118A1 (en) * 2013-01-10 2014-07-17 Ohio University Method and device for evaluating a colonoscopy procedure
CN105283115A (en) * 2013-05-29 2016-01-27 奥林巴斯株式会社 Calibration assisting device, bending system and calibration method
EP3005931A4 (en) * 2013-05-29 2017-01-25 Olympus Corporation Calibration assisting device, bending system and calibration method
EP3031385A4 (en) * 2013-08-06 2017-03-22 Olympus Corporation Insertion system and method for adjusting shape detection characteristics of shape sensor

Similar Documents

Publication Publication Date Title
WO1999033392A1 (en) Deformable probe with automatic detection of the position of the probe
DE69731349T2 (en) Device for determining the position of a catheter located in the body of a patient
DE4213584C2 (en) Medical device with a replication device for palpation
DE60115991T2 (en) Device for rapid mapping of electrical activity in the heart
DE69733249T2 (en) DETERMINATION OF THE EXACT POSITION OF ENDOSCOPES
DE69732523T2 (en) CURVATIVE SENSITIVE CATHETER
DE102004058008B4 (en) Guidewire for vascular catheter with improved tracking and navigation
DE60028487T2 (en) Vascular reconstruction
DE69738547T2 (en) CARTATING CATHETER
DE202014100938U1 (en) Pressure measuring device
DE102004003166B4 (en) catheter
DE112008001483T5 (en) Body fat measurement device
DE19844152A1 (en) System and method for locating a catheter
DE102004017834A1 (en) catheter device
DE102005032039A1 (en) Endoscope system with insertion length detection
WO2019042579A1 (en) Detection system and method for automatically detecting surgical instruments
DE102004044285A1 (en) System and method for determining the position of an elastic instrument used in a position tracking system
EP2432387B1 (en) Method for generating position data of an instrument
DE10138537B4 (en) Tactile feedback to visualize tissue elasticity
DE102013014685B4 (en) Urokatheter
DE4038853C2 (en) Device for the functional diagnosis of the continental organ
EP1489966B1 (en) Passive movement of a patient in a magnetic resonance tomograph
EP2436422A1 (en) Implantable hydrogel sensor
DE4140055C2 (en) Device for the functional diagnosis of the continental organ
DE4402562A1 (en) Measuring apparatus for profiling contours of human body e.g. human spine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase