WO1999023960A1 - Methods and apparatus for welding blood vessels - Google Patents

Methods and apparatus for welding blood vessels Download PDF

Info

Publication number
WO1999023960A1
WO1999023960A1 PCT/US1998/024125 US9824125W WO9923960A1 WO 1999023960 A1 WO1999023960 A1 WO 1999023960A1 US 9824125 W US9824125 W US 9824125W WO 9923960 A1 WO9923960 A1 WO 9923960A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
intermediate portion
impedance
tissue
energy
Prior art date
Application number
PCT/US1998/024125
Other languages
French (fr)
Inventor
James A. Baker
Original Assignee
Isothermix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isothermix Inc filed Critical Isothermix Inc
Priority to AU14016/99A priority Critical patent/AU1401699A/en
Publication of WO1999023960A1 publication Critical patent/WO1999023960A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00353Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery one mechanical instrument performing multiple functions, e.g. cutting and grasping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00654Sensing and controlling the application of energy with feedback, i.e. closed loop control with individual control of each of a plurality of energy emitting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00755Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00761Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00797Temperature measured by multiple temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00815Temperature measured by a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00821Temperature measured by a thermocouple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00886Duration

Definitions

  • This invention relates to methods and apparatus for sealing and welding blood vessels and vascularized tissue masses using RF energy. More particularly, this invention relates to manipulating tissue to control RF energy delivery by altering tissue impedance .
  • SEPS subfacial endoscopic perforator surgery
  • a perforator vessel in a patient's leg is sealed or welded closed to alleviate the effects of a venous ulceration.
  • the surgeon uses a mechanically deformable clip to pinch off the perforator vessel. Because a single clip may not seal the vessel reliably, multiple clips typically are used to assure an effective seal. It would be preferable to seal a vessel without leaving such metal clips implanted in the patient's body.
  • Ultrasound and radiofrequency devices have been developed for sealing blood vessels but such devices often will not create a secure seal, particularly when used on larger diameter blood vessels.
  • Previously known commercially available ultrasound devices suffer from the disadvantage of being slow to deliver sufficient energy to seal a blood vessel.
  • ultrasound devices generally are capable of thermally treating only a narrow band across a target blood vessel (due to the focused nature of the ultrasound beam) , and thus may not provide a reliable seal.
  • surgeons often apply ultrasound energy at multiple locations along a blood vessel, a practice that is inconvenient and time-consuming.
  • FIGS. IA and IB A typical previously known RF bi-polar grasper, suitable for such procedures, is described with respect to FIGS. IA and IB.
  • Such an instrument may be used to seal a blood vessel by squeezing the vessel between the opposing jaw faces of the grasper while applying an RF current (FIG. IB) .
  • Each jaw face comprises a conductive electrode (first electrode 2A and second electrode 2B) and when operated in a bi-polar mode, RF current flows directly "across" vessel 3 in the direction indicated by the arrow in FIG. IB between first electrode 2A and second electrode 2B.
  • the integrity of the sealing effect achieved with the device of FIGS. IA and IB is greatly influenced by the conductive characteristics of the target tissue.
  • the impedance of the tissue of the vessel walls and endothelium changes continuously during the application of RF energy. Impedance typically increases quickly during energy application until the bi-polar RF energy flow is impeded or restricted altogether. Often this will occur before the vessel walls around the lumen are fused in a uniform manner. Effective sealing of the vessel therefore depends on providing an appropriate energy delivery profile (i.e., energy level delivered to the tissue over an appropriate time interval) to cause fusion of molecules within a targeted region, with little or no charring or carbonization. Because tissue impedance is an uncontrolled variable when using previously known methods and apparatus, the effectiveness of such previously known tissue welding apparatus and methods can be highly variable. It is for this reason that previously known commercially available RF devices have not provided reliable sealing for large blood vessels.
  • the apparatus comprises a jaw subassembly that engages and extends a portion of targeted tissue to provide an elongated section having substantially uniform impedance. More particularly, the apparatus includes an elongated shaft carrying a distal working end having a jaw structure configured for grasping and manipulating a target section of a blood vessel or vascularized tissue.
  • the jaw structure includes first and second jaw members having opposing perimeter jaw faces for grasping opposing ends of a targeted longitudinal section of a vessel.
  • An extension member operatively associated with the first and second jaw members then extends (or stretches under tension) the section of the vessel intermediate the ends.
  • the right and left sides of the jaw structure carry conductive electrodes, preferably operable in a bi-polar mode, so that an RF current flows between the electrodes and along the length of the section of vessel that has been extended or stretched.
  • the jaw assembly further includes one or more sensors for measuring physiologic parameters of the portion of the vessel targeted for welding, such as temperature or impedance, and for controlling the application of RF energy responsive to the measured parameters.
  • physiologic parameters of the portion of the vessel targeted for welding such as temperature or impedance
  • Methods of using the foregoing apparatus are also provided.
  • a first method of the invention relates to altering certain impedance characteristics of tissue targeted for welding to enhance the RF delivery profile. Specifically, a length of the tissue or blood vessel is extended to reduce its extracellular fluid (ECF) content level. This in turn causes the ECF level to become more uniformly distributed throughout the extended section of tissue, and increases the impedance of the target tissue to RF current.
  • ECF extracellular fluid
  • the increased impedance of the extended section therefore forms a "fuse” or "fuse point” that facilitates welding when an RF current is passed longitudinally through the tissue.
  • the RF current applied to the extended section of tissue is controlled in response to a measured physiologic parameter, such as temperature or impedance of the extended section of tissue, or power delivered to the tissue to reduce charring and smoke generation.
  • FIGS. 1A-1B are perspective views depicting the distal end of a jaw structure of a previously known radiofrequency device and its use in cauterizing a blood vessel;
  • FIG. 2 is an elevational view of a first embodiment of a radiofrequency (RF) device constructed in accordance with the principles of the present invention
  • FIGS. 3A-3C are enlarged elevational views of the working end of the device of FIG. 2 depicting with the jaw assembly during various stages of operation;
  • FIGS. 4A-4C are cut-away axionometric views of the working end of FIGS. 3A-3C, respectively, showing operation of the separately actuatable elements of the upper jaw subassembly;
  • FIGS. 5A-5B are schematic views depicting use of the " apparatus of FIG. 2 in a SEPS (subfacial endoscopic perforator surgery) procedure;
  • FIGS. 6A-6E are perspective views of a portion of the blood vessel targeted for treatment depicting in sequence a method of the present invention to weld or seal the blood vessel;
  • FIG. 7 is a schematic diagram of an alternative embodiment of the apparatus of the present invention.
  • the present invention provides methods and apparatus for sealing or welding a blood vessel by extending or stretching a section of the blood vessel prior to application of RF energy.
  • blood vessel is defined to include any artery or vein of any size, and further includes any vascularized tissue mass.
  • Current density i.e., the level of current intensity
  • the amount of heat generated within a targeted tissue is known to be influenced by several factors, including (i) the RF current intensity, (ii) the RF current frequency, (iii) the instantaneous impedance level of the targeted tissue (which varies during a treatment cycle) , (v) heat dissipation from the targeted tissue; (vi) the duration of RF energy delivery, and (vii) the distance traveled by the RF current through the targeted tissue between the conductive electrodes.
  • Applicants have discovered that by extending or stretching a targeted tissue a reproducible amount, it is possible to influence the amount of extracellular fluid (ECF) present in the tissue, and thus alter the impedance of the tissue.
  • ECF extracellular fluid
  • applicants have determined that by manipulating the targeted tissue, it is possible to create a "fuse” or "fuse point" in the tissue that is preferentially heated RF energy is applied to the tissue.
  • Applicants further have determined that the creation of a "fuse point" offers several advantages over previously known methods and apparatus for RF delivery, including: (1) achieving greater levels of thermal effect at lower levels of power (current intensity) ; (2) preferential heating of the tissue in the vicinity of the fuse point, thereby speeding up the tissue welding process; (3) the formation of a more lengthy and effective weld in the fuse point section of the tissue compared to previously known devices; (4) more uniform thickness and impedance within the targeted tissue, thereby providing for more uniform heating in the vicinity of the fuse point; and (5) reduced thermal trauma outside the vicinity of the fuse point.
  • the more uniform heating of tissue provided by the methods and apparatus of the present invention will substantially reduce smoke generation and localized tissue charring. Referring now to FIG.
  • Device 5 is adapted for use in open or endoscopic procedures and comprises plastic handle assembly 7 coupled to elongated shaft 10 extending along axis 15 and carrying distal working end 16.
  • Shaft 10 has proximal end 21 and distal end 22, and illustratively has a cylindrical cross-section.
  • Handle assembly 7 and shaft 10 preferably comprise any of a number of suitable materials, such as metal or plastic.
  • shaft 10 preferably has an outer diameter in a range from 5 mm. to 10 mm., e.g., to enable use of the device with previously known endoscopic trocar sleeves .
  • working end 16 comprises a jaw structure carried by shaft .10 that includes upper jaw assembly 30a and lower jaw arm 30b disposed in opposing relation to upper jaw assembly 30a.
  • Upper jaw assembly 30a comprises independently moveable interior jaw arm 35 disposed in slot 41 of perimeter jaw 31. Interior jaw arm 35 is independently moveable with respect to both perimeter jaw 31 and lower jaw arm 30b.
  • Upper jaw assembly 30a and lower jaw arm 30b preferably comprise a nonconductive material such as plastic, or may comprise a metal or metal alloy coated with a suitable electrically insulative material.
  • Upper jaw assembly 30a preferably includes at least one RF electrode, described in greater detail hereinbelow.
  • Upper jaw assembly 30a and lower jaw arm 30b are moveable to a series of positions, from a fully open position shown in FIGS. 3A and 4A, to a tissue engagement position shown in FIGS. 3B and 4B, and a fully closed position, shown in FIGS. 3C and 4C.
  • lower jaw arm 30b illustratively has a fixed configuration, but it should be appreciated that this jaw arm also may be movable to cooperate with upper jaw assembly 30a.
  • upper jaw assembly 30a comprises perimeter jaw 31 (having right jaw face 32A and left jaw face 32B, together with an independently actuatable interior jaw arm 35. Both perimeter jaw 31 and interior jaw arm 35 of upper jaw assembly 30a rotate about pivot 36, with interior jaw arm 35 disposed for rotation within slot 41 of perimeter jaw 31. Slot 41 extends along axis 15 and is interposed between the right and left jaw faces 32A and 32B.
  • Lower jaw arm 30b also has cooperating right and left jaw faces 42A and 42B along its perimeter.
  • jaw faces 32A and 32B of perimeter jaw 31 are arranged in opposing relation to right and left faces 42A and 42B, respectively, of lower jaw arm 30b, for engaging tissue therebetween.
  • jaw faces 32A, 32B, 42A and 42B may be textured, for example, including serrations 44, to assist in gripping a vessel or tissue.
  • the interior jaw arm 35 has a V-shaped cross-section having generally planar right and left surface portions 52A and 52B, respectively, that extend into V-shaped channel 53 in lower jaw arm 30b.
  • Surface portions 52A and 52B of interior jaw arm 35 oppose similarly angled mating surfaces 54A and 54B of V-shaped channel 53.
  • Cooperating angled surface portions 52A and 52B, and surfaces 54A and 54B, respectively, may have any suitable angle, up to and including 90°.
  • surface portions 52A and 52B, and mating surfaces 54A and 54B may have any suitable curved cross-section.
  • surface portions 52A and 52B are inclined at an angle ⁇ of about 60Z
  • working end 16 comprises a "double- acting" or “sequential” closing mechanism, wherein the individual components of the jaw are actuated in sequence.
  • double-acting or “sequential” it is meant that upper jaw assembly 30a closes toward the lower jaw 30b in stages.
  • perimeter jaw 31 moves from a fully open position (FIGS. 3A and 4A) to a tissue engaging position (FIGS. 3B and 4B) , wherein the right and left jaw faces 32A and 32B of perimeter jaw 31 close against the opposing right and left jaws faces 42A and 42B of lower jaw 30b.
  • interior jaw arm 35 rotates about pivot 36 so that interior jaw arm 35 passes through slot 41 of perimeter jaw 31 (FIGS. 3C and 4C) .
  • surface portions 52A and 52B of interior jaw arm 35 include cooperating electrodes 55A and 55B.
  • Electrodes 55A and 55B are arranged to operate in a bi-polar mode, -and may comprise any suitable material, such as gold, nickel titanium, platinum, stainless steel, aluminum or copper.
  • Electrodes 55A and 55B are illustratively depicted as disposed on surface portions 52A and 52B of interior jaw arm 35, it will be appreciated that the electrodes may be disposed elsewhere, for example, on perimeter jaw 31 or lower jaw 30b, or any combination thereof.
  • the electrodes may be carried in the surfaces of perimeter jaw 31 opposing interior jaw arm 35, or on opposing surfaces 54A and 54B of V-shaped channel 53. It is sufficient for the purposes of the present invention that electrodes 55A and 55B be located where they can contact tissue engaged in the jaw structure, so that RF current can flow longitudinally through the extended tissue captured in V-shaped channel 53.
  • working end 16 of the present invention also may comprise one or more sensors for measuring physiologic parameters, such as temperature or impedance.
  • Illustrative sensors 72A and 72B are provided in a part of the jaw assembly that contacts the blood vessel section being welded, i.e., within V-shaped channel 53. Sensors 72A-72B preferably are located slightly spaced apart from electrodes 55A and 55B, and may be used to measure temperatures and/or impedance of tissue at or adjacent to the electrodes during a tissue welding operation. Sensors 72A and 72B may comprise, for example, thermocouples or thermisters (temperature sensors that have resistances that vary with the temperature level) .
  • Thermocouples may comprise paired dissimilar metals, such as copper and constantan, which form a T-type thermocouple. Alternatively, or in addition, temperature sensors may be positioned in contact with the electrodes to measure electrode temperature.
  • RF energy source 60 is coupled to electrodes 55A and 55B by wires 62A and 62B, which extend through handle 7, cable 65, and detachable coupling 66.
  • RF energy source 60 may be a previously known, commercially available, RF generator that provides a high frequency alternating current (e.g., from 55,000 Hz to 550,000 Hz).
  • RF energy from RF energy source 60 to electrodes may be controlled using foot pedal 68 or any other suitable means, such as a switch (not shown) in handle 7.
  • power controller 70 may be provided, as described in greater detail hereinbelow.
  • Handle portion 73 includes single lever arm 73 coupled to the jaw structure of working end 16. When single lever arm 73 is squeezed, it rotates about a pivot to cause sequential rotation of perimeter jaw 31 about pivot 36 and then rotation of interior jaw arm 35 about pivot 36. Single lever arm 73 is connected to the proximal ends of flexible reciprocating drive rods 75A and 75B.
  • the distal end 74 of drive rod 75A is connected to cylindrical pin 76 in lever arm portion 77A of perimeter jaw 31. Accordingly, as single lever arm 73 is moved through the range of motion indicated at RI in FIG. 2, perimeter jaw 31 rotates around pivot 36 and moves the jaw faces 32A and 32B of perimeter jaw 31 toward faces 42A and 42B of lower jaw 30b. Likewise, the distal end 78 of drive rod 75B connects to lever arm portion 77B of interior jaw arm 35, so that continued movement of single lever arm 73 (in the direction indicated at R2 in FIG. 2), rotates interior jaw arm 35 about its pivot until surface portions 52A-52B extend through slot 41 beyond faces 32A and 32B of perimeter jaw 31.
  • FIG. 2 is illustrative only, and any of a number of other mechanisms known in the art may be suitable for sequentially articulating the perimeter jaw and interior jaw arm.
  • two independent levers may be used to independently actuate the perimeter jaw and interior jaw arm.
  • either or both jaws may be closed by an axially sliding cam-type mechanism known in the art. Operation and use of the instrument of FIG. 2 in accordance with the methods of the invention is now described. While the device may be used to weld or seal blood vessels in a number of different procedures, its use is described herein in the context of performing subfacial endoscopic perforator surgery (SEPS) .
  • SEPS subfacial endoscopic perforator surgery
  • the method of the present invention for welding a blood vessel includes: (1) targeting a length of a blood vessel intermediate opposing ends; (2) grasping the target vessel section at the opposing ends and maintaining the ends in a fixed relationship; (3) extending longitudinally an intermediate portion of the vessel captured between the opposing ends; and (4) delivering RF energy longitudinally through the intermediate portion in a bi-polar manner from a first electrode at one end of the vessel section to a second electrode at the other end of the vessel section. While the science of tissue welding is not thoroughly understood, it is believed that the thermal effects on collagen molecules in excess of 75° C to 80° C in endothelium and vessel walls denatures and thereafter causes fusion of the collagen molecules to create a seal or weld.
  • FIG. 5A is a schematic view of a patient's leg showing a surgeon inserting endoscope 95 (or any other suitable instrument) through first incision 98 to dissect an access path to perforator 100 between vein 102 and artery 104.
  • the surgeon introduces the distal end of device 5 through second incision 108 toward the location of perforator 100.
  • endoscope 95 and device 5 may be introduced through a single incision and a workspace around the perforator may be maintained by insufflation or mechanical retraction.
  • perforator 100 or any blood vessel that is selected for thermal treatment or welding in the interior of the patient's body
  • the surgeon generally selects a central "target" portion (indicated at T) of the blood vessel section 105 for welding which is bounded by left and right ends portions A and B.
  • the vessel has lumen 110 including endothelium 112 and vessel wall 114.
  • FIG. 6B corresponds to the jaw position shown in FIG. 4B, with end portions 115A and 115B of the vessel being flattened in the grasp of perimeter jaw 31 and lower jaw arm 30b shown in phantom view. Grip indentations 116 are caused by serrations 44 (see FIG. 4B) .
  • FIG. 6C is an enlarged longitudinal sectional view of the blood vessel showing that target vessel section T is extended or lengthened by the actuation of interior jaw arm 35 to a length indicated at C , which is greater than initial length indicated at C.
  • Applicants have determined that by extending or stretching the target tissue, it is possible to alter the characteristics of target tissue to improve RF energy delivery.
  • the tissue extension or manipulation has the effect of (1) decreasing the ECF content level of the target vessel section T when calculated in terms of ECF/c ⁇ of tissue mass, and (2) making the ECF level more evenly distributed throughout the target tissue T (at the lower ECF/c 2 level) whereas in the prior state, the ECF level could vary randomly within the cellular structure.
  • the schematic diagram depicts that the ECF in the non-extended tissue T
  • An alternative way of describing the effects of the tissue manipulation caused by the extension of target portion T of vessel section 105 is that the manipulation causes the target tissue portion T to become a "fuse" or "fuse point" (as defined, for example, by decreased ECF) when subjected to the flow of RF current.
  • a fuse-type effect in the targeted tissue A number of advantages are offered by creating a fuse-type effect in the targeted tissue.
  • the delivery of RF current between electrodes 55A and 55B delivers greater levels of thermal effects for a given current flow or intensity.
  • target tissue may be elevated to a particular desired temperature to weld cells (or molecules) of the vessel walls and endotheluim 112 together at lower levels of RF energy delivery.
  • the requisite temperature for tissue fusion can be reached more quickly, thus speeding the process of tissue welding.
  • the bi-polar flow longitudinally through the vessel between electrodes 55A and 55B naturally welds a longer length of vessel, thereby creating a longer and more effective seal — an effect that is not possible with previously known bi-polar devices that send current "across" tissue pinched between opposing jaw-electrodes (see FIG. IB).
  • the uniformity in the ECF level in, and the resulting uniformity in thickness of, the extended target tissue allows for more uniform heating to provide a more uniform weld.
  • the bi-polar current flow longitudinally through the vessel provides little or no thermal spread outwardly along the vessel in either direction, since the current only flows between the paired electrodes and not outwardly.
  • the higher ECF level indicated at 120 in the vessel outwardly from end portions 115A and 115B prevent outward thermal spread.
  • electrodes 55A and 55A are shown in isolation (i.e., without showing other parts of upper jaw assembly 30a) .
  • the surgeon actuates foot pedal 68 to cause an RF current to flow between electrode 55A and electrode 55B longitudinally through the extended length " C of the vessel. Resulting elongated weld zone 125 is depicted in FIG.
  • FIG. 6D depicts the targeted blood vessel portion T after being welded and released from the jaw assembly of device 5.
  • Device 5 is identical to device 5 of FIG. 2, the system differing only by the further inclusion of electronic power controller 70 linked to sensors 72A-72B in working end 16 of device 5.
  • Sensors 72A and 72B are configured to monitor one or more physiologic parameters, and power controller 70 is programmed to modulate the RF energy delivery profile of the instrument responsive to the output of the sensors.
  • Power controller 70 controls delivery of RF power in a bi-polar manner between electrodes 55A and 55B according to predetermined parameters.
  • Power controller 70 preferably comprises microprocessor 160 together with appropriate software, and may be programmed to deliver power according to preset parameters.
  • Power controller 70 may include, for example, a keyboard, disk drive or other non-volatile memory system, and an operator interface as are well known in the art for operating RF electrosurgical instruments.
  • the operator interface also may include various types of imaging systems for observing the RF treatment cycle, such as thermal sensor displays and/or impedance monitoring displays.
  • power controller 70 is programmed to receive signals and values for tissue impedance within the target tissue portion T (see FIGS. 6C-6D) during its operation.
  • programmed values typically may include a maximum impedance or resistance level (estimated or known) for the tissue portion targeted for welding and a minimum impedance or resistance level (also known or estimated) .
  • the power controller 70 may include feedback circuitry or impedance measuring circuitry that measures impedance levels to control power delivery.
  • the impedance measuring circuitry may, for example, convert current and voltage signals into an actual impedance level and signal in response to RF current flow through the target vessel portion T.
  • a current measuring device e.g., a transformer
  • a voltage measuring device may be operatively connected to power controller 70 and the electrode pair. The power controller 70 then controls RF energy delivered to the electrodes responsive to signals generated by the impedance measuring circuitry.
  • the controller may select a particular impedance or resistance level between the maximum and minimum impedance levels and turns off or modulates RF power delivery to the electrodes when either (i) actual measured impedance reaches the particular level, or (ii) the rate (over time) of the rise in actual impedance toward the particular selected level exceeds a parameter as it rises toward the maximum impedance level.
  • the particular impedance level, or particular rate of change may relate to a particular level just below the maximum level or an average level between the selected maximum and minimum impedance levels.
  • a temperature-controlled operational mode an operator selects a target temperature level, typically a known temperature that will weld the targeted tissue.
  • Temperature signals measured by a sensors 72A and 72B are continuously supplied to power controller 70 through feedback circuitry to control the level of power delivery to the electrodes.
  • the power controller thus measures the difference between the actual temperature measured (or averaged) by sensors 72A and 72B and a target temperature level and thereafter select a power delivery level or delivery profile proportionate to the temperature difference at any point in time during a energy delivery cycle.
  • Power controller 70 further may be programmed to control power delivery based on temperature signals such that if a particular temperature is exceeded at either sensor location the power delivery will be terminated.
  • the operator further can set a target temperature level to be maintained at a particular sensor site or averaged among several sensor sites.
  • Power controller 70 further may include a timing device that provides the operator with the ability to maintain a particular temperature at any sensor site (or combination thereof) for a particular length of time.
  • a power delivery profile may be programmed into controller 70 to deliver RF energy over a period of time to achieve a target temperature level or the power controller can accept a time pre-set for reaching a particular temperature level.
  • power controller 70 also may operate in a combination temperature/impedance-controlled operational mode to still more precisely control or modulate RF power delivery which combines the above described features. All of the above-described control modes can be combined to select a preferred particular temperature (or average temperature) at one or more sensor locations in the jaw assembly such that energy delivery will be terminated if a maximum pre-set temperature is reached.
  • the impedance control also may be incorporated as previously described to modulate or control power delivery based on impedance levels to achieve a particular sensed temperature or temperature profile.
  • the temperature at the sensor array can be maintained at a pre-set temperature based on impedance feedback unless a maximum temperature is exceeded, at which energy delivery is modulated or terminated.
  • Power controller 70 preferably includes circuitry for measuring actual power output delivery, which is indicated by an actual power output signal.
  • an operator selects a target actual power delivery for treating tissue, which typically is a level of actual power known or estimated to achieve a certain temperature in the target tissue which can be measured in joules delivered.
  • a time profile may be programmed into power controller 70 to deliver a predetermined amount of power over a particular period of time to achieve a target energy delivery (and temperature) in tissue.
  • the power controller 70 may deliver RF energy at or along a continuous range of pre-set power levels or according to a pre-set power delivery profile (RF power delivery over a period of time) . Any of these pre-sets can be indicated by a power level delivery signal or power profile signal.
  • the power controller 70 and software together with the above described feedback circuitry thus are capable of full process monitoring and continuous control of the following operational variables: (i) power delivery; (ii) time, temperature and impedance parameters of a selected energy delivery cycle; (iii) vectoring RF current delivery in different directions between the electrodes via a multiplexer, and (iv) mono-polar or bi-polar energy delivery, since in some circumstances it may be desirable to use mono-polar energy delivery.
  • microprocessor 160 may sequentially receive and store digital data representing impedance and temperature values and the temperature and impedance values also may be displayed on the operator interface as numerical values.
  • the temperature and impedance values may be compared by microprocessor 160 with pre-programmed temperature and impedance limits as described above and when the measured temperature value or impedance value at a particular site exceeds a pre-determined limit, a warning or other indication can be given on the operator interface (such as a warning light) while at the same time the delivery of energy to a particular electrode site can be decreased.
  • Calculated surface temperatures of the vessel also may be forwarded by controller 70 to the display and compared to a predetermined limit to activate a warning indicator on the display.
  • the present invention is specially adapted to weld blood vessels.
  • the device of the present invention may further include a reciprocating blade member carried in an axial slot (not shown) for transecting the welded blood vessel.
  • a separate scissors-type blade that is rotatable within a slot in interior jaw arm 35 (not shown) may be provided for transecting the welded blood vessel .

Abstract

Methods and apparatus are provided for welding or sealing blood vessels or tissue by capturing, and stretching the tissue to alter its impedance prior to application of RF energy. The apparatus includes a working end (16) including a perimeter jaw structure (30a, 30b) for engaging opposing ends of a section of a blood vessel, an interior jaw arm (35) that passes through the plane of engagement that stretches the portion of the vessel intermediate the opposing ends, and two or more electrodes (55) for applying RF current. The working end (16) may also include one or more sensors providing signals to a power controller that modulates application of RF energy to the tissue.

Description

METHODS AND APPARATUS FOR WELDING BLOOD VESSELS
Field Of The Invention
This invention relates to methods and apparatus for sealing and welding blood vessels and vascularized tissue masses using RF energy. More particularly, this invention relates to manipulating tissue to control RF energy delivery by altering tissue impedance .
Background Of The Invention
In both open and endoscopic surgeries, it often is necessary to seal, weld or cauterize blood vessels or other vascularized tissues. For example, in subfacial endoscopic perforator surgery (SEPS) , a perforator vessel in a patient's leg is sealed or welded closed to alleviate the effects of a venous ulceration. In a typical SEPS procedure, the surgeon uses a mechanically deformable clip to pinch off the perforator vessel. Because a single clip may not seal the vessel reliably, multiple clips typically are used to assure an effective seal. It would be preferable to seal a vessel without leaving such metal clips implanted in the patient's body.
Ultrasound and radiofrequency devices have been developed for sealing blood vessels but such devices often will not create a secure seal, particularly when used on larger diameter blood vessels. Previously known commercially available ultrasound devices suffer from the disadvantage of being slow to deliver sufficient energy to seal a blood vessel. In addition, ultrasound devices generally are capable of thermally treating only a narrow band across a target blood vessel (due to the focused nature of the ultrasound beam) , and thus may not provide a reliable seal. To improve the chances of a permanent seal, surgeons often apply ultrasound energy at multiple locations along a blood vessel, a practice that is inconvenient and time-consuming.
Previously known commercially available RF instruments for sealing blood vessels deliver energy more quickly than ultrasound devices. A typical previously known RF bi-polar grasper, suitable for such procedures, is described with respect to FIGS. IA and IB. Such an instrument may be used to seal a blood vessel by squeezing the vessel between the opposing jaw faces of the grasper while applying an RF current (FIG. IB) . Each jaw face comprises a conductive electrode (first electrode 2A and second electrode 2B) and when operated in a bi-polar mode, RF current flows directly "across" vessel 3 in the direction indicated by the arrow in FIG. IB between first electrode 2A and second electrode 2B.
The integrity of the sealing effect achieved with the device of FIGS. IA and IB is greatly influenced by the conductive characteristics of the target tissue. For example, the impedance of the tissue of the vessel walls and endothelium changes continuously during the application of RF energy. Impedance typically increases quickly during energy application until the bi-polar RF energy flow is impeded or restricted altogether. Often this will occur before the vessel walls around the lumen are fused in a uniform manner. Effective sealing of the vessel therefore depends on providing an appropriate energy delivery profile (i.e., energy level delivered to the tissue over an appropriate time interval) to cause fusion of molecules within a targeted region, with little or no charring or carbonization. Because tissue impedance is an uncontrolled variable when using previously known methods and apparatus, the effectiveness of such previously known tissue welding apparatus and methods can be highly variable. It is for this reason that previously known commercially available RF devices have not provided reliable sealing for large blood vessels.
It would therefore be desirable to provide methods and apparatus, preferably utilizing RF energy, that control the effects of tissue impedance to provide an effective energy delivery profile in tissue targeted for welding.
It further would be desirable to provide methods and apparatus that control the effects of tissue impedance to reduce charring of tissue and the creation of smoke in an endoscopic workspace.
Summary Of The Invention
In view of the foregoing, it is an object of this invention to provide methods and apparatus, preferably utilizing RF energy, that control the effects of tissue impedance to provide an effective energy delivery profile in tissue targeted for welding.
It is a further object of the present invention to provide methods and apparatus that control the effects of tissue impedance to reduce charring of tissue and the creation of smoke in an endoscopic workspace.
These and other objects of the present invention are accomplished by providing apparatus and methods for applying RF energy to tissue wherein the tissue subjected to welding or sealing is manipulated to alter its impedance characteristics prior to the application of RF energy.
In a preferred embodiment, the apparatus comprises a jaw subassembly that engages and extends a portion of targeted tissue to provide an elongated section having substantially uniform impedance. More particularly, the apparatus includes an elongated shaft carrying a distal working end having a jaw structure configured for grasping and manipulating a target section of a blood vessel or vascularized tissue.
The jaw structure includes first and second jaw members having opposing perimeter jaw faces for grasping opposing ends of a targeted longitudinal section of a vessel. An extension member operatively associated with the first and second jaw members then extends (or stretches under tension) the section of the vessel intermediate the ends. The right and left sides of the jaw structure carry conductive electrodes, preferably operable in a bi-polar mode, so that an RF current flows between the electrodes and along the length of the section of vessel that has been extended or stretched.
In an alternative embodiment, the jaw assembly further includes one or more sensors for measuring physiologic parameters of the portion of the vessel targeted for welding, such as temperature or impedance, and for controlling the application of RF energy responsive to the measured parameters. Methods of using the foregoing apparatus are also provided. A first method of the invention relates to altering certain impedance characteristics of tissue targeted for welding to enhance the RF delivery profile. Specifically, a length of the tissue or blood vessel is extended to reduce its extracellular fluid (ECF) content level. This in turn causes the ECF level to become more uniformly distributed throughout the extended section of tissue, and increases the impedance of the target tissue to RF current. The increased impedance of the extended section therefore forms a "fuse" or "fuse point" that facilitates welding when an RF current is passed longitudinally through the tissue. In an alternative method, the RF current applied to the extended section of tissue is controlled in response to a measured physiologic parameter, such as temperature or impedance of the extended section of tissue, or power delivered to the tissue to reduce charring and smoke generation.
Brief Description Of The Drawings
Additional objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims, in which: FIGS. 1A-1B are perspective views depicting the distal end of a jaw structure of a previously known radiofrequency device and its use in cauterizing a blood vessel;
FIG. 2 is an elevational view of a first embodiment of a radiofrequency (RF) device constructed in accordance with the principles of the present invention;
FIGS. 3A-3C are enlarged elevational views of the working end of the device of FIG. 2 depicting with the jaw assembly during various stages of operation;
FIGS. 4A-4C are cut-away axionometric views of the working end of FIGS. 3A-3C, respectively, showing operation of the separately actuatable elements of the upper jaw subassembly;
FIGS. 5A-5B are schematic views depicting use of the" apparatus of FIG. 2 in a SEPS (subfacial endoscopic perforator surgery) procedure;
FIGS. 6A-6E are perspective views of a portion of the blood vessel targeted for treatment depicting in sequence a method of the present invention to weld or seal the blood vessel; and
FIG. 7 is a schematic diagram of an alternative embodiment of the apparatus of the present invention.
Detailed Description Of The Invention
The present invention provides methods and apparatus for sealing or welding a blood vessel by extending or stretching a section of the blood vessel prior to application of RF energy. As used herein, the term "blood vessel" is defined to include any artery or vein of any size, and further includes any vascularized tissue mass.
As is known in the art of electrosurgical instruments, the application of high frequency alternating current causes ionic agitation and friction in a targeted vessel or tissue as ions follow the changes in direction of the alternating current. Such ionic agitation or frictional heating thus does not result from direct tissue contact with a resistive electrode. Energy delivered to a tissue mass may be computed using the formula: I = E/R where I is the intensity of the current in amperes, E is the energy potential measured in volts and R is the tissue resistance measured in ohms.
Current density (i.e., the level of current intensity) can be used as a gauge of energy delivery, and varies as a function of the impedance of the targeted tissue mass. The amount of heat generated within a targeted tissue is known to be influenced by several factors, including (i) the RF current intensity, (ii) the RF current frequency, (iii) the instantaneous impedance level of the targeted tissue (which varies during a treatment cycle) , (v) heat dissipation from the targeted tissue; (vi) the duration of RF energy delivery, and (vii) the distance traveled by the RF current through the targeted tissue between the conductive electrodes. Applicants have discovered that by extending or stretching a targeted tissue a reproducible amount, it is possible to influence the amount of extracellular fluid (ECF) present in the tissue, and thus alter the impedance of the tissue. In particular, applicants have determined that by manipulating the targeted tissue, it is possible to create a "fuse" or "fuse point" in the tissue that is preferentially heated RF energy is applied to the tissue.
Applicants further have determined that the creation of a "fuse point" offers several advantages over previously known methods and apparatus for RF delivery, including: (1) achieving greater levels of thermal effect at lower levels of power (current intensity) ; (2) preferential heating of the tissue in the vicinity of the fuse point, thereby speeding up the tissue welding process; (3) the formation of a more lengthy and effective weld in the fuse point section of the tissue compared to previously known devices; (4) more uniform thickness and impedance within the targeted tissue, thereby providing for more uniform heating in the vicinity of the fuse point; and (5) reduced thermal trauma outside the vicinity of the fuse point. In addition, it is expected that the more uniform heating of tissue provided by the methods and apparatus of the present invention will substantially reduce smoke generation and localized tissue charring. Referring now to FIG. 2, a first embodiment of device 5 constructed in accordance with the principles of the present invention is described. Device 5 is adapted for use in open or endoscopic procedures and comprises plastic handle assembly 7 coupled to elongated shaft 10 extending along axis 15 and carrying distal working end 16. Shaft 10 has proximal end 21 and distal end 22, and illustratively has a cylindrical cross-section. Handle assembly 7 and shaft 10 preferably comprise any of a number of suitable materials, such as metal or plastic. In an embodiment of device 5 suitable for performing a SEPS procedure, shaft 10 preferably has an outer diameter in a range from 5 mm. to 10 mm., e.g., to enable use of the device with previously known endoscopic trocar sleeves .
Referring now also to FIGS. 3A-3C, working end 16 comprises a jaw structure carried by shaft .10 that includes upper jaw assembly 30a and lower jaw arm 30b disposed in opposing relation to upper jaw assembly 30a. Upper jaw assembly 30a comprises independently moveable interior jaw arm 35 disposed in slot 41 of perimeter jaw 31. Interior jaw arm 35 is independently moveable with respect to both perimeter jaw 31 and lower jaw arm 30b. Upper jaw assembly 30a and lower jaw arm 30b preferably comprise a nonconductive material such as plastic, or may comprise a metal or metal alloy coated with a suitable electrically insulative material. Upper jaw assembly 30a preferably includes at least one RF electrode, described in greater detail hereinbelow. Upper jaw assembly 30a and lower jaw arm 30b are moveable to a series of positions, from a fully open position shown in FIGS. 3A and 4A, to a tissue engagement position shown in FIGS. 3B and 4B, and a fully closed position, shown in FIGS. 3C and 4C. In the embodiment of FIGS. 2-4, lower jaw arm 30b illustratively has a fixed configuration, but it should be appreciated that this jaw arm also may be movable to cooperate with upper jaw assembly 30a.
As depicted in FIG. 4A, upper jaw assembly 30a comprises perimeter jaw 31 (having right jaw face 32A and left jaw face 32B, together with an independently actuatable interior jaw arm 35. Both perimeter jaw 31 and interior jaw arm 35 of upper jaw assembly 30a rotate about pivot 36, with interior jaw arm 35 disposed for rotation within slot 41 of perimeter jaw 31. Slot 41 extends along axis 15 and is interposed between the right and left jaw faces 32A and 32B.
Lower jaw arm 30b also has cooperating right and left jaw faces 42A and 42B along its perimeter.
Right and left jaw faces 32A and 32B of perimeter jaw 31 are arranged in opposing relation to right and left faces 42A and 42B, respectively, of lower jaw arm 30b, for engaging tissue therebetween. In addition, jaw faces 32A, 32B, 42A and 42B may be textured, for example, including serrations 44, to assist in gripping a vessel or tissue.
As best seen in FIGS. 4A-4C, the interior jaw arm 35 has a V-shaped cross-section having generally planar right and left surface portions 52A and 52B, respectively, that extend into V-shaped channel 53 in lower jaw arm 30b. Surface portions 52A and 52B of interior jaw arm 35 oppose similarly angled mating surfaces 54A and 54B of V-shaped channel 53.
Cooperating angled surface portions 52A and 52B, and surfaces 54A and 54B, respectively, may have any suitable angle, up to and including 90°. In addition, surface portions 52A and 52B, and mating surfaces 54A and 54B, may have any suitable curved cross-section.
In the embodiment illustrated in FIGS. 3 and 4, surface portions 52A and 52B are inclined at an angle β of about 60Z
In accordance with the principles of the present invention, working end 16 comprises a "double- acting" or "sequential" closing mechanism, wherein the individual components of the jaw are actuated in sequence. By the terms "double-acting" or "sequential", it is meant that upper jaw assembly 30a closes toward the lower jaw 30b in stages. In the first stage, perimeter jaw 31 moves from a fully open position (FIGS. 3A and 4A) to a tissue engaging position (FIGS. 3B and 4B) , wherein the right and left jaw faces 32A and 32B of perimeter jaw 31 close against the opposing right and left jaws faces 42A and 42B of lower jaw 30b.
During the next stage, interior jaw arm 35 rotates about pivot 36 so that interior jaw arm 35 passes through slot 41 of perimeter jaw 31 (FIGS. 3C and 4C) . As interior jaw arm 35 passes through slot 41, it contacts and stretches the section of tissue disposed across V-shaped channel 53 into contact with the surfaces 54A and 54B of lower jaw 30b (FIG. 4C) . With respect to FIGS. 3A-3B and 4A-4C, surface portions 52A and 52B of interior jaw arm 35 include cooperating electrodes 55A and 55B. Electrodes 55A and 55B are arranged to operate in a bi-polar mode, -and may comprise any suitable material, such as gold, nickel titanium, platinum, stainless steel, aluminum or copper. RF current provided to electrodes 55A and 55B flows between the electrodes and along the length of the tissue or vessel captured in the jaw assembly. While electrodes 55A and 55B are illustratively depicted as disposed on surface portions 52A and 52B of interior jaw arm 35, it will be appreciated that the electrodes may be disposed elsewhere, for example, on perimeter jaw 31 or lower jaw 30b, or any combination thereof. For example, the electrodes may be carried in the surfaces of perimeter jaw 31 opposing interior jaw arm 35, or on opposing surfaces 54A and 54B of V-shaped channel 53. It is sufficient for the purposes of the present invention that electrodes 55A and 55B be located where they can contact tissue engaged in the jaw structure, so that RF current can flow longitudinally through the extended tissue captured in V-shaped channel 53.
As depicted in FIGS. 3A and 4A-4C, working end 16 of the present invention also may comprise one or more sensors for measuring physiologic parameters, such as temperature or impedance. Illustrative sensors 72A and 72B are provided in a part of the jaw assembly that contacts the blood vessel section being welded, i.e., within V-shaped channel 53. Sensors 72A-72B preferably are located slightly spaced apart from electrodes 55A and 55B, and may be used to measure temperatures and/or impedance of tissue at or adjacent to the electrodes during a tissue welding operation. Sensors 72A and 72B may comprise, for example, thermocouples or thermisters (temperature sensors that have resistances that vary with the temperature level) . Thermocouples may comprise paired dissimilar metals, such as copper and constantan, which form a T-type thermocouple. Alternatively, or in addition, temperature sensors may be positioned in contact with the electrodes to measure electrode temperature. Referring once again to FIG. 2, RF energy source 60 is coupled to electrodes 55A and 55B by wires 62A and 62B, which extend through handle 7, cable 65, and detachable coupling 66. RF energy source 60 may be a previously known, commercially available, RF generator that provides a high frequency alternating current (e.g., from 55,000 Hz to 550,000 Hz). Application of RF energy from RF energy source 60 to electrodes may be controlled using foot pedal 68 or any other suitable means, such as a switch (not shown) in handle 7. Optionally, or in addition, power controller 70 may be provided, as described in greater detail hereinbelow.
Handle portion 73 includes single lever arm 73 coupled to the jaw structure of working end 16. When single lever arm 73 is squeezed, it rotates about a pivot to cause sequential rotation of perimeter jaw 31 about pivot 36 and then rotation of interior jaw arm 35 about pivot 36. Single lever arm 73 is connected to the proximal ends of flexible reciprocating drive rods 75A and 75B.
As depicted in FIGS. 3A-3B, the distal end 74 of drive rod 75A is connected to cylindrical pin 76 in lever arm portion 77A of perimeter jaw 31. Accordingly, as single lever arm 73 is moved through the range of motion indicated at RI in FIG. 2, perimeter jaw 31 rotates around pivot 36 and moves the jaw faces 32A and 32B of perimeter jaw 31 toward faces 42A and 42B of lower jaw 30b. Likewise, the distal end 78 of drive rod 75B connects to lever arm portion 77B of interior jaw arm 35, so that continued movement of single lever arm 73 (in the direction indicated at R2 in FIG. 2), rotates interior jaw arm 35 about its pivot until surface portions 52A-52B extend through slot 41 beyond faces 32A and 32B of perimeter jaw 31.
Simultaneous with actuation of interior jaw arm 35 relative to perimeter jaw 31, spring 79 disposed around reciprocating wire 75A within single lever arm 73 is compressed, thus allowing upper jaw assembly 30a and lower jaw arm 30b to remain in a fixed relationship. It will be appreciated that the arrangement of FIG. 2 is illustrative only, and any of a number of other mechanisms known in the art may be suitable for sequentially articulating the perimeter jaw and interior jaw arm. For example, two independent levers may be used to independently actuate the perimeter jaw and interior jaw arm. Alternatively, either or both jaws may be closed by an axially sliding cam-type mechanism known in the art. Operation and use of the instrument of FIG. 2 in accordance with the methods of the invention is now described. While the device may be used to weld or seal blood vessels in a number of different procedures, its use is described herein in the context of performing subfacial endoscopic perforator surgery (SEPS) .
In overview, the method of the present invention for welding a blood vessel includes: (1) targeting a length of a blood vessel intermediate opposing ends; (2) grasping the target vessel section at the opposing ends and maintaining the ends in a fixed relationship; (3) extending longitudinally an intermediate portion of the vessel captured between the opposing ends; and (4) delivering RF energy longitudinally through the intermediate portion in a bi-polar manner from a first electrode at one end of the vessel section to a second electrode at the other end of the vessel section. While the science of tissue welding is not thoroughly understood, it is believed that the thermal effects on collagen molecules in excess of 75° C to 80° C in endothelium and vessel walls denatures and thereafter causes fusion of the collagen molecules to create a seal or weld. The duration of RF energy delivery may be determined by the surgeon' s experience or visual observations of the blood vessel during the welding treatment. In an alternative embodiment described hereinafter, sensors mounted on the device measure temperature, impedance or some other parameter to determine when RF current should be discontinued. More particularly, FIG. 5A is a schematic view of a patient's leg showing a surgeon inserting endoscope 95 (or any other suitable instrument) through first incision 98 to dissect an access path to perforator 100 between vein 102 and artery 104. In FIG. 5B, the surgeon introduces the distal end of device 5 through second incision 108 toward the location of perforator 100. Alternatively, endoscope 95 and device 5 may be introduced through a single incision and a workspace around the perforator may be maintained by insufflation or mechanical retraction.
With respect to FIG. 6A, a particular longitudinal section 105 of perforator 100 (or any blood vessel that is selected for thermal treatment or welding in the interior of the patient's body) is described. The surgeon generally selects a central "target" portion (indicated at T) of the blood vessel section 105 for welding which is bounded by left and right ends portions A and B. The vessel has lumen 110 including endothelium 112 and vessel wall 114.
With respect to FIG. 6B, the targeted blood vessel portion is grasped and stabilized between the jaws of device 5 so that end portions A and B are captured between left and right faces 32A and 32B of perimeter jaw 31 and the opposing faces 42A and 42B, respectively, of lower jaw 30b. FIG. 6B corresponds to the jaw position shown in FIG. 4B, with end portions 115A and 115B of the vessel being flattened in the grasp of perimeter jaw 31 and lower jaw arm 30b shown in phantom view. Grip indentations 116 are caused by serrations 44 (see FIG. 4B) . When blood vessel 105 is engaged with device 5, a fixed length of vessel 105, bounded by grasped portions 115A and 115B (and indicated at C in FIG. 6B) , is exposed between ends A and B.
With respect to FIG. 6C the fixed length of vessel portion 105 is manipulated by actuation of interior jaw arm 35 relative to perimeter jaw 31. . In particular, the closing action of interior jaw arm 35 into slot 41 and V-shaped channel 53 extends or stretches target vessel portion T beyond the plane defined by jaw faces 32A-32B and 42A-42B) . FIG. 6D is an enlarged longitudinal sectional view of the blood vessel showing that target vessel section T is extended or lengthened by the actuation of interior jaw arm 35 to a length indicated at C , which is greater than initial length indicated at C. Applicants have determined that by extending or stretching the target tissue, it is possible to alter the characteristics of target tissue to improve RF energy delivery. The extension of the target vessel portion T in FIG. 6D reduces the extracellular fluid (ECF) content of the vessel walls and endothelium that are extended by the interior jaw arm 35, thereby increasing the impedance of the target tissue to RF current flow. Without wishing to be limited to any particular theory to explain the effectiveness of the technique, it is believed that the tissue extension or manipulation has the effect of (1) decreasing the ECF content level of the target vessel section T when calculated in terms of ECF/c ^ of tissue mass, and (2) making the ECF level more evenly distributed throughout the target tissue T (at the lower ECF/c 2 level) whereas in the prior state, the ECF level could vary randomly within the cellular structure.
Referring to FIG. 6D, the schematic diagram depicts that the ECF in the non-extended tissue T
(indicated at 120) is altered to a different state than in the extended tissue (indicated at 122) . Specifically, it is believed that extracellular fluid is squeezed out of the tissue captured in V-shaped channel 53, indicated graphically by the varied patterns of cell density (compare, for example, locations 120 and 122) .
An alternative way of describing the effects of the tissue manipulation caused by the extension of target portion T of vessel section 105, is that the manipulation causes the target tissue portion T to become a "fuse" or "fuse point" (as defined, for example, by decreased ECF) when subjected to the flow of RF current. A number of advantages are offered by creating a fuse-type effect in the targeted tissue. First, the delivery of RF current between electrodes 55A and 55B delivers greater levels of thermal effects for a given current flow or intensity. Thus, target tissue may be elevated to a particular desired temperature to weld cells (or molecules) of the vessel walls and endotheluim 112 together at lower levels of RF energy delivery. Also, it may be possible to use lower levels, rather than higher levels, of RF current intensity. The lower levels of energy required for welding are expected to reduce tissue charring and smoke generation.
Second, the requisite temperature for tissue fusion can be reached more quickly, thus speeding the process of tissue welding.
Third, the bi-polar flow longitudinally through the vessel between electrodes 55A and 55B naturally welds a longer length of vessel, thereby creating a longer and more effective seal — an effect that is not possible with previously known bi-polar devices that send current "across" tissue pinched between opposing jaw-electrodes (see FIG. IB).
Fourth, the uniformity in the ECF level in, and the resulting uniformity in thickness of, the extended target tissue allows for more uniform heating to provide a more uniform weld.
Fifth, the bi-polar current flow longitudinally through the vessel provides little or no thermal spread outwardly along the vessel in either direction, since the current only flows between the paired electrodes and not outwardly. In this respect, the higher ECF level indicated at 120 in the vessel outwardly from end portions 115A and 115B prevent outward thermal spread. In FIG. 6C, electrodes 55A and 55A are shown in isolation (i.e., without showing other parts of upper jaw assembly 30a) . To weld or seal the target vessel section T, the surgeon actuates foot pedal 68 to cause an RF current to flow between electrode 55A and electrode 55B longitudinally through the extended length "C of the vessel. Resulting elongated weld zone 125 is depicted in FIG. 6D, where the vessel walls are fused together. In delivering RF current, a surgeon may select from a number of preset current intensity levels programmed into power controller 70 to energize the target tissue T for a time interval ranging from about 0.50 seconds to about 5.0 seconds or more, depending on current intensity level. The duration of RF energy delivery also may be determined by the surgeon' s experience and by observation of the blood vessel as it is welded. FIG. 6E depicts the targeted blood vessel portion T after being welded and released from the jaw assembly of device 5.
Referring now to FIG. 7, an alternative embodiment of the apparatus and methods of the present invention is described. Device 5 is identical to device 5 of FIG. 2, the system differing only by the further inclusion of electronic power controller 70 linked to sensors 72A-72B in working end 16 of device 5. Sensors 72A and 72B are configured to monitor one or more physiologic parameters, and power controller 70 is programmed to modulate the RF energy delivery profile of the instrument responsive to the output of the sensors.
Power controller 70 controls delivery of RF power in a bi-polar manner between electrodes 55A and 55B according to predetermined parameters. Power controller 70, preferably comprises microprocessor 160 together with appropriate software, and may be programmed to deliver power according to preset parameters. Power controller 70 may include, for example, a keyboard, disk drive or other non-volatile memory system, and an operator interface as are well known in the art for operating RF electrosurgical instruments. The operator interface also may include various types of imaging systems for observing the RF treatment cycle, such as thermal sensor displays and/or impedance monitoring displays.
In a preferred manner of operation of the device for vessel welding, referred to herein as "an impedance-controlled operational mode, " power controller 70 is programmed to receive signals and values for tissue impedance within the target tissue portion T (see FIGS. 6C-6D) during its operation. For example, programmed values typically may include a maximum impedance or resistance level (estimated or known) for the tissue portion targeted for welding and a minimum impedance or resistance level (also known or estimated) .
The power controller 70 may include feedback circuitry or impedance measuring circuitry that measures impedance levels to control power delivery. The impedance measuring circuitry may, for example, convert current and voltage signals into an actual impedance level and signal in response to RF current flow through the target vessel portion T. A current measuring device (e.g., a transformer) and a voltage measuring device may be operatively connected to power controller 70 and the electrode pair. The power controller 70 then controls RF energy delivered to the electrodes responsive to signals generated by the impedance measuring circuitry.
For example, the controller may select a particular impedance or resistance level between the maximum and minimum impedance levels and turns off or modulates RF power delivery to the electrodes when either (i) actual measured impedance reaches the particular level, or (ii) the rate (over time) of the rise in actual impedance toward the particular selected level exceeds a parameter as it rises toward the maximum impedance level. For example, the particular impedance level, or particular rate of change, may relate to a particular level just below the maximum level or an average level between the selected maximum and minimum impedance levels. In another manner of operation, referred to herein as "a temperature-controlled operational mode," an operator selects a target temperature level, typically a known temperature that will weld the targeted tissue. Temperature signals measured by a sensors 72A and 72B are continuously supplied to power controller 70 through feedback circuitry to control the level of power delivery to the electrodes. The power controller thus measures the difference between the actual temperature measured (or averaged) by sensors 72A and 72B and a target temperature level and thereafter select a power delivery level or delivery profile proportionate to the temperature difference at any point in time during a energy delivery cycle.
Power controller 70 further may be programmed to control power delivery based on temperature signals such that if a particular temperature is exceeded at either sensor location the power delivery will be terminated. The operator further can set a target temperature level to be maintained at a particular sensor site or averaged among several sensor sites. Power controller 70 further may include a timing device that provides the operator with the ability to maintain a particular temperature at any sensor site (or combination thereof) for a particular length of time. In addition, a power delivery profile may be programmed into controller 70 to deliver RF energy over a period of time to achieve a target temperature level or the power controller can accept a time pre-set for reaching a particular temperature level.
Alternatively, or in addition, power controller 70 also may operate in a combination temperature/impedance-controlled operational mode to still more precisely control or modulate RF power delivery which combines the above described features. All of the above-described control modes can be combined to select a preferred particular temperature (or average temperature) at one or more sensor locations in the jaw assembly such that energy delivery will be terminated if a maximum pre-set temperature is reached.
The impedance control also may be incorporated as previously described to modulate or control power delivery based on impedance levels to achieve a particular sensed temperature or temperature profile. Thus, the temperature at the sensor array can be maintained at a pre-set temperature based on impedance feedback unless a maximum temperature is exceeded, at which energy delivery is modulated or terminated.
Power controller 70 preferably includes circuitry for measuring actual power output delivery, which is indicated by an actual power output signal. In another manner of operation or "power-controlled operational mode, " an operator selects a target actual power delivery for treating tissue, which typically is a level of actual power known or estimated to achieve a certain temperature in the target tissue which can be measured in joules delivered. A time profile may be programmed into power controller 70 to deliver a predetermined amount of power over a particular period of time to achieve a target energy delivery (and temperature) in tissue. Thus, in a power-controlled operational mode, the power controller 70 may deliver RF energy at or along a continuous range of pre-set power levels or according to a pre-set power delivery profile (RF power delivery over a period of time) . Any of these pre-sets can be indicated by a power level delivery signal or power profile signal.
The power controller 70 and software together with the above described feedback circuitry thus are capable of full process monitoring and continuous control of the following operational variables: (i) power delivery; (ii) time, temperature and impedance parameters of a selected energy delivery cycle; (iii) vectoring RF current delivery in different directions between the electrodes via a multiplexer, and (iv) mono-polar or bi-polar energy delivery, since in some circumstances it may be desirable to use mono-polar energy delivery.
In addition, power controller 70 besides vectoring RF current between the electrodes may be employed to monitor circuit continuity for each electrode. Specifically, microprocessor 160 may sequentially receive and store digital data representing impedance and temperature values and the temperature and impedance values also may be displayed on the operator interface as numerical values. The temperature and impedance values may be compared by microprocessor 160 with pre-programmed temperature and impedance limits as described above and when the measured temperature value or impedance value at a particular site exceeds a pre-determined limit, a warning or other indication can be given on the operator interface (such as a warning light) while at the same time the delivery of energy to a particular electrode site can be decreased. Calculated surface temperatures of the vessel also may be forwarded by controller 70 to the display and compared to a predetermined limit to activate a warning indicator on the display.
It should be appreciated that the present invention is specially adapted to weld blood vessels.
The device of the present invention may further include a reciprocating blade member carried in an axial slot (not shown) for transecting the welded blood vessel. Alternatively, a separate scissors-type blade that is rotatable within a slot in interior jaw arm 35 (not shown) may be provided for transecting the welded blood vessel .
Although particular embodiments of the present invention have been described above in detail, it will be understood that this description is merely for purposes of illustration. Specific features of the invention are shown in some drawings and not in others, and this is for convenience only and any feature may be combined with another in accordance with the invention. Further variations will be apparent to one skilled in the art in light of this disclosure and are intended to fall within the scope of the appended claims.

Claims

What is claimed is:
1. Apparatus for welding a blood vessel comprising: a first member having a first blood vessel engaging surface and a portion defining a first opening extending through the first blood vessel engaging surface; a second member having a second blood vessel engaging surface and a portion defining a second opening extending through the second blood vessel engaging surface, the second opening aligned with the first opening, the second member operatively coupled to the first member to grasp the blood vessel to define an engagement plane; an extension member movable from a retracted position, wherein the extension member is remote from the engagement plane, to an extended position, wherein the extension member passes through the first and second openings and the engagement plane, the extension member contacting and extending a portion of the blood vessel when moved to the extended position; and a first electrode disposed to apply RF energy to the portion of the blood vessel when the extension member is in the extended position.
2. The apparatus of claim 1 wherein the first opening communicates with a slot in the first member and the second opening communicates with a channel formed in the second member.
3. The apparatus of claim 2 wherein the channel forms a mating surface to a surface of the extension member.
4. The apparatus of claim 4 wherein the first member and second members comprise first and second opposing jaw arms.
5. The apparatus of claim 1 further comprising an actuation mechanism for moving at least one of the first and second opposing jaw arms towards and away from other.
6. The apparatus of claim 1 wherein the third member is independently operable from the first and second members.
7. The apparatus of claim 1 wherein the first electrode is disposed on a first surface of the extension member, the apparatus further comprising a second electrode disposed on a second surface of the extension member.
8. The apparatus of claim 1 further comprising a sensor disposed on one of the first member, the second member and extension member.
9. The apparatus of claim 1 wherein the sensor is a temperature sensor, the apparatus further comprising an RF power controller that modulates the RF energy responsive to an output of the temperature sensor.
10. The apparatus of claim 1 wherein the sensor is an impedance-monitoring sensor, the apparatus further comprising an RF power controller that modulates the RF energy responsive to an output of the impedance-monitoring sensor.
11. A method for welding a blood vessel comprising: identifying a blood vessel for welding, the blood vessel having first and second ends; grasping the blood vessel at the first and second ends; longitudinally extending an intermediate portion of the blood vessel located between the first and second ends to alter an impedance of the intermediate portion while maintaining the ends in a fixed relationship relative to one another; applying RF energy through the intermediate portion of the blood vessel so that an RF current flows longitudinally along the intermediate portion and welds the intermediate portion.
12. The method of claim 11 wherein longitudinally extending an intermediate portion of the blood vessel further comprises reducing an extracellular fluid content of the blood vessel.
13. The method of claim 11 wherein longitudinally extending an intermediate portion of the blood vessel further comprises reducing the intermediate portion to a substantially uniform thickness .
14. The method of claim 11 wherein longitudinally extending an intermediate portion of the blood vessel to alter an impedance of the intermediate portion further comprises making the impedance of the intermediate portion substantially uniform.
15. The method of claim 11 further comprising contacting a sensor to the intermediate portion of the blood vessel.
16. The method of claim 15 wherein the sensor monitors temperature of the intermediate portion of the blood vessel and generates an output signal, the method further comprising modulating the RF energy applied to the intermediate portion responsive to the output signal.
17. The method of claim 16 further comprising modulating the RF energy applied to the intermediate portion to prevent a preselected temperature value from being exceeded.
18. The method of claim 15 wherein the sensor monitors impedance of the intermediate portion of the blood vessel and generates an output signal, the method further comprising modulating the RF energy applied to the intermediate portion responsive to the output signal.
19. The method of claim 18 further comprising modulating the RF energy applied to the intermediate portion to prevent a preselected impedance value from being exceeded.
20. The method of claim 11 further comprising monitoring a value of RF energy delivered to the intermediate portion and ceasing application of RF energy responsive the value exceeding a predetermined value .
PCT/US1998/024125 1997-11-12 1998-11-12 Methods and apparatus for welding blood vessels WO1999023960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU14016/99A AU1401699A (en) 1997-11-12 1998-11-12 Methods and apparatus for welding blood vessels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6536697P 1997-11-12 1997-11-12
US60/065,366 1997-11-12

Publications (1)

Publication Number Publication Date
WO1999023960A1 true WO1999023960A1 (en) 1999-05-20

Family

ID=22062215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/024125 WO1999023960A1 (en) 1997-11-12 1998-11-12 Methods and apparatus for welding blood vessels

Country Status (2)

Country Link
AU (1) AU1401699A (en)
WO (1) WO1999023960A1 (en)

Cited By (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022896A1 (en) * 1999-09-28 2001-04-05 Karl Storz Gmbh & Co. Kg Medical bipolar instrument for cutting tissue
EP1301134A2 (en) * 2000-04-27 2003-04-16 Atricure Inc. Transmural ablation device and method
EP1336384A1 (en) * 1999-09-28 2003-08-20 Karl Storz GmbH & Co. KG Bipolar medical device for cutting tissue
WO2005120374A1 (en) * 2004-06-02 2005-12-22 Medtronic, Inc. Compound bipolar ablation device and method
DE102008030285A1 (en) 2008-06-30 2009-12-31 Celon Ag Medical Instruments Electrosurgical instrument
EP2005906A3 (en) * 2007-06-18 2010-06-23 Hitachi Ltd. Surgical tools and operation system
WO2011156547A3 (en) * 2010-06-10 2012-01-26 Ethicon Endo-Surgery, Inc. Cooling configurations for electro-surgical instruments
DE102011076071A1 (en) * 2011-05-18 2012-11-22 Olympus Winter & Ibe Gmbh Electrosurgical gripping element
US8453906B2 (en) 2010-07-14 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8496682B2 (en) 2010-04-12 2013-07-30 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8535311B2 (en) 2010-04-22 2013-09-17 Ethicon Endo-Surgery, Inc. Electrosurgical instrument comprising closing and firing systems
US8574231B2 (en) 2009-10-09 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising a movable electrode or insulator
US8613383B2 (en) 2010-07-14 2013-12-24 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8628529B2 (en) 2010-10-26 2014-01-14 Ethicon Endo-Surgery, Inc. Surgical instrument with magnetic clamping force
US8715277B2 (en) 2010-12-08 2014-05-06 Ethicon Endo-Surgery, Inc. Control of jaw compression in surgical instrument having end effector with opposing jaw members
US8747404B2 (en) 2009-10-09 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising non-conductive grasping portions
US8753338B2 (en) 2010-06-10 2014-06-17 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a thermal management system
US8764747B2 (en) 2010-06-10 2014-07-01 Ethicon Endo-Surgery, Inc. Electrosurgical instrument comprising sequentially activated electrodes
US8790342B2 (en) 2010-06-09 2014-07-29 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing pressure-variation electrodes
US8795276B2 (en) 2010-06-09 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a plurality of electrodes
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8888776B2 (en) 2010-06-09 2014-11-18 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing an electrode
US8906016B2 (en) 2009-10-09 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising steam control paths
US8926607B2 (en) 2010-06-09 2015-01-06 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing multiple positive temperature coefficient electrodes
US8939974B2 (en) 2009-10-09 2015-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism
US8979843B2 (en) 2010-07-23 2015-03-17 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9005199B2 (en) 2010-06-10 2015-04-14 Ethicon Endo-Surgery, Inc. Heat management configurations for controlling heat dissipation from electrosurgical instruments
US9011437B2 (en) 2010-07-23 2015-04-21 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
US9149324B2 (en) 2010-07-08 2015-10-06 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9283027B2 (en) 2011-10-24 2016-03-15 Ethicon Endo-Surgery, Llc Battery drain kill feature in a battery powered device
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
US9375232B2 (en) 2010-03-26 2016-06-28 Ethicon Endo-Surgery, Llc Surgical cutting and sealing instrument with reduced firing force
US9408660B2 (en) 2014-01-17 2016-08-09 Ethicon Endo-Surgery, Llc Device trigger dampening mechanism
US9456864B2 (en) 2010-05-17 2016-10-04 Ethicon Endo-Surgery, Llc Surgical instruments and end effectors therefor
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9526565B2 (en) 2013-11-08 2016-12-27 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9554846B2 (en) 2010-10-01 2017-01-31 Ethicon Endo-Surgery, Llc Surgical instrument with jaw member
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US9610091B2 (en) 2010-04-12 2017-04-04 Ethicon Endo-Surgery, Llc Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US9861428B2 (en) 2013-09-16 2018-01-09 Ethicon Llc Integrated systems for electrosurgical steam or smoke control
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10117667B2 (en) 2010-02-11 2018-11-06 Ethicon Llc Control systems for ultrasonically powered surgical instruments
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10245065B2 (en) 2007-11-30 2019-04-02 Ethicon Llc Ultrasonic surgical blades
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10299810B2 (en) 2010-02-11 2019-05-28 Ethicon Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10335614B2 (en) 2008-08-06 2019-07-02 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US10335183B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Feedback devices for surgical control systems
US10335182B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Surgical instruments with articulating shafts
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10398466B2 (en) 2007-07-27 2019-09-03 Ethicon Llc Ultrasonic end effectors with increased active length
US10420579B2 (en) 2007-07-31 2019-09-24 Ethicon Llc Surgical instruments
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10426507B2 (en) 2007-07-31 2019-10-01 Ethicon Llc Ultrasonic surgical instruments
US10441308B2 (en) 2007-11-30 2019-10-15 Ethicon Llc Ultrasonic surgical instrument blades
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US10524872B2 (en) 2012-06-29 2020-01-07 Ethicon Llc Closed feedback control for electrosurgical device
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10543008B2 (en) 2012-06-29 2020-01-28 Ethicon Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10709906B2 (en) 2009-05-20 2020-07-14 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US11090103B2 (en) 2010-05-21 2021-08-17 Cilag Gmbh International Medical device
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US11523859B2 (en) 2012-06-28 2022-12-13 Cilag Gmbh International Surgical instrument assembly including a removably attachable end effector
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11931026B2 (en) 2021-06-30 2024-03-19 Cilag Gmbh International Staple cartridge replacement
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11957342B2 (en) 2022-10-13 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151102A (en) * 1989-05-31 1992-09-29 Kyocera Corporation Blood vessel coagulation/stanching device
US5403312A (en) * 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5443463A (en) * 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5702390A (en) * 1996-03-12 1997-12-30 Ethicon Endo-Surgery, Inc. Bioplar cutting and coagulation instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151102A (en) * 1989-05-31 1992-09-29 Kyocera Corporation Blood vessel coagulation/stanching device
US5443463A (en) * 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5403312A (en) * 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5702390A (en) * 1996-03-12 1997-12-30 Ethicon Endo-Surgery, Inc. Bioplar cutting and coagulation instrument

Cited By (281)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6520960B2 (en) 1999-09-28 2003-02-18 Karl Storz Gmbh & Co. Kg Bipolar medical instrument for cutting tissue
EP1336384A1 (en) * 1999-09-28 2003-08-20 Karl Storz GmbH & Co. KG Bipolar medical device for cutting tissue
WO2001022896A1 (en) * 1999-09-28 2001-04-05 Karl Storz Gmbh & Co. Kg Medical bipolar instrument for cutting tissue
EP1301134A4 (en) * 2000-04-27 2009-11-25 Atricure Inc Transmural ablation device and method
EP1301134A2 (en) * 2000-04-27 2003-04-16 Atricure Inc. Transmural ablation device and method
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US11730507B2 (en) 2004-02-27 2023-08-22 Cilag Gmbh International Ultrasonic surgical shears and method for sealing a blood vessel using same
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
WO2005120374A1 (en) * 2004-06-02 2005-12-22 Medtronic, Inc. Compound bipolar ablation device and method
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US11006971B2 (en) 2004-10-08 2021-05-18 Ethicon Llc Actuation mechanism for use with an ultrasonic surgical instrument
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
EP2005906A3 (en) * 2007-06-18 2010-06-23 Hitachi Ltd. Surgical tools and operation system
US11607268B2 (en) 2007-07-27 2023-03-21 Cilag Gmbh International Surgical instruments
US11690641B2 (en) 2007-07-27 2023-07-04 Cilag Gmbh International Ultrasonic end effectors with increased active length
US10398466B2 (en) 2007-07-27 2019-09-03 Ethicon Llc Ultrasonic end effectors with increased active length
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US11666784B2 (en) 2007-07-31 2023-06-06 Cilag Gmbh International Surgical instruments
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US10420579B2 (en) 2007-07-31 2019-09-24 Ethicon Llc Surgical instruments
US10426507B2 (en) 2007-07-31 2019-10-01 Ethicon Llc Ultrasonic surgical instruments
US11877734B2 (en) 2007-07-31 2024-01-23 Cilag Gmbh International Ultrasonic surgical instruments
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
US11439426B2 (en) 2007-11-30 2022-09-13 Cilag Gmbh International Ultrasonic surgical blades
US10888347B2 (en) 2007-11-30 2021-01-12 Ethicon Llc Ultrasonic surgical blades
US11253288B2 (en) 2007-11-30 2022-02-22 Cilag Gmbh International Ultrasonic surgical instrument blades
US11266433B2 (en) 2007-11-30 2022-03-08 Cilag Gmbh International Ultrasonic surgical instrument blades
US10265094B2 (en) 2007-11-30 2019-04-23 Ethicon Llc Ultrasonic surgical blades
US11766276B2 (en) 2007-11-30 2023-09-26 Cilag Gmbh International Ultrasonic surgical blades
US10463887B2 (en) 2007-11-30 2019-11-05 Ethicon Llc Ultrasonic surgical blades
US10245065B2 (en) 2007-11-30 2019-04-02 Ethicon Llc Ultrasonic surgical blades
US10441308B2 (en) 2007-11-30 2019-10-15 Ethicon Llc Ultrasonic surgical instrument blades
US10433865B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US10433866B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US11690643B2 (en) 2007-11-30 2023-07-04 Cilag Gmbh International Ultrasonic surgical blades
DE102008030285A1 (en) 2008-06-30 2009-12-31 Celon Ag Medical Instruments Electrosurgical instrument
WO2010000697A1 (en) * 2008-06-30 2010-01-07 Celon Ag Medical Instruments Electrosurgical instrument
US8961512B2 (en) 2008-06-30 2015-02-24 Olympus Winter & Ibe Gmbh Electrosurgical instrument
US10335614B2 (en) 2008-08-06 2019-07-02 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US11890491B2 (en) 2008-08-06 2024-02-06 Cilag Gmbh International Devices and techniques for cutting and coagulating tissue
US10709906B2 (en) 2009-05-20 2020-07-14 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US8574231B2 (en) 2009-10-09 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising a movable electrode or insulator
US8747404B2 (en) 2009-10-09 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising non-conductive grasping portions
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US10265117B2 (en) 2009-10-09 2019-04-23 Ethicon Llc Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8906016B2 (en) 2009-10-09 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising steam control paths
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US8939974B2 (en) 2009-10-09 2015-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism
US11382642B2 (en) 2010-02-11 2022-07-12 Cilag Gmbh International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10299810B2 (en) 2010-02-11 2019-05-28 Ethicon Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US11369402B2 (en) 2010-02-11 2022-06-28 Cilag Gmbh International Control systems for ultrasonically powered surgical instruments
US10117667B2 (en) 2010-02-11 2018-11-06 Ethicon Llc Control systems for ultrasonically powered surgical instruments
US9375232B2 (en) 2010-03-26 2016-06-28 Ethicon Endo-Surgery, Llc Surgical cutting and sealing instrument with reduced firing force
US9610091B2 (en) 2010-04-12 2017-04-04 Ethicon Endo-Surgery, Llc Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion
US9808308B2 (en) 2010-04-12 2017-11-07 Ethicon Llc Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8496682B2 (en) 2010-04-12 2013-07-30 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8535311B2 (en) 2010-04-22 2013-09-17 Ethicon Endo-Surgery, Inc. Electrosurgical instrument comprising closing and firing systems
US9456864B2 (en) 2010-05-17 2016-10-04 Ethicon Endo-Surgery, Llc Surgical instruments and end effectors therefor
US11090103B2 (en) 2010-05-21 2021-08-17 Cilag Gmbh International Medical device
US8795276B2 (en) 2010-06-09 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a plurality of electrodes
US8790342B2 (en) 2010-06-09 2014-07-29 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing pressure-variation electrodes
US8888776B2 (en) 2010-06-09 2014-11-18 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing an electrode
US8926607B2 (en) 2010-06-09 2015-01-06 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing multiple positive temperature coefficient electrodes
US9005199B2 (en) 2010-06-10 2015-04-14 Ethicon Endo-Surgery, Inc. Heat management configurations for controlling heat dissipation from electrosurgical instruments
WO2011156547A3 (en) * 2010-06-10 2012-01-26 Ethicon Endo-Surgery, Inc. Cooling configurations for electro-surgical instruments
US8753338B2 (en) 2010-06-10 2014-06-17 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a thermal management system
US8764747B2 (en) 2010-06-10 2014-07-01 Ethicon Endo-Surgery, Inc. Electrosurgical instrument comprising sequentially activated electrodes
US9737358B2 (en) 2010-06-10 2017-08-22 Ethicon Llc Heat management configurations for controlling heat dissipation from electrosurgical instruments
US9149324B2 (en) 2010-07-08 2015-10-06 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
US8453906B2 (en) 2010-07-14 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8613383B2 (en) 2010-07-14 2013-12-24 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US8979843B2 (en) 2010-07-23 2015-03-17 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US9011437B2 (en) 2010-07-23 2015-04-21 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9554846B2 (en) 2010-10-01 2017-01-31 Ethicon Endo-Surgery, Llc Surgical instrument with jaw member
US8628529B2 (en) 2010-10-26 2014-01-14 Ethicon Endo-Surgery, Inc. Surgical instrument with magnetic clamping force
US8715277B2 (en) 2010-12-08 2014-05-06 Ethicon Endo-Surgery, Inc. Control of jaw compression in surgical instrument having end effector with opposing jaw members
DE102011076071A1 (en) * 2011-05-18 2012-11-22 Olympus Winter & Ibe Gmbh Electrosurgical gripping element
US9247987B2 (en) 2011-05-18 2016-02-02 Olympus Winter & Ibe Gmbh Electrosurgical gripping element
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
US10166060B2 (en) 2011-08-30 2019-01-01 Ethicon Llc Surgical instruments comprising a trigger assembly
US9421060B2 (en) 2011-10-24 2016-08-23 Ethicon Endo-Surgery, Llc Litz wire battery powered device
US10779876B2 (en) 2011-10-24 2020-09-22 Ethicon Llc Battery powered surgical instrument
US9333025B2 (en) 2011-10-24 2016-05-10 Ethicon Endo-Surgery, Llc Battery initialization clip
US9314292B2 (en) 2011-10-24 2016-04-19 Ethicon Endo-Surgery, Llc Trigger lockout mechanism
US9283027B2 (en) 2011-10-24 2016-03-15 Ethicon Endo-Surgery, Llc Battery drain kill feature in a battery powered device
US9414880B2 (en) 2011-10-24 2016-08-16 Ethicon Endo-Surgery, Llc User interface in a battery powered device
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US11419626B2 (en) 2012-04-09 2022-08-23 Cilag Gmbh International Switch arrangements for ultrasonic surgical instruments
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US11839420B2 (en) 2012-06-28 2023-12-12 Cilag Gmbh International Stapling assembly comprising a firing member push tube
US11547465B2 (en) 2012-06-28 2023-01-10 Cilag Gmbh International Surgical end effector jaw and electrode configurations
US11523859B2 (en) 2012-06-28 2022-12-13 Cilag Gmbh International Surgical instrument assembly including a removably attachable end effector
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US11426191B2 (en) 2012-06-29 2022-08-30 Cilag Gmbh International Ultrasonic surgical instruments with distally positioned jaw assemblies
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10335183B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Feedback devices for surgical control systems
US10335182B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Surgical instruments with articulating shafts
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US10966747B2 (en) 2012-06-29 2021-04-06 Ethicon Llc Haptic feedback devices for surgical robot
US10524872B2 (en) 2012-06-29 2020-01-07 Ethicon Llc Closed feedback control for electrosurgical device
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US11096752B2 (en) 2012-06-29 2021-08-24 Cilag Gmbh International Closed feedback control for electrosurgical device
US11602371B2 (en) 2012-06-29 2023-03-14 Cilag Gmbh International Ultrasonic surgical instruments with control mechanisms
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US10543008B2 (en) 2012-06-29 2020-01-28 Ethicon Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11272952B2 (en) 2013-03-14 2022-03-15 Cilag Gmbh International Mechanical fasteners for use with surgical energy devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9861428B2 (en) 2013-09-16 2018-01-09 Ethicon Llc Integrated systems for electrosurgical steam or smoke control
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US9526565B2 (en) 2013-11-08 2016-12-27 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9949788B2 (en) 2013-11-08 2018-04-24 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9408660B2 (en) 2014-01-17 2016-08-09 Ethicon Endo-Surgery, Llc Device trigger dampening mechanism
US10932847B2 (en) 2014-03-18 2021-03-02 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US11413060B2 (en) 2014-07-31 2022-08-16 Cilag Gmbh International Actuation mechanisms and load adjustment assemblies for surgical instruments
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10751109B2 (en) 2014-12-22 2020-08-25 Ethicon Llc High power battery powered RF amplifier topology
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11903634B2 (en) 2015-06-30 2024-02-20 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11553954B2 (en) 2015-06-30 2023-01-17 Cilag Gmbh International Translatable outer tube for sealing using shielded lap chole dissector
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US10736685B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
US10610286B2 (en) 2015-09-30 2020-04-07 Ethicon Llc Techniques for circuit topologies for combined generator
US10624691B2 (en) 2015-09-30 2020-04-21 Ethicon Llc Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US11766287B2 (en) 2015-09-30 2023-09-26 Cilag Gmbh International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10779849B2 (en) 2016-01-15 2020-09-22 Ethicon Llc Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
US11229450B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with motor drive
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US11134978B2 (en) 2016-01-15 2021-10-05 Cilag Gmbh International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
US10299821B2 (en) 2016-01-15 2019-05-28 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limit profile
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US10828058B2 (en) 2016-01-15 2020-11-10 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US11058448B2 (en) 2016-01-15 2021-07-13 Cilag Gmbh International Modular battery powered handheld surgical instrument with multistage generator circuits
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US11896280B2 (en) 2016-01-15 2024-02-13 Cilag Gmbh International Clamp arm comprising a circuit
US11751929B2 (en) 2016-01-15 2023-09-12 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11202670B2 (en) 2016-02-22 2021-12-21 Cilag Gmbh International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US11864820B2 (en) 2016-05-03 2024-01-09 Cilag Gmbh International Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US11883055B2 (en) 2016-07-12 2024-01-30 Cilag Gmbh International Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10966744B2 (en) 2016-07-12 2021-04-06 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US11344362B2 (en) 2016-08-05 2022-05-31 Cilag Gmbh International Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD924400S1 (en) 2016-08-16 2021-07-06 Cilag Gmbh International Surgical instrument
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US11925378B2 (en) 2016-08-25 2024-03-12 Cilag Gmbh International Ultrasonic transducer for surgical instrument
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US11350959B2 (en) 2016-08-25 2022-06-07 Cilag Gmbh International Ultrasonic transducer techniques for ultrasonic surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US11839422B2 (en) 2016-09-23 2023-12-12 Cilag Gmbh International Electrosurgical instrument with fluid diverter
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11931026B2 (en) 2021-06-30 2024-03-19 Cilag Gmbh International Staple cartridge replacement
US11957342B2 (en) 2022-10-13 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation

Also Published As

Publication number Publication date
AU1401699A (en) 1999-05-31

Similar Documents

Publication Publication Date Title
US6083223A (en) Methods and apparatus for welding blood vessels
WO1999023960A1 (en) Methods and apparatus for welding blood vessels
US6132429A (en) Radiofrequency medical instrument and methods for luminal welding
US20200405379A1 (en) Vessel sealing algorithm and modes
US6113598A (en) Radiofrequency medical instrument and methods for vessel welding
US6126658A (en) Radiofrequency medical instrument and methods for vessel welding
JP5371215B2 (en) System and method for measuring initial tissue impedance
CA2498452C (en) Vessel sealing system using capacitive rf dielectric heating
JP5137235B2 (en) System and method for controlling RF power while sealing tissue
JP5719392B2 (en) Adjustable impedance electrosurgical electrode
JP5116383B2 (en) Vessel sealing device with preheating electrode
US5707369A (en) Temperature feedback monitor for hemostatic surgical instrument
CA2574864C (en) Method and system for controlling delivery of energy to divide tissue
US5599350A (en) Electrosurgical clamping device with coagulation feedback
US7901400B2 (en) Method and system for controlling output of RF medical generator
JP2007195985A (en) System and method for tissue sealing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA