WO1998013911A1 - Frequenzverdoppelter diodengepumpter festkörperlaser - Google Patents

Frequenzverdoppelter diodengepumpter festkörperlaser Download PDF

Info

Publication number
WO1998013911A1
WO1998013911A1 PCT/EP1997/005241 EP9705241W WO9813911A1 WO 1998013911 A1 WO1998013911 A1 WO 1998013911A1 EP 9705241 W EP9705241 W EP 9705241W WO 9813911 A1 WO9813911 A1 WO 9813911A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
frequency
doubling
laser
medium
Prior art date
Application number
PCT/EP1997/005241
Other languages
English (en)
French (fr)
Inventor
Martin NÄGELE
Egon Pfeifer
Krassimir Stankov
Original Assignee
Lasos Laser-Fertigung Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lasos Laser-Fertigung Gmbh filed Critical Lasos Laser-Fertigung Gmbh
Priority to EP97943897A priority Critical patent/EP0864190B1/de
Priority to JP10515268A priority patent/JP2000501521A/ja
Priority to US09/066,407 priority patent/US6125129A/en
Publication of WO1998013911A1 publication Critical patent/WO1998013911A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0401Arrangements for thermal management of optical elements being part of laser resonator, e.g. windows, mirrors, lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/08045Single-mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/0805Transverse or lateral modes by apertures, e.g. pin-holes or knife-edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1028Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the temperature

Definitions

  • the invention relates to a frequency-doubled diode-pumped Festkor perlaser with resonator-internal frequency doubling, comprising a lasing Festkor permedium with suitable reflective coatings, which is part of a resonator cavity, at least one pump light source designed as a laser diode for generating suitable pumping light radiation, a frequency-doubling non-linear optical Element in the form of a nonlinear crystal with suitable reflective coatings, which forms a further component of the resonator cavity, the resonator cavity being formed between reflective coatings of the solid-state medium and the frequency-doubling element and opti see means which are arranged downstream of the pump light source and the pump radiation to the laser Direct medium
  • Such lasers have their own characteristic noise behavior, which is due to the combined effect of non-linear processes, such as, for example, frequency doubling, the mixing of the longitudinal modes and spatial "hole burning" in the active lasing medium is known as the "green problem" with internally frequency-doubled lasers.
  • the noise behavior is characterized by a periodic change in the amplitude of the light by a few tens to a few hundred kilohertz or by irregular fluctuations. The amplitude of the noise extends from a few pros Centers up to 100% of the modulation.
  • Nonlinear crystals such as those used in solid-state lasers, have absorption losses in the radiation with the fundamental frequency quenz and with the frequency-doubled radiation, which lead to an undesirable heating of the non-linear crystal.
  • the temperature changes occurring in the central zone of the laser beam can reach several hundred ° K on, so that an optimal phase adjustment cannot take place, with the result that the frequency-doubled radiation is reduced in power. This means that almost all known frequency-doubled solid-state lasers do not work optimally
  • such a low-noise function of such a laser is achieved by using a type II non-linear crystal (KTP or KT1OPO4) as part of a birefringent filter, e.g. a Lyot filter, achieved ("Optics Letters", vol 1 3, (1 988), pages 805 to 807)
  • KTP or KT1OPO4 type II non-linear crystal
  • a Lyot filter achieved
  • a frequency-doubled single frequency laser is known in which, among other things, a laser diode, one with rare Earthing doped laser crystal and a frequency-doubling material can be used in a common resonator.
  • This device generates stable green optical radiation and does not have the problems caused by the "spatial hole burning", so that a single frequency mode at the output of the laser is available
  • a stable low-noise function of the laser is achieved in a narrow temperature range, which is realized by a suitable electronic circuit.
  • the disadvantage is the complicated construction of the resonator, which affects the wide use of this type of laser
  • a diode-pumped laser is known from WO 95/21 480 and from US Pat. No. 5,446,749, in which the internally resonant frequency doubling of a large number of longitudinal modes is used in order to suppress the noise and achieve high amplitude stability Resonators is designed for about 1 00 modes.
  • the disadvantage of this solution is that a resonator length of more than one meter is required, which is not practical for many applications and limits the use or area of application as a high-power laser
  • this object is achieved in a frequency-doubled diode-pumped solid-state laser in that at least one aperture made of thermally conductive material is provided on the frequency-doubling element and / or on the lasing solid body medium, and in that the frequency-doubling optical element for phase adjustment at a temperature higher than the temperature of the Environment is designed
  • the thermally conductive aperture is dimensioned such that a single transverse mode TEM 00 is realized It is also advantageous if the thermally conductive apertures, which bring about good heat dissipation, are arranged on both end faces of the frequency-doubling element, this element being a crystal of potassium titanyl phosphate (KTP), a highly non-linear material, or of ammonium dihydrogen phosphate (ADP) , Lithium t ⁇ borat (LBO), lithium iodate or other suitable materials, such as are specified in US Pat. No. 5,1 64,947, consists of the lasing solid medium, the actual laser crystal, advantageously consists of Nd YAG, Nd YVO4, Nd LSB or other known suitable materials
  • the realization that the laser crystal and the frequency-doubling element are in thermal contact with the thermal also contributes to the realization of favorable thermal conditions in the entire resonator cavity, which include the laser crystal and the frequency-doubling element, which is also a crystal guiding aperture
  • the ends of the laser crystal as an active laser medium are provided with suitable reflective or transmitting coatings, as is the frequency-doubling element.
  • a first surface of the laser crystal, which faces the pump light source upstream of the laser crystal, is coated with a coating that is highly transparent to the pump radiation emitted by the pump light source, however, is highly reflective for the laser radiation generated by the lasing material with a fundamental frequency or fundamental wavelength.
  • the other surface of the laser crystal opposite the first surface mentioned is provided with an anti-reflective layer, which enables the laser radiation to be mixed with the Fundamental wavelength can emerge from the laser crystal with little loss
  • the non-linear element the frequency of the laser radiation emerging from the laser crystal, the non-linear crystal, is coated on its surface facing the laser crystal with an anti-reflective layer (anti-reflection layer) effective for the laser radiation.
  • the opposite surface of this element is coated with the laser radiation fundamental wavelength provided highly reflective coating for the self-formed in the element and with respect to the frequency-converted radiation at half the wavelength or twice the frequency of the radiation of the read ⁇ the crystal is provided, these said opposite surface with a covering which a low-loss leakage of the frequency-doubled radiation made possible from the element This also ensures that there is no large beam heating losses of both the laser crystal and the frequency-doubling element.
  • the frequency-doubling crystal is designed and provided for working at higher temperatures, i.e. at normal temperatures, a non-optimal phase adjustment for frequency doubling is accepted.
  • the temperature in the laser crystal rises, which is due to the absorption of both the laser radiation and the radiation doubled in frequency in this element.
  • the phase adaptation is therefore always more optimal and the power of the radiation doubled in frequency continues to increase continuously up to a temperature optimum.
  • FIG. 1 shows a solid-state laser according to the invention as a block diagram.
  • FIG. 2 shows a section through such a laser.
  • FIG. 4 shows a frequency-doubling element with an aperture
  • the frequency-doubled diode-pumped solid-state laser shown in FIG. 1 comprises a lasing solid-state medium 1 with suitable reflecting or transmitting coatings 1 .1; 1 .2 and is designed as a laser crystal.
  • This laser crystal consists for example of Nd.YAG; Nd.YAP; Nd: YV04, Nd: GdW ⁇ 4 or Nd: LSB and is part of a resonator cavity.
  • a pump light source 2 is also provided for generating suitable pump light radiation in order to excite the solid-state medium 1 to generate laser radiation. It is advantageous if at least one laser diode is used as the pump light source 2.
  • Optical means 3, which transmit the pump light radiation to the lasing medium 1, are arranged between the lasing solid body medium 1 and the pumping light source 2. These optical means 3 can be, for example, light guides or lenses
  • a nonlinear optical element 5 doubling the frequency of the laser radiation leaving the laser crystal, for example in the form of a nonlinear crystal made of KTP; KDP, LBO, ADP or LÜO3, which is advantageously covered with suitable reflective layers 5.1.
  • This element 5 is designed such that an optimal phase adaptation takes place at a temperature higher than the ambient temperature between the coatings 11 of the lasing medium 1 and the layers 5 1 of the optical element 5 is the area of the resonator cavity.
  • An aperture 6 made of thermally conductive material is provided in close thermal contact with the frequency-doubling element 5 and / or also with the lasing solid medium 1.
  • This aperture 6 can be, for example, a film made of indium or another suitable material, which has a central opening 7 through which the radiation generated can pass.
  • the coatings of the individual surfaces are advantageously carried out as follows:
  • the surface of the lasing solid medium 1 which faces the pump light source 2 is vapor-coated with a layer 1 .1 which is highly transparent for the pump light radiation but highly reflective for the laser radiation.
  • the other surface of the solid-state medium 1 is covered with a layer 1 .2 that is transparent to the laser radiation for reflection.
  • the surface 5.2 of the element 5 facing the lasing solid-state medium 1 is provided with an antireflection layer
  • the other surface of the element 5 has a layer 5.1 which is opaque to the wavelength of the laser radiation, but which is highly transparent to the radiation of the element 5 which is doubled in frequency or halved in its wavelength.
  • the solid-state laser shown in section in FIG. 2 has a housing 1 0 with a heat sink 1 1, in which the lasing solid medium 1 (laser crystal) is arranged in a holder 1 2.
  • a laser diode 1 3 is arranged as pump light source 2 axially aligned with the laser crystal in the housing 1 0.
  • the optical means 3, which transmit the pumping light radiation to the laser crystal, are located between the laser diode 1 3 and the lasing solid-state medium 1.
  • a Peltier element 1 4, with which the laser diode 1 3 is thermally closely connected, serves to set the temperature in the housing 1 0 and thus also in the entire resonator cavity. In the solution according to the invention, the temperature at which the noise of the output radiation is lowest is determined once before the laser is mounted. The cavity is then repeatedly adjusted to this temperature during the work of the laser with the aid of the Peltier element 1 4.
  • the holder 4 for the frequency-doubling element 5 is provided on the side of the lasing medium 1 facing away from the laser diode 1 3.
  • the aperture 6 is made of thermally highly conductive material, e.g. Indium or another suitable material.
  • the light generated by the lasing solid medium 1 and doubled in frequency by the element 5 is emitted to the outside via a beam splitter 1 6 through an opening 1 7, which can be locked by a closure 1 5.
  • Part of the emitted light is directed by the beam splitter 16 onto a monitor diode 20, with which, inter alia, the operating state of the laser arrangement can be displayed.
  • End covers 1 8 and 1 9 are provided on both sides of the housing 1 0, with which this can be completed.
  • the frequency-doubling element 5 is arranged in the holder 4, which is provided with a central bore 21 through which the light via the beam splitter 1 6 (see FIG. 2) and the opening 1 7 (likewise Fig.2) is emitted to the outside.
  • the thermally highly conductive aperture 6 is connected with its one side surface to the one end surface 22 of the holder 4 and with its other side surface to a cover 23.
  • the frequency-doubling element 5 a non-linear optical crystal known per se, is arranged.
  • the intimate contact of the element 5 on the one hand with the holder 4 and on the other hand with the thermally highly conductive aperture 6 brings about good heat dissipation or distribution for the element 5
  • FIGS. 1 and 5 show the arrangement of the iasenden solid-state medium 1 (laser crystal) in a holder 1 2 provided for this purpose, the light opening 25 of which faces the pumping light source 2 (cf. FIGS. 1 and 5).
  • the end faces 26 and 27 are advantageous with optically effective coatings 11 and 1 2 occupied
  • the end face 26 which faces the pump light source is provided with a coating 1 2 which is highly transparent to the pump radiation and the end face 27 is provided with a coating 1 1 which is highly reflective of the laser radiation
  • Fig. 5 shows the structure of the pumping device, which consists of a Peltier element 1 4 and egg ner pump light source 2, for example in the form of a laser diode 1 3 (see FIG. 2) or another suitable light source.
  • the pump light source 2 is supplied with power via connections 28 Radiation emanating from the pump light source 2 is fed to the laser crystal (solid medium 1) via downstream optical means 3, which are shown in FIG. 5 as a lens.
  • the Peltier element 1 4 is used to adjust the temperature of the pump light source 2 and the entire laser cavity to ensure operation enable in a temperature range in which the noise level of the emitted radiation is the lowest
  • the pump device, the holder 1 2 for the laser crystal and the holder 4 for the frequency-doubling element 5 are arranged in alignment with the optical axis 29. It is advantageous if the lasing solid medium 1 and the frequency-doubling element 5 stand in close thermal contact with a single aperture 6 (not shown in the figures). This makes it possible to achieve a particularly advantageous temperature regulation and setting at a value at which the noise of the output radiation from the laser has a minimal amount ß Solid-state lasers set during assembly and maintained during laser operation with the help of the Peltier element 1 4 or another suitable arrangement.

Abstract

Es ist ein frequenzverdoppelter diodengepumpter Festkörperlaser mit einer resonatorinternen Frequenzverdopplung vorgesehen, welcher ein lasendes Festkörpermedium (1) mit geeigneten Belägen umfaßt, das ein Bestandteil einer Resonatorkavität ist. Der Festkörperlaser umfaßt ferner eine als Laserdiode (13) ausgebildete Pumplichtquelle (2) und ein Frequenzverdoppelndes nichtlineares optisches Element (5) in Form eines nichtlinearen Kristalls mit geeigneten reflektierenden Beschichtungen, welches einen weiteren Bestandteil der Resonatorkavität bildet. Diese Resonatorkavität wird zwischen den reflektierenden Beschichtungen des Festkörpermediums (1) und des Elementes (5) gebildet. Durch optische Mittel (3) wird die Pumpstrahlung auf das lasende Festkörpermedium (1) übertragen. Es ist jeweils mindestens eine Apertur (6) aus thermisch gut leitendem Material am Element (5) und/oder am lasenden Festkörpermedium (1) vorgesehen. Das frequenzverdoppelnde optische Element (5) ist dabei für eine Phasenanpassung bei einer höheren Temperatur als die Temperatur der Umgebung ausgelegt.

Description

Titel
Frequenzverdoppelter diodengepumpter Festkörperlaser
Gebiet der Erfindung Die Erfindung bezieht sich auf einen frequenzverdoppelten diodengepumpten Festkor perlaser mit resonatorinterner Frequenzverdopplung, umfassend ein lasendes Festkor permedium mit geeigneten reflektierenden Belagen, welches einen Bestandteil einer Resonatorkavität darstellt, mindestens eine als Laserdiode ausgebildete Pumplicht quelle zur Erzeugung geeigneter Pumplichtstrahlung, ein frequenzverdoppelndes nichtlmeares optisches Element im Form eines nichtlinearen Kristalls mit geeigneten reflektierenden Beschichtungen, welches einen weiteren Bestandteil der Resonatorkavi tat bildet, wobei die Resonatorkavität zwischen reflektierenden Beschichtungen des Festkorpermediums und des frequenzverdoppelnden Elements gebildet ist und opti sehe Mittel, die der Pumplichtquelle nachgeordnet sind und die Pumpstrahlung an das lasende Medium leiten
Stand der Technik
Derartige Laser weisen ein eigenes charakteristisches Rauschverhalten auf, welches bedingt ist durch die kombinierte Wirkung von nichtlmearen Vorgangen, wie z B eine Frequenzverdopplung, die Mischung der longitudmalen Moden sowie das räumliche "Lochbrennen" (spatial-hole-burning) im aktiven lasenden Medium Dieses Merkmal ist bekannt als das "grüne Problem" (green problem) bei intern frequenzverdoppelten La sern Das Rauschverhalten ist gekennzeichnet durch eine periodische Änderung der Amplitude des Lichtes um einige zehn bis einige hundert Kilohertz oder durch unre gelmaßige Fluktuationen Die Amplitude des Rauschens erstreckt sich von einigen Pro zenten bis zu 1 00 % der Modulation Nichtlineare Kristalle, wie sie bei Festkörperlasern eingesetzt werden, besitzen Absorptionsverluste bei der Strahlung mit der Grundfre quenz und bei der frequenzverdoppelten Strahlung, welche zu einer unerwünschten Erwärmung des nichtlmearen Kristalls fuhren Die dabei auftretenden Temperaturanderungen in der Zentralzone des Laserstrahls können mehrere Hundert °K erreichen Durch die auftretenden Temperaturen und deren Verteilung über den Querschnitt des nichtlmearen frequenzverdoppelnden Kristalls tritt an diesem eine Verstimmung auf, so daß eine optimale Phasenanpassung nicht erfolgen kann mit dem Ergebnis, daß die frequenzverdoppelte Strahlung in ihrer Leistung herabgesetzt ist Das bedeutet, daß fast alle bekannten frequenzverdoppelten Festkörperlaser nicht optimal arbeiten
Es sind verschiedene Methoden zur Beseitigung oder zur Unterdrückung des Rauschens und zur Verringerung dieser Nachteile bekannt geworden
So ist in der Zeitschrift "Optics Letters", vol 1 6 (1 991 ), Seiten 1 665 ff ("Single londitudinal-mode Operation and second harmonic generation of Nd YVO4 microchip laser") ein Verfahren beschrieben, welches auf Frequenzselektion und Einzelmodenbe- tπeb beruht Da es keine Wechselwirkung der longitudmalen Moden im Einzelmoden betrieb gibt, ist das "grüne" Rauschen eliminiert So gibt es nur eine oszillierende Mode, und das durch das sog "grüne Problem" bedingte Rauschen wird virtuell eliminiert Nachteilig dabei ist der relativ komplizierte Aufbau des Resonators mit dem Ziel, die Realisierung eines Einzelmodenbetriebes (Single longitudinal mode) zu ermöglichen In manchen Fallen wird eine solche rauscharme Funktion eines solchen Lasers durch Ver Wendung eines Typ-ll-nιchtlιnearen Kristalls (KTP oder KT1OPO4) als Teil eines doppel brechenden Filters, z B eines Lyot-Filters, erreicht ("Optics Letters", vol 1 3 , (1 988), Seiten 805 bis 807)
Ein in der US Patentschrift 4,933,947 beschriebener intracavity-frequenzverdoppelter Laser weist eine verbesserte Amphtudenstruktur auf, die im wesentlichen dadurch er reicht wurde, daß das "Lochbrennen" (Spatial-Hole-Burnmg) in dem lasenden Material durch Anwendung von λ/4-Platten eliminiert und der optische Resonator des Lasers bei einer solchen Temperatur gehalten wurde, die zu einer im wesentlichen rauscharmen Erzeugung der optischen Strahlung führte Dazu ist jedoch eine gesonderte Thermo Stabilisierung der Anordnung in Abhängigkeit vom Rauschpegel der Strahlung erforderlich
Aus der DE-Offenlegungsschπft 42 05 587 AI ist ein frequenzverdoppelter Single Frequency-Laser bekannt, bei welchem unter anderem eine Laserdiode, ein mit seltenen Erden dotierter Laserkristall und ein frequenzverdoppelndes Material in einem gemeinsamen Resonator verwendet werden Diese Einrichtung erzeugt eine stabile grüne optische Strahlung und weist die durch das "Spatial-Hole-Burning" bedingten Probleme nicht auf, so daß am Ausgang des Lasers eine Single-Frequency-Mode vorhanden ist
Eine stabile rauscharme Funktion des Lasers wird in einem engen Temperaturbereich erreicht, der durch eine geeignete elektronische Schaltung realisiert wird Nachteilig ist der doch komplizierte Aufbau des Resonators, welcher die breite Anwendung dieses Lasertyps beeinträchtigt
Aus der WO 95/21 480 und aus der US-Patentschrift 5,446,749 ist ein diodengepump ter Laser bekannt, bei dem die intern resonatorische Frequenzverdopplung einer großen Anzahl von longitudmalen Moden ausgenutzt wird, um das Rauschen zu unterdrucken und eine hohe Amplitudenstabilitat zu erreichen Die Lange des Resonators ist dabei für etwa 1 00 Moden ausgelegt Nachteilig ist bei dieser Losung, daß eine Resona torlange von über einem Meter erforderlich ist, was für viele Anwendungen nicht praktikabel ist und den Einsatz oder Anwendungsbereich als Hochleistungslaser einschrankt
Beschreibung der Erfindung
Es ist Aufgabe der Erfindung, einen die Nachteile des Standes der Technik beseitigenden, frequenzverdoppelten diodengepumpten Festkörperlaser zu schaffen, welcher einen einfachen Aufbau besitzt und ein geringes Volumen einnimmt und bei dem das Rauschen weitestgehend unterdruckt ist
Erfmdungsgemaß wird diese Aufgabe bei einem frequenzverdoppelten diodengepumpten Festkörperlaser dadurch gelost, daß jeweils mindestens eine Apertur aus thermisch leitendem Material am frequenzverdoppelnden Element und/oder am lasenden Fest korpermedium vorgesehen ist und daß das frequenzverdoppelnde optische Element für eine Phasenanpassung bei einer höheren Temperatur als die Temperatur der Umge bung ausgelegt ist
So ist es vorteilhaft, wenn die thermisch leitende Apertur so dimensioniert ist daß eine einzelne transversale Mode TEM00 realisiert ist Es ist ferner vorteilhaft, wenn die thermisch leitenden Aperturen, die eine gute Wärmeableitung bewirken, auf beiden Endflachen des frequenzverdoppelnden Elementes angeordnet sind, wobei dieses Element ein Kristall aus Ka umtitanylphosphat (KTP), einem hoch-nichtlinearen Material, oder aus Ammoniumdihydrogenphosphat (ADP), Lithiumtπborat (LBO), Lithiumjodat oder anderen geeigneten Materialien, wie sie in der US-Patentschrift 5,1 64,947 angegeben sind, besteht Das lasende Festkorpermedium, der eigentliche Laserkristall, besteht vorteilhaft aus Nd YAG, Nd YVO4, Nd LSB oder aus anderen an sich bekannten geeigneten Materialien
Zur Realisierung gunstiger thermischer Bedingungen in der gesamten Resonatorkavität, zu der unter anderem der Laserkristall und das frequenzverdoppelnde Element, wel ches ebenfalls ein Kristall ist, gehören, tragt auch das Merkmal bei, nach dem der Laserkristall und das frequenzverdoppelnde Element in thermischem Kontakt mit der thermisch leitenden Apertur stehen
Der Laserkristall als aktives lasendes Medium ist an seinen Enden mit geeigneten re flektierenden bzw transmittierenden Beschichtungen versehen, desgleichen das frequenzverdoppelnde Element So ist eine erste Flache des Laserkristalls, die der dem Laserkristall vorgeordneten Pumplichtquelle zugewandt ist, mit einer Beschichtung belegt, die hoch durchlassig ist für die von der Pumplichtquelle ausgesandte Pumpstrahlung, jedoch hoch reflektierend ist für die durch das lasende Material erzeugte Laserstrahlung mit einer Grundfrequenz bzw Grundwellenlange Die andere, der genannten ersten Flache gegenüberliegende Flache des Laserkristalls ist mit einer Entspiegelungsschicht versehen, die es ermöglicht, daß die Laserstrahlung mit der Grundwellenlange verlustarm aus dem Laserkristall austreten kann
Das nichtlineare, die Frequenz der aus dem Laserkristall austretenden Laserstrahlung verdoppelnde Element, der nichtlineare Kristall, ist an seiner dem Laserkristall zuge wandten Flache mit einer für die Laserstrahlung wirksamen Entspiegelungsschicht (An- tireflexionsschicht) belegt Die gegenüberliegende Flache dieses Elementes ist mit einer die Laserstrahlung mit Grundwellenlange hoch reflektierenden Beschichtung versehen Für die im Element selbst gebildete und bezüglich der Frequenz gewandelte Strahlung mit der halben Wellenlange bzw mit der doppelten Frequenz der Strahlung des lasen¬ den Kristalls ist diese besagte gegenüberliegende Flache mit einem Belag versehen, der ein verlustarmes Austreten der frequenzverdoppelten Strahlung aus dem Element ermöglicht Dadurch wird unter anderem auch erreicht, daß es zu keiner großen Strah lungsverluste verursachenden Erwärmung sowohl des Laserkristall als auch des frequenzverdoppelnden Elementes kommt.
Bei der erfindungsgemäßen Losung ist zur Phasenanpassung der frequenzverdoppeln- de Kristall für die Arbeit bei höheren Temperaturen ausgelegt und vorgesehen, d.h. bei Normaltemperaturen wird eine nicht optimale Phasenanpassung bei der Frequenzverdopplung im Kauf genommen. Sobald das lasende Medium des Lasers Strahlung aussendet, steigt die Temperatur im Laserkristall an, was durch die Absorption sowohl der Laserstrahlung als auch der in ihrer Frequenz verdoppelten Strahlung in diesem Ele- ment bedingt ist. Damit wird bei dem erfindungsgemaßen Festkörperlaser die Phasenanpassung immer optimaler und die Leistung der in ihrer Frequenz verdoppelten Strahlung steigt weiter kontinuierlich bis zu einem Temperaturoptimum an.
Dieser Vorgang der Selbstoptimierung lauft weiter, bis eine optimale Phasenanpassung erreicht ist. Ist bei dem Festkörperlaser ein hoher Wirkungsgrad bei der Erzeugung der frequenzverdoppelten Strahlung erreicht, stabilisiert sich auch die Temperatur des frequenzverdoppelnden Elementes. Durch diesen selbstoptimierenden Prozeß erreicht der Laser einen stabilen optimalen Betriebszustand, welcher sich in einem wesentlich verminderten Rauschen ausdruckt.
Kurze Beschreibung der Zeichnungen
Die Erfindung soll nachstehend an einem Ausfuhrungsbeispiel naher erläutert werden In der zugehörigen Zeichnung zeigen:
Fig. l einen erfindungsgemaßen Festkörperlaser als Blockschaltbild Fig.2 einen Schnitt durch einen solchen Laser Fig. ein frequenzverdoppelndes Element mit Apertur Fig.4 die Halterung für das lasende Festkorpermedium Fig.5 die Pumpeinrichtung mit einer Laserdiode
Fig.6 die Tempertur der Kavitat ber dem Durchmesser der Öffnung der Apertur Ausfϋhrliche Beschreibung der Zeichnungen
Der in Fig.1 als Blockschaltbild dargestellte frequenzverdoppelte diodengepumpte Festkörperlaser umfaßt ein lasendes Festkorpermedium 1 mit geeigneten reflektierenden bzw. transmittierenden Beschichtungen 1 .1 ; 1 .2 und ist als Laserkristall ausgebil- det. Dieser Laserkristall besteht beispielsweise aus Nd.YAG; Nd.YAP; Nd:YV04, Nd:GdWθ4 oder Nd:LSB und ist Bestandteil einer Resonatorkavität.
Es ist ferner eine Pumplichtquelle 2 zur Erzeugung geeigneter Pumplichtstrahlung vorgesehen, um das Festkorpermedium 1 dazu anzuregen, Laserstrahlung zu erzeugen Dabei ist es vorteilhaft, wenn als Pumplichtquelle 2 mindestens eine Laserdiode zur Anwendung kommt. Zwischen dem lasenden Festkorpermedium 1 und der Pumplichtquelle 2 sind optische Mittel 3 angeordnet, welche die Pumplichtstrahlung auf das lasende Medium 1 übertragen. Diese optischen Mittel 3 können z.B Lichtleiter oder Linsen sein
Gleichfalls Bestandteil der Resonatorkavität ist ein die Frequenz der den Laserkristall verlassenden Laserstrahlung verdoppelndes nichtlineares optisches Element 5 , beispielsweise in Form eines nichtlinearen Kristalls aus KTP; KDP, LBO, ADP oder LÜO3, welches vorteilhaft mit geeigneten reflektierenden Schichten 5.1 belegt ist Dieses Ele- ment 5 ist so ausgelegt, daß eine optimale Phasenanpassung bei einer höheren Temperatur als die Umgebungstemperatur erfolgt Zwischen den Beschichtungen 1 1 des lasenden Mediums 1 und den Schichten 5 1 des optischen Elementes 5 ist der Bereich der Resonatorkavität gelegen. In einem engen thermischen Kontakt mit dem frequenzverdoppelnden Element 5 und/oder auch mit dem lasenden Festkorpermedium 1 ist eine Apertur 6 aus thermisch leitendem Material vorgesehen. Diese Apertur 6 kann z.B eine Folie aus Indium oder einem anderen geeigneten Material sein, welche eine zentrale Öffnung 7 besitzt, durch die erzeugte Strahlung hindurch treten kann.
Die Beschichtungen der einzelnen Flachen sind vorteilhaft wie folgt vorzunehmen: Die Flache des lasenden Festkorpermediums 1 , welche der Pumplichtquelle 2 zugewandt ist, wird mit einer für die Pumplichtstrahlung hoch transparenten, jedoch für die Laserstrahlung hochreflektierenden Schicht 1 .1 bedampft. Die andere Flache des Festkorpermediums 1 ist mit einer für die Laserstrahlung durchlassigen Schicht 1 .2 zur Ent- spiegelung belegt. Um einen guten verlustarmen Übergang des Laserlichtes in das fre- quenzverdoppelnde Element 5 zu gewahrleisten, ist die dem lasenden Festkorpermedium 1 zugewandte Flache 5.2 des Elementes 5 mit einer Antireflexionsschicht versehen Die andere Fläche des Elementes 5 besitzt eine für die Wellenlange der Laserstrahlung undurchsichtige Schicht 5.1 , die jedoch für die in ihrer Frequenz verdoppelte bzw. in ihrer Wellenlange halbierte Strahlung des Elementes 5 hoch durchlässig ist.
Der in Fig.2 im Schnitt dargestellte Festkörperlaser besitzt ein Gehäuse 1 0 mit einem Kuhlkörper 1 1 , in welchem in einem Halter 1 2 das lasende Festkorpermedium 1 (Laserkristall) angeordnet ist. Als Pumplichtquelle 2 ist eine Laserdiode 1 3 axial fluchtend zum Laserkristall im Gehäuse 1 0 angeordnet. Zwischen der Laserdiode 1 3 und dem lasenden Festkorpermedium 1 sind die die Pumplichtstrahlung auf den Laserkristall übertragenden optischen Mittel 3 gelegen. Ein Peltierelement 1 4, mit welchem die Laserdiode 1 3 thermisch eng verbunden ist, dient der Temperatureinstellung im Gehäuse 1 0 und damit auch in der gesamten Resonatorkavität. Bei der erfindungsgemaßen Losung wird einmalig vor der Montage des Lasers diejenige Temperatur ermittelt, bei der das Rauschen der Ausgangsstrahlung am geringsten ist Auf diese Temperatur wird dann wahrend der Arbeit des Lasers die Kavitat immer wieder mit Hilfe des Peltierele- mentes 1 4 eingestellt.
An der der Laserdiode 1 3 abgewandten Seite des lasenden Mediums 1 ist der Halter 4 für das frequenzverdoppelnde Element 5 vorgesehen. An ihr ist die Apertur 6 aus thermisch gut leitendem Material, z.B. Indium oder einem anderen geeigneten Werkstoff, angeordnet.
Das von dem lasenden Festkorpermedium 1 erzeugte und durch das Element 5 in seiner Frequenz verdoppelte Licht wird über einen Strahlenteiler 1 6 durch eine Öffnung 1 7, die von einem Verschluß 1 5 abschließbar ist, nach außen abgestrahlt. Ein Teil des abgestrahlten Lichtes wird durch den Strahlenteiler 1 6 auf eine Monitordiode 20 gelenkt, mit der u.a. der Betriebszustand der Laseranordnung angezeigt werden kann. An beiden Seiten des Gehäuses 1 0 sind Abschlußdeckel 1 8 und 1 9 vorgesehen, mit denen dieses abgeschlossen werden kann.
Wie aus Fig.3 ersichtlich, ist das frequenzverdoppelnde Element 5 in dem Halter 4 angeordnet, der mit einer zentralen Bohrung 21 versehen ist, durch welche das Licht über den Strahlenteiler 1 6 (vgl. Fig.2) und die Öffnung 1 7 (ebenfalls Fig.2) nach außen abgestrahlt wird. Die thermisch gut leitende Apertur 6 ist mit ihrer einen Seitenflache mit der einen Stirnflache 22 des Halters 4 und mit ihrer anderen Seitenflache mit einem Deckel 23 verbunden Zwischen der einen Flache 24 des Halters 4 und der mit der ei- nen Stirnflache 22 verbundenen Flache der Apertur 6 ist das frequenzverdoppeinde Element 5, ein an sich bekannter nichtlinearer optischer Kristall, angeordnet. Der innige Kontakt des Elementes 5 einerseits mit dem Halter 4 und andererseits mit der thermisch gut leitenden Apertur 6 bewirkt eine gute Wärmeableitung bzw -Verteilung für das Element 5
Fig 4 zeigt die Anordnung des iasenden Festkorpermediums 1 (Laserkristall) in einem dafür vorgesehenen Halter 1 2, dessen Lichtemtπttsoffnung 25 der Pumplichtquelle 2 zugewandt ist (vgl Fig 1 und Fig 5) Die Stirnflachen 26 und 27 sind vorteilhaft mit optisch wirksamen Beschichtungen 1 1 und 1 2 belegt So ist z B die Stirnflache 26, die der Pumplichtquelle zugewandt ist, mit einer für die Pumpstrahlung hoch durchlassigen Beschichtung 1 2 und die Stirnflache 27 mit einer die Laserstrahlung hoch reflektierenden Beschichtung 1 1 versehen
Fig 5 zeigt den Aufbau der Pumpeinrichtung, die aus einem Peltierelement 1 4 und ei ner Pumplichtquelle 2 , beispielsweise in Form einer Laserdiode 1 3 (vgl Fig 2) oder einer anderen geeigneten Lichtquelle, besteht Über Anschlüsse 28 wird die Pumplichtquelle 2 mit Strom versorgt Die von der Pumplichtquelle 2 ausgehende Strahlung wird über nachgeordnete optische Mittel 3, die in der Fig 5 als Linse dargestellt sind, dem Laserkristall (Festkorpermedium 1 ) zugeführt Das Peltierelement 1 4 dient der Einstellung der Temperatur der Pumplichtquelle 2 und der gesamten Laserkavitat, um einen Betrieb in einem Temperaturbereich zu ermöglichen, in welchem der Rauschpegel der ausgesendeten Strahlung am geringsten ist
Bei der erfindungsgemaßen Lasereinrichtung (vgl Fig 2) sind die Pumpeinrichtung, der Halter 1 2 für den Laserkristall und der Halter 4 für das frequenzverdoppelnde Element 5 fluchtend zur optischen Achse 29 angeordnet Es ist von Vorteil, wenn das lasende Festkorpermedium 1 und das frequenzverdoppelnde Element 5 in einem engen thermischen Kontakt mit einer einzigen Apertur 6 stehen (in den Figuren nicht dargestellt) Damit wird eine besonders vorteilhafte Temperatureinregelung und -einstellung bei einem Wert erzielbar, bei welchen das Rauschen der Ausgangsstrahlung des Lasers einen minimalen Betrag besitzt Dieser Temperaturwert wird bei dem erfindungsgema ßen Festkörperlaser bei der Montage eingestellt und wahrend des Laserbetriebs mit Hilfe des Peltierelementes 1 4 oder einer anderen geeigneten Anordnung aufrechterhal ten Das raumliche „Lochbrennen' (spatial-hole-burning) wirkt sich bei einem Laser mit einer erfindungsgemaßen Apertur 6 nicht negativ auf das Rauschverhalten aus In Fig.6 ist der Temperaturverlauf über dem Durchmesser d der Öffnung 7 der Apertur 6 (vgl Fig. l ) für unterschiedlich große Öffnungen 7 dargestellt, wobei a = 0,1 mm; b = 0,25 mm und c = 0,5 mm sind.
Eine Verbesserung ergibt sich durch die wirksame Kühlung bei Verwendung einer thermisch gut leitenden Apertur 6, die in einen guten Kontakt mit dem frequenzverdoppelnden Kristall oder dem Laserkristall gebracht ist. Es ist erkennbar, daß die Temperatur in der Mitte der betreffenden Kristalle bei vorhandener thermisch leitender Apertur 6 im wesentlichen von den Abmessungen der Öffnung 7 der Apertur 6 abhangt, nicht aber von der Umgebungstemperatur. Auf diese Weise ist eine Thermosta- tisierung, wie z.B. beim Stand der Technik (US-Patentschrift 4,933,947), nicht erforderlich.

Claims

Anspruche
1 Frequenzverdoppelter diodengepumpter Festkörperlaser mit resonatorinterner Frequenzverdopplung, umfassend ein lasendes Festkorpermedium (1 ) mit geeigneten reflektierenden Belagen, welches einen Bestandteil einer Resonatorkavität darstellt, mindestens eine als Laserdiode ausgebildete Pumplichtquelle zur Erzeugung geeigneter Pumphchtstrahlung, ein frequenzverdoppelndes nichtlinea- res optisches Element (5) in Form eines nichtlmearen Kristalls mit geeigneten re flektierenden Beschichtungen, welches einen weiteren Bestandteil der Resonatorkavität bildet, wobei die Resonatorkavität zwischen reflektierenden Beschichtungen des Festkorpermediums (1 ) und des frequenzverdoppelnden Elements (5) gebildet ist und optische Mittel (3), die der Pumplichtquelle nachgeordnet sind und die Pumpstrahlung an das lasende Festkorpermedium (1 ) leiten, dadurch gekennzeichnet, daß jeweils mindestens eine Apertur (6) aus thermisch leiten dem Material am frequenzverdoppelnden Element (5) und/oder am lasenden Festkorpermedium (1 ) vorgesehen ist, und daß das frequenzverdoppelnde optische Element (5) für eine Phasenanpassung bei einer höheren Temperatur als die Temperatur der Umgebung ausgelegt ist
2 Festkörperlaser nach Anspruch 1 , dadurch gekennzeichnet, daß die mindestens eine thermisch leitende Apertur (6) so dimensioniert ist, daß ein einzelner trans versaler Moden TEMQQ realisiert ist
3 Festkörperlaser nach Anspruch 1 und 2, dadurch gekennzeichnet, daß jeweils eine thermisch leitende Apertur (6) auf beiden Flachen des frequenzverdoppelnden Elementes (5) angeordnet ist
4 Festkörperlaser nach Anspruch 1 und 2, dadurch gekennzeichnet, daß das lasen de Festkorpermedium (1 ) und das frequenzverdoppelnde Element (5) in einem thermischen Kontakt mit einer thermisch leitenden Apertur (6) stehen
5 Festkörperlaser nach mindestens einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, daß das lasende Festkorpermedium (1 ) aus Nd YAG, Nd YAP, Nd YVO4
Nd GdWθ4, Nd LSB und ahnlichen Materialien besteht
6. Festkörperlaser nach mindestens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß das frequenzverdoppelnde Element (5) vorzugsweise aus KTP; KDP; LBO; LBO; ADP oder Lil03 besteht.
7. Festkörperlaser nach Anspruch 1 , dadurch gekennzeichnet, daß die optischen Mittel (3) optische Linsen sind, welche die Pumpstrahlung von der Pumplichtquelle (2) zum lasenden Festkorpermedium (1 ) leiten.
8. Festkörperlaser nach mindestens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß das lasende Festkorpermedium (1 ) und das frequenzverdoppelnde Element (5) in thermischem Kontakt mit einer einzigen gemeinsamen Apertur (6) stehen.
PCT/EP1997/005241 1996-09-27 1997-09-24 Frequenzverdoppelter diodengepumpter festkörperlaser WO1998013911A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97943897A EP0864190B1 (de) 1996-09-27 1997-09-24 Frequenzverdoppelter diodengepumpter festkörperlaser
JP10515268A JP2000501521A (ja) 1996-09-27 1997-09-24 ダイオード励起周波数逓倍固体レーザ
US09/066,407 US6125129A (en) 1996-09-27 1997-10-29 Frequency-doubled diode-pumped solid-state laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19639769A DE19639769B4 (de) 1996-09-27 1996-09-27 Frequenzverdoppelter diodengepumpter Festkörperlaser
DE19639769.3 1996-09-27

Publications (1)

Publication Number Publication Date
WO1998013911A1 true WO1998013911A1 (de) 1998-04-02

Family

ID=7807088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/005241 WO1998013911A1 (de) 1996-09-27 1997-09-24 Frequenzverdoppelter diodengepumpter festkörperlaser

Country Status (6)

Country Link
US (1) US6125129A (de)
EP (1) EP0864190B1 (de)
JP (1) JP2000501521A (de)
CN (1) CN1105409C (de)
DE (1) DE19639769B4 (de)
WO (1) WO1998013911A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018778A1 (de) * 2000-04-15 2001-10-18 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur Selbstkalibrierung eines diodengepumpten Festkörperlasers, insbesondere eines durchstimmbaren, diodengepumpten Festkörperlasers
CN115001458A (zh) * 2022-07-19 2022-09-02 新风光电子科技股份有限公司 一种正交光电编码器脉冲信号任意次倍频控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587496B1 (en) * 2000-12-11 2003-07-01 Lite Cycles, Inc. Single-mode pump power source
JP3741108B2 (ja) * 2003-03-18 2006-02-01 ソニー株式会社 レーザー発光モジュール
CA2547450A1 (en) * 2005-05-23 2006-11-23 Raman Kashyap Light source
DE102006051370B3 (de) * 2006-10-27 2008-01-31 Z-Laser Optoelektronik Gmbh Festkörperlaser
CN102088160B (zh) * 2010-04-20 2012-06-27 中国科学院理化技术研究所 一种带有倍频装置的倍频激光器
CN104701719B (zh) * 2015-03-13 2018-03-20 李斌 一种被动调q激光器及其激光产生方法
EP3309913A1 (de) * 2016-10-17 2018-04-18 Universität Stuttgart Strahlungsfeldverstärkersystem
CN111029895B (zh) * 2019-12-12 2021-08-24 上海交通大学 一种微通道散热器及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205587A1 (de) * 1991-02-28 1992-09-03 Amoco Corp Frequenzverdoppelter single-frequency laser
DE4132063A1 (de) * 1991-09-26 1993-04-08 Deutsche Aerospace Vorrichtung zur kuehlung von festkoerperlasern, insb. mikrokristallasern
EP0596714A1 (de) * 1992-11-06 1994-05-11 Mitsui Petrochemical Industries, Ltd. Festkörperlaser
US5539765A (en) * 1994-03-03 1996-07-23 The University Court Of The University Of St. Andrews High efficiency laser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730335A (en) * 1986-06-26 1988-03-08 Amoco Corporation Solid state laser and method of making
US5854802A (en) * 1996-06-05 1998-12-29 Jin; Tianfeng Single longitudinal mode frequency converted laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205587A1 (de) * 1991-02-28 1992-09-03 Amoco Corp Frequenzverdoppelter single-frequency laser
DE4132063A1 (de) * 1991-09-26 1993-04-08 Deutsche Aerospace Vorrichtung zur kuehlung von festkoerperlasern, insb. mikrokristallasern
EP0596714A1 (de) * 1992-11-06 1994-05-11 Mitsui Petrochemical Industries, Ltd. Festkörperlaser
US5539765A (en) * 1994-03-03 1996-07-23 The University Court Of The University Of St. Andrews High efficiency laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATTHEWS D G ET AL: "BLUE MICROCHIP LASER FABRICATED FROM ND:YAG AND KNBO3", OPTICS LETTERS, vol. 21, no. 3, 1 February 1996 (1996-02-01), pages 198 - 200, XP002020296 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018778A1 (de) * 2000-04-15 2001-10-18 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur Selbstkalibrierung eines diodengepumpten Festkörperlasers, insbesondere eines durchstimmbaren, diodengepumpten Festkörperlasers
CN115001458A (zh) * 2022-07-19 2022-09-02 新风光电子科技股份有限公司 一种正交光电编码器脉冲信号任意次倍频控制方法
CN115001458B (zh) * 2022-07-19 2022-11-11 新风光电子科技股份有限公司 一种正交光电编码器脉冲信号任意次倍频控制方法

Also Published As

Publication number Publication date
CN1105409C (zh) 2003-04-09
DE19639769B4 (de) 2007-03-01
JP2000501521A (ja) 2000-02-08
US6125129A (en) 2000-09-26
DE19639769A1 (de) 1998-05-07
CN1205123A (zh) 1999-01-13
EP0864190B1 (de) 2001-01-03
EP0864190A1 (de) 1998-09-16

Similar Documents

Publication Publication Date Title
DE60003408T2 (de) Kontinuierliches fern-uv-laser-system mit zwei aktiven resonatoren
DE60006416T2 (de) Optisch gepumpter halbleiterlaser mit resonatorinterner frequenzumwandlung
DE69632860T2 (de) Diodengepumpter Multiaxialmodenlaser mit Frequenzverdopplung und mit Frequenzverdreifachung innerhalb des Resonators
DE3643648C2 (de) Laserdiodengepumpter Festkörper-Laser mit resonatorinterner Frequenzverdopplung
DE69731475T2 (de) Frequenzverdoppelter Laser mit einem quasiphasenangepassten nichtlinearen Element innerhalb des Resonators
DE19955599B4 (de) Laser mit Wellenlängenumwandlung und Bearbeitungsvorrichtung mit einem solchen Laser
DE1879666U (de) Laservorrichtung.
EP0864190B1 (de) Frequenzverdoppelter diodengepumpter festkörperlaser
EP0541581A1 (de) Einzelmode-laser.
DE60032393T2 (de) Optisches Wellenlängenumwandlungssystem
DE102004007881A1 (de) Optische gepumpte Laservorrichtung zur Erzeugung von Laserimpulsen
DE19719901C2 (de) Festkörperlaser mit einer Longitudinalmode und Frequenztransformation
EP0977328B1 (de) Rauscharmer frequenzvervielfachter Laser mit Strahlseparator
DE60038749T2 (de) Transversal gepumpter Laser
WO2014012847A1 (de) Laseroszillator und verfahren zum erzeugen zweier laserstrahlen unterschiedlicher wellenlängen
DE19946176B4 (de) Diodengepumpter Laser mit interner Frequenzverdopplung
WO2004066460A1 (de) Laserresonator und frequenzkonvertierter laser
DE10052461A1 (de) Verfahren und Vorrichtung zum Erzeugen von Laserlicht
DE10339210B4 (de) Laserresonator und Frequenzkonvertierter Laser
DE602004002110T2 (de) Laservorrichtung zur erzeugung eines sichtbaren lichtstrahls
DE19923005B4 (de) Verfahren und Vorrichtung zur Frequenzkonversion von Laserstrahlung
DE4008226A1 (de) Laserdioden-gepumpter festkoerper-ringlaser
DE19510423C2 (de) Laseranordnung zur resonatorinternen Summenfrequenzmischung
AT500694A2 (de) Einrichtung zum erzeugen kohärenter strahlung
DE19506608C2 (de) Verfahren und Anordnung zur Erzeugung der dritten Harmonischen der Grundwellenstrahlung eines optisch angeregten Neodym enthaltenden Laserkristalls

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97191329.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09066407

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997943897

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1998 515268

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997943897

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997943897

Country of ref document: EP