WO1998043096A2 - Verfahren und vorrichtung zur nicht-invasiven in-vivo bestimmung von blutinhaltsstoffen - Google Patents

Verfahren und vorrichtung zur nicht-invasiven in-vivo bestimmung von blutinhaltsstoffen Download PDF

Info

Publication number
WO1998043096A2
WO1998043096A2 PCT/DE1998/000751 DE9800751W WO9843096A2 WO 1998043096 A2 WO1998043096 A2 WO 1998043096A2 DE 9800751 W DE9800751 W DE 9800751W WO 9843096 A2 WO9843096 A2 WO 9843096A2
Authority
WO
WIPO (PCT)
Prior art keywords
blood
thickness
frequencies
light
body part
Prior art date
Application number
PCT/DE1998/000751
Other languages
English (en)
French (fr)
Other versions
WO1998043096A3 (de
Inventor
Arnulf Oppelt
Joachim Kestler
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US09/381,986 priority Critical patent/US6285894B1/en
Priority to DE19880369D priority patent/DE19880369D2/de
Priority to DE19880369A priority patent/DE19880369C1/de
Publication of WO1998043096A2 publication Critical patent/WO1998043096A2/de
Publication of WO1998043096A3 publication Critical patent/WO1998043096A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a device according to the preamble of claim 18.
  • the absorption of the ingredients not to be determined is at least 10 times smaller than the absorption of the ingredients to be determined (hematocrit).
  • these wavelengths are isobestic, ie the absorption coefficient of oxygenated and deoxygenated hemoglobin is the same.
  • Wood and Geraci (1949) go back to the idea of first making the beam path bloodless using a pressure capsule in order to obtain a defined initial measurement value and then another measurement value when the blood has flowed back again. This principle was used for the optical determination of blood oxygenation (E.H. Wood and J.E. Geraci: Photoelectric determination of arterial oxygen saturation in man; Journ. Lab. Clin. Med. 34, 387-401 (1949)).
  • DD-Wirtschaftspatentschrift 107 982 describes a method and a device for analyzing emitted radiation of pressure-modulated gases for determining the concentration.
  • concentration-dependent emission of light from a flow-through cell takes place.
  • Emitted radiation is understood to mean the natural glow of the gas, e.g. is excited by a gas discharge.
  • GB 2 262 337 A also relates to the spectroscopy of gases, the absorption of a reference cell being pressure-modulated with an acoustic resonator.
  • tissue is identified by infrared spectroscopy with and without pressure by comparison with spectra of known tissue. No ingredients are quantified.
  • the object of the invention is therefore to develop a method and an apparatus for determining blood constituents in such a way that the above-mentioned problems are solved.
  • the object is achieved in that the thickness of the body part is harmoniously modulated with at least two pressure modulation frequencies, that by irradiating the thickness-modulated body part with light of at least two monochromatic wavelengths, of which at least one, but not all, in the area of optical absorption of the blood constituent, at least four measuring signals are obtained, which depend both on the action of light and on the mechanical change in thickness, and that the concentration of the blood constituent is determined from the at least four measuring signals.
  • the modulation makes you independent of the defined compression (i.e. the defined amount of blood squeezed out of the examined body part).
  • the above-mentioned object is further achieved by a device for the non-invasive determination of the concentration of blood constituents, in which the compression device is connected to at least two pressure modulation frequency generators.
  • 1 shows a two-compartment model of the body part
  • 2 to 2c show the time course of two pressure modulation frequencies applied simultaneously
  • FIG. 3 shows a basic circuit diagram of a first measuring device for transmission measurement
  • FIG. 4 shows a basic circuit diagram of a second measuring device for transmission measurement
  • FIG. 5 shows a basic circuit diagram of a variant of the first measuring device, but for reflection measurement
  • FIG. 6 shows a basic circuit diagram of a further variant of the first measuring arrangement, in which measurement is carried out via the opto-acoustic effect
  • the invention represents a reproducible, self-calibrating method for the non-invasive determination of the glucose concentration in vivo with optical spectroscopy, which is based on periodic harmonic thickness modulations of an illuminated body part. It is assumed that light with at least two defined wavelengths ⁇ of the input intensity IQ is radiated into the examined body part, and a signal I is produced that can be the light emerging again from the extremity - be it after transmission or after reflection - as well as a sound wave stimulated by the absorption of the incident light.
  • Biological tissue is made up of different fluid components of blood, interstitial and intracellular fluid.
  • the glucose required to supply the cells with energy is transported through the blood and diffuses into the interstitial and intracellular fluid. Due to the different permeability of the cell membranes, different glucose concentrations occur in the three liquid components.
  • the glucose concentration in blood and in the interstitial fluid similar, and the glucose concentration in the cells lower, however, because glucose is burned there.
  • only knowledge of the mean glucose concentration is important for monitoring people. In order to understand the functioning of the blood constituent measurement, it is therefore assumed that the body part that is illuminated can be described as a two-compartment model, consisting of blood, interstitial fluid and glucose dissolved therein, and of tissue and intracellular fluid with negligible glucose concentration.
  • the light absorption in the first compartment Compl be determined by the product of the absorption constant of the blood of the interstitial fluid - here denoted by ⁇ ßl ut - and the vessel thickness xi, and in the second compartment Comp2 by the product of the absorption constant of the tissue and the intracellular fluid ⁇ 20 and ⁇ ⁇ the tissue thickness X2.
  • ⁇ ßl ut - the product of the absorption constant of the blood of the interstitial fluid -
  • the second compartment Comp2 is shown in FIG. 1.
  • the measurement signal obtained is based on the Beer-Lambert law.
  • Ig incident light intensity
  • I Escaping light intensity
  • ⁇ H 2 0 absorption of tissue water
  • ⁇ - Gl u k ose absorption of glucose ( ⁇ ⁇ H 2 ⁇ )
  • k d concentration.
  • ⁇ i and 82 are the compressibilities of the blood vessel and of
  • Tissues are.
  • F FQCos2 ⁇ vt acting harmonically with the frequency v acts on the test object, the light intensity emerging from the test object varies accordingly
  • the signal will differ at the two modulation frequencies due to the delayed response of the test object to a delta burst.
  • ⁇ ⁇ , ⁇ 2 one of which is in a range in which no glucose absorption takes place, and two pressure modulation frequencies v ⁇ _ and V2
  • a 12 F Q ⁇ H 2 ⁇ ( ⁇ l) ( ⁇ i ( v 2 ) + ⁇ 2 (v 2 ) )
  • 91 ( ⁇ 2 ) a 22 a F 0 ⁇ H 2 ⁇ ( ⁇ 2 ) ( ⁇ i (v 2 ) + ⁇ 2 ( v 2 ) ) 91 ( ⁇ 2 ) b l - Q F ⁇ glucose ⁇ l (v l )
  • This expression is proportional to the glucose concentration, without an additive constant.
  • the constant ß is determined by an individual, single calibration measurement. This can e.g. by comparison with the generally introduced finger prick measuring strip.
  • this factor is compared to another method, e.g. the finger prick method.
  • Absorption corresponds to 20%. With in vivo measurements you can make sure that tissue and blood temperature fluctuations remain below 2 ° C. Then a relative change in the absorption of 1% can be expected, so that a Calibration errors due to temperature fluctuations of 2% would result. This is completely sufficient for determining the glucose concentration.
  • Another difficulty may be that the absorption coefficients ⁇ ( ⁇ ⁇ ), ⁇ ( ⁇ 2 ) of the water seem to vary over time due to other additives in the blood such as cholestrol, albumin or urea in the blood, so the calibration factor ß changes .
  • more than 2 pressure modulation frequencies can be used.
  • 4 frequencies V ⁇ _ a , vi b , V2 a , V2 are used, two independent glucose concentration values are obtained, from the deviation of which one can deduce the quality of the measurement result and by means of which the measurement accuracy can be increased.
  • the wavelengths with which the glucose concentration is preferably determined are in the infrared.
  • the range 1.35 - 1.5 ⁇ m is expedient, for the measuring wavelength ⁇ 2 , for the glucose, the range 1.5 - 1.8 ⁇ m.
  • Laser diodes are preferred as light sources, but also light-emitting diodes or thermal light sources in connection with a monochromator, and photodiodes as detectors.
  • a photodetector without an upstream wavelength filter cannot distinguish between the light of the two wavelengths ⁇ and ⁇ 2.
  • the light sources at the two wavelengths are amplitude-modulated with two different frequencies f1 and f2.
  • the modulation frequencies of the light sources are expediently placed in the kilohertz range, in which noise-free signal processing is possible and there is still no increasing signal weakening due to the tissue spreading.
  • the output signal of the photodetector is then phase-sensitive rectified with the two intensity modulation frequencies f1 and f2, whereby independent measurement signals corresponding to the two wavelengths ⁇ ] _ and ⁇ 2 are obtained.
  • the ambient light also affects the
  • the appropriate modulation frequencies V ⁇ _ and V 2 for the target thickness depend on the mechanical properties of the body part.
  • the pressure modulation frequencies must be so small that blood can still be squeezed out of the examination area and flow back again, but they should be different from the pulse frequency so that this does not interfere with the measurement.
  • the frequency range 1 - 50 Hz is suitable here. But it is also possible to synchronize one of the pressure modulation frequencies with the heartbeat.
  • the second pressure modulation frequency should then be set such that the size ⁇ becomes as large as possible, but a clear measurement signal S 4 is still observed. This is to be expected if the second pressure modulation frequency V2 corresponds approximately to the 2 to 3 times the value of the first vi.
  • the pressure modulation frequency vi can also be made zero, that is to say the direct signal can be used and the pressure modulation frequency V2 can be selected such that the blood-filled vessel can no longer follow, ie ⁇ _ «0.
  • This is at pressure modulation frequencies of a few tens of Hertz, e.g. B. 10 Hz to 30 Hz) to be expected.
  • FIGS. 3 to 6 show possible device versions for the measuring method described:
  • An applicator 1 in the form of a clip is attached to a part of the body, for example the little finger, the earlobe or the lip.
  • a pressure spring 2 ensures reproducible contact pressure.
  • an actuator in the form of a pressure modulator 3 is attached to the clip, which generates periodic pressure fluctuations in the body part encompassed by the clip by actuation with a plurality of frequencies v 1, V2.
  • the actuator 3 can consist of both piezoelectric and electromagnetic transducers.
  • the pressure cheeks la, lb of the applicator 1 can be thermally insulated or tempered.
  • Frequency generators 12c, 12d generate the frequencies f ⁇ _, f2, which are supplied to amplifiers 9a, 9b light sources 8, preferably laser diodes, for intensity modulation.
  • Frequency generators 12a, 12b generate frequencies V] _,
  • V2 which are fed to the pressure modulator 3 via an amplifier 10.
  • the received light is fed to a photodetector 7, which is used to separate the
  • Frequencies f ⁇ _, f2 corresponding to the light modulation as frequency filter phase-sensitive rectifiers 11a, 11b for the photodetector signals with the reference frequencies f ⁇ _, f 2 are connected downstream.
  • the signals obtained in this way are used as frequency filters for further phase-sensitive rectifiers 13a -
  • the output signals of the phase-sensitive rectifiers 13a, 13b, 13c, 13d are fed to an analog or digital arithmetic unit 15, which also takes into account a database 14
  • the arithmetic unit 15 takes into account optionally also different pressure modulation and intensity modulation amplitudes.
  • the entire signal generation and evaluation circuit can be accommodated in an electronics housing 6, which can be carried on a person, by using technologies of microelectronics.
  • the circuit according to FIG. 3 is to be modified according to FIG. 4: one of the frequency generators - here 12b - is omitted and instead of two of the phase-sensitive rectifiers 13a to 13d - here 13c and 13d - there are low-pass filters 18 which Disconnect DC signal.
  • the light intensities of the laser diodes are monitored with a monitor photodiode 17, the measured value of which is transferred to the arithmetic unit 15 for evaluation.
  • the light signals reflected by the body part are measured.
  • the light guide 5 ends with its light entry side in the inner cheek la of the clamp 1 in addition to the light guide 4 also ending there.
  • the absorption is measured via the opto-acoustic effect, the light absorption in the tissue producing sound waves.
  • a piezoelectric transducer 7a is arranged in the inner cheek 1a, which measures the sound waves generated in the body part due to the absorption and converts them into electrical signals.
  • the measurement signals are processed via an amplifier 7b for the actual signal evaluation, which includes amplification, filtering and rectification.
  • FIG. 7 shows a possible embodiment for the analog calculation of the signal S proportional to the concentration of the ingredient.
  • the analog multipliers XI and X2 are connected as dividers with the aid of the operational amplifiers OP1 and OP2; XI and
  • OPl form the quotient S1 / S2 from the input signals Si and S 2 .
  • X2 and 0P2 generate the quotient S ⁇ _ / S3 from the input signals S] _ and S3.
  • the two quotient signals are fed to the multiplier X3, at its output
  • Analog multipliers with high stability and accuracy are now available as standard components. These components already contain the operational amplifiers required for operation as a divider.
  • Signals Si .. S n are supplied, and that carries out the necessary calculation and correction steps.
  • the application of the invention is not limited to the determination of the glucose concentration, but can be extended to other blood substances such as cholesterol, albumin, urea, lactic acid and ethanol by choosing suitable wavelengths.

Abstract

Das untersuchte Körperteil wird durch mechanische Einwirkung in seiner Dicke mit mindestens zwei Druckmodulationsfrequenzen (ξ1, ξ2) moduliert. Durch Bestrahlung des Körperteils mit Licht werden mindestens vier Meßsignale gewonnen, die sowohl von der Einwirkung des Lichts als auch von der mechanischen Dickenänderung abhängen.

Description

Beschreibung
Verfahren und Vorrichtung zur nicht-invasiven in-vivo Bestimmung von Blutinhaltsstoffen
Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1 sowie eine Vorrichtung nach dem Oberbegriff der Anspruchs 18.
Ein derartiges Verfahren und eine derartige Vorrichtung zur Bestimmung eines Blutinhaltsstoffes sind bekannt aus der US- Patentschrift 5,372,135. Dabei wird durch externe Druckpulse Blut aus dem zu untersuchenden Gewebe herausgedrückt, um Spektren bei unterschiedlichen Blutvolumina zu erhalten. eß- werte mit und ohne externen Druck werden voneinander subtrahiert und damit Differenz-Spektren gewonnen. Dabei gelangen durch ein akusto-optisches Filter variierte Lichtwellenlängen zum Einsatz. Aus den Differenz-Spektren wird dann die Konzentration des Blutinhaltsstoffes, speziell von Blutglukose, be- stimmt. In der US-Patentschrift 5,372,136 wird die Änderung der durchstrahlten Lichtintensität durch pulsierendes Blut (AC value) und die durchstrahlte Lichtintensität selbst (DC value) bei zwei Wellenlängen ausgewertet, bei denen der zu bestimmende Inhaltsstoff (Hämatokrit) jeweils absorbiert. Zu- sätzlich ist bei einer dieser Wellenlängen die Absorption der nicht zu bestimmenden Inhaltsstoffe (Wasser) mindestens 10 mal kleiner als die Absorption des zu bestimmenden Inhaltsstoffs (Hämatokrit) . Insbesondere sind diese Wellenlängen is- obestisch, d.h. der Absorptionskoeffizient von oxygeniertem und desoxygeniertem Hämoglobin gleich. Für die AC values kann sowohl die natürliche Blutpulsation als auch eine künstliche Pulsation mit Hilfe eines Schrittmotors benutzt werden. Auf die Möglichkeit, das Verfahren für die Bestimmung von anderen Blutinhaltsstoffen zu benutzen, wird ohne genauere Angaben hingewiesen.
Aus den Literaturstellen E. Stohr et al „Quantitative FT-IR Spectometry of Blood Constituents", Conference Proceedings
14th Annual International Conference of the IEEE-EMBS, Paris, 29.10. - 1.11.1957 und H.M. Heise „Technology for Non- Invasive Monitoring of Glucose", Conference Proceedings 18th Annual Conference of the IEEE-EMBS 31.10. - 3.11.1996, Am- sterdam ist es bekannt, Blutbestandteile, insbesondere Glukose, nichtinvasiv durch die Messung der Absorption von Licht durchzuführen. Die Messungen beruhen dabei auf spektroskopischen Verfahren.
Bei der Messung der Konzentration von Inhaltsstoffen wirkt es oft erschwerend, daß die Meßgröße noch empfindlich von anderen Parametern als der Konzentration des Inhaltsstoffes abhängt. Ohne dauerndes Nacheichen ist dann kein reproduzierbares Signal zu erhalten.
Dieses Problem tritt insbesondere auf, wenn in vivo nichtinvasiv die Konzentration des Blutzuckers bestimmt werden soll. Hierzu kommen speziell optische Meßverfahren in Betracht, wie die von der Konzentration abhängige Drehung der Polarisa- tionsebene, optische oder akusto-optische Spektroskopie der
Infrarotbanden des Zuckers, Raman-Effekt und die sich mit der Glukosekonzentration ändernde Lichtstreuung im Gewebe.
Die Bestimmung der Glukosekonzentration durch optische Spek- troskopie wird erschwert durch die Überlagerung der Absorptionsbanden von Wasser. Deshalb wird oft versucht, die Glukosekonzentration bei Wellenlängenpaaren zu messen, die so ausgesucht sind, daß bei der einen Wellenlänge nur Wasser absorbiert, bei der anderen aber Wasser und Glukose. Maßstabsge- rechte Subtraktion der Absorptionssignale ergibt dann einen Glukosekonzentration proportionalen Signalwert.
Problematisch ist hierbei allerdings, daß kleinste Schwankun- gen des Maßstabsfaktors zu untolerierbaren Fehlern führen.
Auf Wood und Geraci (1949) geht der Gedanke zurück, den Strahlengang mittels einer Druckkapsel zunächst blutleer zu machen, um einen definierten Anfangsmeßwert zu erhalten und dann einen weiteren Meßwert bei wieder zurückgeströmtem Blut. Dieses Prinzip wurde zur optischen Bestimmung der Blutoxyge- nierung verwendeten (E.H. Wood and J.E. Geraci: Photoelectric determination of arterial oxygen Saturation in man; Journ. Lab. Clin. Med. 34, 387-401 (1949)).
Einen Überblick über verschiedene Ausführungsformen von Meßgeräten zur nichtinvasiven Bestimmung der Blutsauerstoffkon- zentration gibt auch der Artikel von L.A. Geddes: "Heritage of the Tissue-Bed Oximeter", erschienen in IEEE Engineering in Medicine and Biology, March/April 1997, pp. 87-91.
In der DD-Wirtschaftspatentschrift 107 982 ist ein Verfahren und eine Vorrichtung zur Analyse emittierter Strahlung druckmodulierter Gase zur Konzentrationsbestimmung beschrieben. Dabei erfolgt die konzentrationsabhängige Emission von Licht aus einer Durchflußküvette. Unter emittierter Strahlung wird das Eigenleuchten des Gases verstanden, daß z.B. durch eine Gasentladung angeregt wird.
Die GB 2 262 337 A bezieht sich ebenfalls auf die Spektroskopie von Gasen, wobei mit einem akustischen Resonator die Absorption einer Referenzzelle druckmoduliert wird. In der US-Patentschrift 5,539,207 wird Gewebe durch Infrarot- Spektroskopie mit und ohne Druck durch Vergleich mit Spektren bekannten Gewebes identifiziert. Es werden keine Inhaltsstoffe quantifiziert.
Aufgabe der Erfindung ist es daher, ein Verfahren und eine Vorrichtung zur Bestimmung von Blutinhaltsstoffen derart weiterzubilden, daß die obengenannten Probleme gelöst werden.
Bei einem erfindungsgemäßen Verfahren wird die Aufgabe dadurch gelöst, daß das Körperteil in seiner Dicke harmonisch mit mindestens zwei Druckmodulationsfrequenzen moduliert wird, daß durch Bestrahlung des dickenmodulierten Körperteils mit Licht von mindestens zwei monochromatischen Wellenlängen, von denen mindestens eine, aber nicht alle, im Gebiet der optischen Absorption des Blutinhaltsstoffes liegt, mindestens vier Meßsignale gewonnen werden, die sowohl von der Einwirkung des Lichts als auch von der mechanischen Dickenänderung abhängen, und daß aus den mindestens vier Meßsignalen die Konzentration des Blutinhaltsstoffes bestimmt wird. Durch die Modulation wird man von der definierten Kompression (also der definierten, aus dem untersuchten Körperteil herausgedrückten Blutmenge) unabhängig.
Die obengenannte Aufgabe wird ferner gelöst durch eine Vorrichtung zur nichtinvasiven Bestimmung der Konzentration von Blutinhaltsstoffen, bei der die Kompressionsvorrichtung mit mindestens zwei Druckmodulationsfrequenzerzeugern verbunden ist .
Ausführungsbeispiele für die Erfindung werden nachfolgend anhand der FIG 1 bis 7 näher erläutert. Dabei zeigen:
FIG 1 ein Zwei-Kompartment-Modell des Körperteils, FIG 2 bis 2c den zeitlichen Verlauf von zwei gleichzeitig applizierten Druckmodulationsfrequenzen,
FIG 3 ein Prinzipschaltbild einer ersten Meßeinrichtung zur Transmissionsmessung, FIG 4 ein Prinzipschaltbild einer zweiten Meßeinrichtung zur Transmissionsmessung,
FIG 5 ein Prinzipschaltbild einer Variante der ersten Meßeinrichtung, jedoch zur Reflexionsmessung,
FIG 6 ein Prinzipschaltbild einer weiteren Variante der ersten Meßanordnung, bei der über den opto- akustischen Effekt gemessen wird,
FIG 7 eine Ausführungsform für die analoge Berechnung der Konzentration des Inhaltsstoffs
Die Erfindung stellt ein reproduzierbares, selbstkalibrierendes Verfahren dar zur nichtinvasiven Bestimmung der Glukosekonzentration in vivo mit optischer Spektroskopie, das auf periodischen harmonischen Dickenmodulationen eines beleuchteten Körperteils beruht. Dabei wird davon ausgegangen, daß in das untersuchte Körperteil Licht mit mindestens zwei definierten Wellenlängen λ der Eingangsintensität IQ eingestrahlt wird, und ein Signal I anfällt, das sowohl das wieder aus der Extremität heraustretende Licht - sei es nach Transmission oder nach Reflexion - sein kann, als auch eine durch die Ab- sorption des eingestrahlten Lichts angeregte Schallwelle.
Biologisches Gewebe besteht aus verschiedenen Flüssigkeitsanteilen von Blut, interstitieller und intrazellulärer Flüssigkeit. Die zur Energieversorgung der Zellen erforderliche Glu- kose wird durch das Blut herantransportiert und gelangt durch Diffusion in die interstitielle und intrazelluläre Flüssigkeit. Wegen unterschiedlicher Permeabilität der Zellmembranen stellen sich verschiedene Glukosekonzentrationen in den drei Flüssigkeitsanteilen ein. Dabei ist die Glukosekonzentration im Blut und in der interstitiellen Flüssigkeit ähnlich, und die Glukosekonzentration in den Zellen aber geringer, weil dort ja Glukose verbrannt wird. Für die Überwachung von Personen ist aber nur die Kenntnis der mittleren Glukosekonzen- tration von Bedeutung. Zum Verständnis der Funktionsweise der Blutinhaltsstoffmessung sei deshalb angenommen, daß der durchleuchtete Körperteil sich als Zwei-Kompartmentmodell, bestehend aus Blut, interstitieller Flüssigkeit und darin gelöster Glukose und aus Gewebe und intrazellulärer Flüssigkeit mit vernachlässigbarer Glukosekonzentration beschreiben läßt. Dabei sei die Lichtabsorption im ersten Kompartment Compl durch das Produkt aus der Absorptionskonstanten des Bluts der interstitiellen Flüssigkeit - hier mit μßlut bezeichnet - und der Gefäßdicke xi bestimmt, und im zweiten Kompartment Comp2 durch das Produkt aus der Absorptionskonstanten des Gewebes und der intrazellulären Flüssigkeit μπ20 un<^ der Gewebedicke X2. Ein solches Modell ist in der Figur 1 gezeigt. Das anfallende Meßsignal ergibt sich nach dem Beer-Lambert-Gesetz .
I = I0 (exp(Blut(λ)χl " μH2θ(λ)χ2) = J (P) >
mit
p(λ) = μßlut(λ)χl + μH2θ(λ2-
Weil die Lichtabsorption des Blutes sich im wesentlichen additiv aus der des Wassers im Blut und der darin gelösten Glukose zusammensetzt
μßlut = μH2θ + μGlukosek' wobei letztere proportional der Glukosekonzentration ist, folgt
p(λ) = μH20(λ) (χl + x2) + μGlukosekxl-
Ig: Eingestrahlte Lichtintensität I: Austretende Lichtintensität μH20 : Absorption von Gewebswasser μ-Glukose: Absorption von Glukose (<<μH2θ) k: Konzentration d. Glukose
Quetscht man das Objekt mit einer Kraft F, verändern sich die Dicken entsprechend dem Gesetz von Hooke
__I 6x2_ ÖF ε_ und
ÖF S2
wobei εi und 82 die Kompressibilitäten vom Blutgefäß und von
Gewebe sind. Bei Einwirkung einer harmonisch mit der Frequenz v variierenden Kraft F = FQCos2πvt auf das Meßobjekt variiert die aus dem Meßobjekt austretende Lichtintensität gemäß
51
—Focos2πvt . Man gewinnt also ein Signal, das der Ableitung
der durchstrahlten Intensität bei der Wellenlänge λ entspricht. Die Amplitude dieses Signals ergibt sich zu
Figure imgf000009_0001
δl (λ) wobei A = —— μH2o(λ)ει_(v) B ______ dp μGlukose(λ) kεl(v)
9l(λ)
C = — μH2o(λ)ε2(v)
Wird die auf die Extremität angewandte Kraft nicht nur mit einer Frequenz moduliert, sondern mit (mindestens) zwei, wird sich das Signal wegen der verzögerten Antwort des Meßobjekts auf einen Deltastoß bei den beiden Modulationsfrequenzen unterscheiden. Bei Anwendung zweier Wellenlängen λ^,λ2, von de- nen eine in einem Bereich liegt, bei der keine Glukoseabsorption stattfindet, und von zwei Druckmodulationsfrequenzen vι_ und V2, ergibt sich also folgende Meßsituation:
Modulationsfrequenz v^ Modulationsfrequenz V£
Wellenlänge λi Si = an S2 = a12 Wellenlänge 2 S3 = a2ι + i S4 = a22 + b2 k
wobei
dl (λi) all - d F0μH2o(λl) (εi(vι) + ε2(v ) )
a12 = FQμH2θl) (εi(v2 ) + ε2(v2))
Figure imgf000010_0001
91 (λ2) a21 = d Δ F0μH2o(λ2) (ει(vι) + ε2(vι_))
91 (λ2) a22 = a F0μH2θ2) (εi(v2 ) + ε2 (v2) ) 91 (λ2) bl - Q FθμGlukoseεl(vl)
91 (λ2) b2 - d F0μGlukoseεl(v2)
S.._: Meßsignale entsprechend der durchstrahlten Lichtintensität bzw. der angeregten Schallintensität.
Wird nun die Elektronik so abgeglichen, daß
Modulationsfrequenz vι_ Modulationsfrequenz V2
Wellenlänge λi Sl Sl Wellenlänge λ Sl S
Sl Si d.h. die 2. Spalte mit — und die 2. Zeile mit — multipli- s2 S3 ziert wird, ergibt sich für das Signal S bei der Modulationsfrequenz V2 und der Wellenlänge λ2 (bei der der Zucker absorbiert)
S = all all
(a22 + b2k) a12 a21 + blk
1 + b2 k
= alx all a22 a22 a12 a21 1 + bl k a21
i aan all a22 n( , b2 1 + -)k) a12 a21 a22 a21 Da all a22
1, a12 a21
folgt für den Signalunterschied ΔS = Sx - S
b2 bi
ΔS = anC -)k a22 a21
- 1) k = ßk
Figure imgf000012_0001
Dieser Ausdruck ist proportional zur Glukosekonzentration, ohne additive Konstante. Durch eine individuelle einmalige Eichmessung wird die Konstante ß bestimmt. Dies kann z.B. durch Vergleich mit dem allgemein eingeführten Finger-Prick- Meßstreifen Verfahren geschehen.
An der Meßsituation ändert sich im Prinzip nichts, wenn eine der beiden Druckmodulationsfrequenzen Null ist, also ein Gleich- und ein Wechselsignal nachgewiesen wird. Am Empfänger des durchstrahlten Lichts fallen dann zwei Gleich (DC)- und zwei Wechsel (AC) -Signale an. Bei Logarithmierung der Verhält- nisse von aus-zu-eintretender Intensität, ergibt sich in analoger Rechnung wie zuvor
1 + ___. μH2o<λι)
ΔS = ι μGlukose xl - 1 k = ßk μH2o (λ2) ε2(v)
1 + ει(v) Besonders einfach ist der Fall, wenn die Dicken-Modulationsfrequenz v so hoch gewählt wird, daß das Blut im Gefäß nicht mehr folgen kann. Dann gilt
εi « 0
und es wird
P = μGlukose xl
Figure imgf000013_0001
Dieser Faktor wird wiederum durch Vergleich mit einem anderen Verfahren, z.B. der Finger-Prick-Methode bestimmt.
Ein Nachteil des beschriebenen Verfahrens scheint zunächst zu sein, daß der Proportionalitätsfaktor ß abhängt vom Verhält- μ(λι) ms der Absorptionskoeffizienten —-— von Wasser. Es ist μ(λ2) bekannt, daß der Absorptionskoeffizient von Wasser bei bestimmten Wellenlängen infolge von angeregten OH-Vibrations- Schwingungen temperaturabhängig ist. In der Veröffentlichung ΛTissue temperature by near-infrared spectroscopy von Jeffrey J. Kelly, Katherine A. Kelly and Clyde H. Barlow in SPIE Vol. 2389, pp. 818 - 828 (1995) wurde dieser Effekt untersucht. Es zeigt sich, daß bei der Wellenlänge von 1450 nm sich die Ab- sorbanz einer 1 mm dicken Wasserschicht zwischen 17 und 45 °C von etwa 1.6 auf 1.8 ändert, was einer relativen Änderung der
Δμ
Absorption um 20% entspricht. Bei in vivo Messungen kann μ man aber dafür Sorge tragen, daß Temperaturschwankungen des Gewebes und des Blutes unter 2 °C bleiben. Dann sind relative Änderung der Absorption um 1 % zu erwarten, so daß sich ein Eichfehler auf Grund von Temperaturschwankungen von 2 % ergäbe. Für die Bestimmung der Glukosekonzentration ist dies völlig ausreichend.
Eine weitere Erschwernis kann darin begründet liegen, daß die Absorptionskoeffizienten μ(λ^), μ(λ2) des Wassers sich infolge anderer Zusatzstoffe im Blut wie Cholestrol, Albumin oder Harnstoff im Blut scheinbar über die Zeit variieren, der Eichfaktor ß sich also ändert. Für diesen Fall ist es gün- stig, nicht nur Licht bei den beiden Wellenlängen λη_, λ2 einzustrahlen, sondern bei noch weiteren, so daß man aus dem spektralen Verlauf der Absorbanz über der Zeit erkennen kann, ob das Wasserspektrum sich infolge von Temperaturvariationen oder durch andere Inhaltsstoffe verändert. Dies kann durch Vergleich mit Eichspektren erfolgen, die in einer Datenbank abgelegt sind. Hieraus läßt sich dann ein Korrektur- μ(λ ) faktor für das Verhältnis —;— gewinnen, der ein verändertes μ(λ2)
Wasserspektrum berücksichtigt.
Zur weiteren Steigerung der Genauigkeit können auch mehr als 2 Druckmodulationsfrequenzen angewandt werden. So erhält man z.B. bei Verwendung von 4 Frequenzen Vι_a, vib, V2a, V2 zwei unabhängige Glukosekonzentrationswerte, aus deren Abweichung man auf die Qualität des Meßergebnisses schließen und durch deren Vermittlung man die Meßgenauigkeit steigern kann.
Die Wellenlängen, mit denen bevorzugt die Glukosekonzentration bestimmt wird, liegen im Infrarot. Für die Referenzwellenlänge λi, bei der der Inhaltsstoff Glukose kein Licht absor- biert, ist der Bereich 1.35 - 1.5 μm zweckmäßig, für die Meßwellenlänge λ2, bei der Glukose absorbiert der Bereich 1.5 - 1.8 μm. Als Lichtquellen kommen bevorzugt Laserdioden, aber auch Leuchtdioden oder thermische Lichtquellen in Verbindung mit einem Monochromator in Frage, als Detektoren Photodioden.
Ein Photodetektor ohne vorgeschaltetes Wellenlängenfilter kann zwischen dem Licht der beiden Wellenlängen λ und λ2 nicht unterscheiden. Um ein aufwendiges Wellenlängenfilter zu vermeiden, werden die Lichtquellen bei den beiden Wellenlängen mit zwei unterschiedlichen Frequenzen fι_ und f2 amplitudenmoduliert. Die Modulationsfrequenzen der Lichtquellen werden zweckmäßigerweise in den Kilohertzbereich gelegt, in dem rauschfreie Signalverarbeitung möglich ist und noch keine zunehmende Signalschwächung auf Grund der Gewebestreuung stattfindet. Das Ausgangssignal des Photodetektors wird dann phasenempfindlich jeweils mit den beiden Intensitätsmo- dulationsfrequenzen fι_ und f2 gleichgerichtet, wodurch man unabhängige Meßsignale entsprechend den beiden Wellenlängen λ]_ und λ2 erhält. Zudem beeinflußt das Umgebungslicht die
Messung nicht.
Die zweckmäßigen Modulationsfrequenzen Vτ_ und V2 für die Meßobjektdicke hängen von den mechanischen Eigenschaften des Körperteils ab. Die Druckmodulationsfrequenzen müssen so klein sein, daß noch Blut aus dem Untersuchungsbereich her- ausgedrückt und wieder zurückströmen kann, doch sollten sie verschieden von der Pulsfrequenz sein, damit diese die Messung nicht stört. Der Frequenzbereich 1 - 50 Hz ist hier geeignet. Es besteht aber auch die Möglichkeit, eine der Druckmodulationsfrequenzen mit dem Herzschlag zu synchronisieren.
Weiterhin besteht die Möglichkeit, die Druckamplituden bei den beiden Druckmodulationsfrequenzen V]_, V2 verschieden zu wählen, um die entsprechenden Meßsignale in ihrer Größenordnung zu beeinflussen und einander anzupassen. Figur 2 zeigt hierfür drei Beispiele: In Figur 2a sind die Druckamplituden bei beiden Druckmodulationsfrequenzen gleich, in der Figur 2b ist die Druckamplitude der höheren Druckmodulationsfrequenz größer, in der Figur 2c kleiner als die der niedrigeren Druckmodulationsfrequenz. Generell wird man die Amplitude mit der höheren Frequenz größer wählen als die Amplitude mit der niedrigeren Frequenz, wenn das Körperteil für die höhere Fre- quenz stärker dämpfend wirkt als für die niedrigere.
Des weiteren muß sichergestellt sein, daß die Größe ß, die sich aus den Materialeigenschaften εχ(V_), 82 (vι_), ει.(V2),
82 (V2) des Meßobjekts ergibt, deutlich von Null verschieden ist. Die zweite Druckmodulationsfrequenz sollte dann so eingestellt werden, daß die Größe ß möglichst groß wird, aber trotzdem noch ein deutliches Meßsignal S4 beobachtet wird. Dies ist zu erwarten, wenn die zweite Druckmodulationsfrequenz V2 etwa dem 2 bis 3maligen Wert der ersten vi ent- spricht.
Insbesondere kann aber auch die Druckmodulationsfrequenz vi zu Null gemacht, also das Gleichsignal benutzt werden und die Druckmodulationsfrequenz V2 so gewählt werden, daß das blut- gefüllte Gefäß nicht mehr folgen kann, also ετ_ « 0 wird. Dies ist bei Druckmodulationsfrequenzen von einigen zig Hertz, z. B. 10 Hz bis 30 Hz) zu erwarten.
Mögliche Geräteausführungen für das beschriebene Meßverfah- rens zeigen die Figuren 3 bis 6: Ein Applikator 1 in Form einer Klammer wird an einem Körperteil, z.B. dem kleinen Finger, dem Ohrläppchen oder der Lippe angebracht. Eine Andruckfeder 2 sorgt für reproduzierbaren Anpreßdruck. Zudem ist an der Klammer ein Aktor in Form eines Druckmodulators 3 angebracht, der durch Ansteuerung mit mehreren Frequenzen vι_, V2 periodische Druckschwankungen in dem von der Klammer umfaßten Körperteil erzeugt. Der Aktor 3 kann sowohl aus piezoelektrischen wie auch aus elektromagnetischen Wandlern bestehen. Um thermische Einflüsse auf die Messung zu reduzieren, können die Druckwangen la, lb des Applikators 1 thermisch isoliert oder temperiert werden. Über einen Lichtleiter 4 werden dem Körperteil intensitätsmodulierte Wellenlängen zu- und über einen Lichtleiter 5 das durchstrahlte Licht abgeführt. Frequenzgeneratoren 12c, 12d erzeugen die Frequenzen fι_, f2, die über Verstärker 9a, 9b Lichtquellen 8, vorzugsweise Laserdioden, zugeführt zur Intensitätsmodulation werden. Frequenzgeneratoren 12a, 12b erzeugen Frequenzen V]_,
V2, die über einen Verstärker 10 dem Druckmodulator 3 zugeführt werden. Über den Lichtleiter 5 wird das empfangene Licht einem Photodetektor 7 zugeführt, dem zur Trennung der
Frequenzen fι_, f2 entsprechend der Lichtmodulation als Frequenzfilter phasenempfindliche Gleichrichter 11a, 11b für die Photodetektorsignale mit den Referenzfrequenzen fι_, f2 nachgeschaltet sind. Die so gewonnenen Signale werden als Fre- quenzfilter weiteren phasenempfindlichen Gleichrichtern 13a -
13d mit Referenzfrequenzen vι_, V2 zugeführt zur Trennung der
Meßsignale entsprechend der Dickenmodulation. Die Ausgangssignale der phasenempfindlichen Gleichrichter 13a, 13b, 13c, 13d werden einem analogen oder digitalen Rechenwerk 15 zuge- führt, das unter Berücksichtigung einer Datenbank 14 mit
Eich- und Korrekturwerten die Blutglukosekonzentration auf einer Anzeige 16 ausgibt. Das Rechenwerk 15 berücksichtigt gegebenenfalls auch verschiedene Druckmodulations- und Inten- sitätsmodulationsamplituden. Die gesamte Signal-Erzeugungsund Auswerteschaltung kann durch Einsatz von Technologien der Mikroelektronik in einem Elektronikgehäuse 6 untergebracht werden, das an einer Person getragen werden kann.
Im Falle der Druckmodulationsfrequenz vι_ = 0 ist die Schaltung nach Figur 3 gemäß Figur 4 zu modifizieren: Einer der Frequenzgeneratoren - hier 12b - entfällt und an Stelle zwei der phasenempfindlichen Gleichrichter 13a bis 13d - hier 13c und 13 d - treten Tiefpässe 18, die das Gleichsignal abtrennen. Die Lichtintensitäten der Laserdioden werden mit einer Monitor-Photodiode 17 überwacht, deren Meßwert dem Rechenwerk 15 zur Auswertung übergeben wird.
Bei dem in Figur 5 dargestellten Ausführungsbeispiel werden die vom Körperteil reflektierten Lichtsignale gemessen. Dazu endet der Lichtleiter 5 mit seiner Lichteintrittsseite in der Innenwange la der Klammer 1 neben dem dort auch endenden Lichtleiter 4.
Bei dem in Figur 6 gezeigten Ausführungsbeispiel wird die Absorption über den opto-akustischen Effekt gemessen, wobei die Lichtabsorption im Gewebe Schallwellen erzeugt. Neben dem Lichtaustritt des Lichtleiters 4 ist in der Innenwange la ein piezo-elektrischer Wandler 7a angeordnet, der die im Körperteil aufgrund der Absorption erzeugten Schallwellen mißt und in elektrische Signale umwandelt. Die Meßsignale werden über einen Verstärker 7b für die eigentliche Signalauswertung auf- bereitet, wozu Verstärkung, Filterung und Gleichrichtung gehören. Eine mögliche Ausführungsform für die analoge Berechnung des der Konzentration des Inhaltsstoffes proportionalen Signals S zeigt die Figur 7.
Die Analogmultiplizierer XI und X2 sind mit Hilfe der Operationsverstärker OPl und OP2 als Dividierer geschaltet; XI und
OPl bilden den Quotienten S1/S2 aus den Eingangssignalen Si und S2. Ebenso erzeugen X2 und 0P2 den Quotienten Sι_/S3 aus den Eingangssignalen S]_ und S3. Die beiden Quotientensignale werden dem Multiplizierer X3 zugeführt, an dessen Ausgang
2 dann das Produkt Si /(S2S3) zur Verfügung steht. Dieses wird in dem Analogmultiplizierer X4 mit dem Eingangssignal S4 multipliziert. Das der Glukosekonzentration proportionale Signal
S wird schließlich durch Differenzbildung aus dem Eingangs-
2 signal S und dem generierten Signal S S4/(S2S3)im Operationsverstärker 0P3 gewonnen.
Analogmultiplizierer mit hoher Stabilität und Genauigkeit stehen heute als Standardbauteile zur Verfügung. In diesen Bauteilen sind die für den Betrieb als Dividierer erforderlichen Operationsverstärker bereits enthalten.
Wie erwähnt, mag es zur Steigerung der Meßgenauigkeit erforderlich sein, mehr als 2 Wellenlängen λι_, λ2 und mehr als 2 Druckmodulationsfrequenzen Vι_, V2 anzuwenden. Werden also insgesamt n > 2 Signale S .. Sn zur Berechnung des Inhaltsstoffes verwendet, ist es günstiger, statt eines analogen Rechenwerks ein digitales zu verwenden, dem die digitalisierten
Signale Si .. Sn zugeführt werden, und das die erforderlichen Rechen- und Korrekturschritte durchführt. Die Anwendung der Erfindung ist nicht allein auf die Bestimmung der Glukosekonzentration beschränkt, sondern läßt sich durch Wahl geeigneter Wellenlängen auf andere Blutinhalts- Stoffe wie Cholesterol, Albumin, Harnstoff, Milchsäure und Äthanol ausdehnen.

Claims

Patentansprüche
1. Verfahren zur nichtinvasiven in-vivo Bestimmung von Blutinhaltsstoffen in einem Körperteil mittels Messung der Licht- absorption in dem Körperteil bei äußerer mechanischer Einwirkung auf das Körperteil, d a d u r c h g e k e n n z e i c h n e t , daß das Körperteil in seiner Dicke harmonisch mit mindestens zwei Druckmodulationsfrequenzen (Vι_,V2) moduliert wird, daß durch Bestrahlung des dickenmodulierten Körperteils mit Licht von mindestens zwei monochromatischen
Wellenlängen (λ]_,λ2), von denen mindestens eine, aber nicht alle, im Gebiet der optischen Absorption des Blutinhaltsstoffes liegt, mindestens vier Meßsignale (Sι_, S2, S3, S4) gewonnen werden, die sowohl von der Einwirkung des Lichts als auch von der mechanischen Dickenänderung abhängen, und daß aus den mindestens vier Meßsignalen (Si, S2, S3, S4) die Konzentration des Blutinhaltsstoffes bestimmt wird.
2. Verfahren nach Anspruch 1, d a d u r c h g e - k e n n z e i c h n e t , daß das Körperteil mit den mindestens zwei Druckmodulationsfrequenzen (vι_,V2) gleichzeitig moduliert wird.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e - k e n n z e i c h n e t , daß die Lichtintensität bei den mindestens beiden Wellenlängen (λι_,λ2) gleichzeitig eingestrahlt wird und daß die verschiedenen Wellenlängen (λι_,λ2) mit verschiedener Frequenz (f]_,f2) amplitudenmoduliert werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Meßsi- gnale durch einen optischen Detektor (7) in Transmission gewonnen werden.
5. Verfahren nach einem der Ansprüche 1 bis 3, d a - d u r c h g e k e n n z e i c h n e t , daß die Meßsignale durch einen optischen Detektor (7a) in Remission gewonnen werden.
6. Verfahren nach einem der Ansprüche 1 bis 3, d a - d u r c h g e k e n n z e i c h n e t , daß die Meßsignale mit einem akustischen Detektor gewonnen werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß die Meßsi- gnale mit den Frequenzen (fι_, f2) entsprechend der Lichtmodulation durch Frequenzfilter getrennt werden.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die Frequenzen der Licht- modulation (fι_, f2) durch phasenempfindliche Gleichrichter
(11a, 11b) getrennt werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß die Meßsi- gnale mit den Frequenzen (vi, V2) entsprechend der Dickenmodulation durch Frequenzfilter getrennt werden.
10. Verfahren nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , daß die Frequenzen der Dickenmo- dulation (vι_, V2) durch phasenempfindliche Gleichrichter (13a bis 13d) getrennt werden.
11. Verfahren nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , daß die Amplitu- den der beiden Dickenmodulationsfrequenzen unterschiedlich sind.
12. Verfahren nach einem der Ansprüche 1 bis 11, d a - d u r c h g e k e n n z e i c h n e t , daß eine der
Dickenmodulationsfrequenzen (vi, V2) Null ist, also nur einen konstanten Druck bewirkt.
13. Verfahren nach einem der Ansprüche 1 bis 12, d a - d u r c h g e k e n n z e i c h n e t , daß eine der
Dickenmodulationsfrequenzen (vι_, V2) so gewählt ist, daß nur
Gewebe moduliert wird, jedoch nicht mehr blutgefüllte Gefäße.
14. Verfahren nach einem der Ansprüche 1 bis 13, d a - d u r c h g e k e n n z e i c h n e t , daß eine der
Dickenmodulationsfrequenzen (vι_, .2) mit dem Herzschlag synchronisiert wird.
15. Verfahren nach einem der Ansprüche 1 bis 14, d a - d u r c h g e k e n n z e i c h n e t , daß aus den vier
Meßsignalen (Si., S2, S3, S4) eine Größe (S) gebildet wird, die ein Maß für die Konzentration des Blutinhaltsstoffes ist, indem eine Differenz zwischen dem Meßsignal (Si.) gebildet wird, das bei der Wellenlänge, bei der nicht der Blutinhaltsstoff absorbiert, und der ersten Dickenmodulationsfrequenz entsteht, und eine Größe, die sich ergibt, indem das Meßsignal
(S4) , das bei der zweiten Wellenlänge, bei der Wasser und der
Blutinhaltsstoff absorbieren, und der zweiten Dickenmodulationsfrequenz entsteht, mit dem Verhältnis aus den Meß- Signalen bei der ersten Wellenlänge und der ersten und zweiten Dickenmodulationsfrequenz (Si bzw. S2) und dem Verhältnis aus den Meßsignalen bei der ersten und zweiten Wellenlänge bei der ersten Dickenmodulationsfrequenz (Si. bzw. S3) multipliziert wird.
16. Verfahren nach einem der Ansprüche 1 bis 15, d a - d u r c h g e k e n n z e i c h n e t , daß der Blutinhaltsstoff, dessen Konzentration zu bestimmen ist, Glukose ist .
17. Verfahren nach Anspruch 16, d a d u r c h g e - k e n n z e i c h n e t , daß die aus den Meßsignalen abgeleitete Größe aus einem Vergleich mit Ergebnissen einer herkömmlichen Blutglukosemessung zugeordnet wird und daß die Zuordnung in einer Datenbank (14) gespeichert wird.
18. Vorrichtung zur nichtinvasiven in-vivo Bestimmung von
Blutinhaltsstoffen in einem Körperteil mit einer Lichtquelle (8), einem Detektor (7, 7a) für Meßsignale sowie einer Kompressionsvorrichtung (1), d a d u r c h g e k e n n z e i c h n e t , daß die Kompressionsvorrichtung mit min- destens zwei Druckmodulationsfrequenzerzeugern (12a, 12b) verbunden ist.
19. Vorrichtung nach Anspruch 18, d a d u r c h g e k e n n z e i c h n e t , daß die Druckmodulationsfrequen- zerzeuger (12a, 12b) mit einem piezoelektrischen Wandler verbunden sind.
20. Vorrichtung nach einem der Ansprüche 18 bis 20, d a d u r c h g e k e n n z e i c h n e t , daß die Druckmo- dulationsfrequenzerzeuger mit einem elektromagnetischen Wandler (3) verbunden sind.
21. Vorrichtung nach einem der Ansprüche 18 bis 20, d a - d u r c h g e k e n n z e i c h n e t , daß die Korn- pressionsvorrichtung eine Applikationszange (1) umfaßt, deren Wangen (la,lb) thermisch isoliert sind.
22. Vorrichtung nach einem der Ansprüche 18 bis 20, d a - d u r c h g e k e n n z e i c h n e t , daß die Kompressionsvorrichtung eine Applikationszange (1) umfaßt, deren Wangen (la,lb) thermostatisiert sind.
PCT/DE1998/000751 1997-03-25 1998-03-12 Verfahren und vorrichtung zur nicht-invasiven in-vivo bestimmung von blutinhaltsstoffen WO1998043096A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/381,986 US6285894B1 (en) 1997-03-25 1998-03-12 Method and device for non-invasive in vivo determination of blood constituents
DE19880369D DE19880369D2 (de) 1997-03-25 1998-03-12 Verfahren und Vorrichtung zur nicht-invasiven in-vivo Bestimmung von Blutinhaltsstoffen
DE19880369A DE19880369C1 (de) 1997-03-25 1998-03-12 Verfahren und Vorrichtung zur nicht-invasiven in-vivo Bestimmung von Blutinhaltsstoffen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19712558.1 1997-03-25
DE19712558 1997-03-25
DE19732412 1997-07-28
DE19732412.6 1997-07-28

Publications (2)

Publication Number Publication Date
WO1998043096A2 true WO1998043096A2 (de) 1998-10-01
WO1998043096A3 WO1998043096A3 (de) 1999-01-14

Family

ID=26035225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000751 WO1998043096A2 (de) 1997-03-25 1998-03-12 Verfahren und vorrichtung zur nicht-invasiven in-vivo bestimmung von blutinhaltsstoffen

Country Status (3)

Country Link
US (1) US6285894B1 (de)
DE (1) DE19880369C1 (de)
WO (1) WO1998043096A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026539A1 (en) 1999-10-12 2001-04-19 Orsense Ltd. An optical device for non-invasive measurement of blood-related signals and a finger holder therefor
US6377842B1 (en) 1998-09-22 2002-04-23 Aurora Optics, Inc. Method for quantitative measurement of fluorescent and phosphorescent drugs within tissue utilizing a fiber optic probe
WO2003091711A1 (en) * 2002-04-26 2003-11-06 Vivascan Corporation Non-invasive substance concentration measurement using an optical bridge
US6731963B2 (en) 1999-03-09 2004-05-04 Orsense Ltd. Device for enhancement and quality improvement of blood-related signals for use in a system for non-invasive measurements of blood-related signals
US8175666B2 (en) 2002-04-26 2012-05-08 Grove Instruments, Inc. Three diode optical bridge system

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405069B1 (en) * 1996-01-31 2002-06-11 Board Of Regents, The University Of Texas System Time-resolved optoacoustic method and system for noninvasive monitoring of glucose
US6018673A (en) 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
DE19932477C2 (de) * 1999-07-12 2002-03-14 Med Laserzentrum Luebeck Gmbh Verfahren und Vorrichtung zur Messung von bei gepulster Bestrahlung an einem Material hervorgerufenen Dichteschwankungen sowie Vorrichtung zur Phototherapie bestimmter Stellen am Augenhintergrund
US6441380B1 (en) * 1999-10-13 2002-08-27 Spectra Systems Corporation Coding and authentication by phase measurement modulation response and spectral emission
IL135077A0 (en) * 2000-03-15 2001-05-20 Orsense Ltd A probe for use in non-invasive measurements of blood related parameters
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
EP2322085B1 (de) 2000-04-17 2014-03-12 Covidien LP Pulsoximetersensor mit stufenweiser Funktion
US6748254B2 (en) 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
EP1456614A4 (de) * 2001-11-15 2005-02-09 Glucon Inc Verfahren und vorrichtung zur temperaturmessung
US7077565B2 (en) * 2001-11-15 2006-07-18 Glucon, Inc. Method for measuring temperature of substances from measurement of absorption coefficients
US20040267166A1 (en) * 2002-05-01 2004-12-30 Kiyoko Ooshima Biological information detecting contact
US7190986B1 (en) 2002-10-18 2007-03-13 Nellcor Puritan Bennett Inc. Non-adhesive oximeter sensor for sensitive skin
KR100580622B1 (ko) * 2003-03-19 2006-05-16 삼성전자주식회사 비침습적 혈액성분 측정방법 및 장치
US6993372B2 (en) * 2003-06-03 2006-01-31 Orsense Ltd. Method and system for use in non-invasive optical measurements of blood parameters
US7020506B2 (en) * 2003-11-06 2006-03-28 Orsense Ltd. Method and system for non-invasive determination of blood-related parameters
WO2005064314A1 (en) * 2003-12-22 2005-07-14 Koninklijke Philips Electronics N. V. Optical analysis system, blood analysis system and method of determining an amplitude of a principal component
KR100634500B1 (ko) * 2004-01-20 2006-10-13 삼성전자주식회사 비침습적 체내성분 측정장치 및 방법
US7313425B2 (en) * 2004-07-08 2007-12-25 Orsense Ltd. Device and method for non-invasive optical measurements
US7330747B2 (en) * 2005-06-07 2008-02-12 Chemimage Corporation Invasive chemometry
US7330746B2 (en) * 2005-06-07 2008-02-12 Chem Image Corporation Non-invasive biochemical analysis
DE102005039021A1 (de) * 2005-06-14 2006-12-21 Klews, Peter-Michael, Dr. Nicht-invasives quantitatives Blutinhaltsstoffanalysegerät
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US20070060808A1 (en) 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8092379B2 (en) 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US7555327B2 (en) 2005-09-30 2009-06-30 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7486979B2 (en) 2005-09-30 2009-02-03 Nellcor Puritan Bennett Llc Optically aligned pulse oximetry sensor and technique for using the same
US8317700B2 (en) * 2006-04-11 2012-11-27 The United States Of America As Represented By The Department Of Veterans Affairs Methods and devices for non-invasive analyte measurement
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US20070282179A1 (en) * 2006-06-05 2007-12-06 The Regents Of The University Of California Method and apparatus for assessing the molecular water binding of deep tissue in vivo using nonionizing radiation
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8195264B2 (en) 2006-09-22 2012-06-05 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7476131B2 (en) 2006-09-29 2009-01-13 Nellcor Puritan Bennett Llc Device for reducing crosstalk
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US9304202B2 (en) * 2009-05-27 2016-04-05 Analog Devices, Inc. Multiuse optical sensor
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US9010634B2 (en) 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US8505821B2 (en) 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US8391941B2 (en) 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
EP2613692B1 (de) * 2010-09-07 2015-08-19 CNSystems Medizintechnik AG Lösbarer einwegsensor für kontinuierliche nicht-invasive arterielle blutdrucküberwachung
US8521247B2 (en) 2010-12-29 2013-08-27 Covidien Lp Certification apparatus and method for a medical device computer
US9173603B2 (en) * 2011-07-20 2015-11-03 Jonathan Molcho Non-invasive device and method for measuring bilirubin levels
US11478158B2 (en) * 2013-05-23 2022-10-25 Medibotics Llc Wearable ring of optical biometric sensors
JP6200216B2 (ja) * 2013-06-13 2017-09-20 日本光電工業株式会社 生体信号測定システム、生体信号測定装置、および生体信号測定装置の制御プログラム
DE102013011495A1 (de) 2013-07-02 2015-01-08 Laser- Und Medizin-Technologie Gmbh, Berlin Verfahren zur Ermittlung der Konzentration eines Stoffes in einem verformbaren Behälter
US11633130B2 (en) * 2016-06-28 2023-04-25 Alodeep Sanyal Multiple sensor glucose concentration determination analyzer apparatus and method of use thereof
US11547329B2 (en) * 2016-06-28 2023-01-10 Alodeep Sanyal Depth resolved noninvasive glucose concentration determination analyzer apparatus and method of use thereof
US11766200B2 (en) * 2016-06-28 2023-09-26 LIFEPLUS Inc. Common depth and sample position noninvasive glucose concentration determination analyzer apparatus and method of use thereof
US11957460B2 (en) * 2016-06-28 2024-04-16 Lifeplus Inc Common sample depth/zone noninvasive glucose concentration determination analyzer apparatus and method of use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869261A (en) * 1987-03-27 1989-09-26 University J.E. Purkyne V Brne Automatic noninvasive blood pressure monitor
US5183042A (en) * 1989-05-23 1993-02-02 Vivascan Corporation Electromagnetic method and apparatus to measure constituents of human or animal tissue
US5372136A (en) * 1990-10-06 1994-12-13 Noninvasive Medical Technology Corporation System and method for noninvasive hematocrit monitoring
US5372135A (en) * 1991-12-31 1994-12-13 Vivascan Corporation Blood constituent determination based on differential spectral analysis
WO1996039926A1 (en) * 1995-06-07 1996-12-19 Masimo Corporation Active pulse blood constituent monitoring

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE107982C (de)
DD107982A1 (de) * 1973-10-12 1974-08-20
US4927264A (en) * 1987-12-02 1990-05-22 Omron Tateisi Electronics Co. Non-invasive measuring method and apparatus of blood constituents
US5111817A (en) * 1988-12-29 1992-05-12 Medical Physics, Inc. Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
GB2262337B (en) * 1991-12-09 1996-03-06 Sensor Dynamics Ltd Apparatus for sensing a gas by pressure modulation spectroscopy
US5539207A (en) * 1994-07-19 1996-07-23 National Research Council Of Canada Method of identifying tissue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869261A (en) * 1987-03-27 1989-09-26 University J.E. Purkyne V Brne Automatic noninvasive blood pressure monitor
US5183042A (en) * 1989-05-23 1993-02-02 Vivascan Corporation Electromagnetic method and apparatus to measure constituents of human or animal tissue
US5372136A (en) * 1990-10-06 1994-12-13 Noninvasive Medical Technology Corporation System and method for noninvasive hematocrit monitoring
US5372135A (en) * 1991-12-31 1994-12-13 Vivascan Corporation Blood constituent determination based on differential spectral analysis
WO1996039926A1 (en) * 1995-06-07 1996-12-19 Masimo Corporation Active pulse blood constituent monitoring

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377842B1 (en) 1998-09-22 2002-04-23 Aurora Optics, Inc. Method for quantitative measurement of fluorescent and phosphorescent drugs within tissue utilizing a fiber optic probe
US6731963B2 (en) 1999-03-09 2004-05-04 Orsense Ltd. Device for enhancement and quality improvement of blood-related signals for use in a system for non-invasive measurements of blood-related signals
WO2001026539A1 (en) 1999-10-12 2001-04-19 Orsense Ltd. An optical device for non-invasive measurement of blood-related signals and a finger holder therefor
US6400971B1 (en) 1999-10-12 2002-06-04 Orsense Ltd. Optical device for non-invasive measurement of blood-related signals and a finger holder therefor
WO2003091711A1 (en) * 2002-04-26 2003-11-06 Vivascan Corporation Non-invasive substance concentration measurement using an optical bridge
US7003337B2 (en) 2002-04-26 2006-02-21 Vivascan Corporation Non-invasive substance concentration measurement using and optical bridge
US8175666B2 (en) 2002-04-26 2012-05-08 Grove Instruments, Inc. Three diode optical bridge system

Also Published As

Publication number Publication date
WO1998043096A3 (de) 1999-01-14
DE19880369C1 (de) 2002-08-08
US6285894B1 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
DE19880369C1 (de) Verfahren und Vorrichtung zur nicht-invasiven in-vivo Bestimmung von Blutinhaltsstoffen
DE102006036920B3 (de) Verfahren zur Messung der Glukosekonzentration in pulsierendem Blut
DE60310286T2 (de) Vorrichtung und Verfahren zur nicht-invasiven Bestimmung der Konzentrationen von biologischen Flüssigkeiten mittels photoakustischer Spektroskopie
DE69837425T2 (de) Verfahren und Vorrichtung zur nichtinvasiven photoakustischen Messung von Blutglukose
EP1130998B1 (de) Vorrichtung zur nichtinvasiven bestimmung des sauerstoffumsatzes in geweben
DE19840452B4 (de) Verfahren und Vorrichtung zur nicht-invasiven Messung von Konzentrationen von Blutkomponenten
DE19612425C2 (de) Apparat zur Messung von Hämoglobinkonzentration
DE69723548T2 (de) Verfahren und vorrichtung zur multispektralen analyse bei der nichtinvasiven infrarot-spektroskopie
EP0293504B1 (de) Verfahren zur Bestimmung der Perfusion
EP0726729B1 (de) Verfahren und vorrichtung zur analyse von glucose in einer biologischen matrix
DE69721732T2 (de) Vorrichtung zur multispektralen analyse bei der nichtinvasiven nir-spektroskopie
DE69727776T2 (de) Verfahren zum bestimmen der fraktionellen sauerstoffsaturation
DE69333456T2 (de) System verfahren zur nichtinvasiven überwachung des hämatocrit-wertes
US5372135A (en) Blood constituent determination based on differential spectral analysis
EP0914601B1 (de) Verfahren zur nichtinvasiven bestimmung der sauerstoffsättigung in durchblutetem gewebe
DE69433205T2 (de) Oximeter mit weglängen-korrektur
DE2049716C3 (de) Verfahren und Vorrichtung zur Absorptionsmessung im Blut
DE69836979T2 (de) Verfahren zur nicht invasiven analytenmessung
EP0030610B1 (de) Verfahren und Vorrichtung zur quantitativen Bestimmung optisch aktiver Substanzen
WO1994010901A1 (de) Verfahren und vorrichtung zur analyse von glucose in einer biologischen matrix
DE602004001794T2 (de) Verfahren und Vorrichtung zur in vitro oder in vivo Messung der Konzentration einer Substanz
DE4400674A1 (de) Photoakustischer Sensor
DE112012005449T5 (de) Verfahren, Anordnung, Sensor und Computerprogrammprodukt für nicht-invasive Messung von Hämoglobinkonzentrationen in Blut
CN102869978B (zh) 散射吸收体测量方法和装置
WO1995013739A1 (de) Verfahren und anordnung zur nichtinvasiven, transkutanen bestimmung von stoffkonzentrationen in körperflüssigkeit oder gewebe des menschen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): DE JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): DE JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09381986

Country of ref document: US

NENP Non-entry into the national phase

Ref document number: 1998544668

Country of ref document: JP

REF Corresponds to

Ref document number: 19880369

Country of ref document: DE

Date of ref document: 20000323

WWE Wipo information: entry into national phase

Ref document number: 19880369

Country of ref document: DE

122 Ep: pct application non-entry in european phase