WO1998027463A1 - Method of contact printing on gold coated films - Google Patents

Method of contact printing on gold coated films Download PDF

Info

Publication number
WO1998027463A1
WO1998027463A1 PCT/US1997/023714 US9723714W WO9827463A1 WO 1998027463 A1 WO1998027463 A1 WO 1998027463A1 US 9723714 W US9723714 W US 9723714W WO 9827463 A1 WO9827463 A1 WO 9827463A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
self
assembling
gold
polyethylene
Prior art date
Application number
PCT/US1997/023714
Other languages
French (fr)
Inventor
Dennis S. Everhart
George M. Whitesides
Original Assignee
Kimberly-Clark Worldwide, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly-Clark Worldwide, Inc. filed Critical Kimberly-Clark Worldwide, Inc.
Priority to CA 2273797 priority Critical patent/CA2273797C/en
Priority to KR1019997005439A priority patent/KR100568634B1/en
Priority to DE1997630149 priority patent/DE69730149T2/en
Priority to EP19970953387 priority patent/EP0948757B9/en
Priority to AU57144/98A priority patent/AU730657B2/en
Publication of WO1998027463A1 publication Critical patent/WO1998027463A1/en
Priority to HK00104967A priority patent/HK1025816A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • B05D1/283Transferring monomolecular layers or solutions of molecules adapted for forming monomolecular layers from carrying elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/003Printing processes to produce particular kinds of printed work, e.g. patterns on optical devices, e.g. lens elements; for the production of optical devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/161Coating processes; Apparatus therefor using a previously coated surface, e.g. by stamping or by transfer lamination
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/165Monolayers, e.g. Langmuir-Blodgett
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249982With component specified as adhesive or bonding agent
    • Y10T428/249983As outermost component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2804Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31703Next to cellulosic

Definitions

  • the present invention is in the field of contact printing and, more specifically the present invention is in the field of microcontact printing on metal films such as gold.
  • Microcontact printing is a technique for forming patterns of organic monolayers with ⁇ m and submicron lateral dimensions. It offers experimental simplicity and flexibility in forming certain types of patterns. It relies on the remarkable ability of self-assembled monolayers of long-chain alkanethiolates to form on gold and other metals. These patterns can act as nanometer resists by protecting the supporting metal from corrosion by appropriately formulated etchants, or, can allow for the selective placement of fluids on hydrophilic regions of the pattern. Patterns of self-assembled monolayers having dimensions that can be less than 1 ⁇ m are formed by using the alkanethiol as an "ink", and by printing them on the metal support using an elastomeric "stamp". The stamp is fabricated by molding a silicone elastomer using a master prepared by optical or X-ray microlithography or by other techniques.
  • microcontact printing of patterned self-assembled monolayers brings to microfabrication a number of new capabilities.
  • microcontact printing makes it possible to form patterns that are distinguished only by their constituent functional groups; this capability permits the control of surface properties such as interfacial free energies with great precision.
  • microcontact printing relies on molecular self-assembly, it generates a system that is (at least locally) close to a thermodynamic minimum and is intrinsically defect-rejecting and self-healing. Simple procedures, with minimal protection against surface contamination by adsorbed materials or by particles, can lead to surprisingly low levels of defects in the final structures. The procedure can be conducted at atmospheric pressure, in an unprotected laboratory atmosphere.
  • the patterned self-assembled monolayers can be designed to act as resists with a number of wet-chemical etchants.
  • a gold film 5 to 2000 nanometers thick is typically supported on a titanium-primed Si/Si0 2 wafer or glass sheet.
  • the titanium serves as an adhesion promoter between gold and the support.
  • the silicon wafer is rigid, brittle, and cannot transmit light. These silicon wafers are also not suitable for a large-scale, continuous printing process, such as in letterpress, gravure, offset, and screen printing (see Printing Fundamentals. A. Glassman, Ed. (Tappi Press Atlanta, GA 1981 ); Encyclopedia Britannica. vol. 26, pp. 76-92, 110- 111 (Encyclopedia Brittanica, Inc. 1991)).
  • silicon must be treated in a separate step with an adhesion promoter such as Cr or Ti, or Au will not adequately adhere, preventing formation of a stable and well-ordered self-assembling monolayer.
  • silicon is opaque, so any diffraction pattern obtained must be created with reflected, not transmitted light. What is needed is an easy, efficient and simple method of contact printing on an optically transparent, flexible substrate, that is amenable to continuous processing.
  • the present invention comprises methods of contact printing of patterned, self-assembling monolayers of alkanethiolates, carboxylic acids, hydroxamic acids, and phosphonic acids on metallized thermoplastic films, the compositions produced thereby, and the use of these compositions.
  • Patterned self-assembling monolayers allow for the controlled placement of fluids thereon which can contain a chemically reactive, indicator functionality.
  • the optical sensing devices produced thereby when the film is exposed to an analyte and light, can produce optical diffraction patterns which differ depending on the reaction of the self- assembling monolayer with the analyte of interest.
  • the light can be in the visible spectrum, and be either reflected from the film, or transmitted through it, and the analyte can be any compound reacting with the self-assembling monolayer.
  • the present invention also provides a flexible support for a self-assembling monolayer on gold or other suitable metal.
  • the present invention includes a support for a self- assembling monolayer on gold or other suitable material which does not require an adhesion promoter for the formation of a well-ordered self-assembling monolayer.
  • the present invention also provides a support for a self- assembling monolayer on gold or other material which is suitable for continuous, rather than batch, fabrication. Finally the present invention provides a low-cost, disposable sensor which can be mass produced.
  • Figure 1 is a schematic of contact printing of self- assembling monolayers.
  • a polydimethylsiloxane (PDMS; silicone elastomer 184; Dow Corning Corp., Midland, MI) is polymerized on a silicone master containing a predetermined pattern.
  • the PDMS is peeled away from the master, and then exposed to a solution containing HS(CH2)15CH3.
  • the alkane-thiol coated stamp is then stamped onto the gold-coated substrate. Then, the surface of the substrate is exposed to a solution containing a different alkane-thiol such as HS(CH2)l lOH.
  • Figure 2 is an atomic force microscopy image of evaporated gold on MYLAR®, purchased from Courtaulds Performance Films (Canoga Park, CA).
  • the average roughness of the gold layer is 3-4 nanometers, with maximum roughness of 9 nanometers.
  • Figures 3a, 3b and 3c are atomic force microscopy images of a hydrophilic self-assembling monolayer circle of 16 mercaptohexadecanoic acids, as described in Example 1.
  • Figure 4 is a field emission secondary electron microscope image of 10 micron-diameter circles of hydrophilic self-assembling monolayers formed by printing of 16-mercaptohexadecanoic acid, as described in Example
  • Figure 5a is an optical photomicrograph at 300x magnification of 10 micron-diameter circles of hydrophilic self-assembling monolayers formed by printing of 16- mercaptohexadecanoic acid, as described in Example 1, below, and after exposure to a high surface energy, curable, optical adhesive.
  • the adhesive was cured by ultraviolet light (UV) exposure.
  • Figure 5b is a photograph of the diffraction pattern formed by visible light shown through the self-assembling monolayer pattern described by Figure 5 a.
  • Figure 6 is a field emission secondary electron micrograph image of 10 micron-diameter circles formed by printing of self-assembled photocurable polymers on hydrophilic self-assembling monolayers.
  • Figures 7a and 7b are field emission secondary electron micrographs of 1.5 micron diameter circles formed of self-assembling photocurable polymers on hydrophilic self-assembling monolayers, printed as described in Example 1.
  • Self-assembling monolayers formed on gold from long-chain alkanethiolates of structure X(CH 2 ) n Y(CH 2 ) m S are highly ordered and can be considered as crystalline or quasi-crystalline molecular arrays.
  • a wide variety of organic functional groups (X,Y) can be incorporated into the surface or interior of the monolayer.
  • Self-assembling monolayers can therefore be tailored to provide a wide variety of material properties: wettability and protection against corrosion by chemical etchants are especially relevant to ⁇ CP.
  • the surface is washed of excess thiol and the patterned gold surface can be subjected to chemical etchants (see below) that selectively remove underivatized areas of the gold surface, and if desired, the underlying support(s).
  • chemical etchants see below
  • further derivatization of unstamped areas can be accomplished, either by using a second stamp, or by washing the entire surface with a different alkanethiol.
  • the stamp is durable: we have used the same stamp up to 100 times over a period of several months without significant degradation in performance.
  • the polymeric nature of PDMS also plays a critical role in the inking procedure, by enabling the stamp to absorb the alkanethiol ink by swelling.
  • the alkanethiol is transferred to the surface only at those regions where the stamp contacts the surface, producing a pattern of self-assembling monolayer which is defined by the pattern of the stamp.
  • areas of unmodified gold surface next to the stamped areas can be rendered hydrophobic by reaction with a methyl-terminated alkane thiol.
  • the thermoplastic film with the metal coating thereon has an optical transparency of between approximately 5% and 95%.
  • a more desired optical transparency for the thermoplastic film used in the present invention is between approximately 20% and 80%.
  • the thermoplastic film has at least an approximately 80% optical transparency, and the thickness of the metal coating is such as to maintain an optical transparency greater than about 20%, so that diffraction patterns can be produced by either reflected or transmitted light. This corresponds to a metal coating thickness of about 20 nm.
  • the gold thickness may be between approximately 1 nm and 1000 nm.
  • the preferred metal for deposition on the film is gold.
  • silver, aluminum, copper, iron, zirconium, platinum and nickel, as well as other metals, may be used.
  • Preferred metals are ones that do not form oxides, and thus assist in the formation of more predictable self-assembling monolayers.
  • any surface with corrugations of appropriate size could be used as masters.
  • the process of microcontact printing starts with an appropriate relief structure, from which an elastomeric stamp is cast. This
  • X is reactive with metal or metal oxide.
  • X may be asymmetrical or symmetrical disulfide (-R'SSR, -RSSR), sulfide (-R'SR, -RSR), diselenide (-R'Se- SeR), selenide (-R'SeR, -RSeR), thiol (-SH), nitrile (-CN), isonitrile, nitro (-N02 ), selenol (-SeH), trivalent phosphorous compounds, isothiocyanate, xanthate, thiocarbamate, phosphine, thioacid or dithioacid, carboxylic acids, hydroxylic acids, and hydroxamic acids.
  • R and R' are hydrocarbon chains which may optionally be interrupted by hetero atoms and which are preferably non-branched for the sake of optimum dense packing.
  • R is greater than or equal to seven carbon atoms in length, in order to overcome natural randomizing of the self-assembling monolayer. At colder temperatures, R may be shorter.
  • R is -(CH2)n- where n is between 10 and 12, inclusive.
  • the carbon chain may optionally be perfluorinated.
  • Y may have any surface property of interest.
  • Y could be any among the great number of groups used for immobilization in liquid chromatography techniques, such as hydroxy, carboxyl, amino, aldehyde, hydrazide, carbonyl, epoxy, or vinyl groups.
  • sensing layer materials are set forth in "Patterning Self- Assembled Monolayers Using Microcontact Printing: A New Technology for Biosensors?,” by Milan Mrksich and
  • Self assembling monolayers of alkyl phosphonic, hydroxamic, and carboxylic acids may also be useful for the methods and compositions of the present invention.
  • R may also be of the form (CH2)a ⁇ Z-(CH2)b, where a>0, b>7, and Z is any chemical functionality of interest, such as sulfones, urea, lactam, etc.
  • the stamp may be applied in air, or under a fluid such as water to prevent excess diffusion of the alkanethiol.
  • the pattern is formed on the metallized thermoplastic polymer with the self-assembling monolayer.
  • the relief of the pattern is formed with the self-assembling monolayer.
  • the metallized areas on the plastic may optionally be passivated, for example, with a methyl-terminated self-assembling monolayer such as hexadecylmercaptan.
  • MYLAR® polyethylene terephthalate
  • MYLAR® film modified with a plasma deposited gold topcoat was obtained from Courtaulds Performance Films (21034 Osborne Street, Canoga Park, CA 91304).
  • An atomic force microscopy image of this MYLAR film is shown in Figure 2.
  • Patterns of hydrophilic, carboxy-terminated alkane thiols were stamped onto gold-coated film using 16- mercaptohexadecanoic acid by the following method.
  • An exposed and developed photoresist pattern of 10 micron diameter circles on a silicon wafer was used as the master.
  • Polydimethylsiloxane (PDMS; silicone elastomer 184; Dow Corning Co., Midland, MI) was polymerized on a master to produce a stamp with ten micron-diameter circles spaced five microns apart.
  • the stamp was inked by exposure to a solution ( 1 to 10 mM in ethanol) of 16- mercaptohexadecanoic acid, and allowed to air-dry.
  • the substrate was contacted with the stamp for 50 seconds and washed for 2 to 4 seconds with a solution of hexadecanethiol (1 to 10 mM in ethanol). The substrate was finally washed for 10 seconds in ethanol and dried in a stream of nitrogen.
  • the results of this printing are shown- in Figure 3 and Figure 4 for the 10 micron diameter circles of the carboxylic acid terminated self-assembling monolayer.
  • hydrophilic self-assembling monolayer circles allow for selective placement of high surface tension fluids such as water, triethylene glycol, or ultraviolet light curable urethane acrylic adhesives.
  • These liquids can contain dissolved and suspended reagents that react chemically or physically with targeted analytes, thus making the coated plastic f lm a collection of 10 micron microreactors suitable for low cost, disposable chemical sensors.
  • An example of such a device is shown in Figure 5a,
  • Example 1 Printing of aluminum-coated MYLAR® with patterns of 16-carboxy-hexadecanoic acid and hexadecanecarboxylate The procedure of Example 1 was followed for 100 gauge aluminum-coated MYLAR® with 35% visible light transmission, substituting the 1, 16-dihydroxamic acid of hexadecane and 1-hexadecane hydroxamic acid for the hydrophilic and hydrophobic thiols, respectively, of Example 1. Diffraction of visible light occurred. Both reflected and transmitted diffraction patterns were observed when using 5mW, 670 nM laser illumination. Rainbow diffraction colors were observed with transmitted white light.
  • Gold films (100 angstroms to 1 micrometer) were deposited by electron beam evaporation on silicone wafers that had been primed with titanium (5-50 angstroms) to promote adhesion between silicon and gold. Stamping on both gold-coated film and gold-coated silicon wafers was performed as in Example 1.
  • Spectra for the solid hydroxamic acid were collected using an electron flood gun of 4.5 eV to dissipate charge in the sample.
  • the following signals were used for the substrates; Al 2p at 73 eV for A1(0), and at 75 eV for Al(III).
  • the binding energies for the substrates were not standardized to a reference sample.
  • Condensation figures are arrays of liquid drops that form upon condensation of vapor onto a solid surface.
  • the examination of condensation figures has historically been used as a method to characterize the degree of contamination on an otherwise homogeneous surface.
  • One is able to impose a pattern on arrays of condensed drops by patterning the surface underlying them into regions of different solid-vapor interfacial free energy and to characterize the patterned CFs by photomicroscopy and optical diffraction. It can be demonstrated that appropriately patterned CFs can be used as optical diffraction gratings and that examination of the diffraction patterns provides both a rapid, nondestructive method for characterizing patterned self-assembling monolayers and an approach to sensing the environment.
  • CFs that is, the size, density, and distribution of the drops — is sensitive to environmental factors
  • Appropriate patterns are formed from self-assembled monolayers (self-assembling monolayers) on gold by using combinations of hexadecanethiol [CH 3 ((CH 2 ) V 15 S H] , 16-mercaptohexadecanoic acid [HS(CH 2 ) 14 COOH], and 11-mercaptoundecanol [HS(CH) ⁇ OH].
  • hexadecanethiol ((CH 2 ) V 15 S H]
  • 16-mercaptohexadecanoic acid [HS(CH 2 ) 14 COOH]
  • 11-mercaptoundecanol HS(CH) ⁇ OH.
  • Diffraction patterns appeared in the light transmitted from the surface. Under these conditions, light was transmitted coherently from the regions where no water had condensed and was scattered by the regions where water had condensed. The condensation figures disappeared within several seconds as the water droplets which condensed on the self-assembling monolayers evaporated.
  • condensation figures can be ascertained by the relative contact angles of water on the hydrophobic and hydrophilic self-assembling monolayers.
  • Unpatterned monolayers of the appropriate thiol were prepared by immersion of the substrate in a dilute solution for one hour, followed by rinsing with ethanol and air drying.
  • Figure 6 is a field emission secondary electron microscopy image of 10 micron-diameter self-assembled photocurable polymers on hydrophilic self- assembling monolayers.

Abstract

The present invention comprises methods of contact printing of patterned, self-assembling monolayers of alkanethiolates, carboxylic acids, hydroxamic acids, and phosphonic acids on metallized thermoplastic films, the compositions produced thereby, and the use of these compositions. Patterned self-assembling monolayers allow for the controlled placement of fluids thereon which contain a chemically reactive, indicator functionality. The optical sensing devices produced thereby when the film is exposed to an analyte and light, can produce optical diffraction patterns which differ depending on the reaction of the self-assembling monolayer with the analyte of interest. The light can be in the visible spectrum, and be either reflected from the film, or transmitted through it, and the analyte can be any compound reacting with the fluid on the self-assembling monolayer. The present invention also provides a flexible support for a self-assembling monolayer on gold or another suitable metal.

Description

METHOD OF CONTACT PRINTING
ON GOLD COATED FILMS
Technical Field The present invention is in the field of contact printing and, more specifically the present invention is in the field of microcontact printing on metal films such as gold.
Background of the Invention
Microcontact printing is a technique for forming patterns of organic monolayers with μm and submicron lateral dimensions. It offers experimental simplicity and flexibility in forming certain types of patterns. It relies on the remarkable ability of self-assembled monolayers of long-chain alkanethiolates to form on gold and other metals. These patterns can act as nanometer resists by protecting the supporting metal from corrosion by appropriately formulated etchants, or, can allow for the selective placement of fluids on hydrophilic regions of the pattern. Patterns of self-assembled monolayers having dimensions that can be less than 1 μm are formed by using the alkanethiol as an "ink", and by printing them on the metal support using an elastomeric "stamp". The stamp is fabricated by molding a silicone elastomer using a master prepared by optical or X-ray microlithography or by other techniques.
Microcontact printing of patterned self-assembled monolayers brings to microfabrication a number of new capabilities. First, microcontact printing makes it possible to form patterns that are distinguished only by their constituent functional groups; this capability permits the control of surface properties such as interfacial free energies with great precision. Second, because microcontact printing relies on molecular self-assembly, it generates a system that is (at least locally) close to a thermodynamic minimum and is intrinsically defect-rejecting and self-healing. Simple procedures, with minimal protection against surface contamination by adsorbed materials or by particles, can lead to surprisingly low levels of defects in the final structures. The procedure can be conducted at atmospheric pressure, in an unprotected laboratory atmosphere. Thus, microcontact printing is especially useful in laboratories that do not have routine access to the equipment normally used in microfabrication, or for which the capital cost of equipment is a serious concern. Third, the patterned self-assembled monolayers can be designed to act as resists with a number of wet-chemical etchants.
Working with liquid etchants suffers from the disadvantages of handling solvents and disposing of wastes, but also enjoys substantial advantages: a high degree of control over contamination of surfaces; reduced damage to the substrate from energetic interactions with atoms or ions; the ability to manipulate complex and sensitive organic functionalities. Because the self-assembled monolayers are only 1 - 3 nm thick, there is little loss in edge definition due to the thickness of the resist; the major determinants of edge resolution seem to be the fidelity of the contact printing and the anisotropy of etching the underlying metal. In the current best cases, features of size 0.2 μm can be fabricated; edge resolution in systems showing this resolution in feature size is less than 50 nm. In the prior art, a gold film 5 to 2000 nanometers thick is typically supported on a titanium-primed Si/Si02 wafer or glass sheet. The titanium serves as an adhesion promoter between gold and the support. However, the silicon wafer is rigid, brittle, and cannot transmit light. These silicon wafers are also not suitable for a large-scale, continuous printing process, such as in letterpress, gravure, offset, and screen printing (see Printing Fundamentals. A. Glassman, Ed. (Tappi Press Atlanta, GA 1981 ); Encyclopedia Britannica. vol. 26, pp. 76-92, 110- 111 (Encyclopedia Brittanica, Inc. 1991)). In addition, silicon must be treated in a separate step with an adhesion promoter such as Cr or Ti, or Au will not adequately adhere, preventing formation of a stable and well-ordered self-assembling monolayer. Finally, silicon is opaque, so any diffraction pattern obtained must be created with reflected, not transmitted light. What is needed is an easy, efficient and simple method of contact printing on an optically transparent, flexible substrate, that is amenable to continuous processing.
Summary of the Invention
The present invention comprises methods of contact printing of patterned, self-assembling monolayers of alkanethiolates, carboxylic acids, hydroxamic acids, and phosphonic acids on metallized thermoplastic films, the compositions produced thereby, and the use of these compositions.
Patterned self-assembling monolayers allow for the controlled placement of fluids thereon which can contain a chemically reactive, indicator functionality. The optical sensing devices produced thereby when the film is exposed to an analyte and light, can produce optical diffraction patterns which differ depending on the reaction of the self- assembling monolayer with the analyte of interest. The light can be in the visible spectrum, and be either reflected from the film, or transmitted through it, and the analyte can be any compound reacting with the self-assembling monolayer. The present invention also provides a flexible support for a self-assembling monolayer on gold or other suitable metal.
The present invention includes a support for a self- assembling monolayer on gold or other suitable material which does not require an adhesion promoter for the formation of a well-ordered self-assembling monolayer.
The present invention also provides a support for a self- assembling monolayer on gold or other material which is suitable for continuous, rather than batch, fabrication. Finally the present invention provides a low-cost, disposable sensor which can be mass produced.
These and other objects, features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments.
Brief Description of the Figures
Figure 1 is a schematic of contact printing of self- assembling monolayers. A polydimethylsiloxane (PDMS; silicone elastomer 184; Dow Corning Corp., Midland, MI) is polymerized on a silicone master containing a predetermined pattern. The PDMS is peeled away from the master, and then exposed to a solution containing HS(CH2)15CH3. The alkane-thiol coated stamp is then stamped onto the gold-coated substrate. Then, the surface of the substrate is exposed to a solution containing a different alkane-thiol such as HS(CH2)l lOH.
Figure 2 is an atomic force microscopy image of evaporated gold on MYLAR®, purchased from Courtaulds Performance Films (Canoga Park, CA). The average roughness of the gold layer is 3-4 nanometers, with maximum roughness of 9 nanometers.
Figures 3a, 3b and 3c are atomic force microscopy images of a hydrophilic self-assembling monolayer circle of 16 mercaptohexadecanoic acids, as described in Example 1.
Figure 3a is a topography image, Figure 3b is a lateral force image, and Figure 3 c is a three-dimensional graphic of a topography image.
Figure 4 is a field emission secondary electron microscope image of 10 micron-diameter circles of hydrophilic self-assembling monolayers formed by printing of 16-mercaptohexadecanoic acid, as described in Example
1, below.
Figure 5a is an optical photomicrograph at 300x magnification of 10 micron-diameter circles of hydrophilic self-assembling monolayers formed by printing of 16- mercaptohexadecanoic acid, as described in Example 1, below, and after exposure to a high surface energy, curable, optical adhesive. The adhesive was cured by ultraviolet light (UV) exposure.
Figure 5b is a photograph of the diffraction pattern formed by visible light shown through the self-assembling monolayer pattern described by Figure 5 a.
Figure 6 is a field emission secondary electron micrograph image of 10 micron-diameter circles formed by printing of self-assembled photocurable polymers on hydrophilic self-assembling monolayers.
Figures 7a and 7b are field emission secondary electron micrographs of 1.5 micron diameter circles formed of self-assembling photocurable polymers on hydrophilic self-assembling monolayers, printed as described in Example 1.
Detailed Description
The present invention provides methods of contact printing of patterned, self-assembling monolayers of alkanethiolates, carboxylic acids, hydroxamic acids, and- phosphonic acids on metallized polymer films, desirably thermoplastic polymer films, the compositions produced thereby, and the use of these compositions. Patterned self- assembling monolayers allow for the controlled placement of fluids thereon which can contain a chemically reactive, indicator functionality. The term "patterned self- assembling monolayers thereon" as used herein means the self-assembling monolayers in any pattern on the metallized polymer films including a solid pattern.
In one embodiment, optical sensing devices can be produced according to the present invention. When the film with the self-assembling monolayers thereon is exposed to an analyte that is capable of reacting with the self- assembling monolayer, the film will produce optical diffraction patterns which differ depending on the reaction of the self-assembling monolayer with the analyte of interest. The liquid may be a high surface tension fluid such as water. The light can be in the visible spectrum, and be either reflected from the film, or transmitted through it, and the analyte can be any compound reacting with the self- assembling monolayer Self-assembled monolayers of organic compounds on inorganic or metal surfaces are becoming increasingly important in many areas of materials science. Although there are many different systems of self-assembling monolayers based on different organic components and supports, desired systems are those of alkanethiolates, HS(CH2)nR, on gold films. Typically, a gold film, 5 to 2000 nm thick, is supported on a titanium-primed Si/Si02 wafer or glass sheet. The titanium serves as an adhesion promoter between gold and the support. The alkanethiols chemisorb on the gold surface from a solution in which the gold film is immersed, and form adsorbed alkanethiolates with loss of hydrogen. Adsorption can also occur from the vapor. Self-assembling monolayers formed on gold from long-chain alkanethiolates of structure X(CH2)nY(CH2)mS are highly ordered and can be considered as crystalline or quasi-crystalline molecular arrays. A wide variety of organic functional groups (X,Y) can be incorporated into the surface or interior of the monolayer.
Self-assembling monolayers can therefore be tailored to provide a wide variety of material properties: wettability and protection against corrosion by chemical etchants are especially relevant to μCP.
Figure 1 outlines the procedure used for microcontact printing. An elastomeric stamp is used to transfer alkanethiol "ink" to a gold surface by contact; if the stamp is patterned, a patterned self-assembling monolayer forms. The stamp is fabricated by casting polydimethylsiloxane (PDMS) on a master having the desired pattern. Masters are prepared using standard photolithographic techniques, or constructed from existing materials having microscale surface features.
In a typical experimental procedure, a photolithographically produced master is placed in a glass or plastic Petri dish, and a 10: 1 ratio (w:w or v:v) mixture or SYLGARD silicone elastomer 184 and SYLGARD silicone elastomer 184 curing agent (Dow Corning Corporation) is poured over it. The elastomer is allowed to sit for approximately 30 minutes at room temperature and pressure to degas, then cured for 1 - 2 hours at 60°C, and gently peeled from the master. "Inking" of the elastomeric stamp is accomplished by exposing the stamp to a 0.1 to 1.0 mM solution of alkanethiol in anhydrous ethanol, either by pouring the solution over the surface of the stamp, or by rubbing the stamp gently with a Q-tip that has been saturated with the inking solution. The stamp is allowed to dry until no liquid is visible by eye on the surface of the stamp (typically about 60 seconds), either under ambient conditions, or by exposure to a stream of nitrogen gas. Following inking, the stamp is applied (typically by hand)" to a gold surface. Very light hand pressure is used to aid in complete contact between the stamp and the surface. The stamp is then gently peeled from the surface. Following removal of the stamp, the surface is washed of excess thiol and the patterned gold surface can be subjected to chemical etchants (see below) that selectively remove underivatized areas of the gold surface, and if desired, the underlying support(s). Alternatively, further derivatization of unstamped areas can be accomplished, either by using a second stamp, or by washing the entire surface with a different alkanethiol.
The elastomeric character of the stamp is essential to the success of the process. Polydimethylsiloxane (PDMS), when cured, is sufficiently elastomeric to allow good conformal contact of the stamp and the surface, even for surfaces with significant relief; this contact is essential for efficient contact transfer of the alkanethiol "ink" to the gold film. The elastomeric properties of PDMS are also important when the stamp is removed from the master: if the stamp were rigid (as is the master) it would be difficult to separate the stamp and master after curing without damaging one of the two substrates. PDMS is also sufficiently rigid to retain its shape, even for features with sub-micron dimensions: we have successfully generated patterns with lines as small as 200 nm in width. The surface of PDMS has a low interfacial free energy (y = 22.1 dynes/cm), and the stamp does not adhere to the gold film. The stamp is durable: we have used the same stamp up to 100 times over a period of several months without significant degradation in performance. The polymeric nature of PDMS also plays a critical role in the inking procedure, by enabling the stamp to absorb the alkanethiol ink by swelling.
Microcontact printing on gold surfaces can be conducted with a variety of alkanethiol "inks"". Alkanethiols that do not undergo reactive spreading (after application to the gold film) are required for formation of small features with high resolution. For stamping in air, one can use autophobic alkanethiols such as hexadecanethiol. Microcontact printing of other non- autophobic alkanethiols, for example ,
HS(CH25COOH, can be conducted by stamping under a liquid such as water. Patterned self-assembling monolayers of alkanethiols on gold provide excellent resist character with a number of wet-chemical etchants. In one embodiment of the present invention, the self- assembling monolayer is formed of a carboxy-terminated alkane thiol stamped with a patterned elastomeric stamp onto a gold-surfaced thermoplastic film such as MYLAR" . The alkanethiol is inked with a solution of alkanethiol in ethanol, dried, and brought into contact with a surface of gold. The alkanethiol is transferred to the surface only at those regions where the stamp contacts the surface, producing a pattern of self-assembling monolayer which is defined by the pattern of the stamp. Optionally, areas of unmodified gold surface next to the stamped areas can be rendered hydrophobic by reaction with a methyl-terminated alkane thiol.
A more detailed description of the methods and compositions of the present invention follows. All publications cited herein are incorporated by reference in their entirety.
Any thermoplastic film upon which a metal substrate can be deposited is suitable for the present invention. These include, but are not limited to polymers such as: polyethylene-terephthalate (MYLAR®), acrylonitrile- butadiene-styrene, acrylonitrile-methyl acrylate copolymer, cellophane, cellulosic polymers such as ethyl cellulose, cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose triacetate, cellulose triacetate, polyethylene, polyethylene - vinyl acetate copolymers, ionomers (ethylene polymers) polyethylene-nylon copolymers, polypropylene, methyl pentene polymers, poly vinyl fluoride, and aromatic polysulfones. Preferably, the plastic film has an optical transparency of greater than
80%. Other suitable thermoplastics and suppliers may be found, for example, in reference works such as the Modern Plastics Encyclopedia (McGraw-Hill Publishing Co., New York 1923-1996). In one embodiment of the invention, the thermoplastic film with the metal coating thereon has an optical transparency of between approximately 5% and 95%. A more desired optical transparency for the thermoplastic film used in the present invention is between approximately 20% and 80%. In a desired embodiment of the present invention, the thermoplastic film has at least an approximately 80% optical transparency, and the thickness of the metal coating is such as to maintain an optical transparency greater than about 20%, so that diffraction patterns can be produced by either reflected or transmitted light. This corresponds to a metal coating thickness of about 20 nm. However, in other embodiments of the invention, the gold thickness may be between approximately 1 nm and 1000 nm. The preferred metal for deposition on the film is gold. However, silver, aluminum, copper, iron, zirconium, platinum and nickel, as well as other metals, may be used. Preferred metals are ones that do not form oxides, and thus assist in the formation of more predictable self-assembling monolayers.
In principle, any surface with corrugations of appropriate size could be used as masters. The process of microcontact printing starts with an appropriate relief structure, from which an elastomeric stamp is cast. This
'master' template may be generated photolithographically, or by other procedures, such as commercially available diffraction gratings. In one embodiment, the stamp may be made from polydimethylsiloxane. In one embodiment of the present invention, the self- assembling monolayer has the following general formula:
X-R-Y
X is reactive with metal or metal oxide. For example, X may be asymmetrical or symmetrical disulfide (-R'SSR, -RSSR), sulfide (-R'SR, -RSR), diselenide (-R'Se- SeR), selenide (-R'SeR, -RSeR), thiol (-SH), nitrile (-CN), isonitrile, nitro (-N02 ), selenol (-SeH), trivalent phosphorous compounds, isothiocyanate, xanthate, thiocarbamate, phosphine, thioacid or dithioacid, carboxylic acids, hydroxylic acids, and hydroxamic acids.
R and R' are hydrocarbon chains which may optionally be interrupted by hetero atoms and which are preferably non-branched for the sake of optimum dense packing. At room temperature, R is greater than or equal to seven carbon atoms in length, in order to overcome natural randomizing of the self-assembling monolayer. At colder temperatures, R may be shorter. In a preferred embodiment, R is -(CH2)n- where n is between 10 and 12, inclusive. The carbon chain may optionally be perfluorinated.
Y may have any surface property of interest. For example, Y could be any among the great number of groups used for immobilization in liquid chromatography techniques, such as hydroxy, carboxyl, amino, aldehyde, hydrazide, carbonyl, epoxy, or vinyl groups. Examples of sensing layer materials are set forth in "Patterning Self- Assembled Monolayers Using Microcontact Printing: A New Technology for Biosensors?," by Milan Mrksich and
George M. Whitesides, published in TIBTECH, June, 1995 (Vol. 13), pp. 228-235, hereby incorporated by reference.
Self assembling monolayers of alkyl phosphonic, hydroxamic, and carboxylic acids may also be useful for the methods and compositions of the present invention.
Since alkanethiols do not adsorb to the surfaces of many metal oxides, carboxylic acids, phosphonic acids, and hydroxamic acids may be preferred for X for those metal oxides. See J. P. Folkers, G.M. Whitesides, et al. , Langmuir, 1995, vol. 11, pp. 813-824.
R may also be of the form (CH2)a~Z-(CH2)b, where a>0, b>7, and Z is any chemical functionality of interest, such as sulfones, urea, lactam, etc.
The stamp may be applied in air, or under a fluid such as water to prevent excess diffusion of the alkanethiol.
For large-scale or continuous printing processes, it is most desirable to print in air, since shorter contact times are desirable for those processes.
In one embodiment of the present invention, the pattern is formed on the metallized thermoplastic polymer with the self-assembling monolayer. In another embodiment of the present invention, the relief of the pattern is formed with the self-assembling monolayer. After the stamping process, the metallized areas on the plastic may optionally be passivated, for example, with a methyl-terminated self-assembling monolayer such as hexadecylmercaptan.
This invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof, which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the present invention.
Example 1
Printing of gold-coated MYLAR® (polyethylene terephthalate) with patterns of 16-mercaptohexadecanoic acid and hexadecanethiol
Patterns of gold-coated MYLAR® (polyethylene terephthalate) were printed with patterns of 16 mercaptohexadecanoic acid and hexadecanethiol, as shown in Figure 1, and described below. MYLAR® film modified with a plasma deposited gold topcoat was obtained from Courtaulds Performance Films (21034 Osborne Street, Canoga Park, CA 91304). An atomic force microscopy image of this MYLAR film is shown in Figure 2. Polymer film thickness between 2 and 7 mils and gold topcoats producing a surface resistance of
65 ohms per square centimeter with a visible light transmittance between 20% and 65% were used.
Patterns of hydrophilic, carboxy-terminated alkane thiols were stamped onto gold-coated film using 16- mercaptohexadecanoic acid by the following method. An exposed and developed photoresist pattern of 10 micron diameter circles on a silicon wafer was used as the master. Polydimethylsiloxane (PDMS; silicone elastomer 184; Dow Corning Co., Midland, MI), was polymerized on a master to produce a stamp with ten micron-diameter circles spaced five microns apart. The stamp was inked by exposure to a solution ( 1 to 10 mM in ethanol) of 16- mercaptohexadecanoic acid, and allowed to air-dry. The substrate was contacted with the stamp for 50 seconds and washed for 2 to 4 seconds with a solution of hexadecanethiol (1 to 10 mM in ethanol). The substrate was finally washed for 10 seconds in ethanol and dried in a stream of nitrogen. The results of this printing are shown- in Figure 3 and Figure 4 for the 10 micron diameter circles of the carboxylic acid terminated self-assembling monolayer.
These hydrophilic self-assembling monolayer circles allow for selective placement of high surface tension fluids such as water, triethylene glycol, or ultraviolet light curable urethane acrylic adhesives. These liquids can contain dissolved and suspended reagents that react chemically or physically with targeted analytes, thus making the coated plastic f lm a collection of 10 micron microreactors suitable for low cost, disposable chemical sensors. An example of such a device is shown in Figure 5a,
Figure 6, and Figures 7a and 7b.
Diffraction of visible light was shown with these compositions. Both reflected and transmitted diffraction patterns were observed when using 5mW, 670 nM laser illumination. Figure 5b is a photograph of the diffraction pattern formed by visible light shown through the self- assembling monolayer pattern of Figure 5a. Rainbow diffraction colors were observed with transmitted white light. Example 2
Printing of aluminum-coated MYLAR® with patterns of 16-carboxy-hexadecanoic acid and hexadecanecarboxylate The procedure of Example 1 was followed for 100 gauge aluminum-coated MYLAR® with 35% visible light transmission, substituting the 1, 16-dihydroxamic acid of hexadecane and 1-hexadecane hydroxamic acid for the hydrophilic and hydrophobic thiols, respectively, of Example 1. Diffraction of visible light occurred. Both reflected and transmitted diffraction patterns were observed when using 5mW, 670 nM laser illumination. Rainbow diffraction colors were observed with transmitted white light.
Example 3 Comparison of gold-coated MYLAR® with gold- coated silicon wafers.
Gold films (100 angstroms to 1 micrometer) were deposited by electron beam evaporation on silicone wafers that had been primed with titanium (5-50 angstroms) to promote adhesion between silicon and gold. Stamping on both gold-coated film and gold-coated silicon wafers was performed as in Example 1.
Measurement of Contact Angles
Contact angles were measured on a Rame-Hart Model 100 goniometer at room temperature and ambient humidity. Water for contact angles was deionized and distilled in a glass and Teflon apparatus. Advancing and receding contact angles were measured on both sides of at least three drops of each liquid per slide; data in the figures represents the average of these measurements. The following method was used for measuring contact angles: A drop approximately 1-2 microliters in volume was grown on the end of a pipette tip (Micro-Electrapette syringe; Matrix Technologies; Lowell, MA). The tip was then lowered to the surface until the drop came in contact with the surface. The drop was advanced by slowly increasing the volume of the drop (rate approximately 1 microliter/second). Advancing contact angles of water were measured immediately after the front of the drop had smoothly moved a short distance across the surface. Receding angles were taken after the drop had smoothly retreated across the surface by decreasing the volume of the drop.
X-ray Photoelectron Spectroscopy (XPS
X-ray photoelectron spectra were collected on a Surface Science SSX- 100 spectrometer using a monochromatized Al K-alpha source (hv= 1486.6 electron volts). The spectra were recorded using a spot size of 600 micrometers and a pass energy on the detector of 50 electron volts (acquisition time for one scan was approximately 1.5 minutes). For the monolayers, spectra were collected for carbon and oxygen using the Is peaks at 285 and 530 eV, respectively; the binding energies for elements in the monolayer were referenced to the peak due to hydrocarbon in the C Is region, for which we fixed the binding energy at 284.6 eV. Spectra for the solid hydroxamic acid were collected using an electron flood gun of 4.5 eV to dissipate charge in the sample. The following signals were used for the substrates; Al 2p at 73 eV for A1(0), and at 75 eV for Al(III). The binding energies for the substrates were not standardized to a reference sample.
All spectra were fitted using an 80% Gaussian/20% Lorentzian peak shape and a Shirley background subtraction. See J.P. Folkers, G.M. Whitesides, et al, Langmuir, vol. 11, no. 3, pp. 813-824 (1995). Condensation Figures
Condensation figures (CFs) are arrays of liquid drops that form upon condensation of vapor onto a solid surface. The examination of condensation figures has historically been used as a method to characterize the degree of contamination on an otherwise homogeneous surface. One is able to impose a pattern on arrays of condensed drops by patterning the surface underlying them into regions of different solid-vapor interfacial free energy and to characterize the patterned CFs by photomicroscopy and optical diffraction. It can be demonstrated that appropriately patterned CFs can be used as optical diffraction gratings and that examination of the diffraction patterns provides both a rapid, nondestructive method for characterizing patterned self-assembling monolayers and an approach to sensing the environment. Because the form of the CFs — that is, the size, density, and distribution of the drops — is sensitive to environmental factors, CFs of appropriate size and pattern diffract light and can be used as sensors. This principle is demonstrated by correlating the temperature of a substrate patterned into hydrophobic and hydrophilic regions, in an atmosphere of constant relative humidity, with the intensity of light diffracted from CFs on these regions. Appropriate patterns are formed from self-assembled monolayers (self-assembling monolayers) on gold by using combinations of hexadecanethiol [CH3((CH2)V 15S H] , 16-mercaptohexadecanoic acid [HS(CH2)14COOH], and 11-mercaptoundecanol [HS(CH)πOH]. Several techniques are now available for preparing patterns of two or more self-assembling monolayers having 0.1 - to 10-μm dimensions.
At 20°C, an incident beam of light from a laser (helium-neon laser, wavelength = 632.8 nm) produced a single transmitted spot because no water had condensed on the surface, and the transmittance of the regions covered with different self-assembling monolayers were effectively indistinguishable. As the surface was exposed to warm, moist air, droplets of water condensed preferentially on the hydrophilic regions. Diffraction patterns appeared in the light transmitted from the surface. Under these conditions, light was transmitted coherently from the regions where no water had condensed and was scattered by the regions where water had condensed. The condensation figures disappeared within several seconds as the water droplets which condensed on the self-assembling monolayers evaporated.
The ability to form condensation figures can be ascertained by the relative contact angles of water on the hydrophobic and hydrophilic self-assembling monolayers.
Unpatterned monolayers of the appropriate thiol were prepared by immersion of the substrate in a dilute solution for one hour, followed by rinsing with ethanol and air drying.
Table I
Comparison of Gold-Coated MYLAR with Gold-Coated Silicon Wafers: Reactions of ω-functionalized alkane-thiols
Figure imgf000021_0001
* Gold-coated MYLAR substrate
** Silicon Oxide Substrate
"ND" means "not detected", i.e., less than 0.2 atom-percent.
Condensation Figures [Science, Vol. 263, 60 (1994), incorporated herein by reference] with equivalent optical diffraction can be formed on Au:MYLAR®, relative to known art with Au:SiOx. The chemistry of alkanethiols reacting with Au:MYLAR is similar to that reported in the literature for Au:SiOx. Example 4
Comparison of Aluminum/ AlOχ-coated MYLAR® with Al/AlOχ-coated silicon wafers; Reaction of the hydroxamic acid CH3-(CH2)16-CONH(OH)
Using the procedures of Example 2, unpatterned monolayers of the appropriate hydroxamic acid were prepared by immersion of the substrate in a dilute solution for one hour, followed by rinsing with ethanol and air drying. The results are set forth in Table II, below.
TABLE II
Comparison of Aluminum/ A10χ Coated MYLAR® with Al/Al/OxCoated Silicon Wafers: Reaction of the Hydroxamic Acid CH3(CH2)16CONH(OH)
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000023_0001
Condensation figures [per method of Science, Vol. 263, p. 60 (1994), incorporated herein by reference] with equivalent optical diffraction can be formed via contact printing.
A 1 -coated, optical grade MYLAR® shows similar abilities to A 1 -coated silicon in promoting contact printing of self-assembling monolayers.
Example 5
Self-assembled photocurable polymers on hydrophilic self-assembling monolayers.
Figure 6 is a field emission secondary electron microscopy image of 10 micron-diameter self-assembled photocurable polymers on hydrophilic self- assembling monolayers.
Those skilled in the art will now see that certain modifications can be made to the invention herein disclosed with respect to the illustrated embodiments, without departing from the spirit of the instant invention. And while the invention has been described above with respect to the preferred embodiments, it will be understood that the invention is adapted to numerous rearrangements, modifications, and alterations, all such arrangements, modifications, and alterations are intended to be within the scope of the appended claims.

Claims

CLAIMSWe claim:
1. A film with patterned self-assembling monolayers thereon comprising: a polymer film coated with metal; and a self-assembling monolayer printed onto the- polymer film.
2. The film of Claim 1, wherein the metal is selected from the group consisting of gold, silver, nickel, platinum, aluminum, iron, copper, or zirconium.
3. The film of Claim 1, wherein the metal is gold.
4. The film of Claim 3, wherein the gold coating is between approximately 1 nanometer and 1000 nanometers in thickness.
5. The film of Claim 1, wherein the polymer film is polyethylene-terephthalate, acrylonitrile-butadiene- styrene, acrylonitrile-methyl acrylate copolymer, cellophane, cellulosic polymers such as ethyl cellulose, cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose triacetate, cellulose triacetate, polyethylene, polyethylene - vinyl acetate copolymers, ionomers (ethylene polymers) polyethylene-nylon copolymers, polypropylene, methyl pentene polymers, polyvinyl fluoride, and aromatic polysulfones.
6. The film of Claim 4, wherein the polymer film is polyethylene-terephthalate.
7. The film of Claim 1, wherein the thermoplastic film is optically transparent.
8. The film of Claim 1, wherein the thermoplastic film has an optical transparency between 5% and 95%.
9. The film of Claim 1, wherein the thermoplastic film has an optical transparency between approximately 20% and 80%.
10. The film of Claim 1 , wherein the self- assembling monolayer is formed from compounds with the following general formula:
X-R-Y
wherein:
X is reactive with the metal or metal oxide on the polymer film; R is a hydrocarbon chain; and
Y is a compound with any property of interest.
11. The film of Claim 10, wherein:
X is a asymmetrical or symmetrical disulfide (- R'SSR, -RSSR), sulfide (-R'SR, -RSR), diselenide (-R'Se- SeR), selenide (R'SeR, -RSeR), thiol (-SH), nitrile (-CN), isonitrile, nitro (-N02 ), selenol (-SeH), trivalent phosphorous compounds, isothiocyanate, xanthate, thiocarbamate, phosphine, thioacid or dithioacid, carboxylic acids, hydroxylic acids, and hydroxamic acids;
R and R' are hydrocarbon chains which may optionally be interrupted by hetero atoms, and which may optionally be perfluorinated, and which are preferably non- branched; and
Y is selected from the group consisting of hydroxy, carboxyl, amino, aldehyde, hydrazide, carbonyl, epoxy, or vinyl groups.
12. The film of Claim 10, wherein R is greater than 7 carbon atoms in length.
13. The film of Claim 10, wherein R is a compound of the form (CH2)a-Z-(CH2)b„ wherein a>0, b>7, and Z is any chemical functionality of interest.
14. The film of Claim 13, wherein Z is selected from the group consisting of sulfones, lactams, and urea.
15. The film of Claim 1 , wherein there are two or more self-assembling monolayers with different chemical properties.
16. The film of Claim 1, wherein a first self- assembling monolayer is hydrophobic, and a second self- assembling monolayer is hydrophilic.
17. A method of making a film with a self- assembling monolayer pattern comprising stamping a pattern of self-assembling monolayers on a polymer film coated with metal.
18. The method of Claim 17, wherein the metal is selected from the group consisting of gold, silver, nickel, platinum, aluminum, iron, copper, or zirconium.
19. The method of Claim 17, wherein the metal is gold.
20. The method of Claim 19, wherein the gold coating is between approximately 1 nanometer and 1000 nanometers in thickness.
21. The method of Claim 18, wherein the polymer film is polyethylene-terephthalate, acrylonitrile-butadiene- styrene, acrylonitrile-methyl acrylate copolymer, cellophane, cellulosic polymers such as ethyl cellulose, cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose triacetate, cellulose triacetate, polyethylene, polyethylene - vinyl acetate copolymers, ionomers (ethylene polymers) polyethylene-nylon copolymers, polypropylene, methyl pentene polymers, polyvinyl fluoride, and aromatic polysulfones.
22. The method of Claim 21, wherein the polymer film is polyethylene-terephthalate.
23. The method of Claim 17, wherein the polymer film is optically transparent.
24. The method of Claim 17, wherein the polymer film has an optical transparency between 5% and 95%.
25. The method of Claim 17, wherein the polymer film has an optical transparency between approximately 20% and 80%.
26. The method of Claim 17, wherein the self- assembling monolayer is formed from compounds with the following general formula:
X-R-Y
wherein:
X is reactive with the metal or metal oxide on the polymer film; R is a hydrocarbon chain; and
Y is a compound with any property of interest.
27. The method of Claim 26, wherein:
X is a asymmetrical or symmetrical disulfide (- R'SSR, -RSSR), sulfide (-R'SR, -RSR), diselenide (-R'Se-
SeR), selenide (R'SeR, -RSeR), thiol (-SH), nitrile (-CN), isonitrile, nitro (-N02 ), selenol (-SeH), trivalent phosphorous compounds, isothiocyanate, xanthate, thiocarbamate, phosphine, thioacid or dithioacid, carboxylic acids, hydroxylic acids, and hydroxamic acids;
R and R' are hydrocarbon chains which may optionally be interrupted by hetero atoms, and which may optionally be perfluorinated, and which are preferably non- branched; and Y is selected from the group consisting of hydroxy, carboxyl, amino, aldehyde, hydrazide, carbonyl, epoxy, or vinyl groups.
28. The method of Claim 26, wherein R is greater than 7 carbon atoms in length.
29. The method of Claim 26, wherein R is a compound of the form (CH2)a~Z-(CH2)b» wherein a≥O, b>7, and Z is any chemical functionality of interest.
30. The method of Claim 29, wherein Z is selected from the group consisting of sulfones, lactams, and urea.
31. The method of Claim 17, wherein there are two or more self-assembling monolayers with different chemical properties.
32. The method of Claim 17, wherein a first self- assembling monolayer is hydrophobic, and a second self- assembling monolayer is hydrophilic.
PCT/US1997/023714 1996-12-18 1997-12-17 Method of contact printing on gold coated films WO1998027463A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA 2273797 CA2273797C (en) 1996-12-18 1997-12-17 Method of contact printing on gold coated films
KR1019997005439A KR100568634B1 (en) 1996-12-18 1997-12-17 Method of Contact Printing on Gold Coated Films
DE1997630149 DE69730149T2 (en) 1996-12-18 1997-12-17 CONTACT COPYING METHOD ON A GOLD COATED FILM
EP19970953387 EP0948757B9 (en) 1996-12-18 1997-12-17 Method of contact printing on gold coated films
AU57144/98A AU730657B2 (en) 1996-12-18 1997-12-17 Method of contact printing on gold coated films
HK00104967A HK1025816A1 (en) 1996-12-18 2000-08-09 Method of contact printing on gold coated films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/769,594 1996-12-18
US08/769,594 US6048623A (en) 1996-12-18 1996-12-18 Method of contact printing on gold coated films

Publications (1)

Publication Number Publication Date
WO1998027463A1 true WO1998027463A1 (en) 1998-06-25

Family

ID=25085922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/023714 WO1998027463A1 (en) 1996-12-18 1997-12-17 Method of contact printing on gold coated films

Country Status (10)

Country Link
US (1) US6048623A (en)
EP (1) EP0948757B9 (en)
KR (1) KR100568634B1 (en)
CN (1) CN1222831C (en)
AU (1) AU730657B2 (en)
CA (1) CA2273797C (en)
DE (1) DE69730149T2 (en)
ES (1) ES2223085T3 (en)
HK (1) HK1025816A1 (en)
WO (1) WO1998027463A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003142A2 (en) * 2000-06-30 2002-01-10 President And Fellows Of Harvard College Electric microcontact printing method and apparatus
WO2007013007A2 (en) * 2005-07-28 2007-02-01 Koninklijke Philips Electronics N.V. Composition and use thereof
US7232771B2 (en) 2003-11-04 2007-06-19 Regents Of The University Of Minnesota Method and apparatus for depositing charge and/or nanoparticles
US7592269B2 (en) 2003-11-04 2009-09-22 Regents Of The University Of Minnesota Method and apparatus for depositing charge and/or nanoparticles
WO2010002788A1 (en) * 2008-06-30 2010-01-07 3M Innovative Properties Company Solvent assisted method of microcontact printing
US8714082B2 (en) 2003-10-11 2014-05-06 Koninklijke Philips N.V. Method for patterning a substrate surface
US8945673B2 (en) 2007-01-22 2015-02-03 Regents Of The University Of Minnesota Nanoparticles with grafted organic molecules

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932213B2 (en) * 1999-05-11 2011-04-26 President And Fellows Of Harvard College Small molecule printing
US6824987B1 (en) 1999-05-11 2004-11-30 President And Fellows Of Harvard College Small molecule printing
US20050154567A1 (en) * 1999-06-18 2005-07-14 President And Fellows Of Harvard College Three-dimensional microstructures
US6509100B1 (en) 1999-08-18 2003-01-21 The University Of Houston System Fluorinated hydrogn bond stabilized surface modifying agents, articles made therefrom, methods for making and using the same
AU2765201A (en) 2000-01-07 2001-07-24 President And Fellows Of Harvard College Fabrication of metallic microstructures via exposure of photosensitive composition
IL134631A0 (en) * 2000-02-20 2001-04-30 Yeda Res & Dev Constructive nanolithography
WO2002006902A2 (en) 2000-07-17 2002-01-24 Board Of Regents, The University Of Texas System Method and system of automatic fluid dispensing for imprint lithography processes
US6534399B1 (en) * 2001-01-24 2003-03-18 Advanced Micro Devices, Inc. Dual damascene process using self-assembled monolayer
US6703304B1 (en) 2001-01-30 2004-03-09 Advanced Micro Devices, Inc. Dual damascene process using self-assembled monolayer and spacers
US6682988B1 (en) 2001-03-14 2004-01-27 Advanced Micro Devices, Inc. Growth of photoresist layer in photolithographic process
US6798464B2 (en) 2001-05-11 2004-09-28 International Business Machines Corporation Liquid crystal display
US20030152703A1 (en) * 2001-10-31 2003-08-14 Hammond Paula T. Production of chemically patterned surfaces using polymer-on-polymer stamping
US7220452B2 (en) * 2001-10-31 2007-05-22 Massachusetts Institute Of Technology Multilayer transfer patterning using polymer-on-polymer stamping
ATE434184T1 (en) 2001-11-20 2009-07-15 Univ Duke INTERFACE BIOMATERIALS
US7102752B2 (en) 2001-12-11 2006-09-05 Kimberly-Clark Worldwide, Inc. Systems to view and analyze the results from diffraction-based diagnostics
US7098041B2 (en) * 2001-12-11 2006-08-29 Kimberly-Clark Worldwide, Inc. Methods to view and analyze the results from diffraction-based diagnostics
US7384598B2 (en) * 2001-12-21 2008-06-10 Kimberly-Clark Worldwide, Inc. Diagnostic device
US7244393B2 (en) * 2001-12-21 2007-07-17 Kimberly-Clark Worldwide, Inc. Diagnostic device and system
US20030138570A1 (en) * 2001-12-21 2003-07-24 Kimberly-Clark Worldwide, Inc. Method to prepare diagnostic films using engraved printing cylinders such as rotogravure
US8367013B2 (en) * 2001-12-24 2013-02-05 Kimberly-Clark Worldwide, Inc. Reading device, method, and system for conducting lateral flow assays
US20030119203A1 (en) * 2001-12-24 2003-06-26 Kimberly-Clark Worldwide, Inc. Lateral flow assay devices and methods for conducting assays
JP2003288812A (en) * 2001-12-29 2003-10-10 Samsung Electronics Co Ltd Metal nanoparticle cluster ink and metal pattern forming method using it
WO2003065120A2 (en) 2002-01-11 2003-08-07 Massachusetts Institute Of Technology Microcontact printing
US6972155B2 (en) * 2002-01-18 2005-12-06 North Carolina State University Gradient fabrication to direct transport on a surface
US6828581B2 (en) * 2002-02-26 2004-12-07 The United States Of America As Represented By The Secretary Of Commerce Selective electroless attachment of contacts to electrochemically-active molecules
US20030215723A1 (en) * 2002-04-19 2003-11-20 Bearinger Jane P. Methods and apparatus for selective, oxidative patterning of a surface
US6783717B2 (en) * 2002-04-22 2004-08-31 International Business Machines Corporation Process of fabricating a precision microcontact printing stamp
US7223368B2 (en) * 2002-05-03 2007-05-29 Kimberly-Clark Worldwide, Inc. Diffraction-based diagnostic devices
US7223534B2 (en) * 2002-05-03 2007-05-29 Kimberly-Clark Worldwide, Inc. Diffraction-based diagnostic devices
US7214530B2 (en) * 2002-05-03 2007-05-08 Kimberly-Clark Worldwide, Inc. Biomolecule diagnostic devices and method for producing biomolecule diagnostic devices
US7771922B2 (en) * 2002-05-03 2010-08-10 Kimberly-Clark Worldwide, Inc. Biomolecule diagnostic device
EP1506570A1 (en) * 2002-05-21 2005-02-16 ASM America, Inc. Reduced cross-contamination between chambers in a semiconductor processing tool
WO2003100098A1 (en) * 2002-05-23 2003-12-04 Gene Networks, Inc. Analyte microdetector and methods for use
US7091049B2 (en) * 2002-06-26 2006-08-15 Kimberly-Clark Worldwide, Inc. Enhanced diffraction-based biosensor devices
US7285424B2 (en) 2002-08-27 2007-10-23 Kimberly-Clark Worldwide, Inc. Membrane-based assay devices
US7432105B2 (en) * 2002-08-27 2008-10-07 Kimberly-Clark Worldwide, Inc. Self-calibration system for a magnetic binding assay
US7314763B2 (en) * 2002-08-27 2008-01-01 Kimberly-Clark Worldwide, Inc. Fluidics-based assay devices
US7781172B2 (en) * 2003-11-21 2010-08-24 Kimberly-Clark Worldwide, Inc. Method for extending the dynamic detection range of assay devices
US20040106190A1 (en) * 2002-12-03 2004-06-03 Kimberly-Clark Worldwide, Inc. Flow-through assay devices
US7247500B2 (en) * 2002-12-19 2007-07-24 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in membrane-based assay devices
US20040121334A1 (en) * 2002-12-19 2004-06-24 Kimberly-Clark Worldwide, Inc. Self-calibrated flow-through assay devices
JP4340086B2 (en) 2003-03-20 2009-10-07 株式会社日立製作所 Nanoprinting stamper and fine structure transfer method
DE10312628A1 (en) * 2003-03-21 2004-10-07 Friz Biochem Gmbh Method and device for wetting a substrate with a liquid
US7851209B2 (en) * 2003-04-03 2010-12-14 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in assay devices
US20040197819A1 (en) * 2003-04-03 2004-10-07 Kimberly-Clark Worldwide, Inc. Assay devices that utilize hollow particles
US6853134B2 (en) * 2003-05-20 2005-02-08 Canon Kabushiki Kaisha Anode structure for organic light emitting device
US7943395B2 (en) * 2003-11-21 2011-05-17 Kimberly-Clark Worldwide, Inc. Extension of the dynamic detection range of assay devices
US20050112703A1 (en) 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
US7713748B2 (en) * 2003-11-21 2010-05-11 Kimberly-Clark Worldwide, Inc. Method of reducing the sensitivity of assay devices
CN100336174C (en) * 2003-12-04 2007-09-05 中国科学院兰州化学物理研究所 Method of preparating pattern conducting polyphenyl amine film
US20050170095A1 (en) * 2003-12-05 2005-08-04 International Business Machines Corporation Method and apparatus for forming a chemical gradient on a substrate
US7943089B2 (en) * 2003-12-19 2011-05-17 Kimberly-Clark Worldwide, Inc. Laminated assay devices
US20050189676A1 (en) * 2004-02-27 2005-09-01 Molecular Imprints, Inc. Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography
WO2005101427A1 (en) * 2004-04-14 2005-10-27 Sukgyung A.T Co., Ltd Conducting metal nano particle and nano-metal ink containing it
US7796266B2 (en) * 2004-04-30 2010-09-14 Kimberly-Clark Worldwide, Inc. Optical detection system using electromagnetic radiation to detect presence or quantity of analyte
US7815854B2 (en) * 2004-04-30 2010-10-19 Kimberly-Clark Worldwide, Inc. Electroluminescent illumination source for optical detection systems
US20050244953A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Techniques for controlling the optical properties of assay devices
US20060019265A1 (en) * 2004-04-30 2006-01-26 Kimberly-Clark Worldwide, Inc. Transmission-based luminescent detection systems
EP1600811A1 (en) * 2004-05-28 2005-11-30 Obducat AB Modified metal molds for use in imprinting processes
KR101257881B1 (en) * 2004-05-28 2013-04-24 오브듀캇 아베 Metal mold for use in imprinting processes
DE602005022874D1 (en) * 2004-06-03 2010-09-23 Molecular Imprints Inc FLUID AND DROP EXPOSURE AS REQUIRED FOR MANUFACTURE IN THE NANO AREA
US20070228593A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Residual Layer Thickness Measurement and Correction
US7141275B2 (en) * 2004-06-16 2006-11-28 Hewlett-Packard Development Company, L.P. Imprinting lithography using the liquid/solid transition of metals and their alloys
US7521226B2 (en) * 2004-06-30 2009-04-21 Kimberly-Clark Worldwide, Inc. One-step enzymatic and amine detection technique
EP1789795A4 (en) * 2004-08-04 2008-12-10 Axela Inc Patterned surfaces with chemical crosslinkers for use in diffraction-based sensing
US8267576B2 (en) 2004-11-08 2012-09-18 Freshpoint Holdings Sa Time-temperature indicating device
US20070121113A1 (en) * 2004-12-22 2007-05-31 Cohen David S Transmission-based optical detection systems
US20090272715A1 (en) * 2004-12-23 2009-11-05 Koninklijke Philips Electronics, N.V. Nanofabrication based on sam growth
US7403287B2 (en) * 2005-06-08 2008-07-22 Canon Kabushiki Kaisha Sensing element used in sensing device for sensing target substance in specimen by using plasmon resonance
CN101384757A (en) * 2006-01-03 2009-03-11 哈佛大学校长及研究员协会 Small molecule printing
US20070217019A1 (en) * 2006-03-16 2007-09-20 Wen-Kuei Huang Optical components array device, microlens array and process of fabricating thereof
US8142850B2 (en) * 2006-04-03 2012-03-27 Molecular Imprints, Inc. Patterning a plurality of fields on a substrate to compensate for differing evaporation times
TWI306954B (en) * 2006-07-04 2009-03-01 Ind Tech Res Inst Method for fabricating an array of microlenses on an electro-optic device is disclosed
US20080095988A1 (en) * 2006-10-18 2008-04-24 3M Innovative Properties Company Methods of patterning a deposit metal on a polymeric substrate
US8764996B2 (en) * 2006-10-18 2014-07-01 3M Innovative Properties Company Methods of patterning a material on polymeric substrates
EP2095187A2 (en) * 2006-12-05 2009-09-02 Nano Terra Inc. Method for patterning a surface
US8608972B2 (en) * 2006-12-05 2013-12-17 Nano Terra Inc. Method for patterning a surface
US7968804B2 (en) 2006-12-20 2011-06-28 3M Innovative Properties Company Methods of patterning a deposit metal on a substrate
US20080271625A1 (en) * 2007-01-22 2008-11-06 Nano Terra Inc. High-Throughput Apparatus for Patterning Flexible Substrates and Method of Using the Same
US7959975B2 (en) * 2007-04-18 2011-06-14 Micron Technology, Inc. Methods of patterning a substrate
EP2288879B1 (en) * 2008-06-04 2018-01-24 G Patel A monitoring system based on etching of metals
KR101184161B1 (en) 2010-04-15 2012-09-18 한남대학교 산학협력단 Method for surface modification of patterned Au surface using soft-lithography
DE102012112030A1 (en) * 2012-12-10 2014-06-12 Ev Group E. Thallner Gmbh Method for microcontact embossing
TW201509245A (en) * 2013-03-15 2015-03-01 Omg Electronic Chemicals Llc Process for forming self-assembled monolayer on metal surface and printed circuit board comprising self-assembled monolayer
WO2015160684A1 (en) * 2014-04-14 2015-10-22 President And Fellows Of Harvard College Cellulose and cellulosic substrate-based device
CN107072600A (en) 2014-09-30 2017-08-18 3M创新有限公司 With the wide conductive pattern of the wide line and its production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33581A (en) * 1861-10-29 Improvement in cider and wine mills
DE1065903B (en) * 1955-09-09 1959-09-24 Sylvania Electric Products Incorporated, eine Gesellschaft nach den Gesetzen des Staates Delaware, New York, N. Y. (V. St. A.) Method and apparatus for making conductive patterns
US3497377A (en) * 1966-10-31 1970-02-24 Boeing Co Mirror configurations
US3641354A (en) * 1967-03-08 1972-02-08 Jack De Ment Optical modulation by fluidic optics utilizing chromatic aberration
US3716359A (en) * 1970-12-28 1973-02-13 Xerox Corp Cyclic recording system by the use of an elastomer in an electric field
US4587213A (en) * 1971-09-29 1986-05-06 Malecki George J Methods and means of determining microorganism population
US4011009A (en) * 1975-05-27 1977-03-08 Xerox Corporation Reflection diffraction grating having a controllable blaze angle
US4173075A (en) * 1976-12-08 1979-11-06 Swiss Aluminium Ltd. Engraver's template
EP0007108B1 (en) * 1978-07-18 1983-04-13 Nippon Telegraph and Telephone Public Corporation A method of manufacturing a diffraction grating structure
US4325779A (en) * 1979-04-17 1982-04-20 Beatrice Foods Co. Method for shaping and finishing a workpiece
US4274706A (en) * 1979-08-30 1981-06-23 Hughes Aircraft Company Wavelength multiplexer/demultiplexer for optical circuits
FR2472198A1 (en) * 1979-12-20 1981-06-26 Anvar ASTRONOMIC MIRRORS AND SEMI-RECESS ASPHERIC NETWORKS AND METHOD OF MANUFACTURING THEREBY
US4363874A (en) * 1981-08-07 1982-12-14 Miles Laboratories, Inc. Multilayer analytical element having an impermeable radiation nondiffusing reflecting layer
US4477158A (en) * 1981-10-15 1984-10-16 Pollock Stephen C Lens system for variable refraction
US4690715A (en) * 1982-06-18 1987-09-01 American Telephone And Telegraph Company, At&T Bell Laboratories Modification of the properties of metals
US4528260A (en) * 1983-04-27 1985-07-09 Rca Corporation Method of fabricating lenticular arrays
GB2145977B (en) * 1983-08-30 1987-01-14 Craigave Pty Ltd Article die
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
USRE33581E (en) 1984-06-25 1991-04-30 Immunoassay using optical interference detection
US4596697A (en) * 1984-09-04 1986-06-24 The United States Of America As Represented By The Secretary Of The Army Chemical sensor matrix
US5018829A (en) * 1984-11-19 1991-05-28 Matsushita Electric Industrial Co., Ltd. Optical fiber and method of producing the same
GB8509492D0 (en) * 1985-04-12 1985-05-15 Plessey Co Plc Optical assay
US4897325A (en) * 1985-11-18 1990-01-30 The Perkin-Elmer Corporation Contact lithographic fabrication of patterns on large optics
US4728591A (en) * 1986-03-07 1988-03-01 Trustees Of Boston University Self-assembled nanometer lithographic masks and templates and method for parallel fabrication of nanometer scale multi-device structures
US4802951A (en) * 1986-03-07 1989-02-07 Trustees Of Boston University Method for parallel fabrication of nanometer scale multi-device structures
US4818336A (en) * 1986-04-11 1989-04-04 Advanced Tool Technologies, Incorporated Method of making metal molds and dies
GB8618133D0 (en) * 1986-07-24 1986-09-03 Pa Consulting Services Biosensors
US5182135A (en) * 1986-08-12 1993-01-26 Bayer Aktiengesellschaft Process for improving the adherency of metallic coatings deposited without current on plastic surfaces
GB2197065A (en) * 1986-11-03 1988-05-11 Stc Plc Optical sensor device
US5079600A (en) * 1987-03-06 1992-01-07 Schnur Joel M High resolution patterning on solid substrates
US4731155A (en) * 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
EP0297437B1 (en) * 1987-06-27 1993-09-01 Shimadzu Corporation Flexible replica grating and optical multiplexer/demultiplexer using it
US4842633A (en) * 1987-08-25 1989-06-27 Matsushita Electric Industrial Co., Ltd. Method of manufacturing molds for molding optical glass elements and diffraction gratings
EP0341927B1 (en) * 1988-05-10 1993-07-14 AMERSHAM INTERNATIONAL plc Biological sensors
EP0341928A1 (en) * 1988-05-10 1989-11-15 AMERSHAM INTERNATIONAL plc Improvements relating to surface plasmon resonance sensors
GB8811919D0 (en) * 1988-05-20 1988-06-22 Amersham Int Plc Biological sensors
GB8813307D0 (en) * 1988-06-06 1988-07-13 Amersham Int Plc Biological sensors
SE462454B (en) * 1988-11-10 1990-06-25 Pharmacia Ab METHOD FOR USE IN BIOSENSORS
US4999489A (en) * 1989-03-17 1991-03-12 The Boeing Company Optical sensor using concave diffraction grating
EP0402718B1 (en) * 1989-06-03 1994-11-02 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Control of cell arrangement
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5235238A (en) * 1989-08-10 1993-08-10 Dainabot Company, Limited Electrode-separated piezoelectric crystal oscillator and method for measurement using the electrode-separated piezoelectric crystal oscillator
SE463181B (en) * 1989-09-07 1990-10-15 Radians Innova Ab SAID THAT SEASONAL COUNTERFUL RECONCILIATION OF THE RESONANCE FREQUENCY AND Q-VALUE OF AN OPTICAL RESONATOR AND DEVICE BEFORE EXERCISING THE SET
US5190350A (en) * 1989-09-13 1993-03-02 Goodway Corporation Seating arrangement
US5032216A (en) * 1989-10-20 1991-07-16 E. I. Du Pont De Nemours And Company Non-photographic method for patterning organic polymer films
FR2656925B1 (en) * 1990-01-08 1992-05-15 Eg G MOISTURE SENSOR AND MEASUREMENT INSTALLATION COMPRISING A PLURALITY OF SUCH SENSORS.
AU8285491A (en) * 1990-06-06 1992-01-07 Burton Louis Hulland Fiber optics system
GB9019123D0 (en) * 1990-09-01 1990-10-17 Fisons Plc Analytical device
US5510481A (en) * 1990-11-26 1996-04-23 The Regents, University Of California Self-assembled molecular films incorporating a ligand
US5294369A (en) * 1990-12-05 1994-03-15 Akzo N.V. Ligand gold bonding
GB9102646D0 (en) * 1991-02-07 1991-03-27 Fisons Plc Analytical device
EP0504730B1 (en) * 1991-03-22 1997-08-27 Seiko Instruments Inc. Electrochemical measurement system
JPH0580530A (en) * 1991-09-24 1993-04-02 Hitachi Ltd Production of thin film pattern
US5402075A (en) * 1992-09-29 1995-03-28 Prospects Corporation Capacitive moisture sensor
US5351548A (en) * 1992-12-02 1994-10-04 Walbro Corporation Capacitive pressure sensor
GB2273772A (en) * 1992-12-16 1994-06-29 Granta Lab Ltd Detection of macromolecules utilising light diffraction
US5327225A (en) * 1993-01-28 1994-07-05 The Center For Innovative Technology Surface plasmon resonance sensor
US5455475A (en) * 1993-11-01 1995-10-03 Marquette University Piezoelectric resonant sensor using the acoustoelectric effect
US5435887A (en) * 1993-11-03 1995-07-25 Massachusetts Institute Of Technology Methods for the fabrication of microstructure arrays
EP0812434B1 (en) * 1995-03-01 2013-09-18 President and Fellows of Harvard College Microcontact printing on surfaces and derivative articles
US6518168B1 (en) * 1995-08-18 2003-02-11 President And Fellows Of Harvard College Self-assembled monolayer directed patterning of surfaces

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003142A2 (en) * 2000-06-30 2002-01-10 President And Fellows Of Harvard College Electric microcontact printing method and apparatus
WO2002003142A3 (en) * 2000-06-30 2002-08-08 Harvard College Electric microcontact printing method and apparatus
US7771647B2 (en) 2000-06-30 2010-08-10 President And Fellows Of Harvard College Electric microcontact printing method and apparatus
US8714082B2 (en) 2003-10-11 2014-05-06 Koninklijke Philips N.V. Method for patterning a substrate surface
US7232771B2 (en) 2003-11-04 2007-06-19 Regents Of The University Of Minnesota Method and apparatus for depositing charge and/or nanoparticles
US7592269B2 (en) 2003-11-04 2009-09-22 Regents Of The University Of Minnesota Method and apparatus for depositing charge and/or nanoparticles
WO2007013007A2 (en) * 2005-07-28 2007-02-01 Koninklijke Philips Electronics N.V. Composition and use thereof
WO2007013007A3 (en) * 2005-07-28 2007-10-11 Koninkl Philips Electronics Nv Composition and use thereof
US8945673B2 (en) 2007-01-22 2015-02-03 Regents Of The University Of Minnesota Nanoparticles with grafted organic molecules
WO2010002788A1 (en) * 2008-06-30 2010-01-07 3M Innovative Properties Company Solvent assisted method of microcontact printing
US9003970B2 (en) 2008-06-30 2015-04-14 3M Innovative Properties Company Solvent assisted method of microcontact printing

Also Published As

Publication number Publication date
KR100568634B1 (en) 2006-04-07
CN1222831C (en) 2005-10-12
ES2223085T3 (en) 2005-02-16
AU5714498A (en) 1998-07-15
KR20000069527A (en) 2000-11-25
US6048623A (en) 2000-04-11
DE69730149T2 (en) 2004-12-09
CN1244265A (en) 2000-02-09
AU730657B2 (en) 2001-03-08
EP0948757B9 (en) 2005-01-19
CA2273797C (en) 2007-09-11
DE69730149D1 (en) 2004-09-16
CA2273797A1 (en) 1998-06-25
HK1025816A1 (en) 2000-11-24
EP0948757B1 (en) 2004-08-04
EP0948757A1 (en) 1999-10-13

Similar Documents

Publication Publication Date Title
US6048623A (en) Method of contact printing on gold coated films
EP0858616B1 (en) Method of contact printing on metal alloy-coated polymer films
Kumar et al. Patterning self-assembled monolayers: applications in materials science
US5512131A (en) Formation of microstamped patterns on surfaces and derivative articles
Wilbur et al. Microcontact printing of self-assembled monolayers: applications in microfabrication
US6380101B1 (en) Method of forming patterned indium zinc oxide and indium tin oxide films via microcontact printing and uses thereof
US7875197B2 (en) Methods of etching articles via microcontact printing
CA2282713C (en) Gel sensors and methods of making thereof
US6180239B1 (en) Microcontact printing on surfaces and derivative articles
US5900160A (en) Methods of etching articles via microcontact printing
EP1657070B1 (en) A stamp for soft lithography, in particular micro contact printing and a method of preparing the same
US20030178316A1 (en) Electric microcontact printing method and apparatus
WO2008115530A2 (en) Polymer composition for preparing electronic devices by microcontact printing processes and products prepared by the processes
US6866791B1 (en) Method of forming patterned nickel and doped nickel films via microcontact printing and uses thereof
MXPA99005814A (en) Method of contact printing on gold coated films
MXPA98003530A (en) Method of contact printing on metal alloy-coated polymer films
Xia Soft lithography: micro-and nanofabrication based on microcontact printing and replica molding
MXPA99008160A (en) Gel sensors and methods of use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97180838.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2273797

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1019997005439

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/005814

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1997953387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 57144/98

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1997953387

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1019997005439

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 57144/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1997953387

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019997005439

Country of ref document: KR