WO1998035610A1 - Implantierbare messeinheit zur intrakorporalen messung von patientendaten - Google Patents

Implantierbare messeinheit zur intrakorporalen messung von patientendaten Download PDF

Info

Publication number
WO1998035610A1
WO1998035610A1 PCT/DE1998/000406 DE9800406W WO9835610A1 WO 1998035610 A1 WO1998035610 A1 WO 1998035610A1 DE 9800406 W DE9800406 W DE 9800406W WO 9835610 A1 WO9835610 A1 WO 9835610A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
sensor element
implantable
measuring unit
sensor
Prior art date
Application number
PCT/DE1998/000406
Other languages
English (en)
French (fr)
Inventor
Bernd Brehmeier-Flick
Christian Beck
Guido Eckert
Original Assignee
Sican F & E Gmbh (Sibet)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1997105474 external-priority patent/DE19705474A1/de
Application filed by Sican F & E Gmbh (Sibet) filed Critical Sican F & E Gmbh (Sibet)
Priority to JP10535236A priority Critical patent/JP2000508955A/ja
Priority to US09/155,875 priority patent/US6083174A/en
Priority to EP98912209A priority patent/EP0914059A1/de
Publication of WO1998035610A1 publication Critical patent/WO1998035610A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
    • A61B5/031Intracranial pressure

Definitions

  • Implantable measuring unit for intra-orporal measurement of patient data
  • the invention relates to an implantable measuring unit for intracorporeal measurement of patient data, in particular intracranial pressure, for mobile use under everyday conditions and an additional application to DE 196 38 813.9 entitled "Intracorporeal measuring system”.
  • measuring probes are inserted into the body using a catheter, e.g. m inserted the head (mtrakramell) and directed to places where bio signals have to be measured.
  • a catheter e.g. m inserted the head (mtrakramell) and directed to places where bio signals have to be measured.
  • the probes When measuring in the skull, the probes must have a very small cross-section and are therefore preferably microsensors which are mounted and contacted in a carrier sleeve.
  • the intracranial pressure is measured with a mtra ran ⁇ ell probe.
  • the probe is then pulled out and destroyed or, in the case of reusable probes, sterilized and reused with the next patient.
  • a so-called shunt system is put in place, by means of which when the brain pressure rises above a fixed value brain water (liquor), the abdominal cavity is drained off so that overpressure i * -, goin is avoided.
  • the intracranial pressure measurement can be done both epi- and subdural.
  • Epidural means that between the hard meninges
  • the intracranial pressure is determined indirectly via the pressure exerted on the meninges by the iquor.
  • This measuring location has the advantages that the hard meninges are not pierced, thus avoiding an infection of the meninges, the procedure is much easier, no brain tissue is injured during this measurement, and the sensor can remain at its measuring location for a longer period of time.
  • a micro pressure sensor is attached to a metal housing. The sensor is connected to the strands of a cable through which 5 electrical signals are sent to an extracorporeal evaluation unit be directed.
  • Another epiduraies system is available from Spiegeibero, in which a balloon catheter is pushed under the C otte C. Depending on the pressure in the brain, the hard meninges on the Ballon transmits, the pressure is passed outside via a line and can be measured extracorporeally there.
  • the aforementioned measuring systems require a station e rs admission of the patient to perform pressure measurements because the leads are very sensitive. It is desirable tj edoch, m time intervals mtrakorporal Pres e t ⁇ i normal living conditions of the patient to be measured: and recorded.
  • the system described switches the sensors on and off at preset intervals. Then it can happen that suddenly increasing pressures are recorded. In addition, the recording of the measurement data is constant regardless of the relevance of the data. It is not possible to obtain a continuous measurement signal because the data rate of the measured values ZL is low.
  • the use of radio signals requires relatively large transmission powers in the vicinity of the brain, which may have harmful side effects.
  • the German published patent application DE 43 41 903 AI describes an implantable telemetric endosystem, the external dimensions of which are smaller than 1.0 mm x 1.5 mm x 0.6 mm.
  • the implantable measuring system has a sensor connected to a telemetry unit which is inductively coupled to an extracorporeal receiving device.
  • the implanted system is inductively supplied with energy from the outside, so that no batteries have to be implanted.
  • Amplitude, frequency and pulse width modulation are proposed as data transmission methods. A method for arranging, fastening and wiring the pressure sensor and the telemetry unit is not described.
  • the telemetry unit should now be used for trouble-free and patient-friendly operation directly under the skin of pressure / temperature sensor and telemetry unit on a chip is not advantageous, ⁇ a dei sensor must be inserted at defined points in the body, eg in the cerebrospinal fluid under the meninges therefore a separation of sensor and telemetry unit is required.
  • FIG. 1 shows a top view of the implantable measuring system
  • Fig. 2 Cross section through the implantable measuring system
  • Fig. 3 Mobile measuring unit for extracorporeal data transmission and evaluation.
  • a new type of brain pressure measurement system is presented as a preferred embodiment. Likewise, the measuring system can also be used for other medical applications.
  • FIG. 1 a schematic view of the implantable part of the measuring system that is represented t Eir sensor element 1 with at least one sensor, for example, for printing, is implanted.
  • other sensors for example for temperature, can be provided as required.
  • the sensor element 1 is ver with a telemetry unit 2 b Andes, ie, implanted with an inductive coupling element, the eoen AIIS.
  • the telemetry unit 2 has supplied a power ä ußere coil through which the implanted circuit mt inductive.
  • the data measured in sensor element 1 are transmitted with an inductive coupling ar to an evaluation unit. Thereby, it is no t h r me necessary to implant a battery.
  • the sensor element 1 and the telemetry unit 2 are applied to a flexible film 3 which has conductor tracks 4 for the electrical connection of the sensor element 1 and the telemetry unit 2.
  • the flexible film 3 is very easy to implant because it can be pushed under the skin without twisting or undesirably changing direction. As a result, the hole to be drilled in the skullcap can be designed with a smaller diameter than previously customary.
  • only a very small incision is required in the skin, since the film 3 with the sensor element 1 and the telemetry unit 2 applied thereon is very narrow.
  • the implantable measuring unit is shown in cross section in FIG. It can be seen that the sensor element 1 and the telemetry unit 2 m of a special design are arranged on opposite sides of the film 3. There is provided a through-l augmentation 5 for the conductor track 4 to guide it to the opposite side.
  • the entire implant is covered with a silicone layer 6a for patient protection.
  • the sensor element 1 and the telemetry unit 2 are each covered with a layer 6b, 6c for protection.
  • the data from t he be supplied via an extracorporeal telemetry unit 7 according to the measurement over a l ä extended period of Aufolinsemheit 8 implantable measuring unit
  • the data for example, from there can be a serial section t el l e be transferred to a personal computer 9 or the like or via a data card 10, for example PCMCIA, a portable computer or mobile telephone 11.
  • the data are then evaluated in a powerful computing unit and used as an aid to medical diagnostics.

Abstract

Implantierbare Meßeinheit zur intrakorporalen Messung von Patientendaten, insbesondere von Hirndrücken, für den mobilen Einsatz unter Alltagsbedingungen. Die Erfindung ist eine Zusatzanmeldung zur DE 196 38 813.9. Üblicherweise weisen implantierbare Meßeinheiten eine Kabelverbindung zwischen Sensor und Übertragungseinheit auf. Die Kabelverbindungen sind nur sehr aufwendig und fehleranfällig realisierbar. Zudem erfordert die Implantation durch den Arzt sehr viel Geschick, da sich die Kabel nicht unter die Haut schieben lassen und bei der Implantation verdrehen und brechen können. Das Sensorelement (1) und die Telemetrieeinheit (2) sind auf einer flexiblen Folie (3) aufgebracht, die Leiterbahnen (4) zur elektrischen Verbindung des Sensorelements (1) und der Telemetrieeinheit (2) aufweist. Die Meßeinheit ist für medizinische Zwecke, vor allem zur Hirndruckmessung verwendbar.

Description

Implantierbare Meßeinheit zur intra orporalen Messung von Patientendaten
Die Erfindung betrifft eine implantierbare Meßeinheit zur intrakorporalen Messung von Patientendaten, insbesondere von Hirndrücken, für den mobilen Einsatz unter Alltagsbedingungen und st eine Zusatzanmeldung zur DE 196 38 813.9 mit dem Titel „Intrakorporal einsetzbares Meßsystem".
In medizinischen Anwendungen werden Meßsonden mit Hilfe eines Katheters in den Körper, z.B. m den Kopf (mtrakramell) eingeführt und an Stellen geleitet, an denen Biosignale gemessen werden müssen. Die Sonden müssen bei Messungen im Schädel einen sehr kleinen Querschnitt aufweisen und sind daher bevorzugt Mikrosensoren, die in eine Trägerhülse montiert und kontaktiert sind.
Zum Beispiel wird zur Diagnose der Symptomatik eines Wasserkopfes (Hydrozephalus) m der Klinik auf der Intensivstation der Hirndruck mit einer Sonde mtra ranιell gemessen. Anschließend wird die Sonde herausgezogen und vernichtet bzw. bei mehrfach verwendbaren Sonden sterilisiert und beim nächsten Patienten wiederverwendet.
Wenn z.B. ein Hydrozephalus diagnostiziert wurde, wirc ein sog. Shunt -System gelegt, durch das bei Ansteigen αes Hirndrucks über einen festgelegten Wert Gehirnwasser (Liquor) m die Bauchhöhle ableitet, damit ein Überdruck i*-, Gehin vermieden wird. Die Hirndruckmessung kann sowohl epi- als auch subdural erfolgen. Epidural bedeutet, daß zwischen der harten Hirnhaut
(Dura mater) und der Schädeldecke (Kalotte) der Hirndruck indirekt über den vom iquor auf die Hirnhaut ausgeübten Druck bestimmt wird.
Dieser Meßort hat die Vorteile, daß die harte Hirnhaut nicht durchstoßen wird, somit eine Infektion der Hirnhaut vermieden wird, der Eingriff wesentlich einfacher ist, kein Hirngewebe bei dieser Messung verletzt wird, und der Sensor einen längeren Zeitraum an seinem Meßort verweilen kann.
Eine subdurale Messung bedeutet, daß der Sensor unter die
Hirnhaut geschoben wird und diese hierbei durchstoßen werden muß. Des weiteren kann nun auch der Druck im Hirngewebe
(parenchymal) gemessen werden und es wird häufig das Hirngewebe durchstoßen, um eine Messung im Ventrikel
(intraventrikulär) zu ermöglichen.
C Es sind verschiedene mtrakraniale Meßsyste e oeRanπ; . Zur- Beispiel bietet die Firma B.Braun Melsungen AG ein epiduraies Meßsystem unter dem Namen „Epidyn" an. Hier ist ein Mikrodrucksensor m einem metallischen Gehäuse befestigt. Der Sensor ist mit Litzen eines Kabels verbunden, durch die 5 elektrische Signale an eine extrakorporaie Auswerteeinheit geleitet werden.
Ein weiteres epiduraies System ist von der Firma Spiegeibero erhältlich, bei dem ein Ballonkatheter unter die Ka otte C geschoben wird. Je nach Hirndruck, die harte Hirnhaut auf den Ballon überträgt, wird der Druck über eine Leitung nach außen geleitet und kann dort extrakorporal gemessen werden.
Die Firma Camino bietet ein mtraventπkuläres Hirndruckmeßsystem mit einem Lichtwellenleiter an, bei dem über einen Siliziumoxidspiegel, der je nach Druck seine Lage und damit seinen Reflexionskoefflzienten verändert, eine Druckmessung nach dem Reflexionsmeßverfahren durchgeführt wird. Der reflektierte Anteil wird in Verhältnis zum gesendeten Lichtanteil gesetzt, wodurch eine Information über den Druck im Ventrikel gewonnen wird. Das System bietet den Vorteil bei der TÜV-Zulassung, daß keine elektrischen Strome bzw. Spannungen mtrakorporal auftreten.
Zudem sind einmalverwendbare, mtraventrikuare und parenchymale „Low-cost" HirndrucKsensoren verfugbar. Die Firma Codman (Johnson & Johnson) bietet seit Früh ahr '95 einen Hirndrucksensor mit piezoresistiver Technik an, der durch eine Schaltung mit Trimmpotentiometern 1 StecKer aogeglichen wird.
Die vorgenannten Meßsysteme erfordern eine stationäre Aufnahme des Patienten zur Durchführung von Druckmessungen, da die Zuleitungen sehr empfindlich sind. Es ist jedoch erwünscht, m zeitlichen Abstanden mtrakorporal Drucke antεi normalen Lebensbedingungen des Patienten zu messe: und aufzuzeichnen .
Des weiteren wird durch die Katheteranbindung des Patienten an die Monitore seine Bewegungsfreiheit eingeschränkt Dadurch ist die Pflege des Patienten sehr aufwendig, obwohl sich dieser psychisch und physisch selbst versorgen könnte. Zudem besteht die Gefahr von Fehlmessungen und Geräteausfall bei Bewegung des Patienten.
Insbesondere für eine Implantation eines Shuntsystems zur
Liquordramage wäre ein implantierbares Meßsystem zur
Steuerung des Katheterquerschnitts und des Ventilöffnungsdrucks sehr wünschenswert.
In der US-PS 4,519,401 ist ein telemetπsches , mtrakramelles Druckmeßimplantat beschrieben, das keine KabelVerbindungen zu extrakorporal gelegenen Aufzeichnungs- und Auswerteeinheiten benötigt. Hierzu ist eine erste Funkeinheit vorgesehen, die die Meßsignale eines Druck- und eines Temperatursensors an eine zweite Funkeinheit übertragt. Die erste Funkeinheit wird unter der Kopfhaut implantiert und ist mit den intrakorporalen Sensoren verbunden. Der Patient trägt die zweite Funkeinheit extrakorporal bei sich. Beide Funkeinheiten verfügen jeweils über einen Sender und einen Empfanger. Zu festgelegten Zeiten werden die Sensoren m_t einem Impuls aktiviert, der von der zweiten Funkeinheit zur ersten Funkeinheit übertragen wird. Die Meßdaten werden dann von der ersten zur zweiten Funkeinheit übertragen und können von dort an gespeichert und an einem Monitor angezeigt werden. Das beschriebene System schaltet die Sensorer ir voreingestellten Intervallen ein und aus. Dann Kann es ιeαocr passieren, daß plötzlich ansteigende Drücke mcnt aufgezeichnet werden. Außerder ist die Aufzeichnungsαicnte der Meßdaten unabhängig von der Relevanz der Dater gleichbleibend. Es ist nicht möglich, ein kontinuierliches Meßsignal zu erhalten, da die Datenrate der Meßwerte Z L gering ist. Durch die Verwendung von Funksignalen sind relativ große Sendeleistungen m der Gehirnnähe erforderlich, die unter Umständen schädliche Nebenwirkungen haben.
In der deutschen Offenlegungsschrift DE 43 41 903 AI wird ein implantierbares telemetπsche Endosystem beschrieben, dessen Außenmaße kleiner als 1,0 mm x 1,5 mm x 0,6 mm sind. Das implantierbare Meßsystem weist einen Sensor m Verbindung mit einer Telemetrieeinheit auf, die induktiv an ein extrakorporales Empfangsgerät gekoppelt wird. Das implantierte System wird induktiv von außen mit Energie versorgt, so daß keine Batterien implantiert werden müssen. Als Datenübertragungsverfahren werden Amplituden- , Frequenz- und Pulsweitenmodulation vorgeschlagen. Eine Methode zur Anordnung, Befestigung und Verkabelung des Drucksensors und der Telemetrieeinheit wird nicht beschrieben.
In „Contacless Inductive-Operation Microcircuits for Medical Applications", von L. Talamonti, G. Porroveccio, G. Marotta, IEEE Engineering m Medicme & Biology Society, Proc. of tne lOth Annual Intern. Conference, New Orleans, Nov. 4-7, 1988, Seiten 818-819, wird eine implantierbare Telemetrieeinheit vorgestellt, die mit Druck- bzw. Temperatursensoren auf einem Chip integrierbar ist. Die Telemetrieeinheit sollte jεdocn für einen storungssicheren und patientenverträglichen Betriet αirekt unter der Haut eingesetzt werden. Dann ist die Descnriebene Aufbautechnik von Druck- /Temperatursenscr unα Telemetrieeinheit auf einem Chip nicht vorteilhaft, αa dei Sensor an definierte Stellen im Korper, z.B. im Liquor oαei unter die Hirnhaut eingebracht werden muß. In der Praxis ist somit eine Trennung von Sensor und Telemetrieeinheit erforderlich.
Die herkömmlichen Systeme verwenden eine KabelVerbindung zwischen Sensor und Übertragungseinheit, z.B. Telemetrieeinheit. Die KabelVerbindungen sind nur sehr aufwendig und fehleranfallig realisierbar. Zudem erfordert die Implantation durch den Arzt sehr viel Geschick, da sich die Kabel nicht unter die Haut schieben lassen und bei der Implantation verdrehen und brechen können.
Aufgabe
Ausgehend von diesem Stand der Technik war es Aufgabe der
Erfindung, eine Meßeinheit mit Implantatteil für den mobilen Einsatz zur Messung des Hirndrucks mit einer einfach und kostengünstig herstellbaren Befestigung und Verbindung von Sensor und Telemetrieeinheit zu schaffen. Die Meßeinheit sollte einfach und komplikationslos vom Arzt implantierbar sein.
Die Aufgabe wird durch die Meßeinheit mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen sind m der Unteransprüchen beschrieben.
Die Verdrahtung des Sensorelements und der Telemetrieemneit mit Leiterbahnen ist kostengünstig und zuverlässig realisierbar. Zudem ist die flexible Folie sehr leicht implantierbar, da sie unter die Haut geschoben werden Kann, ohne daß sie sich verdreht oder unerwünscht die Richtung ändert. Dadurch kann das m die Schädeldecke zu bohrende ocr mit einem kleineren Durchmesser als bisher üblich ausgeführt werden.
Zeichnungen Die Erfindung wird mit der beigefügten Zeichnung erläutert. Es zeigen: Fig. 1: Draufsicht auf das implantierbare Meßsystem mit
Sensorelement und Telemetrieeinheit auf einer Folie; Fig. 2: Querschnitt durch das implantierbare Meßsystem: Fig. 3: Mobile Meßeinheit zur extrakorporalen Datenübertragung und -auswertung.
Ausführungsbeispiel
Als bevorzugtes Ausführungsbeispiel wird ein neuartiges Hirndruckmeßsystem vorgestellt . Gleichermaßen kann das Meßsystem aber auch für andere medizinische Anwendungen verwendet werden.
In der Figur 1 ist eine schematische Ansicht des implantierbaren Teils des Meßsystems dargestellt Eir Sensorelement 1 mit mindestens einem Sensor, z.B. f r DrucK, wird implantiert. Zusätzlich können je nach Bedarf auch weitere Sensoren, z.B. für Temperatur, vorgesehen werden. Das Sensorelement 1 ist mit einer Telemetrieeinheit 2 verbanden, d.h. mit einem induktiven Koppelelement, das eoen aiis implantiert ist. Die Telemetrieeinheit 2 hat eine äußere Spule, über die die implantierte Schaltung induktiv m t Energie versorgt wird. Außerdem werden die im Sensorelement 1 gemessenen Daten mit einer induktiven Kopplung ar eine Auswerteeinheit übertragen. Dadurch ist es nicht mehr erforderlich, eine Batterie zu implantieren. Das Sensorelement 1 und die Telemetrieeinheit 2 sind auf einer flexiblen Folie 3 aufgebracht, die Leiterbahnen 4 zur elektrischen Verbindung des Sensorelements 1 und der Telemetrieeinheit 2 aufweist. Dadurch entfällt die herkömmliche aufwendige Verdrahtung mit verdrillten Kabeln. Zudem ist die flexible Folie 3 sehr leicht implantierbar, da sie unter die Haut geschoben werden kann, ohne daß sie sich verdreht oder unerwünscht die Richtung ändert . Dadurch kann das m die Schädeldecke zu bohrende Loch mit einem kleineren Durchmesser als bisher üblich ausgeführt werden. Außerdem ist nur ein sehr kleiner Schnitt m die Haut erforderlich, da die Folie 3 mit dem darauf aufgebrachten Sensorelement 1 und der Telemetrieeinheit 2 sehr schmal ist.
In der Figur 2 ist die implantierbare Meßeinheit im Querschnitt dargestellt. Es ist zu erkennen, daß das Sensorelement 1 und die Telemetrieeinheit 2 m einer besonderen Ausführung auf jeweils gegenüberliegenden Seiten der Folie 3 angeordnet sind. Es ist eine Durchkontaktlerung 5 für die Leiterbahn 4 vorgesehen, um diese auf die gegenüberliegende Seite zu führen. Das gesamte Implantat ist mit einer Silikonschicht 6a zum Patientenschutz überzogen. Außerdem ist das Sensorelement 1 und die Telemetrieeinheit 2 jeweils zum Schutz mit einer Schicht 6b, 6c überzogen.
Aus der Figur 3 ist ersichtlich, daß die Daten von der implantierbaren Meßeinheit über eine extrakorporale Telemetrieeinheit 7 nach der Messung über einen längeren Zeitraum einer Aufzeichnungsemheit 8 zugeführt werden Von dort können die Daten z.B. über eine serielle Schnittstelle einem Personalcomputer 9 o.a. oder über eine Datenkarte 10, z.B. PCMCIA, einem tragbaren Computer oder Mobiltelefon 11 übergeben werden. Die Daten werden dann in einer leistungsfähigen Recheneinheit ausgewertet und als Hilfestellung zur medizinischen Diagnostik benutzt.

Claims

Patentansprüche
1. Implantierbare Meßeinheit zur intrakorporalen Messung von Patientendaten, insbesondere von Hirndrücken, für den mobilen Einsatz unter Alltagsbedingungen mit:
- mindestens einem mtrakorporal einsetzbaren Sensorelement (1) und
- einer damit verbundenen Telemetrieeinheit (2) zur induktiven Energieübertragung und Datenübermittlung dadurch gekennzeichnet, daß a) das mindestens ein Sensorelement (1) und die Telemetrieeinheit (2) auf einer flexiblen Folie (3) aufgebracht sind und b) die flexible Folie (3) Leiterbahnen (4) zur elektrischen Verbindung des mindestens einen Sensorelements (1) und der Telemetrieeinheit (2) aufweist .
2. Implantierbare Meßeinheit nach Anspruch 1, dadurch gekennzeichnet, daß ein Sensorelement (1) ein Drucksensor
3. Implantierbare Meßeinheit nach Anspruch 2, dadurch gekennzeichnet, daß als zweites Sensorelement ein Temperatursensor zur Erfassung der Hirntemperatur vorgesehen ist .
4. Implantierbare Meßeinheit nach einem der vorhergenenden Ansprüche, gekennzeichnet durch eine extrakorporal^ Telemetrieeinheit (7), die mit der Telemetrieeinheit (2) der implantierten Meßeinrichtung kommuniziert.
5. Implantierbare Meßeinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Sensorelement (1) und die Telemetrieeinheit (2) auf jeweils gegenüberliegenden Seiten der Folie (3) angeordnet sind.
PCT/DE1998/000406 1997-02-13 1998-02-12 Implantierbare messeinheit zur intrakorporalen messung von patientendaten WO1998035610A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10535236A JP2000508955A (ja) 1997-02-13 1998-02-12 患者データの体内測定のための移植可能測定装置
US09/155,875 US6083174A (en) 1997-02-13 1998-02-12 Implantable measuring unit for intracorporal measurement of patient data
EP98912209A EP0914059A1 (de) 1997-02-13 1998-02-12 Implantierbare messeinheit zur intrakorporalen messung von patientendaten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1997105474 DE19705474A1 (de) 1996-09-20 1997-02-13 Implantierbare Meßeinheit zur intrakorporalen Messung von Patientendaten, insbesondere von Hirndrücken, für den mobilen Einsatz unter Alltagsbedingungen
DE19705474.9 1997-02-13

Publications (1)

Publication Number Publication Date
WO1998035610A1 true WO1998035610A1 (de) 1998-08-20

Family

ID=7820113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000406 WO1998035610A1 (de) 1997-02-13 1998-02-12 Implantierbare messeinheit zur intrakorporalen messung von patientendaten

Country Status (5)

Country Link
US (1) US6083174A (de)
EP (1) EP0914059A1 (de)
JP (1) JP2000508955A (de)
CA (1) CA2251324A1 (de)
WO (1) WO1998035610A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1512428A1 (de) * 2003-09-05 2005-03-09 CODMAN & SHURTLEFF, INC. Vorrichtung zum Regeln eines Normaldruck-Hydrocephalus
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533733B1 (en) * 1999-09-24 2003-03-18 Ut-Battelle, Llc Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring
JP4700209B2 (ja) * 2000-03-21 2011-06-15 ラディ・メディカル・システムズ・アクチェボラーグ 受動バイオテレメトリ
US6585677B2 (en) 2000-08-30 2003-07-01 John A. Cowan, Jr. Shunt
US6588931B2 (en) * 2000-12-07 2003-07-08 Delphi Technologies, Inc. Temperature sensor with flexible circuit substrate
US6963772B2 (en) * 2002-04-17 2005-11-08 The Board Of Trustees Of The Leland Stanford Junior University User-retainable temperature and impedance monitoring methods and devices
FR2849764B1 (fr) * 2003-01-14 2012-12-14 Oreal Dispositif et procede visant notamment a evaluer l'hydratation de la peau ou des muqueuses
US7220034B2 (en) * 2003-07-11 2007-05-22 Rudolph Technologies, Inc. Fiber optic darkfield ring light
US7101343B2 (en) * 2003-11-05 2006-09-05 Temple University Of The Commonwealth System Of Higher Education Implantable telemetric monitoring system, apparatus, and method
DE10353144A1 (de) * 2003-11-14 2005-06-02 Cranium Telemetrics Gmbh Implantat zur Durchführung intrakorpolarer Messungen
DE10353143A1 (de) * 2003-11-14 2005-07-21 Cranium Telemetrics Gmbh Implantat für eine intrakorporale, telemetrische Messung
US7471986B2 (en) * 2004-02-20 2008-12-30 Cardiac Pacemakers, Inc. System and method for transmitting energy to and establishing a communications network with one or more implanted devices
US8057401B2 (en) 2005-02-24 2011-11-15 Erich Wolf System for transcutaneous monitoring of intracranial pressure
US7435229B2 (en) * 2004-02-25 2008-10-14 Wolf Erich W System for transcutaneous monitoring of intracranial pressure (ICP) using near infrared (NIR) telemetry
EP1765204B1 (de) 2004-06-07 2018-12-26 Synthes GmbH Orthopädisches implantat mit sensoren
US20060000710A1 (en) 2004-06-30 2006-01-05 Klaus Peter Weidenhaupt Fluid handling methods
WO2006053386A1 (en) * 2004-11-18 2006-05-26 Rheem Australia Pty Limited Flexible pcb thermostrip
GB0425739D0 (en) * 2004-11-23 2004-12-22 Procure Therapeutics Ltd Humanised baculovirus 2
US7585280B2 (en) 2004-12-29 2009-09-08 Codman & Shurtleff, Inc. System and method for measuring the pressure of a fluid system within a patient
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US7699770B2 (en) 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US20060211945A1 (en) * 2005-03-15 2006-09-21 Codman & Shurtleff, Inc. Pressure sensing methods
US7510533B2 (en) * 2005-03-15 2009-03-31 Codman & Shurtleff, Inc. Pressure sensing valve
US10362947B2 (en) * 2005-03-15 2019-07-30 Integra LifeSciences Switzerland Sarl Pressure sensing devices
DE102005020569B4 (de) * 2005-04-30 2010-08-05 Aesculap Ag Implantierbare Vorrichtung zur Erfassung von intrakorporalen Drücken
US7780613B2 (en) * 2005-06-30 2010-08-24 Depuy Products, Inc. Apparatus, system, and method for transcutaneously transferring energy
US20070005141A1 (en) * 2005-06-30 2007-01-04 Jason Sherman Apparatus, system, and method for transcutaneously transferring energy
US7686768B2 (en) * 2005-11-23 2010-03-30 Vital Sensors Holding Company, Inc. Implantable pressure monitor
US7682313B2 (en) * 2005-11-23 2010-03-23 Vital Sensors Holding Company, Inc. Implantable pressure monitor
US20070270660A1 (en) * 2006-03-29 2007-11-22 Caylor Edward J Iii System and method for determining a location of an orthopaedic medical device
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8075627B2 (en) 2006-04-07 2011-12-13 Depuy Products, Inc. System and method for transmitting orthopaedic implant data
US8015024B2 (en) 2006-04-07 2011-09-06 Depuy Products, Inc. System and method for managing patient-related data
US8632464B2 (en) * 2006-09-11 2014-01-21 DePuy Synthes Products, LLC System and method for monitoring orthopaedic implant data
US8080064B2 (en) * 2007-06-29 2011-12-20 Depuy Products, Inc. Tibial tray assembly having a wireless communication device
US8475374B2 (en) * 2007-08-23 2013-07-02 Purdue Research Foundation Intra-occular pressure sensor
US8454524B2 (en) 2007-10-31 2013-06-04 DePuy Synthes Products, LLC Wireless flow sensor
US9204812B2 (en) * 2007-10-31 2015-12-08 DePuy Synthes Products, LLC Wireless pressure sensing shunts
US7842004B2 (en) 2007-10-31 2010-11-30 Codman & Shurtleff, Inc. Wireless pressure setting indicator
US8480612B2 (en) * 2007-10-31 2013-07-09 DePuy Synthes Products, LLC Wireless shunts with storage
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
DE102008011601A1 (de) 2008-02-28 2009-09-03 Raumedic Ag Patientendaten-Sensorvorrichtung
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8506514B2 (en) * 2008-07-18 2013-08-13 Neckarate Gmbh & Co. Kg System for regulating intracranial pressure
DE102011080192A1 (de) 2011-08-01 2013-02-07 Raumedic Ag Verfahren und Vorrichtung zur Übertragung von Sensordaten eines implantierbaren Sensors auf ein externes datenverarbeitendes Gerät
CN102544052A (zh) * 2012-03-08 2012-07-04 中国科学院深圳先进技术研究院 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
US9636017B2 (en) 2013-03-13 2017-05-02 DePuy Synthes Products, Inc. Telemetric docking station
US10244954B2 (en) * 2013-10-28 2019-04-02 Arkis Biosciences Inc. Implantable bio-pressure transponder
JP6296606B2 (ja) * 2014-05-23 2018-03-20 国立大学法人山口大学 硬膜下センサ
US11497399B2 (en) 2016-05-31 2022-11-15 Qura, Inc. Implantable intraocular pressure sensors and methods of use
US20190328249A1 (en) * 2016-12-07 2019-10-31 The Asan Foundation Intracranial pressure measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413588A2 (de) * 1989-08-17 1991-02-20 Critikon, Inc. Epiduralsauerstoffsensor
EP0566354A1 (de) * 1992-04-17 1993-10-20 Gould Electronics Inc. Integrierter Sensor mit einer flexiblen Leiterplatte zum Feststellen optischer Impulse

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519401A (en) * 1983-09-20 1985-05-28 Case Western Reserve University Pressure telemetry implant
US4499394A (en) * 1983-10-21 1985-02-12 Koal Jan G Polymer piezoelectric sensor of animal foot pressure
DE8407322U1 (de) * 1984-03-09 1984-05-30 Keller, Hans W., Dipl.-Phys. ETH, 8404 Winterthur Piezoresestive druckmesszelle
FR2579092B1 (fr) * 1985-03-22 1989-06-16 Univ Toulouse Capteur implantable de pression intracranienne
NL8502543A (nl) * 1985-09-17 1987-04-16 Sentron V O F Langwerpig drukgevoelig element, vervaardigd uit halfgeleidermateriaal.
WO1993020531A1 (de) * 1992-03-31 1993-10-14 Micro-Sensys Gmbh Verfahren zur übertragung serieller datenstrukturen für informationsträgeridentifikationssysteme, danach arbeitendes übertragungssystem und informationsträger
DE4341903A1 (de) * 1993-12-09 1995-06-14 Josef Prof Dr Rer Nat Binder Implantierbares telemetrisches Endosystem
DE19638813C1 (de) * 1996-09-20 1998-03-05 Sican F & E Gmbh Sibet Meßvorrichtung für medizinische Anwendungen mit einem intrakorporal einsetzbaren Sensorelement und Verfahren zu deren Herstellung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413588A2 (de) * 1989-08-17 1991-02-20 Critikon, Inc. Epiduralsauerstoffsensor
EP0566354A1 (de) * 1992-04-17 1993-10-20 Gould Electronics Inc. Integrierter Sensor mit einer flexiblen Leiterplatte zum Feststellen optischer Impulse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.M.LEUNG ET AL: "intracranical pressure telemetry system using semicustom integrated circuits", IEEE TRANSACTION ON BIOMEDICAL ENGINEERING, vol. BME-33, no. 4, April 1986 (1986-04-01), NEW YORK, US, pages 386 - 394, XP002066392 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1512428A1 (de) * 2003-09-05 2005-03-09 CODMAN & SHURTLEFF, INC. Vorrichtung zum Regeln eines Normaldruck-Hydrocephalus
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger

Also Published As

Publication number Publication date
CA2251324A1 (en) 1998-08-20
EP0914059A1 (de) 1999-05-12
JP2000508955A (ja) 2000-07-18
US6083174A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
WO1998035610A1 (de) Implantierbare messeinheit zur intrakorporalen messung von patientendaten
DE19638813C1 (de) Meßvorrichtung für medizinische Anwendungen mit einem intrakorporal einsetzbaren Sensorelement und Verfahren zu deren Herstellung
DE60015721T2 (de) Passive Biotelemetrie
EP2380491B1 (de) Tragbare Sensorvorrichtung und Patientenmonitor
EP1531723B1 (de) Vorrichtung zur messung von parametern im hirn
DE69534748T2 (de) Ultraminiatur-druckfühler und leitdraht hierfür
EP1062906B1 (de) Vorrichtung zur medizinischen Langzeitüberwachung von Personen
EP2229878B1 (de) Akustisches und elektromagnetisches Datenübertragungssystem, integriert in ein Implantat
DE69735021T2 (de) Elektrodenanordnung zur Messung elektrophysiologischer Signale
DE10156469B4 (de) Vorrichtung zur intrakorporalen Messung des Hirndruckes
DE19705474A1 (de) Implantierbare Meßeinheit zur intrakorporalen Messung von Patientendaten, insbesondere von Hirndrücken, für den mobilen Einsatz unter Alltagsbedingungen
WO2010034546A1 (de) Sensormodul zur erfassung von physiologischen daten
CH675675A5 (en) Transmission network for biological instrumentation signals - multiplexers outputs of channels and transmits via IR path
DE19609698A1 (de) Blutdruckmeßgerät
DE602004010380T2 (de) Integrierte struktur zum nachweis von physiologischen signalen
DE3932718C2 (de)
DE10029205A1 (de) Vorrichtung zur Messung physiologischer Parameter, Verfahren und Verwendung der Vorrichtung zur Messsung physiologischer Parameter
DE3442549A1 (de) Vorrichtung zur ueberwachung des beugewinkels von gelenken in der orthopaedie
DE102004055220B4 (de) Vorrichtung zur Intraokulardruckmessung
DE102004056757A1 (de) Vorrichtung zur Intraokulardruckmessung
DE10009591B4 (de) Messvorrichtung zur Überwachung von Körperfunktionsparametern
EP0240735A2 (de) Verfahren und Einrichtung zur unblutigen Messung von Blutdruck und Puls, insbesondere beim Menschen
DE602004010245T2 (de) Drahtlose Kommunikation physiologischer Variablen
DE10006598A1 (de) Einrichtung zur Früherkennung von kritischen Gesundheitszuständen, insbesondere bei Risikopatienten
DE102004056756B4 (de) Vorrichtung zur Intraokulardruckmessung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998912209

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2251324

Country of ref document: CA

Ref country code: CA

Ref document number: 2251324

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09155875

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998912209

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998912209

Country of ref document: EP