WO1998018382A1 - Gel pad optical sensor - Google Patents

Gel pad optical sensor Download PDF

Info

Publication number
WO1998018382A1
WO1998018382A1 PCT/US1997/019516 US9719516W WO9818382A1 WO 1998018382 A1 WO1998018382 A1 WO 1998018382A1 US 9719516 W US9719516 W US 9719516W WO 9818382 A1 WO9818382 A1 WO 9818382A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
sensor
cover layer
detector
emitter
Prior art date
Application number
PCT/US1997/019516
Other languages
French (fr)
Inventor
Russell L. Delonzor
Jason Gentry
Michael E. Fein
Albert L. Ollerdessen
Richard K. Spero
Original Assignee
Nellcor Puritan Bennett Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nellcor Puritan Bennett Incorporated filed Critical Nellcor Puritan Bennett Incorporated
Publication of WO1998018382A1 publication Critical patent/WO1998018382A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance

Definitions

  • the present invention relates to optical sensors using a gel for application to a patient, and in particular to pulse oximeter sensors.
  • optical sensors are used to measure physiological characteristics of a patient.
  • an optical sensor provides emitted light which is then scattered through tissue and detected.
  • Various characteristics of a patient can be determined from analyzing such light, such as oxygen saturation, pulse rate, pH, etc.
  • Pulse oximetry is typically used to measure various blood flow characteristics including, but not limited to, the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and the rate of blood pulsations corresponding to each heartbeat of a patient. Measurement of these characteristics has been accomplished by use of a non- invasive sensor which scatters light through a portion of the patient's tissue where blood perfuses the tissue, and photoelectrically senses the absorption of light in such tissue. The amount of light absorbed is then used to calculate the amount of blood constituent being measured. The light scattered through the tissue is selected to be of one or more wavelengths that are absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood.
  • the amount of transmitted light scattered through the tissue will vary in accordance with the changing amount of blood constituent in the tissue and the related light absorption.
  • such sensors have typically been provided with a light source that is adapted to generate light of at least two different wavelengths, and with photodetectors sensitive to both of those wavelengths, in accordance with known techniques for measuring blood oxygen saturation.
  • Non-invasive sensors include devices that are secured to a portion of the body, such as a finger, an ear or the scalp. In animals and humans, the tissue of these body portions is perfused with blood and the tissue surface is readily accessible to the sensor.
  • No. 5,054,488 to Muz shows gel pads placed directly over the emitter and detector.
  • the gel is described as being a silicone-based gel that is transparent and is used for an adhesive .
  • Another use of a gel adhesive is shown in U.S.
  • Patent No. 5,377,673 to Van Del. Transparent, water-based gel adhesives are described. These are used for a fetal sensor and are placed over the attaching surface of the sensor. The gels are described as colloids which are transparent and are easily washed off.
  • U.S. Patent No. 5,394,877 discusses a mesh reinforced hydrogel film used with an ultrasound device.
  • Gel sensors are desirable for patients with sensitive skin.
  • a normal, adhesive type sensor may tear sensitive skin upon being removed.
  • a gel adhesive is desirable for fetuses, infants, burn victims, etc. It is desirable also to have a gel which is easy to handle and does not produce other adverse effects. For example, hydrogels tend to dry out quickly and are hard to sterilize. Allergic reactions are another concern. For example, many people are allergic to latex-based adhesives.
  • the present invention provides an improved optical sensor using a gel.
  • the gel is an oil plasticized thermoplastic elastomer gel.
  • the gel is mineral oil -based.
  • a woven scrim has the gel embedded onto it for ease of handling.
  • holes are opened in the gel over the emitter and detector to improve optical transmission and to prevent shunting of light.
  • the gel may have pigment, dye or other material incorporated in it to attenuate light at the desired wavelengths to further prevent shunting through the gel layer.
  • a gel may be imbedded with electrically conductive material to provide an EMI shield.
  • the gel may be placed on a thin support layer, and wrapped around a patient's finger or other appendage, with an attachment mechanism, such as VelcroTM, closing the sensor by attaching one end to the back of the sensor, without requiring adhesive attachment to the patient's skin.
  • the gel preferably has sufficient thickness to spread the heat from the emitter and limit the peak temperature caused by heat imparted to the patient's skin.
  • the gel is preferably insoluble in water to seal out water-based contaminants.
  • the gel is preferably sufficiently compressible and conformable to distribute high pressure being applied to the patient, thus avoiding pressure irritation or trauma to the skin.
  • FIG. 1 is a perspective view of a gel pad sensor according to the present invention
  • Fig. 2 is a top view of an embodiment of a sensor showing a shunt-avoiding gap in the gel layer
  • Fig. 3 is a side, cutaway view of the sensor of Fig. 1 with an added release liner and attachment layer;
  • Fig. 4 is a side, disassembled view of the embodiment of Fig. 3;
  • Fig. 5 is an alternate embodiment to that of
  • Fig. 6 is a side, disassembled view of an alternate embodiment of a sensor with a short cover layer
  • Fig. 7 is a perspective view of an alternate embodiment showing doughnut-shaped gel pads on a sensor
  • Fig. 8 is a side view of an alternate embodiment showing gel pads in a clip-type sensor.
  • Fig. 1 illustrates on embodiment of a sensor 10 according to the present invention.
  • the sensor includes a cover layer 12 (e.g., polyurethan) , on top of which a gel support layer 14 is mounted, with a gel layer 15 on tope of support layer 14. Openings 16 and 18 are left in the gel layer over an emitter 24 and a detector 26 mounted on cover layer 12.
  • a cable 20 attaches to the emitter and detector via traces or wires 9 on cover layer 12.
  • An attachment surface 22 is provided for adhering to the back side of cover layer 12 when the sensor is wrapped around a patient's finger or other appendage.
  • portion 22 may be a series of low curvature hooks for attaching to a woven or looped material on the backside of cover layer 12, such as a VelcroTM fastener.
  • Fig. 1 also shows an optional calibration impedance or other device 21, which can indicate the wavelength of an emitter, or a set of coefficients to be used for the emitter (such as is shown in US Patent No. 4,621,643, the disclosure of which is hereby incorproated herein by reference) .
  • an optional additinal sensor 22 such as an EKG, a pressure sensor, or a C0 2 sensor.
  • Fig. 2 is a top view of an embodiment of a sensor including a gap 52 for reducing light shunting from the emitter to the detector through gel layer 15, as discussed in more detail below.
  • Fig. 3 is a side, cutaway view of the embodiment of Fig. 1 on a protective release liner 40.
  • Fig. 3 shows an emitter 24 and a detector 26 mounted on cover layer 12 and surrounded by gel layer 15, with gel layer 15 being mounted on gel support layer 14.
  • the looped or woven layer 28 for portion 22 to attach to when wrapped around. Alternately, layer 28 could be eliminated, and portion 22 could be an adhesive for attaching to the back of cover layer 12.
  • Fig. 4 is a exploded view of the embodiment of Fig. 3 illustrating the components described above.
  • Cover layer 12 could be a polyester or polyimide strip with metal traces deposited on it for providing the electrical connections, such as, for example, described in U.S. Patent No. 5,469,845, the disclosure of which is hereby incorporated by reference.
  • the gel material used is preferably an oil plasticized thermoplastic elastomer gel, such as the triblock copolymer gels obtainable from Silipos of Niagara
  • Such gels are preferably mineral oil-based. When manufactured, such gels can be exposed to radiation sufficient to cause cross- linking. As described in more detail below for some of the following characteristics, such gels are pressure absorbing (i.e., they distribute pressure applied to a patient in order to limit pressure irritation or trauma to the skin) , conform to the skin of the patient, have a mildly adhesive bond (i.e., they adhere to skin, yet can be peeled from sensitive skin without causing trauma) , and spread heat generated by the emitter.
  • pressure absorbing i.e., they distribute pressure applied to a patient in order to limit pressure irritation or trauma to the skin
  • conform to the skin of the patient have a mildly adhesive bond (i.e., they adhere to skin, yet can be peeled from sensitive skin without causing trauma) , and spread heat generated by the emitter.
  • Support layer 14 can be a cloth-like, woven, or non-woven fibrous material . This support layer is used for attachment to gel layer 15, with the gel preferably being at least partially embedded in support layer 14.
  • Protective layer 40 is a release liner applied over gel layer 15, which protects the gel layer and can be removed just before application to a patient.
  • Gel support layer 14 can be attached to cover layer 12 by any number of methods.
  • adhesives can be used.
  • ultrasonic welding can be used instead of an adhesive.
  • Fig. 5 is a diagram of an alternate embodiment in which gel support layer 14 is eliminated. Instead, gel layer 15 is applied directly to cover layer 12. Another, separable feature of this embodiment is that holes 16 and 18 over the emitter and detector are eliminated.
  • Fig. 6 is yet another alternate embodiment in which a cover layer 12 ' is shorter than cover layer 12 of Figs. 3-5.
  • the gel and support layers extend farther to allow them to wrap around an appendage.
  • attachment layer 22 could be eliminated, with the gel layer attaching to its own backside, or to a cover layer such as 12 or 12 ' , to secure the sensor to the patient. This embodiment reduces the thickness of the sensor, making it more flexible and less bulky.
  • the present invention also includes features designed to minimize undesirable light shunting from the emitter to the detector through the gel layer.
  • gap 52 in the gel and gel support layers exposes the underlying cover layer 12.
  • gap 52 could be filled with opaque material to reduce shunting.
  • the holes 16 and 18 above the emitter and detector prevent light being emitted or detected from scattering through the gel and inhibiting the effectiveness of the sensor. These holes also increase the efficiency of direct optical communication between emitter or detector and the human patient's tissue. If light enters the gel layer, the gel layer can act as a light pipe, directing light from emitter to detector without passing through the patient ' s tissue. This is one form of the phenomenon sometimes called optical shunt. The presence of holes 16 and 18 tend to reduce this effect.
  • the break 52 in the gel layer is provided for the same purpose, to limit this shunting of light from the emitter to the detector. Alternately, a material that absorbs light may be placed adjacent to the gel in order to minimize shunting.
  • the gel layer may be impregnated with a material which will scatter light and reduce light shunting.
  • the gel incorporates material which makes it opaque to at least some of the wavelengths emitted by emitter 24.
  • the emitter consists of two light sources such as LEDs, one emitting light in the red region, and another emitting light in the infrared region.
  • the gel layer is substantially opaque to at least one of the wavelengths, more preferably it is substantially opaque to both of the wavelengths.
  • the gel has titanium dioxide impregnated into it, which gives it a white appearance and scatters the light from the emitter to reduce shunting.
  • a black pigment may be used. Any dye or pigment substantially opaque at the two wavelengths of the emitter may be used. Alternately, a substance that is substantially opaque at just one wavelength may be sufficiently useful.
  • the materials of the sensor must somehow impede light that travels from emitter to detector, without going through the patient, to such an extent that the light which reaches the detector in this way has an acceptably small effect on the physiological measurement made by the sensor.
  • This does not necessarily require the materials to be totally opaque, which is why the configuration of Fig. 5, in which light that interacts with the patient must pass through the gel layer, can work.
  • shunt light reaching the detector it would usually suffice for shunt light reaching the detector to be reduced sufficiently to induce a photocurrent of less than 1 nanoamp (nA) when the emitting LED is driven at 50 milliamps (mA) .
  • shunt-induced photocurrent it would be still more desirable for shunt-induced photocurrent to be less than 0.1 nA. Because certain sensors are designed to work on patient sites where optical transmission through the patient's tissue is relatively high, it may be sufficient for a sensor designed for such a site to have photocurrent induced by optical shunt held to less than 10 nA. An example of such a site is the great toe of an infant for which the Nellcor Puritan Bennett 1-20 Oxisensor IITM oximetry sensor is often used.
  • the gel can be opaque at wavelengths other than those used for physiological measurement, such as less than 600 nm, to protect against ambient light interference, as opposed to shunting.
  • the gel may be impregnated with material opaque at wavelengths of less than the wavelengths used in the emitters to avoid ambient light interference. Since the gel will often be thicker than a typical adhesive layer, there may be more opportunity for ambient light to enter around the sides when it is attached to a patient.
  • shunting may also be sufficiently avoided by having a break in the gel layer or holes in the gel layer.
  • the material in the gel reduces ambient light interference, while the break int he gel reduces light shunting.
  • the gel may be made conductive to shield the electronic components from electromagnetic interference (EMI) , perhaps by incorporating silver chloride or indium tin oxide into the gel, for example.
  • EMI electromagnetic interference
  • the gel can also be used advantageously to spread heat generated by the emitter.
  • the emitter may be directly against the patient's skin, which may be problematic for very sensitive skin.
  • the heat can be spread out before reaching the patient ' s skin so that the peak temperature induced by a given heat input is reduced.
  • the heat spreading is caused by a combination of the thickness of the gel, the thermal conductivity of the gel, and in some designs by the presence of holes over the optics.
  • the gel is at least 0.005 inches thick.
  • Fig. 7 is an alternate embodiment of the present invention showing a sensor 60 having a cover layer 62 and a non-gel top layer 64 covering the electronics, with openings over the emitter and detector. Doughnut-shaped gel pads 66 and 68 are used to provide the limited adhesiveness needed around the emitter and detector areas of attachment to the patient. Alternately, a series of gel dots or other shapes could be used.
  • the gel doughnuts or dots are located around the optics of the sensor.
  • the patient's skin is contacted only by totally non-adhesive materials such as 64, or by mildly adhesive materials such as 66 and 68, where such materials may be needed in the immediate vicinity of sensor optics to reduce motion sensitivity in the sensor.
  • Another possibility would involve no holes in the gel dots which could further reduce motion sensitivity while minimizing adhesive area.
  • An example of a conformable sensor using an adhesive to reduce motion artifact is set forth in U.S. Patent No. 5,246,003, issued September 21, 1993, and incorporated herein by reference . Fig.
  • a clip-type sensor 70 includes a pair of gel pads 72 and 74 mounted inside of clip arms 76 and 78, respectively.
  • the gel pads 72 and 74 can have the gel exposed, or can have the gel enclosed within a flexible shell material, such as a plastic.
  • a sensor with wings could be used, with the wings folded around to contact the back side (i.e., see U.S. Patent No. 4,830,104, incorporated herein by reference) .
  • the gel itself could be used to contact the back side of the sensor cover layer 12 and provide sufficient adhesion to hold the sensor in place.
  • the sensor could be wrapped with a bandage to hold it in place, such as a stretchable, elastic and cloth wrap.
  • the gel is in contact with a copper or other shield.
  • a shield may be the shielding around cable 20 of Fig. 1, with the shielding connecting through the top of support layer 14 to the gel layer 15.
  • the gel manufactured by Silipos is described above, alternate gels may be used.
  • the gel support layer may be used with any gel, such as hydrogels.
  • the gel support layer could provide sufficient support to make the hydrogel easy to handle.
  • the gel is embedded in the gel support layer before curing, to provide better contact.
  • a woven, non-woven, or cloth-based support layer is described, any material which is at least semipermeable or porous to the gel can be used.
  • the gel sensor when manufactured, is preferably stored in a vapor permeable pouch to allow sterilization. This allows the sensor to be sterilized in the pouch with ethylene oxide, while allowing the ethylene oxide to escape after the sterilization step without requiring removal from the pouch.
  • a gel which will not dry out for a reasonable period of time in a vapor permeable pouch is preferred, and the above described Silipos gels meet this requirement.
  • Hydrogel for example, may need a vapor impermeable pouch to avoid drying out over a period of time.
  • the ability to easily sterilize allows the gel sensor of the present invention to either be a single use sensor or a reusable sensor.
  • the gel has an adhesion force of less than that of current adhesive oximetry sensors, such as the Nellcor Puritan Bennett N-25.
  • the adhesion force is preferably no more than a value of 50 ounce/inch (according to ASTM D3330) . More preferably, a value of less than 20 ounce/inch is used.
  • a gel which is insoluble in water is preferably used to avoid contamination of the gel due to spills, urine, etc.
  • the gel is preferably resistant to drying, so that it will not dry out for at least five days when exposed to ambient air. This will improve both the shelf life and the duration of time the gel can be effective when applied to a patient.
  • a mechanically compressed gel has the additional benefit of sealing out water.
  • the gel used preferably has sufficient adhesiveness to stick to the skin without having such high adhesion force that the skin would tear upon removal.
  • the gel will additionally dissipate the heat generated by the emitters over a large area, if the gel covers the entire portion of the front surface of the sensor which contacts the subject's tissue.
  • gel refers to a material which has a cohesive force greater than its adhesive force and produces a uniform, adhesive bond. Gels can be manufactured, for example, by casting, extrusion, dipping and coating. In addition, a gel is generally soft and conformable to the touch.
  • the gel material should accommodate and distribute bandage pressure, the pressure preferably accommodated by the material's inherently shock absorbing nature.
  • the material should be soft and flexible in order to easily conform to the skin.
  • the material should removably adhere to the skin in a non-irritating and non-drying manner, having bonding characteristics with the skin that permit the material to be easily removed without causing trauma to the skin nor damage to the material .
  • the material should be elastomeric, having sufficient integrity to repeatedly permit such easy removal.
  • the material should preferably have sufficiently stable and long-lived properties that would make it reusable and resistant to contamination.
  • a gel can be moldably manufactured using a shape- preserving, elastomeric (stretchable and inherently pressure compressible) , polymeric matrix. It is this matrix which inherently acts to absorb bandage stress.
  • the gel can be made sufficiently soft and flexible based upon controlling the degree of polymer cross-linking using plasticers.
  • This matrix is impregnated with a suitably inert, non-drying matrix filling fluid and thermoplastically molded in order to provide an integral and stable material having the desired adhesive bond adherence (physical and mechanical properties) to sensitive skin which enables the gel to easily and repeatedly "peel" away from the skin without causing trauma to the skin.
  • the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof.
  • the emitter could emit other types of radiation than light. Accordingly, the foregoing description is illustrative of the invention, but not limiting of the scope of the invention, which is set forth in the following claims.

Abstract

An improved sensor (10) using a gel (15). In one aspect, the gel is an oil plasticized thermoplastic elastomer gel. In one embodiment, the gel (15) is mineral oil-based. The gel may be embedded on a support layer (14). Means for reducing shunted light from the gel (15) are provided, such as substantially opaque material in the gel (15) or breaks in the gel.

Description

GEL PAD OPTICAL SENSOR
BACKGROUND OF THE INVENTION The present invention relates to optical sensors using a gel for application to a patient, and in particular to pulse oximeter sensors.
Many types of optical sensors are used to measure physiological characteristics of a patient. Typically, an optical sensor provides emitted light which is then scattered through tissue and detected. Various characteristics of a patient can be determined from analyzing such light, such as oxygen saturation, pulse rate, pH, etc.
Pulse oximetry is typically used to measure various blood flow characteristics including, but not limited to, the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and the rate of blood pulsations corresponding to each heartbeat of a patient. Measurement of these characteristics has been accomplished by use of a non- invasive sensor which scatters light through a portion of the patient's tissue where blood perfuses the tissue, and photoelectrically senses the absorption of light in such tissue. The amount of light absorbed is then used to calculate the amount of blood constituent being measured. The light scattered through the tissue is selected to be of one or more wavelengths that are absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood. The amount of transmitted light scattered through the tissue will vary in accordance with the changing amount of blood constituent in the tissue and the related light absorption. For measuring blood oxygen level, such sensors have typically been provided with a light source that is adapted to generate light of at least two different wavelengths, and with photodetectors sensitive to both of those wavelengths, in accordance with known techniques for measuring blood oxygen saturation.
Known non-invasive sensors include devices that are secured to a portion of the body, such as a finger, an ear or the scalp. In animals and humans, the tissue of these body portions is perfused with blood and the tissue surface is readily accessible to the sensor.
Some pulse oximetry sensors use adhesive gels to attach the sensor to a patient. For example, U.S. Patent
No. 5,054,488 to Muz shows gel pads placed directly over the emitter and detector. The gel is described as being a silicone-based gel that is transparent and is used for an adhesive . Another use of a gel adhesive is shown in U.S.
Patent No. 5,377,673 to Van Del. Transparent, water-based gel adhesives are described. These are used for a fetal sensor and are placed over the attaching surface of the sensor. The gels are described as colloids which are transparent and are easily washed off. U.S. Patent No. 5,394,877 discusses a mesh reinforced hydrogel film used with an ultrasound device.
Gel sensors are desirable for patients with sensitive skin. A normal, adhesive type sensor may tear sensitive skin upon being removed. Accordingly, a gel adhesive is desirable for fetuses, infants, burn victims, etc. It is desirable also to have a gel which is easy to handle and does not produce other adverse effects. For example, hydrogels tend to dry out quickly and are hard to sterilize. Allergic reactions are another concern. For example, many people are allergic to latex-based adhesives. SUMMARY OF THE INVENTION
The present invention provides an improved optical sensor using a gel. In one aspect, the gel is an oil plasticized thermoplastic elastomer gel. In one embodiment, the gel is mineral oil -based. In one embodiment, a woven scrim has the gel embedded onto it for ease of handling. Preferably, holes are opened in the gel over the emitter and detector to improve optical transmission and to prevent shunting of light. Additionally, the gel may have pigment, dye or other material incorporated in it to attenuate light at the desired wavelengths to further prevent shunting through the gel layer.
In one embodiment, a gel may be imbedded with electrically conductive material to provide an EMI shield. The gel may be placed on a thin support layer, and wrapped around a patient's finger or other appendage, with an attachment mechanism, such as Velcro™, closing the sensor by attaching one end to the back of the sensor, without requiring adhesive attachment to the patient's skin. The gel preferably has sufficient thickness to spread the heat from the emitter and limit the peak temperature caused by heat imparted to the patient's skin. The gel is preferably insoluble in water to seal out water-based contaminants. The gel is preferably sufficiently compressible and conformable to distribute high pressure being applied to the patient, thus avoiding pressure irritation or trauma to the skin.
For a further understanding of the nature and advantages of the invention, reference should be made to the following description taken in conjunction with the accompanying drawings . BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a gel pad sensor according to the present invention;
Fig. 2 is a top view of an embodiment of a sensor showing a shunt-avoiding gap in the gel layer;
Fig. 3 is a side, cutaway view of the sensor of Fig. 1 with an added release liner and attachment layer;
Fig. 4 is a side, disassembled view of the embodiment of Fig. 3; Fig. 5 is an alternate embodiment to that of
Fig. 4 without a gel support layer;
Fig. 6 is a side, disassembled view of an alternate embodiment of a sensor with a short cover layer; Fig. 7 is a perspective view of an alternate embodiment showing doughnut-shaped gel pads on a sensor; and Fig. 8 is a side view of an alternate embodiment showing gel pads in a clip-type sensor.
DETAIL DESCRIPTION OF THE PREFERRED EMBODIMENTS Fig. 1 illustrates on embodiment of a sensor 10 according to the present invention. The sensor includes a cover layer 12 (e.g., polyurethan) , on top of which a gel support layer 14 is mounted, with a gel layer 15 on tope of support layer 14. Openings 16 and 18 are left in the gel layer over an emitter 24 and a detector 26 mounted on cover layer 12. A cable 20 attaches to the emitter and detector via traces or wires 9 on cover layer 12. An attachment surface 22 is provided for adhering to the back side of cover layer 12 when the sensor is wrapped around a patient's finger or other appendage. In one embodiment, portion 22 may be a series of low curvature hooks for attaching to a woven or looped material on the backside of cover layer 12, such as a Velcro™ fastener. Fig. 1 also shows an optional calibration impedance or other device 21, which can indicate the wavelength of an emitter, or a set of coefficients to be used for the emitter (such as is shown in US Patent No. 4,621,643, the disclosure of which is hereby incorproated herein by reference) . Also shown is an optional additinal sensor 22, such as an EKG, a pressure sensor, or a C02 sensor.
Fig. 2 is a top view of an embodiment of a sensor including a gap 52 for reducing light shunting from the emitter to the detector through gel layer 15, as discussed in more detail below.
Fig. 3 is a side, cutaway view of the embodiment of Fig. 1 on a protective release liner 40. Fig. 3 shows an emitter 24 and a detector 26 mounted on cover layer 12 and surrounded by gel layer 15, with gel layer 15 being mounted on gel support layer 14. Also shown is the looped or woven layer 28 for portion 22 to attach to when wrapped around. Alternately, layer 28 could be eliminated, and portion 22 could be an adhesive for attaching to the back of cover layer 12.
Fig. 4 is a exploded view of the embodiment of Fig. 3 illustrating the components described above. Cover layer 12 could be a polyester or polyimide strip with metal traces deposited on it for providing the electrical connections, such as, for example, described in U.S. Patent No. 5,469,845, the disclosure of which is hereby incorporated by reference.
The gel material used is preferably an oil plasticized thermoplastic elastomer gel, such as the triblock copolymer gels obtainable from Silipos of Niagara
Falls, New York, and described in U.S. Patent No. 4,369,284, No. 4,618,213, and No. 5,262,468, the disclosures of which are hereby incorporated by reference. Such gels are preferably mineral oil-based. When manufactured, such gels can be exposed to radiation sufficient to cause cross- linking. As described in more detail below for some of the following characteristics, such gels are pressure absorbing (i.e., they distribute pressure applied to a patient in order to limit pressure irritation or trauma to the skin) , conform to the skin of the patient, have a mildly adhesive bond (i.e., they adhere to skin, yet can be peeled from sensitive skin without causing trauma) , and spread heat generated by the emitter.
Support layer 14 can be a cloth-like, woven, or non-woven fibrous material . This support layer is used for attachment to gel layer 15, with the gel preferably being at least partially embedded in support layer 14. Protective layer 40 is a release liner applied over gel layer 15, which protects the gel layer and can be removed just before application to a patient.
Gel support layer 14 can be attached to cover layer 12 by any number of methods. For example, adhesives can be used. Alternately, to avoid delamination, ultrasonic welding can be used instead of an adhesive.
Fig. 5 is a diagram of an alternate embodiment in which gel support layer 14 is eliminated. Instead, gel layer 15 is applied directly to cover layer 12. Another, separable feature of this embodiment is that holes 16 and 18 over the emitter and detector are eliminated.
Fig. 6 is yet another alternate embodiment in which a cover layer 12 ' is shorter than cover layer 12 of Figs. 3-5. The gel and support layers extend farther to allow them to wrap around an appendage. In an alternate embodiment, attachment layer 22 could be eliminated, with the gel layer attaching to its own backside, or to a cover layer such as 12 or 12 ' , to secure the sensor to the patient. This embodiment reduces the thickness of the sensor, making it more flexible and less bulky.
The present invention also includes features designed to minimize undesirable light shunting from the emitter to the detector through the gel layer. Returning to Fig. 2, gap 52 in the gel and gel support layers exposes the underlying cover layer 12. Alternately, gap 52 could be filled with opaque material to reduce shunting.
The holes 16 and 18 above the emitter and detector prevent light being emitted or detected from scattering through the gel and inhibiting the effectiveness of the sensor. These holes also increase the efficiency of direct optical communication between emitter or detector and the human patient's tissue. If light enters the gel layer, the gel layer can act as a light pipe, directing light from emitter to detector without passing through the patient ' s tissue. This is one form of the phenomenon sometimes called optical shunt. The presence of holes 16 and 18 tend to reduce this effect. The break 52 in the gel layer is provided for the same purpose, to limit this shunting of light from the emitter to the detector. Alternately, a material that absorbs light may be placed adjacent to the gel in order to minimize shunting. For a further discussion of optical shunting and methods for minimizing it, reference is made to a copending application of the same assignee, entitled "Shunt Barrier in Pulse Oximeter Sensors," Application No. 08/611,151, filed March 5, 1996, the disclosure of which is incorporated herein by reference. In alternate embodiments, the gel layer may be impregnated with a material which will scatter light and reduce light shunting. Preferably, the gel incorporates material which makes it opaque to at least some of the wavelengths emitted by emitter 24. In one embodiment, for a pulse oximeter sensor, the emitter consists of two light sources such as LEDs, one emitting light in the red region, and another emitting light in the infrared region. Preferably, the gel layer is substantially opaque to at least one of the wavelengths, more preferably it is substantially opaque to both of the wavelengths. In one embodiment, the gel has titanium dioxide impregnated into it, which gives it a white appearance and scatters the light from the emitter to reduce shunting. Alternately, a black pigment may be used. Any dye or pigment substantially opaque at the two wavelengths of the emitter may be used. Alternately, a substance that is substantially opaque at just one wavelength may be sufficiently useful.
To meet the requirement of substantial opacity, the materials of the sensor must somehow impede light that travels from emitter to detector, without going through the patient, to such an extent that the light which reaches the detector in this way has an acceptably small effect on the physiological measurement made by the sensor. This does not necessarily require the materials to be totally opaque, which is why the configuration of Fig. 5, in which light that interacts with the patient must pass through the gel layer, can work. As one quantitative example for typical sensors used in pulse oximetry, it would usually suffice for shunt light reaching the detector to be reduced sufficiently to induce a photocurrent of less than 1 nanoamp (nA) when the emitting LED is driven at 50 milliamps (mA) . It would be still more desirable for shunt-induced photocurrent to be less than 0.1 nA. Because certain sensors are designed to work on patient sites where optical transmission through the patient's tissue is relatively high, it may be sufficient for a sensor designed for such a site to have photocurrent induced by optical shunt held to less than 10 nA. An example of such a site is the great toe of an infant for which the Nellcor Puritan Bennett 1-20 Oxisensor II™ oximetry sensor is often used.
In an alternate embodiment, the gel can be opaque at wavelengths other than those used for physiological measurement, such as less than 600 nm, to protect against ambient light interference, as opposed to shunting. For example, the gel may be impregnated with material opaque at wavelengths of less than the wavelengths used in the emitters to avoid ambient light interference. Since the gel will often be thicker than a typical adhesive layer, there may be more opportunity for ambient light to enter around the sides when it is attached to a patient. In one embodiment, shunting may also be sufficiently avoided by having a break in the gel layer or holes in the gel layer. Thus, the material in the gel reduces ambient light interference, while the break int he gel reduces light shunting.
In one embodiment, the gel may be made conductive to shield the electronic components from electromagnetic interference (EMI) , perhaps by incorporating silver chloride or indium tin oxide into the gel, for example.
The gel can also be used advantageously to spread heat generated by the emitter. In a thin, adhesive sensor, the emitter may be directly against the patient's skin, which may be problematic for very sensitive skin. By using a gel of sufficient thickness, the heat can be spread out before reaching the patient ' s skin so that the peak temperature induced by a given heat input is reduced. The heat spreading is caused by a combination of the thickness of the gel, the thermal conductivity of the gel, and in some designs by the presence of holes over the optics. Preferably, the gel is at least 0.005 inches thick.
The effectiveness of the skin-contacting layer of the sensor in spreading heat will rise as its thermal conductivity increases. An estimate of the desirable value of thermal conductivity may be made by considering the thermal conductivity of the skin itself. Literature reviews show that reported measurements of the thermal conductivity of human skin vary widely.
Cohen (Cohen, Myron L. (1977) : Measurement of the thermal properties of human skin. A review. J. Invest.
Dermatol. 69(3), 333-338.) cites values of 7.0 and 7.7 x 10"4 cal/ (cm- sec • C) for in vivo skin with different levels of perfusion. Cohen points out the importance of water content and perfusion intensity in determining the effective conductivity. Since the same lower limit appears in Cohen's survey for excised and in vivo skin, we see 7 x 10" cal/ (cm- sec • C) as the lowest value he would propose for dry non-perfused skin. Multiplying by 418.4 to convert units, we obtain a range of 0.29 to 2.80 W/(m-K) . Another literature review, (Bowman, HF; Cravalho,
EG; Woods, M (1975) : Theory, measurement and application of thermal properties of biomaterials . Ann. Rev. 4, 43-80.), cites a list of references which partially overlap Cohen's list, to give a range of 0.23 to 2.87 W/(m-K) . We may therefore take 0.23 W/(m-K) as the minimum value that is at all likely to be observed in skin.
It is therefore desirable for the thermal conductivity of the skin-contacting layer of the sensor to be at least half that of skin, or 0.12 W/(m-K). Preferably the thermal conductivity of the skin-contacting layer should be at least 0.23 W/(m-K), and most preferably it should exceed that of water, which is 0.6 W/(m-K) . Fig. 7 is an alternate embodiment of the present invention showing a sensor 60 having a cover layer 62 and a non-gel top layer 64 covering the electronics, with openings over the emitter and detector. Doughnut-shaped gel pads 66 and 68 are used to provide the limited adhesiveness needed around the emitter and detector areas of attachment to the patient. Alternately, a series of gel dots or other shapes could be used. Preferably, the gel doughnuts or dots are located around the optics of the sensor. Thus, the patient's skin is contacted only by totally non-adhesive materials such as 64, or by mildly adhesive materials such as 66 and 68, where such materials may be needed in the immediate vicinity of sensor optics to reduce motion sensitivity in the sensor. Another possibility would involve no holes in the gel dots which could further reduce motion sensitivity while minimizing adhesive area. An example of a conformable sensor using an adhesive to reduce motion artifact is set forth in U.S. Patent No. 5,246,003, issued September 21, 1993, and incorporated herein by reference . Fig. 8 shows yet another embodiment of the invention in which a clip-type sensor 70 includes a pair of gel pads 72 and 74 mounted inside of clip arms 76 and 78, respectively. The gel pads 72 and 74 can have the gel exposed, or can have the gel enclosed within a flexible shell material, such as a plastic.
Alternate embodiments are also possible. For example, instead of the long strip of Figs. 1-7, a sensor with wings could be used, with the wings folded around to contact the back side (i.e., see U.S. Patent No. 4,830,104, incorporated herein by reference) . In one embodiment, rather than using Velcro™, the gel itself could be used to contact the back side of the sensor cover layer 12 and provide sufficient adhesion to hold the sensor in place. Alternately, or in addition, the sensor could be wrapped with a bandage to hold it in place, such as a stretchable, elastic and cloth wrap.
In one embodiment, where the gel is embedded with a conductive material for EMI shielding, the gel is in contact with a copper or other shield. Such a shield may be the shielding around cable 20 of Fig. 1, with the shielding connecting through the top of support layer 14 to the gel layer 15. Although the gel manufactured by Silipos is described above, alternate gels may be used. For example, the gel support layer may be used with any gel, such as hydrogels. The gel support layer could provide sufficient support to make the hydrogel easy to handle. In one embodiment, the gel is embedded in the gel support layer before curing, to provide better contact. Although a woven, non-woven, or cloth-based support layer is described, any material which is at least semipermeable or porous to the gel can be used. The gel sensor, when manufactured, is preferably stored in a vapor permeable pouch to allow sterilization. This allows the sensor to be sterilized in the pouch with ethylene oxide, while allowing the ethylene oxide to escape after the sterilization step without requiring removal from the pouch. A gel which will not dry out for a reasonable period of time in a vapor permeable pouch is preferred, and the above described Silipos gels meet this requirement. Hydrogel, for example, may need a vapor impermeable pouch to avoid drying out over a period of time. The ability to easily sterilize allows the gel sensor of the present invention to either be a single use sensor or a reusable sensor. Preferably, in order to minimize damaging a patient's sensitive skin, the gel has an adhesion force of less than that of current adhesive oximetry sensors, such as the Nellcor Puritan Bennett N-25. The adhesion force is preferably no more than a value of 50 ounce/inch (according to ASTM D3330) . More preferably, a value of less than 20 ounce/inch is used. In addition, a gel which is insoluble in water is preferably used to avoid contamination of the gel due to spills, urine, etc. Additionally, the gel is preferably resistant to drying, so that it will not dry out for at least five days when exposed to ambient air. This will improve both the shelf life and the duration of time the gel can be effective when applied to a patient. When using the mineral oil gel, it has an additional benefit of conditioning the skin. A mechanically compressed gel has the additional benefit of sealing out water. The gel used preferably has sufficient adhesiveness to stick to the skin without having such high adhesion force that the skin would tear upon removal. The gel will additionally dissipate the heat generated by the emitters over a large area, if the gel covers the entire portion of the front surface of the sensor which contacts the subject's tissue.
The term "gel" as used herein refers to a material which has a cohesive force greater than its adhesive force and produces a uniform, adhesive bond. Gels can be manufactured, for example, by casting, extrusion, dipping and coating. In addition, a gel is generally soft and conformable to the touch.
The gel material should accommodate and distribute bandage pressure, the pressure preferably accommodated by the material's inherently shock absorbing nature. The material should be soft and flexible in order to easily conform to the skin. The material should removably adhere to the skin in a non-irritating and non-drying manner, having bonding characteristics with the skin that permit the material to be easily removed without causing trauma to the skin nor damage to the material . The material should be elastomeric, having sufficient integrity to repeatedly permit such easy removal. The material should preferably have sufficiently stable and long-lived properties that would make it reusable and resistant to contamination.
A gel can be moldably manufactured using a shape- preserving, elastomeric (stretchable and inherently pressure compressible) , polymeric matrix. It is this matrix which inherently acts to absorb bandage stress. The gel can be made sufficiently soft and flexible based upon controlling the degree of polymer cross-linking using plasticers. This matrix is impregnated with a suitably inert, non-drying matrix filling fluid and thermoplastically molded in order to provide an integral and stable material having the desired adhesive bond adherence (physical and mechanical properties) to sensitive skin which enables the gel to easily and repeatedly "peel" away from the skin without causing trauma to the skin.
As will be understood by those with skill in the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. For example, the emitter could emit other types of radiation than light. Accordingly, the foregoing description is illustrative of the invention, but not limiting of the scope of the invention, which is set forth in the following claims.

Claims

WHAT TS CLAIMED IS:
1. A sensor comprising: a cover layer; an emitter disposed on a first side of said cover layer; a detector disposed on said first side of said cover layer; and an oil plasticized thermoplastic elastomer gel disposed on said first side of said cover layer.
2. The sensor of claim 1 wherein said gel contains mineral oil .
3. The sensor of claim 1 further comprising holes in said gel over at least one of said emitter and detector.
4. The sensor of claim 1 further comprising a break in said gel between said emitter and said detector to reduce radiation shunting from said emitter to said detector through said gel.
5. The sensor of claim 1 further comprising an at least partially opaque material incorporated in said gel between said emitter and said detector.
6. The sensor of claim 1 further comprising: a plurality of flexible hooks mounted on said first side of said cover layer adjacent an end of said cover layer; and a plurality of loops for attachment to said hooks on a second side of said cover layer.
7. The sensor of claim 1 further comprising an adhesive disposed on said first side of said cover layer adjacent an end of said cover layer for attaching to a second side of said cover layer.
8. The sensor of claim 1 wherein said gel has a thickness of greater than 0.005 inches.
9. The sensor of claim 1 wherein said sensor is a pulse oximeter sensor.
10. The sensor of claim 1 further comprising a vapor permeable, water impermeable, pouch enclosing said sensor.
11. The sensor of claim 1 wherein said gel has a thermal conductivity greater than 0.20 W/ (m*K) .
12. The sensor of claim 1 further comprising: a gel support layer disposed on said first side of said cover layer; and said gel being embedded in said gel support layer.
13. The sensor of claim 12 wherein said gel support layer is a woven material.
14. The sensor of claim 12 wherein said gel support layer is a fibrous material .
15. The sensor of claim 1 wherein said gel is substantially opaque to selected wavelengths of radiation.
16. The sensor of claim 15 wherein said selected wavelengths include at least some of the wavelengths of radiation emitted by said emitter.
17. A method of manufacturing a sensor, comprising the steps of : providing a cover layer; disposing an emitter on a first side of said cover layer; disposing a detector on said first side of said cover layer; and disposing an oil plasticized thermoplastic elastomer gel on said first side of said cover layer.
18. The method of claim 17 further comprising the steps of : embedding said gel in a support layer; and disposing said support layer onto said first side of said cover layer.
19. The method of claim 18 further comprising the step of bonding said support layer and gel to said cover layer using ultrasonic welding.
20. The method of claim 17 further comprising the steps of : using mineral oil in said gel; and subjecting said gel to radiation sufficient to cause cross-linking.
21. The method of claim 17 further comprising the step of incorporating radiation scattering particles in said gel.
22. A sensor comprising: a cover layer; an emitter disposed on a first side of said cover layer; a detector disposed on said first side of said cover layer; and a mineral oil based gel disposed on said first side of said cover layer.
23. The sensor of claim 22 further comprising holes in said gel over at least one of said emitter and detector.
24. The sensor of claim 22 further comprising a break in said gel between said emitter and said detector to reduce radiation shunting from said emitter to said detector through said gel.
25. The sensor of claim 22 further comprising: a gel support layer disposed on said first side of said cover layer; and said gel being embedded in said gel support layer.
26. The sensor of claim 22 further comprising: means for reducing shunt radiation to said detector to a level which results in less than 10 nA of shunt current produced by said detector.
27. An pulse oximeter sensor comprising: a cover layer; an emitter disposed on a first side of said cover layer; a detector disposed on said first side of said cover layer,- a support layer mounted on said first side of said cover layer; and a gel embedded in said support layer.
28. The sensor of claim 27 wherein said support layer is a woven material .
29. The sensor of claim 27 wherein said support layer is a fibrous material.
30. The sensor of claim 27 further comprising: a plurality of flexible hooks mounted on said first side of said cover layer adjacent an end of said cover layer; and a plurality of loops for attachment to said hooks on a second side of said cover layer.
31. The sensor of claim 27 further comprising an adhesive disposed on said first side of said cover layer adjacent an end of said cover layer for attaching to a second side of said cover layer.
32. The sensor of claim 27 wherein said gel has a thickness of greater than 0.005 inches.
33. The sensor of claim 27 further comprising: means for reducing shunt radiation to said detector to a level which results in less than 10 nA of shunt current produced by said detector.
34. A sensor comprising: a cover layer; an emitter disposed on a first side of said cover layer; a detector disposed on said first side of said cover layer; a gel mounted on said first side of said cover layer; and means for reducing shunt radiation to said detector to a level which results in less than 10 nA of shunt current produced by said detector.
35. The sensor of claim 34 wherein said means for reducing shunt radiation comprises said gel being substantially opaque to selected wavelengths of radiation.
36. The sensor of claim 34 wherein said shunt current is less than one nA.
37. The sensor of claim 34 wherein said shunt current is less than 0.1 nA.
38. The sensor of claim 34 wherein said means for reducing shunt radiation comprises an at least partially opaque material incorporated into said gel between said emitter and said detector.
39. The sensor of claim 34 wherein said means for reducing shunt radiation comprises an optically scattering material incorporated into said gel between said emitter and said detector.
40. The sensor of claim 34 wherein said means for reducing shunt radiation comprises an optically absorptive material incorporated into said gel between said emitter and said detector.
41. The sensor of claim 34 wherein said means for reducing shunt radiation comprises a break in said gel between said emitter and said detector.
42. A sensor comprising: a cover layer; an emitter disposed on a first side of said cover layer; a detector disposed on said first side of said cover layer; and a gel disposed on said first side of said cover layer, said gel being electrically conductive.
43. The sensor of claim 42 further comprising an electrical shield connected to said gel.
44. A sensor comprising: a cover layer; an emitter disposed on a first side of said cover layer; a detector disposed on said first side of said cover layer; a gel disposed on said first side of said cover layer; and wherein said gel defines holes over said emitter and detector such that radiation transmissions to and from said detector and emitter need not pass through said gel .
45. The sensor of claim 44 further comprising: a gel support layer disposed on said first side of said cover layer; and said gel being embedded in said gel support layer.
46. The sensor of claim 44 wherein said gel contains mineral oil .
47. The sensor of claim 44 wherein said gel has a thickness of greater than 0.005 inches.
48. The sensor of claim 44 wherein said sensor is a pulse oximeter sensor.
49. The sensor of claim 44 further comprising: means for reducing shunt radiation to said detector to a level which results in less than 10 nA of shunt current produced by said detector.
50. A sensor comprising: a cover layer; an emitter disposed on a first side of said cover layer; a detector disposed on said first side of said cover layer; a gel disposed on said first side of said cover layer; and wherein said gel defines a break between said emitter and detector to reduce radiation shunting from said emitter to said detector.
51. The sensor of claim 50 further comprising a substantially opaque material mounted in said break.
52. The sensor of claim 50 further comprising: a gel support layer disposed on said first side of said cover layer; and said gel being embedded in said gel support layer.
53. The sensor of claim 50 wherein said gel contains mineral oil .
54. The sensor of claim 50 wherein said gel has a thickness of greater than 0.005 inches.
55. The sensor of claim 50 wherein said sensor is a pulse oximeter sensor.
56. The sensor of any one of claims 1, 22, 27, 34, 42, 44 and 50 further comprising an impedance for indicating a characteristic of said emitter.
57. The sensor of any one of claims 1, 22, 27,
34, 42, 44 and 50 further comprising an additional sensing element .
58. The sensor of claim 57 wherein said additional sensing element is an EKG sensor.
PCT/US1997/019516 1996-10-31 1997-10-24 Gel pad optical sensor WO1998018382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/741,956 1996-10-31
US08/741,956 US5830136A (en) 1996-10-31 1996-10-31 Gel pad optical sensor

Publications (1)

Publication Number Publication Date
WO1998018382A1 true WO1998018382A1 (en) 1998-05-07

Family

ID=24982928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/019516 WO1998018382A1 (en) 1996-10-31 1997-10-24 Gel pad optical sensor

Country Status (2)

Country Link
US (1) US5830136A (en)
WO (1) WO1998018382A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007041217A2 (en) * 2005-09-29 2007-04-12 Nellcor Puritan Bennett Llc Medical sensor
EP2410905A1 (en) * 2009-03-25 2012-02-01 Nellcor Puritan Bennett LLC Medical sensor with compressible light barrier and technique for using the same
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same

Families Citing this family (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891026A (en) * 1996-01-29 1999-04-06 Ntc Technology Inc. Extended life disposable pulse oximetry sensor and method of making
US6018673A (en) 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US20070191697A1 (en) 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
DE69832888T2 (en) 1997-08-25 2006-08-24 Advanced Photodynamic Technologies, Inc., Mendota Heights DEVICE FOR TOPICAL PHOTODYNAMIC THERAPY
IL124787A0 (en) * 1998-06-07 1999-01-26 Itamar Medical C M 1997 Ltd Pressure applicator devices particularly useful for non-invasive detection of medical conditions
US5999834A (en) * 1998-06-18 1999-12-07 Ntc Technology, Inc. Disposable adhesive wrap for use with reusable pulse oximetry sensor and method of making
US7006855B1 (en) * 1998-11-16 2006-02-28 S.P.O. Medical Equipment Ltd. Sensor for radiance based diagnostics
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
AU7355900A (en) 1999-09-10 2001-04-10 Stephen H. Gorski Oximeter sensor with functional liner
WO2001037725A1 (en) 1999-11-22 2001-05-31 Mallinckrodt Inc. Pulse oximeter sensor with widened metal strip
US6385821B1 (en) 2000-02-17 2002-05-14 Udt Sensors, Inc. Apparatus for securing an oximeter probe to a patient
ES2392818T3 (en) 2000-04-17 2012-12-14 Nellcor Puritan Bennett Llc Pulse oximeter sensor with section function
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US6754516B2 (en) 2001-07-19 2004-06-22 Nellcor Puritan Bennett Incorporated Nuisance alarm reductions in a physiological monitor
US6748254B2 (en) * 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
US20030100840A1 (en) * 2001-11-28 2003-05-29 Nihon Kohden Corporation Pulse photometry probe
CA2488733C (en) * 2002-07-08 2013-09-17 Hilmar Br. Janusson Socket liner incorporating sensors to monitor amputee progress
US7698909B2 (en) 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
US7810359B2 (en) 2002-10-01 2010-10-12 Nellcor Puritan Bennett Llc Headband with tension indicator
US7190986B1 (en) 2002-10-18 2007-03-13 Nellcor Puritan Bennett Inc. Non-adhesive oximeter sensor for sensitive skin
US7006856B2 (en) 2003-01-10 2006-02-28 Nellcor Puritan Bennett Incorporated Signal quality metrics design for qualifying data for a physiological monitor
US7016715B2 (en) 2003-01-13 2006-03-21 Nellcorpuritan Bennett Incorporated Selection of preset filter parameters based on signal quality
CN1744851B (en) * 2003-02-05 2010-05-26 皇家飞利浦电子股份有限公司 Medical sensor
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US7280858B2 (en) * 2004-01-05 2007-10-09 Masimo Corporation Pulse oximetry sensor
US7120479B2 (en) 2004-02-25 2006-10-10 Nellcor Puritan Bennett Inc. Switch-mode oximeter LED drive with a single inductor
US7190985B2 (en) 2004-02-25 2007-03-13 Nellcor Puritan Bennett Inc. Oximeter ambient light cancellation
US20050197548A1 (en) * 2004-03-05 2005-09-08 Elekon Industries Usa, Inc. Disposable/reusable flexible sensor
US7194293B2 (en) 2004-03-08 2007-03-20 Nellcor Puritan Bennett Incorporated Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US7534212B2 (en) 2004-03-08 2009-05-19 Nellcor Puritan Bennett Llc Pulse oximeter with alternate heart-rate determination
US7844344B2 (en) * 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable lead
US7844343B2 (en) 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable medical device
US8989840B2 (en) 2004-03-30 2015-03-24 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7877150B2 (en) 2004-03-30 2011-01-25 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US9155877B2 (en) 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US8219168B2 (en) * 2004-04-13 2012-07-10 Abbott Diabetes Care Inc. Article and method for applying a coupling agent for a non-invasive optical probe
DE102004028359B4 (en) * 2004-06-11 2007-09-13 Drägerwerk AG Device for measuring body core temperature
US7937128B2 (en) 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
US8280526B2 (en) 2005-02-01 2012-10-02 Medtronic, Inc. Extensible implantable medical lead
US7392075B2 (en) 2005-03-03 2008-06-24 Nellcor Puritan Bennett Incorporated Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
TWI250866B (en) * 2005-03-21 2006-03-11 Ind Tech Res Inst Flexible equipment for monitoring vital signals
US7548771B2 (en) * 2005-03-31 2009-06-16 Nellcor Puritan Bennett Llc Pulse oximetry sensor and technique for using the same on a distal region of a patient's digit
WO2006110488A2 (en) * 2005-04-08 2006-10-19 Ric Investments, Llc High efficiency photoplethysmographic sensor with coupling gel
US7853332B2 (en) 2005-04-29 2010-12-14 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US8027736B2 (en) 2005-04-29 2011-09-27 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7925332B2 (en) * 2005-05-13 2011-04-12 Infrared Imaging Systems, Inc. Disposable light source patch for enhanced visualization of subcutaneous structures
US8287451B2 (en) * 2005-05-19 2012-10-16 Industrial Technology Research Institute Flexible biomonitor with EMI shielding and module expansion
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US20070060808A1 (en) 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
US8092379B2 (en) 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US7555327B2 (en) 2005-09-30 2009-06-30 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7486979B2 (en) 2005-09-30 2009-02-03 Nellcor Puritan Bennett Llc Optically aligned pulse oximetry sensor and technique for using the same
US20070106126A1 (en) 2005-09-30 2007-05-10 Mannheimer Paul D Patient monitoring alarm escalation system and method
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US20070100220A1 (en) 2005-10-28 2007-05-03 Baker Clark R Jr Adjusting parameters used in pulse oximetry analysis
US7668579B2 (en) 2006-02-10 2010-02-23 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US8702606B2 (en) 2006-03-21 2014-04-22 Covidien Lp Patient monitoring help video system and method
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8255025B2 (en) 2006-06-09 2012-08-28 Nellcor Puritan Bennett Llc Bronchial or tracheal tissular water content sensor and system
US8380271B2 (en) 2006-06-15 2013-02-19 Covidien Lp System and method for generating customizable audible beep tones and alarms
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8190224B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US8728059B2 (en) 2006-09-29 2014-05-20 Covidien Lp System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8068890B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Pulse oximetry sensor switchover
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7476131B2 (en) 2006-09-29 2009-01-13 Nellcor Puritan Bennett Llc Device for reducing crosstalk
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
GB0619322D0 (en) * 2006-09-30 2006-11-08 Greater Glasgow Nhs Board Apparatus for coupling an ultrasound probe to an object
US20080146958A1 (en) * 2006-10-12 2008-06-19 Kenneth Shane Guillory Self-contained seizure monitor and method
US20080091089A1 (en) * 2006-10-12 2008-04-17 Kenneth Shane Guillory Single use, self-contained surface physiological monitor
US20080091090A1 (en) * 2006-10-12 2008-04-17 Kenneth Shane Guillory Self-contained surface physiological monitor with adhesive attachment
US10537730B2 (en) 2007-02-14 2020-01-21 Medtronic, Inc. Continuous conductive materials for electromagnetic shielding
US9044593B2 (en) 2007-02-14 2015-06-02 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8483842B2 (en) 2007-04-25 2013-07-09 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US8275553B2 (en) 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US9037263B2 (en) 2008-03-12 2015-05-19 Medtronic, Inc. System and method for implantable medical device lead shielding
US8140272B2 (en) 2008-03-27 2012-03-20 Nellcor Puritan Bennett Llc System and method for unmixing spectroscopic observations with nonnegative matrix factorization
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
WO2009137682A1 (en) 2008-05-07 2009-11-12 Lynn Lawrence A Medical failure pattern search engine
JP4565418B2 (en) * 2008-06-24 2010-10-20 日本光電工業株式会社 Pulse photometry probe
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US20100081904A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Device And Method For Securing A Medical Sensor to An Infant's Head
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
GB2465230B (en) * 2008-11-17 2013-08-21 Dialog Devices Ltd Assessing a subject's circulatory system
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US9186499B2 (en) 2009-04-30 2015-11-17 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US9010634B2 (en) 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8505821B2 (en) 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US8391941B2 (en) 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8494606B2 (en) 2009-08-19 2013-07-23 Covidien Lp Photoplethysmography with controlled application of sensor pressure
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8704666B2 (en) 2009-09-21 2014-04-22 Covidien Lp Medical device interface customization systems and methods
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8376955B2 (en) 2009-09-29 2013-02-19 Covidien Lp Spectroscopic method and system for assessing tissue temperature
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US9554739B2 (en) 2009-09-29 2017-01-31 Covidien Lp Smart cable for coupling a medical sensor to an electronic patient monitor
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
WO2013158189A1 (en) 2012-04-19 2013-10-24 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
US20130303869A1 (en) * 2012-05-11 2013-11-14 Wellsense Inc. Mobile analyte monitoring system
DE102012018076B4 (en) * 2012-09-13 2014-06-12 Lohmann Gmbh & Co. Kg Adhesive functional strip for transcutaneous fluorescence measurement and related manufacturing processes and uses
WO2014089331A1 (en) 2012-12-06 2014-06-12 Ossur Hf Electrical stimulation for orthopedic devices
US9301718B2 (en) 2013-03-14 2016-04-05 Covidien Lp Reusable wireless medical sensors
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
WO2016014427A1 (en) 2014-07-23 2016-01-28 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10155111B2 (en) 2014-07-24 2018-12-18 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10646144B2 (en) 2015-12-07 2020-05-12 Marcelo Malini Lamego Wireless, disposable, extended use pulse oximeter apparatus and methods
JP6815195B2 (en) * 2016-12-27 2021-01-20 日本光電工業株式会社 Mounting tape and probe for pulse photometry
US20180199869A1 (en) * 2017-01-19 2018-07-19 General Electric Company Pulse oximetry sensors and methods
US10659963B1 (en) 2018-02-12 2020-05-19 True Wearables, Inc. Single use medical device apparatus and methods

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369284A (en) 1977-03-17 1983-01-18 Applied Elastomerics, Incorporated Thermoplastic elastomer gelatinous compositions
US4618213A (en) 1977-03-17 1986-10-21 Applied Elastomerics, Incorporated Gelatinous elastomeric optical lens, light pipe, comprising a specific block copolymer and an oil plasticizer
US4621643A (en) 1982-09-02 1986-11-11 Nellcor Incorporated Calibrated optical oximeter probe
US4830104A (en) 1987-11-17 1989-05-16 Atlantic Richfield Company Actuation indicator for downhole tools
US5054488A (en) 1989-04-20 1991-10-08 Nicolay Gmbh Optoelectronic sensor for producing electrical signals representative of physiological values
EP0492399A2 (en) * 1990-12-20 1992-07-01 Abbott Laboratories A packaging system for a sterilizable calibratable medical device
EP0509130A1 (en) * 1991-04-16 1992-10-21 Matsuura Machinery Corporation Centralized lubrication apparatus
US5170786A (en) * 1990-09-28 1992-12-15 Novametrix Medical Systems, Inc. Reusable probe system
US5177143A (en) * 1984-08-31 1993-01-05 Raychem Corporation Method of making heat stable polymeric gelloid composition
US5246003A (en) 1991-08-28 1993-09-21 Nellcor Incorporated Disposable pulse oximeter sensor
US5262468A (en) 1977-03-17 1993-11-16 Applied Elastomerics, Inc. Thermoplastic elastomer gelatinous compositions
EP0573137A2 (en) * 1992-06-03 1993-12-08 Alza Corporation Methods and devices for facilitated non-invasive oxygen monitoring
US5377673A (en) 1993-03-22 1995-01-03 Van Dell; Peter Intrauterine monitoring device
US5394877A (en) 1993-04-01 1995-03-07 Axon Medical, Inc. Ultrasound medical diagnostic device having a coupling medium providing self-adherence to a patient

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1153427A (en) * 1978-12-11 1983-09-06 Patrick T. Cahalan Tape electrode
US4634207A (en) * 1982-10-12 1987-01-06 Raychem Corporation Apparatus and method for protection of a substrate
US4600261A (en) * 1982-10-12 1986-07-15 Raychem Corporation Apparatus and method for protection of electrical contacts
US5140746A (en) * 1982-10-12 1992-08-25 Raychem Corporation Method and device for making electrical connector
US4643924A (en) * 1985-03-25 1987-02-17 Raychem Corporation Protective article comprising an elastic gel
US5109849A (en) * 1983-08-30 1992-05-05 Nellcor, Inc. Perinatal pulse oximetry sensor
US4593053A (en) * 1984-12-07 1986-06-03 Medtronic, Inc. Hydrophilic pressure sensitive biomedical adhesive composition
US4685464A (en) * 1985-07-05 1987-08-11 Nellcor Incorporated Durable sensor for detecting optical pulses
US4890619A (en) * 1986-04-15 1990-01-02 Hatschek Rudolf A System for the measurement of the content of a gas in blood, in particular the oxygen saturation of blood
DE3875149T2 (en) * 1987-03-27 1993-02-11 Isao Karube MINIATURIZED BIO-SENSOR WITH MINIATURIZED OXYGEN ELECTRODE AND ITS PRODUCTION PROCESS.
US5402778A (en) * 1993-01-19 1995-04-04 Nim Incorporated Spectrophotometric examination of tissue of small dimension
EP0527703B1 (en) * 1991-08-12 1995-06-28 AVL Medical Instruments AG Device for measuring at least one gaseous concentration level in particular the oxygen concentration level in blood
US5337744A (en) * 1993-07-14 1994-08-16 Masimo Corporation Low noise finger cot probe
US5452717A (en) * 1993-07-14 1995-09-26 Masimo Corporation Finger-cot probe

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262468A (en) 1977-03-17 1993-11-16 Applied Elastomerics, Inc. Thermoplastic elastomer gelatinous compositions
US4618213A (en) 1977-03-17 1986-10-21 Applied Elastomerics, Incorporated Gelatinous elastomeric optical lens, light pipe, comprising a specific block copolymer and an oil plasticizer
US4369284A (en) 1977-03-17 1983-01-18 Applied Elastomerics, Incorporated Thermoplastic elastomer gelatinous compositions
US4621643A (en) 1982-09-02 1986-11-11 Nellcor Incorporated Calibrated optical oximeter probe
US5177143A (en) * 1984-08-31 1993-01-05 Raychem Corporation Method of making heat stable polymeric gelloid composition
US4830104A (en) 1987-11-17 1989-05-16 Atlantic Richfield Company Actuation indicator for downhole tools
US5054488A (en) 1989-04-20 1991-10-08 Nicolay Gmbh Optoelectronic sensor for producing electrical signals representative of physiological values
US5170786A (en) * 1990-09-28 1992-12-15 Novametrix Medical Systems, Inc. Reusable probe system
EP0492399A2 (en) * 1990-12-20 1992-07-01 Abbott Laboratories A packaging system for a sterilizable calibratable medical device
EP0509130A1 (en) * 1991-04-16 1992-10-21 Matsuura Machinery Corporation Centralized lubrication apparatus
US5246003A (en) 1991-08-28 1993-09-21 Nellcor Incorporated Disposable pulse oximeter sensor
US5469845A (en) 1991-08-28 1995-11-28 Nellcor Incorporated Disposable pulse oximeter sensor
EP0573137A2 (en) * 1992-06-03 1993-12-08 Alza Corporation Methods and devices for facilitated non-invasive oxygen monitoring
US5377673A (en) 1993-03-22 1995-01-03 Van Dell; Peter Intrauterine monitoring device
US5394877A (en) 1993-04-01 1995-03-07 Axon Medical, Inc. Ultrasound medical diagnostic device having a coupling medium providing self-adherence to a patient

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007041217A2 (en) * 2005-09-29 2007-04-12 Nellcor Puritan Bennett Llc Medical sensor
WO2007041217A3 (en) * 2005-09-29 2007-07-12 Nellcor Puritan Bennett Inc Medical sensor
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
EP2410905A1 (en) * 2009-03-25 2012-02-01 Nellcor Puritan Bennett LLC Medical sensor with compressible light barrier and technique for using the same

Also Published As

Publication number Publication date
US5830136A (en) 1998-11-03

Similar Documents

Publication Publication Date Title
US5830136A (en) Gel pad optical sensor
US10588556B2 (en) Non-invasive physiological sensor cover
JP5865909B2 (en) Disposable and removable sensor for continuous non-invasive arterial blood pressure monitoring
US7813779B2 (en) Hat-based oximeter sensor
US6763255B2 (en) Shunt barrier in pulse oximeter sensor
US4380240A (en) Apparatus for monitoring metabolism in body organs
US5817008A (en) Conformal pulse oximetry sensor and monitor
US7373188B2 (en) Shunt barrier in pulse oximeter sensor
CA2262914A1 (en) Infant/neonatal pulse oximeter sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998520688

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase