WO1998012582A1 - High-efficiency focusing diffraction network and method for manufacturing same - Google Patents

High-efficiency focusing diffraction network and method for manufacturing same Download PDF

Info

Publication number
WO1998012582A1
WO1998012582A1 PCT/FR1997/001624 FR9701624W WO9812582A1 WO 1998012582 A1 WO1998012582 A1 WO 1998012582A1 FR 9701624 W FR9701624 W FR 9701624W WO 9812582 A1 WO9812582 A1 WO 9812582A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
diffraction grating
hologram
wavelength
diffraction
Prior art date
Application number
PCT/FR1997/001624
Other languages
French (fr)
Inventor
Eric Journot
Jérôme PAYE
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO1998012582A1 publication Critical patent/WO1998012582A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms

Definitions

  • the present invention relates to a focusing diffraction grating of very high efficiency as well as a method of manufacturing this focusing diffraction grating.
  • holograms in which the phase of an incident light wave is modified by modulating the refractive index of the material where holograms are formed
  • kmoform lenses in which the phase of an incident light wave is modified by etching the surface of these lenses.
  • refractive-diffractive hybrid components which are standard refractive components at the surface of which a diffractive etching is formed. The simple spherical refractive components do not make it possible to achieve a focusing quality close to diffraction because of geometric aberrations.
  • the refractive components are bulky and heavy as soon as their diameter increases.
  • the diffractive components are, for their part, compact and light and make it possible in theory to reach the diffraction limit.
  • the optical efficiency of the holographic focusing components is clearly less good than that of the refractive components because the light is distributed there in several orders of diffraction.
  • the kinoform components are, in turn, capable of focusing light with good efficiency but at the cost of a more complex realization.
  • phase profile which focuses an incident light wave is in fact sampled on 2 levels and therefore etched in m successive stages.
  • the object of the present invention is to remedy the above drawbacks.
  • this grating relates to a diffraction grating focusing by transmission, intended to be used with radiation of determined wavelength, this grating being characterized in that it comprises a solid element which is transparent at this wavelength and on one face of which is formed a set of reliefs, this set being delimited by two planar levels, the reliefs forming successive arcs whose pitch decreases from one side to the other of the element, so that by lighting the element by radiation, under an oblique incidence depending on the average pitch of the arcs, this radiation is focused with great efficiency, that is to say that more than half of the incident light energy is focused.
  • the diffraction grating is also capable of collimating this radiation with great efficiency.
  • each relief seen in cross section, has a plane of symmetry.
  • the reliefs may have, seen in cross section, a shape chosen from the group comprising slots, saw teeth and sinusoids.
  • the depth of the reliefs is determined so as to obtain maximum diffraction efficiency for the grating.
  • the reliefs have, seen in cross section, the shape of slots and the filling rate of these slots as well as the depth of these are determined so as to obtain maximum diffraction efficiency for the grating.
  • the average pitch of the successive arcs is equal to or close to the wavelength of the radiation with which the network is intended to be used, so that this radiation is focused with a very high efficiency when the element is illuminated by radiation, at an oblique incidence close to 30 °.
  • the present invention also relates to a method of manufacturing a focusing diffraction grating intended to be used with radiation of determined wavelength, this diffraction grating comprising an element which is transparent at this wavelength, proceeds being characterized in that it comprises the following stages • - a hologram is formed capable of focusing the radiation, and - the interference figure contained in the hologram is written on one face of the element.
  • this face is covered with a layer of photosensitive resin ("photoresist"), the hologram is formed in this layer, the layer thus isolated and the 'the face of the element is etched through the developed layer.
  • photoresist photosensitive resin
  • the hologram is formed at the wavelength of the radiation.
  • the hologram is formed under an oblique incidence close to 30 °.
  • the diffraction grating object of the present invention is located at the border of holographic components and kinoform components: it achieves the focusing of an incident light beam as a hologram would but with the efficiency of a kinoform component.
  • Etching consists in fact of writing, on the surface of the transparent element, the interference figure which is recorded in the hologram.
  • This diffraction grating can therefore be considered as a surface hologram because its operating principle is identical to that of a standard hologram.
  • the index modulation is more important there because the two mediums involved are air (whose refractive index is equal to 1) and a material such as for example glass (whose refractive index is approximately 1 , 5), which makes it possible to have a modulated zone of much lower depth than that of the volume holograms while obtaining the same phase shifts.
  • the focusing quality has no other limits than diffraction
  • this component has a theoretical efficiency greater than 90% for an opening less than f / 3.5, f being the focal distance of the component, regardless of the incident polarization direction for which the network is optimized. It is specified that the profile of the focusing network can be optimized for any direction of polarization (linear polarization) during its production, but the network then operates with high efficiency only for this polarization. In addition, used in the conditions of
  • this component allows a deflection of 60 ° of the focused beam.
  • the component operates with monochromatic incident radiation. It is important to note that this component can in particular operate in the ultraviolet range with very good efficiency, unlike known diffractive optical components whose use is limited to the infrared and visible domains, and that this component can withstand fluxes. important incidents because its resistance to such flows is that of the material on which the diffraction grating is formed.
  • FIG. 1 is a schematic cross-sectional view of a known diffraction grating
  • Figures 2A, 3A and 4A schematically illustrate various possible forms for such a network, namely slots
  • Figure 2A saw teeth (Figure 3A) and sinusoids (Figure 4A), and Figures ⁇ -2B, 3B and 4B schematically illustrate the existence of a plane of symmetry for these slots (Figure 2B), these saw teeth (FIG. 3B) and these sinusoids (FIG. 4B),
  • FIG. 6f schematically illustrates a wave front usable for recording a network conforming to
  • Figures 7 and 8 schematically illustrate steps of a method of manufacturing the diffraction grating of Figures 5 and 6A.-
  • p represents the diffraction order considered
  • represents the wavelength of the light wave 4
  • represents the pitch of the diffraction grating 2.
  • a diffraction direction therefore corresponds to a diffraction order.
  • the deviation D is then equal to 2 x 30 °, that is to say 60 °.
  • the depth h of the etching of the material 8 (which is transparent at the wavelength ⁇ ) leading to the diffraction grating 2 can be optimized in order to produce the maximum diffraction efficiency in order +1 at the expense of order 0.
  • the patterns of the diffraction grating (of the slots in the example shown) having dimensions close to the wavelength of the incident light wave, the scalar approximation of the electromagnetic field is not valid.
  • the network 2 seen in cross section in Figure 1, consists of a succession of elementary patterns whose main characteristic is that they all have a plane of symmetry.
  • Figures 2A, 3A and 4A show achievable patterns, namely slots (Figure 2A), saw teeth (Figure 3A) and sinusoids (Figure 4A).
  • FIGS. 2B, 3B and 4B show the existence of a plane of symmetry P for each of the patterns in FIGS. 2A, 3A and 4A.
  • the ratio (b-a) / b is less than 1 by "filling rate”.
  • the optimum depth to be given to the slots is also a function of this filling rate.
  • the etching depth of the network is minimum for a filling ratio equal to 0.5.
  • This network is intended to be used with a light beam 10 with parallel rays, of determined wavelength ⁇ .
  • This network comprises a substrate 11 which is transparent at this wavelength ⁇ and on one face of which a set of reliefs 12 is formed.
  • This set of reliefs is delimited by a lower plane level 13 and an upper plane level 14 which is parallel to the lower level 13.
  • the reliefs 12 form successive arcs whose pitch ⁇ decreases from one side to the other of the substrate 11 as seen in FIG. 6 A.
  • the network can also function by lighting it on the side of the face carrying the reliefs.
  • each relief seen in cross section, has a plane of symmetry P.
  • reliefs have, seen in co transverse UPE, the shape of slots.
  • reliefs forming for example saw teeth or sinusoids or having any other shape having a plane of symmetry.
  • the depth h of the reliefs 12 is determined so as to obtain maximum diffraction efficiency for the grating. As we saw above, we place our to do this in the Bragg conditions at the first order of diffraction.
  • the emergence angle ⁇ d of the diffracted beam 16 is equal to ⁇ , and there is a total deflection D equal to 2 ⁇ .
  • the average pitch of the successive arcs is equal to the wavelength ⁇ of the light beam 10.
  • this light beam 10 is focused with great efficiency when the face on which the reliefs 12 are formed is illuminated, through the substrate 11, by the light beam 10 with an angle of incidence ⁇ -. 30 °.
  • the substrate 11 is for example made of silica.
  • the network according to the invention is capable of operating in the ultraviolet range.
  • the diffraction efficiency under Bragg conditions for an optimized etching of the reliefs 12 is greater than 90%, for an opening less than f / 3, whatever the direction of polarization of the light beam. incident 10 for which the profile is optimized.
  • the function of the grating according to the invention of FIGS. 5 and 6A is to modify the incident light beam 10.
  • This network therefore transforms a wavefront 18 (plane or spherical) into a spherical wavefront 20.
  • the network transforms an incident wavefront into an emerging wavefront.
  • the wave fronts used are the conjugates of the actual incident and emerging wave fronts (that is to say, those which intervene during the use of the component). There is no particular constraint on these FR wave fronts except that their radius of curvature R and their diameter D (see figure ⁇ j ⁇ ) verify R> 3.5D in order to maintain good efficiency of diffraction for the network produced.
  • plane or spherical in a spherical wavefront 20 can be produced by a hologram recorded by interference between a spherical wave coming from a source point and a reference wave (plane or spherical).
  • the difference between the network according to the invention and such a hologram is the origin of the phase difference that is given to the incident light beam.
  • the phase difference is given by a local difference in the refractive index of the material in which the hologram is formed, this difference being proportional to the amount of light present locally during the recording of this hologram.
  • On the surface of the network according to the invention it is the profile of the etching which gives the phase difference.
  • the interference fringes are positioned spatially in the same places (to achieve ⁇ the same function).
  • phase profile of the diffraction grating according to the invention is etched on the surface of the substrate 11 and not recorded in the volume of this substrate 11.
  • the degrees of freedom available for the profile of the etching are the shape, the depth and also the filling rate which, as we have seen, make it possible to optimize the diffraction efficiency for a single order.
  • the resistance of the focusing diffraction grating according to the invention to an incident light flux is identical to that of the material constituting the substrate 11 on which this grating is formed.
  • FIGS. 7 and 8 a method of manufacturing a diffraction grating focusing by transmission, of the kind which is shown in FIGS. 5 and 6A and which allows the focusing of the light beam 10 of wavelength, is explained.
  • The silica substrate 11 is used, which is transparent at this wavelength ⁇ , and a hologram capable of focusing the light beam 10 is formed, then the interference figure contained in this hologram is written on one face of the substrate 11. To do this, this face is covered with a layer 22 of photosensitive resin whose thickness is equal to the depth h desired for the reliefs of the networks. The hologram is then formed in this layer of photosensitive resin 22.
  • a light source 24 capable of providing a light beam with parallel rays 26 of wavelength ⁇ is used.
  • the hologram interference figure is therefore preferably recorded at this wavelength of use ⁇ because, otherwise, complex wave fronts which are difficult to obtain should be used.
  • the light beam 26 is sent at the angle of incidence Q lt , preferably equal to 30 °, through the substrate 4, in the direction of the face carrying the layer of photosensitive resin 22.
  • a semi-transparent mirror 28 placed on the path of the beam 26 a part 30 of the latter is removed.
  • the part 30 thus removed is deflected by means of a mirror 32 so that the light beam reflected by this mirror 32 also has an angle of incidence ⁇ ⁇ relative to the layer 22.
  • the diameter of the hole 36 is equal to a few times the wavelength ⁇ .
  • the light from the point source interferes, in the photosensitive resin layer 22, with the non-sampled part 40 of the beam 26, hence the formation of the hologram sought 42 in this layer ( Figure 8).
  • the photosensitive resin layer 22 thus exposed is then developed and the substrate 11 is etched through the developed photosensitive resin layer.
  • an ion etching process is used for example.
  • the pitch of all the interference fringes is small, which will allow a large deflection of the light rays while on the other side of the substrate, the pitch is larger and the deviation given to light rays will be weaker.
  • the interference fringes curve, resulting in a deflection of the light rays towards a point (focus).
  • the fringes can be considered as rectilinear and we are then in a case of conical diffraction: the incident wave vector is no longer in the plane defined by the normal to the substrate and the local normal to the fringes.
  • the diffraction efficiency therefore drops slightly at the edges. It was calculated that for an open component at f / 7, the overall diffraction efficiency decreased by 3% compared to the diffraction efficiency obtained under Bragg conditions.
  • the diffraction efficiency of the component nevertheless remains greater than 90% whatever the incident polarization direction for which the profile has been optimized.
  • the diffraction grating object of the invention therefore constitutes a focusing diffractive component of very high efficiency at a given wavelength, without polarization restriction.
  • This wavelength can be in the visible range or the ultraviolet range.
  • this component is the only focusing diffractive component of high efficiency.
  • the focusing quality is theoretically limited by diffraction.
  • the component can be produced in two stages: holographic recording of the optical function at the operating wavelength, then transfer of the interference pattern to the surface of the substrate.
  • the invention allows the incident beam and the focused beam to be inclined by 60 ° relative to each other.
  • the incident beam can be collimated or not, the recording of the interference figure taking place in a holographic manner.
  • the aperture of the optics produced must not exceed f / 3.5 to maintain a high diffraction efficiency (greater than or equal to 90%).
  • the additional characteristic of this component is its resistance to a luminous flux, this resistance corresponding to that of the material in which the diffraction grating is formed.
  • a diffraction grating according to the invention also makes it possible to colli ate a diverging light beam sent towards the face of the substrate 11 where the reliefs 12 are 'other side of this substrate).

Abstract

The invention concerns a high-efficiency focusing diffraction network and method for manufacturing this network. This network comprises projections (12) forming successive arcs the step (Μ) of which decreases gradually from one side to the other of the element (11) bearing these projections and is obtained by forming a hologram capable of focusing the radiation to be focused with the network and by inscribing the interference figure contained in the hologram on one surface of the element. The invention is useful for focusing and collimating laser beams with intense flux or for modifying the wave front of laser beams.

Description

RESEAU DE DIFFRACTION FOCALISANT DE TRES GRANDE EFFICACITÉ ET PROCÉDÉ DE FABRICATION DE CE RÉSEAU HIGHLY EFFICIENT FOCUSING DIFFRACTION NETWORK AND MANUFACTURING METHOD THEREOF
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
La présente invention concerne un réseau de diffraction focalisant de très grande efficacité ainsi qu'un procède de fabrication de ce réseau de diffraction focalisant.The present invention relates to a focusing diffraction grating of very high efficiency as well as a method of manufacturing this focusing diffraction grating.
Elle s'applique notamment a la focalisation ou à la collimation de faisceaux laser à flux intenses.It applies in particular to the focusing or to the collimation of laser beams with intense flux.
ÉTAT DE LA TECHNIQUE ANTÉRIEUREPRIOR STATE OF THE ART
Pour focaliser un faisceau laser, on dispose :To focus a laser beam, we have:
- de composants refractifs standard, dans lesquels la phase est donnée par la courbure de ces composants, et- standard refractive components, in which the phase is given by the curvature of these components, and
- de composants diffractifs.- diffractive components.
Ces derniers se repartissent en plusieurs groupes : • les hologrammes, dans lesquels la phase d'une onde lumineuse incidente est modifiée par la modulation de l'indice de réfraction du matériau où sont formés hologrammes, et • les lentilles kmoformes, dans lesquelles la phase d'une onde lumineuse incidente est modifiée par gravure de la surface de ces lentilles . On connaît aussi des composants hybrides réfractifs-diffractifs qui sont des composants refractifs standard à la surface desquels est formée une gravure diffractive. Les composants refractifs sphériques simples ne permettent pas d'atteindre une qualité de focalisation proche de la diffraction à cause d'aberrations géométriques.These are divided into several groups: • holograms, in which the phase of an incident light wave is modified by modulating the refractive index of the material where holograms are formed, and • kmoform lenses, in which the phase of an incident light wave is modified by etching the surface of these lenses. Also known are refractive-diffractive hybrid components which are standard refractive components at the surface of which a diffractive etching is formed. The simple spherical refractive components do not make it possible to achieve a focusing quality close to diffraction because of geometric aberrations.
Pour s'affranchir de ces aberrations, il faut rendre ces composants asphériques, ce qui n'est pas très simple, ou utiliser plusieurs composants (tels que doublets, triplets par exemple) .To get rid of these aberrations, you must make these components aspherical, which is not very simple, or use several components (such as doublets, triplets for example).
De plus, les composants refractifs sont encombrants et lourds dès que leur diamètre augmente. Au contraire, les composants diffractifs sont, quant à eux, compacts et légers et permettent d'atteindre en théorie la limite de diffraction.In addition, the refractive components are bulky and heavy as soon as their diameter increases. On the contrary, the diffractive components are, for their part, compact and light and make it possible in theory to reach the diffraction limit.
Cependant, l'efficacité optique des composants holographiques de focalisation est nettement moins bonne que celle des composants refractifs car la lumière y est répartie dans plusieurs ordres de diffraction.However, the optical efficiency of the holographic focusing components is clearly less good than that of the refractive components because the light is distributed there in several orders of diffraction.
Les composants kinoformes sont, quant à eux, capables de focaliser la lumière avec une bonne efficacité mais au prix d'une réalisation plus complexe .The kinoform components are, in turn, capable of focusing light with good efficiency but at the cost of a more complex realization.
Dans ces composants kinoformes, le profil de phase qui focalise une onde lumineuse incidente est en effet échantillonné sur 2 niveaux et donc gravé en m étapes successives.In these kinoform components, the phase profile which focuses an incident light wave is in fact sampled on 2 levels and therefore etched in m successive stages.
Pour une efficacité supérieure à 901, il faut 2m > 8 c'est-à-dire m > 3. EXPOSE DE L' INVENTIONFor an efficiency greater than 901, 2 m > 8, i.e. m> 3, is required. STATEMENT OF THE INVENTION
La présente invention a pour but de remédier aux inconvénients précédents.The object of the present invention is to remedy the above drawbacks.
Elle a pour objet un réseau de diffraction focalisant par transmission, destiné à être utilisé avec un rayonnement de longueur d'onde déterminée, ce réseau étant caractérisé en ce qu'il comprend un élément solide qui est transparent à cette longueur d'onde et sur une face duquel est formé un ensemble de reliefs, cet ensemble étant délimité par deux niveaux plans, les reliefs formant des arcs successifs dont le pas va en diminuant d'un côté à l'autre de l'élément, de sorte qu'en éclairant l'élément par le rayonnement, sous une incidence oblique fonction du pas moyen des arcs, ce rayonnement est focalisé avec une grande efficacité, c'est-à-dire que plus de la moitié de l'énergie lumineuse incidente est focalisée.It relates to a diffraction grating focusing by transmission, intended to be used with radiation of determined wavelength, this grating being characterized in that it comprises a solid element which is transparent at this wavelength and on one face of which is formed a set of reliefs, this set being delimited by two planar levels, the reliefs forming successive arcs whose pitch decreases from one side to the other of the element, so that by lighting the element by radiation, under an oblique incidence depending on the average pitch of the arcs, this radiation is focused with great efficiency, that is to say that more than half of the incident light energy is focused.
En éclairant l'élément par un rayonnement ayant la longueur d'onde déterminée et divergeant a partir du point focal, le reseau de diffraction est également capable de collimater ce rayonnement avec une grande efficacité.By illuminating the element with radiation having the determined wavelength and diverging from the focal point, the diffraction grating is also capable of collimating this radiation with great efficiency.
Une asymétrie des reliefs risque de diminuer l'efficacité de diffraction. C'est pourquoi, selon un mode de réalisation préféré du réseau de diffraction objet de l'invention, chaque relief, vu en coupe transversale, possède un plan de symétrie.Asymmetry of the reliefs risks reducing the diffraction efficiency. This is why, according to a preferred embodiment of the diffraction grating object of the invention, each relief, seen in cross section, has a plane of symmetry.
Dans ce cas, les reliefs peuvent avoir, vus en coupe transversale, une forme choisie dans le groupe comprenant les créneaux, les dents de scie et les sinusoïdes .In this case, the reliefs may have, seen in cross section, a shape chosen from the group comprising slots, saw teeth and sinusoids.
Toute autre forme possédant un plan de symétrie est bien entendu utilisable. De préférence, la profondeur des reliefs est déterminée de manière a obtenir une efficacité de diffraction maximale pour le réseau.Any other form having a plane of symmetry is of course usable. Preferably, the depth of the reliefs is determined so as to obtain maximum diffraction efficiency for the grating.
Selon un mode de réalisation particulier du réseau de diffraction objet de l'invention, les reliefs ont, vus en coupe transversale, la forme de créneaux et le taux de remplissage de ces créneaux ainsi que la profondeur de ceux-ci sont détermines de manière a obtenir une efficacité de diffraction maximale pour le réseau.According to a particular embodiment of the diffraction grating object of the invention, the reliefs have, seen in cross section, the shape of slots and the filling rate of these slots as well as the depth of these are determined so as to obtain maximum diffraction efficiency for the grating.
Selon un mode de réalisation préfère de l'invention, le pas moyen des arcs successifs est égal a ou voisin de la longueur d'onde du rayonnement avec lequel le reseau est destiné a être utilise, de sorte que ce rayonnement est focalise avec une très grande efficacité lorsque l'élément est éclaire par le rayonnement, sous une incidence oblique voisine de 30°. La présente invention a également pour objet un procède de fabrication d'un reseau de diffraction focalisant destiné a être utilise avec un rayonnement de longueur d'onde déterminée, ce reseau de diffraction comprenant un élément qui est transparent a cette longueur d'onde, ce procède étant caractérise en ce qu'il comprend les étapes suivantes - on forme un hologramme apte a focaliser le rayonnement, et - on inscrit la figure d'interférence contenue dans l'hologramme sur une face de l'élément.According to a preferred embodiment of the invention, the average pitch of the successive arcs is equal to or close to the wavelength of the radiation with which the network is intended to be used, so that this radiation is focused with a very high efficiency when the element is illuminated by radiation, at an oblique incidence close to 30 °. The present invention also relates to a method of manufacturing a focusing diffraction grating intended to be used with radiation of determined wavelength, this diffraction grating comprising an element which is transparent at this wavelength, proceeds being characterized in that it comprises the following stages - a hologram is formed capable of focusing the radiation, and - the interference figure contained in the hologram is written on one face of the element.
Selon un mode de mise en oeuvre préfère du procède objet de l'invention, on recouvre cette face d'une couche de résine photosensible { "photoresist" ) , on forme l'hologramme dans cette couche, on développe la couche ainsi msolee et l'on grave la face de l'élément à travers la couche développée. De préférence, l'hologramme est formé à la longueur d'onde du rayonnement.According to a preferred embodiment of the process which is the subject of the invention, this face is covered with a layer of photosensitive resin ("photoresist"), the hologram is formed in this layer, the layer thus isolated and the 'the face of the element is etched through the developed layer. Preferably, the hologram is formed at the wavelength of the radiation.
De préférence également, l'hologramme est formé sous une incidence oblique voisine de 30°. Le réseau de diffraction objet de la présente invention se situe à la frontière des composants holographiques et des composants kinoformes : il réalise la focalisation d'un faisceau lumineux incident comme le ferait un hologramme mais avec l'efficacité d'un composant kinoforme.Also preferably, the hologram is formed under an oblique incidence close to 30 °. The diffraction grating object of the present invention is located at the border of holographic components and kinoform components: it achieves the focusing of an incident light beam as a hologram would but with the efficiency of a kinoform component.
De plus, il est réalisable en seulement deux étapes : enregistrement de l'hologramme puis gravure d'un profil de phase a 2 niveaux (m = 1) .In addition, it can be carried out in just two steps: recording the hologram then engraving a phase profile at 2 levels (m = 1).
La gravure consiste en fait à inscrire, à la surface de l'élément transparent, la figure d'interférence qui est enregistrée dans l'hologramme.Etching consists in fact of writing, on the surface of the transparent element, the interference figure which is recorded in the hologram.
Ce réseau de diffraction peut donc être considéré comme un hologramme de surface car son principe de fonctionnement est identique à celui d'un hologramme standard.This diffraction grating can therefore be considered as a surface hologram because its operating principle is identical to that of a standard hologram.
Cependant la modulation d'indice y est plus importante car les deux milieux qui interviennent sont l'air (dont l'indice de réfraction est égal à 1) et un matériau comme par exemple le verre (dont l'indice de réfraction vaut environ 1,5), ce qui permet d'avoir une zone modulée de profondeur beaucoup plus faible que celle des hologrammes de volume tout en obtenant les mêmes déphasages.However, the index modulation is more important there because the two mediums involved are air (whose refractive index is equal to 1) and a material such as for example glass (whose refractive index is approximately 1 , 5), which makes it possible to have a modulated zone of much lower depth than that of the volume holograms while obtaining the same phase shifts.
Les principaux avantages du composant totalement diffractif constitué par le réseau objet de l'invention sont les suivants :The main advantages of the totally diffractive component constituted by the network ob j and of the invention are the following:
- avec ce composant, la qualité de focalisation n'a pas d'autres limites que la diffraction, et- with this component, the focusing quality has no other limits than diffraction, and
- ce composant a une efficacité théorique supérieure à 90% pour une ouverture inférieure à f/3,5, f étant la distance focale du composant, et ce quelle que soit la direction de polarisation incidente pour laquelle le réseau est optimisé. On précise que le profil du réseau focalisant peut être optimisé pour une direction de polarisation (polarisation linéaire) quelconque lors de sa réalisation, mais le réseau ne fonctionne alors avec une forte efficacité que pour cette polarisation. De plus, utilisé dans les conditions de- this component has a theoretical efficiency greater than 90% for an opening less than f / 3.5, f being the focal distance of the component, regardless of the incident polarization direction for which the network is optimized. It is specified that the profile of the focusing network can be optimized for any direction of polarization (linear polarization) during its production, but the network then operates with high efficiency only for this polarization. In addition, used in the conditions of
Bragg au premier ordre de diffraction, ce composant permet une déviation de 60° du faisceau focalisé.Bragg at first order diffraction, this component allows a deflection of 60 ° of the focused beam.
En outre, le composant fonctionne avec un rayonnement incident monochromatique. II est important de noter que ce composant peut en particulier fonctionner dans le domaine ultraviolet avec une très bonne efficacité, contrairement aux composants optiques diffractifs connus dont l'utilisation est limitée au domaine infrarouge et au domaine visible, et que ce composant peut supporter des flux incidents importants car sa résistance à de tels flux est celle du matériau sur lequel est formé le réseau de diffraction.In addition, the component operates with monochromatic incident radiation. It is important to note that this component can in particular operate in the ultraviolet range with very good efficiency, unlike known diffractive optical components whose use is limited to the infrared and visible domains, and that this component can withstand fluxes. important incidents because its resistance to such flows is that of the material on which the diffraction grating is formed.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : * la figure 1 est une vue en coupe transversale schématique d'un réseau de diffraction connu, * les figures 2A, 3A et 4A illustrent schématiquement diverses formes possibles pour un tel réseau, à savoir des créneauxThe present invention will be better understood on reading the description of exemplary embodiments given below, by way of purely indicative and in no way limiting, with reference to the appended drawings in which: * FIG. 1 is a schematic cross-sectional view of a known diffraction grating, * Figures 2A, 3A and 4A schematically illustrate various possible forms for such a network, namely slots
(figure 2A) , des dents de scie (figure 3A) et des sinusoïdes (figure 4A) , et les figures ~-2B, 3B et 4B illustrent schématiquement l'existence d'un plan de symétrie pour ces créneaux (figure 2B) , ces dents de scie (figure 3B) et ces sinusoïdes (figure 4B) ,(Figure 2A), saw teeth (Figure 3A) and sinusoids (Figure 4A), and Figures ~ -2B, 3B and 4B schematically illustrate the existence of a plane of symmetry for these slots (Figure 2B), these saw teeth (FIG. 3B) and these sinusoids (FIG. 4B),
* la figure 5 est une vue en coupe transversale schématique d'un mode de réalisation particulier du réseau de diffraction objet de l'invention, * la figure 6A est une vue en perspective schématique et partielle du réseau de diffraction de la figure 5, et " la figure 6fî illustre schématiquement un front d'onde utilisable pour l'enregistrement d'un réseau conforme a* Figure 5 is a schematic cross-sectional view of a particular embodiment of the diffraction grating object of the invention, * Figure 6A is a schematic and partial perspective view of the diffraction grating of Figure 5, and " FIG. 6fî schematically illustrates a wave front usable for recording a network conforming to
1 ' invention, etThe invention, and
* les figures 7 et 8 illustrent schématiquement des étapes d'un procédé de fabrication du réseau de diffraction des figures 5 et 6A.-* Figures 7 and 8 schematically illustrate steps of a method of manufacturing the diffraction grating of Figures 5 and 6A.-
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Commençons par faire quelques rappels sur le fonctionnement d'un réseau de diffraction classique 2, fonctionnant par transmission, en faisant référence à la figure 1.Let's start by making a few reminders on the operation of a conventional diffraction grating 2, operating by transmission, with reference to Figure 1.
Le fonctionnement d'un tel réseau de diffraction 2 est simple : une onde lumineuse plane incidente 4, dont l'angle d'incidence avec la normale N au réseau de diffraction 2 est noté θx, est diffractee et l'angle de l'onde diffractee 6 avec la normale N est noté θd.The operation of such a diffraction grating 2 is simple: an incident plane light wave 4, whose angle of incidence with the normal N at the diffraction grating 2 is noted θ x , is diffracted and the angle of the diffracted wave 6 with the normal N is noted θ d .
Ces deux angles Θ-. et θd sont liés par 1' équation (1) suivante :These two angles Θ-. and θ d are linked by the following equation (1):
(1) smθ. + smθd = pλ/Λ.(1) smθ. + smθ d = pλ / Λ.
Dans cette équation : p représente l'ordre de diffraction considéré, λ représente la longueur d'onde de l'onde lumineuse 4, et Λ représente le pas du réseau de diffraction 2.In this equation: p represents the diffraction order considered, λ represents the wavelength of the light wave 4, and Λ represents the pitch of the diffraction grating 2.
Pour un réseau de diffraction fonctionnant par transmission, les conventions de signe relatives a la mesure des angles θi et θd sont opposées et la déviation D entre la direction incidente et une direction diffractee est telle que :For a diffraction grating operating by transmission, the sign conventions relating to the measurement of the angles θi and θd are opposite and the deviation D between the incident direction and a diffracted direction is such that:
D = θ, ι 0d.D = θ, ι 0 d .
Pour une onde incidente, une direction de diffraction correspond donc a un ordre de diffraction.For an incident wave, a diffraction direction therefore corresponds to a diffraction order.
Il apparaît que, pour une onde incidente, plusieurs ondes diffractees vérifient l' équation précédente (1) .It appears that, for an incident wave, several diffracted waves verify the previous equation (1).
Pour obtenir une très forte efficacité de diffraction pour un ordre donné de diffraction p, a l'aide d'un réseau, il faut se placer dans une configuration vérifiant la condition de Bragg qui s'écrit :To obtain a very high diffraction efficiency for a given order of diffraction p, using a lattice, one must place oneself in a configuration verifying the Bragg condition which is written:
(2) sιnθλ = pλ/2Λ. Dans ce cas, l'angle d'émergence θd du faisceau diffracté est égal à θi et l'on a une déviation totale D égale à 2θx .(2) sιnθ λ = pλ / 2Λ. In this case, the emergence angle θ d of the diffracted beam is equal to θi and there is a total deviation D equal to 2θ x .
On peut montrer que le maximum d'efficacité de diffraction est obtenu pour l'ordre 1, quand Λ est égal à λ.We can show that the maximum diffraction efficiency is obtained for order 1, when Λ is equal to λ.
La déviation D est alors égale à 2 x 30° c'est-à-dire 60°.The deviation D is then equal to 2 x 30 °, that is to say 60 °.
Lorsque les angles θx et θd sont égaux mais inférieurs à 30° (Λ>λ) , l'efficacité de diffraction diminue légèrement mais reste supérieure à 90% pour Θ-. supérieur à 20°, en adaptant la profondeur de gravure du réseau.When the angles θ x and θ d are equal but less than 30 ° (Λ> λ), the diffraction efficiency decreases slightly but remains greater than 90% for Θ- . greater than 20 °, adapting the engraving depth of the network.
Les ordres de diffraction accessibles sont uniquement l'ordre 0 et l'ordre 1 puisque l'équation (1) s'écrit dans ce cas particulier :The diffraction orders available are only order 0 and order 1 since equation (1) is written in this particular case:
sinθi + sinθd = p.sinθi + sinθ d = p.
Pour un tel réseau 2, la profondeur h de la gravure du matériau 8 (qui est transparent à la longueur d'onde λ) conduisant au réseau de diffraction 2 peut être optimisée afin de produire le maximum d'efficacité de diffraction dans l'ordre +1 au détriment de l'ordre 0.For such a grating 2, the depth h of the etching of the material 8 (which is transparent at the wavelength λ) leading to the diffraction grating 2 can be optimized in order to produce the maximum diffraction efficiency in order +1 at the expense of order 0.
Une interprétation simpliste de l'action du réseau 2 dans cette configuration est que le déphasage relatif introduit par les deux parties de la gravure sur l'onde diffractee est de π pour l'ordre 0. La conservation de l'énergie lors de la diffraction implique que l'énergie se retrouve alors dans l'ordre 1.A simplistic interpretation of the action of network 2 in this configuration is that the relative phase shift introduced by the two parts of the etching on the diffracted wave is π for order 0. The conservation of energy during diffraction implies that the energy is then found in order 1.
Tous les calculs nécessaires à cette optimisation du réseau sont réalisables par des logiciels tenant compte de la nature vectorielle du champ électromagnétique.All the calculations necessary for this network optimization can be carried out by software taking into account the vector nature of the electromagnetic field.
En effet, les motifs du réseau de diffraction (des créneaux dans l'exemple représenté) ayant des dimensions voisines de la longueur d'onde de l'onde lumineuse incidente, l'approximation scalaire du champ électromagnétique n'est pas valable.Indeed, the patterns of the diffraction grating (of the slots in the example shown) having dimensions close to the wavelength of the incident light wave, the scalar approximation of the electromagnetic field is not valid.
Considérons maintenant l'optimisation du profil de la gravure du réseau de diffraction 2. Ce point est très important car la grande efficacité du réseau dépend de ce profil.Now consider the optimization of the etching profile of the diffraction grating 2. This point is very important because the high efficiency of the grating depends on this profile.
Le réseau 2, vu en coupe transversale sur la figure 1, est constitué d'une succession de motifs élémentaires dont la caractéristique principale est qu'ils possèdent tous un plan de symétrie.The network 2, seen in cross section in Figure 1, consists of a succession of elementary patterns whose main characteristic is that they all have a plane of symmetry.
Pour les différents motifs réalisables, il existe une profondeur de gravure optimale donnant une efficacité de diffraction maximale proche de 100%.For the various achievable patterns, there is an optimal etching depth giving a maximum diffraction efficiency close to 100%.
Les figures 2A, 3A et 4A montrent des motifs réalisables, à savoir des créneaux (figure 2A) , des dents de scie (figure 3A) et des sinusoïdes (figure 4A) .Figures 2A, 3A and 4A show achievable patterns, namely slots (Figure 2A), saw teeth (Figure 3A) and sinusoids (Figure 4A).
Les figures 2B, 3B et 4B montrent l'existence d'un plan de symétrie P pour chacun des motifs des figures 2A, 3A et 4A.FIGS. 2B, 3B and 4B show the existence of a plane of symmetry P for each of the patterns in FIGS. 2A, 3A and 4A.
On considère plus particulièrement les créneaux de la figure 2A dont l'espacement est noté a_ et le pas b.We consider more particularly the slots of figure 2A whose spacing is noted a_ and the step b.
On désigne par "taux de remplissage" le rapport (b-a)/b qui est inférieur à 1.The ratio (b-a) / b is less than 1 by "filling rate".
La profondeur optimum à donner aux créneaux est également fonction de ce taux de remplissage.The optimum depth to be given to the slots is also a function of this filling rate.
En général, pour un motif donné, la profondeur de gravure du réseau est minimale pour un taux de remplissage égal à 0,5. On considère maintenant un réseau de diffraction focalisant par transmission, conforme à la présente invention, qui est schématiquement représenté en coupe transversale sur la figure 5 et en perspective partielle sur la figure 6 A -In general, for a given pattern, the etching depth of the network is minimum for a filling ratio equal to 0.5. We now consider a diffraction grating focusing by transmission, in accordance with the present invention, which is schematically represented in cross section in FIG. 5 and in partial perspective in FIG. 6 A -
Ce réseau "est destiné à être utilisé avec un faisceau lumineux 10 à rayons parallèles, de longueur d'onde déterminée λ.This network " is intended to be used with a light beam 10 with parallel rays, of determined wavelength λ.
Ce réseau comprend un substrat 11 qui est transparent à cette longueur d'onde λ et sur une face duquel est formé un ensemble de reliefs 12.This network comprises a substrate 11 which is transparent at this wavelength λ and on one face of which a set of reliefs 12 is formed.
Cet ensemble de reliefs est délimité par un niveau plan inférieur 13 et un niveau plan supérieur 14 qui est parallèle au niveau inférieur 13. Les reliefs 12 forment des arcs successifs dont le pas Λ va en diminuant d'un côté à l'autre du substrat 11 comme on le voit sur la figure 6 A.This set of reliefs is delimited by a lower plane level 13 and an upper plane level 14 which is parallel to the lower level 13. The reliefs 12 form successive arcs whose pitch Λ decreases from one side to the other of the substrate 11 as seen in FIG. 6 A.
De cette façon, lorsqu'on éclaire la face portant les reliefs 12, par le faisceau 10, à travers le substrat 11, sous une incidence oblique (l'angle d'incidence du faisceau 10 par rapport à la normale N au réseau étant encore noté θj. sur la figure 5) , cette incidence étant fonction du pas moyen Λ des arcs, ce faisceau 10 est focalisé avec une grande efficacité en un point noté F sur la figure 5.In this way, when the face carrying the reliefs 12 is illuminated, by the beam 10, through the substrate 11, under an oblique incidence (the angle of incidence of the beam 10 relative to the normal N to the grating is still noted θj. in FIG. 5), this incidence being a function of the average pitch Λ of the arcs, this beam 10 is focused with great efficiency at a point noted F in FIG. 5.
Le réseau est susceptible de fonctionner aussi en l'éclairant du côté de la face portant les reliefs .The network can also function by lighting it on the side of the face carrying the reliefs.
Les performances obtenues seraient identiques mis à part de légères aberrations apportées par la traversée de la face sans reliefs par un faisceau oblique et convergent.The performances obtained would be identical except for slight aberrations brought by the crossing of the face without reliefs by an oblique and convergent beam.
Ce qui a été dit précédemment à propos du réseau classique de la figure 1 peut être appliqué au réseau conforme à l'invention des figures 5 et 6A en remplaçant le paramètre Λ par Λ dans les formules (1) et (2).What has been said previously with respect to the conventional network of FIG. 1 can be applied to the network according to the invention of FIGS. 5 and 6A in replacing the parameter Λ by Λ in formulas (1) and (2).
C'est ainsi que chaque relief, vu en coupe transversale, possède un plan de symétrie P. Dans l'exemple des figures 5 et 6A les reliefs ont, vus en co'upe transversale, la forme de créneaux .Thus each relief, seen in cross section, has a plane of symmetry P. In the example of Figures 5 and 6A reliefs have, seen in co transverse UPE, the shape of slots.
Cependant, on peut également utiliser des reliefs formant par exemple des dents de scie ou des sinusoïdes ou ayant tout autre forme possédant un plan de symétrie.However, it is also possible to use reliefs forming for example saw teeth or sinusoids or having any other shape having a plane of symmetry.
La profondeur h des reliefs 12 est déterminée de manière à obtenir une efficacité de diffraction maximale pour le réseau. Comme on l'a vu plus haut, on se place pour ce faire dans les conditions de Bragg au premier ordre de diffraction.The depth h of the reliefs 12 is determined so as to obtain maximum diffraction efficiency for the grating. As we saw above, we place ourselves to do this in the Bragg conditions at the first order of diffraction.
Dans ce cas, comme on l'a vu, l'angle d'émergence θd du faisceau diffracté 16 est égal à θ, et l'on a une déviation totale D égale a 2θ..In this case, as we have seen, the emergence angle θ d of the diffracted beam 16 is equal to θ, and there is a total deflection D equal to 2θ.
Dans le cas des figures 5 et 6A, où les reliefs ont, vus en coupe transversale, la forme de créneaux, on peut choisir le taux de remplissage (moyen) de ces créneaux ainsi que la profondeur h de ceux-ci de manière à obtenir une grande efficacité de diffraction pour le réseau.In the case of FIGS. 5 and 6A, where the reliefs have, seen in cross section, the form of slots, one can choose the filling rate (average) of these slots as well as the depth h of them so as to obtain high diffraction efficiency for the network.
De préférence, le pas moyen des arcs successifs est égal à la longueur d'onde λ du faisceau lumineux 10. Ainsi ce faisceau lumineux 10 est focalisé avec une très grande efficacité lorsque la face sur laquelle sont formées les reliefs 12 est éclairée, à travers le substrat 11, par le faisceau lumineux 10 avec un angle d'incidence Θ-. de 30°. Le substrat 11 est par exemple en silice. On pourrait également utiliser un tel substrat sur une face duquel serait déposée une couche d'un matériau transparent au faisceau lumineux de longueur d'onde λ, les reliefs étant alors formés dans cette couche de matériau transparent.Preferably, the average pitch of the successive arcs is equal to the wavelength λ of the light beam 10. Thus this light beam 10 is focused with great efficiency when the face on which the reliefs 12 are formed is illuminated, through the substrate 11, by the light beam 10 with an angle of incidence Θ-. 30 °. The substrate 11 is for example made of silica. One could also use such a substrate on one face of which would be deposited a layer of material transparent to the light beam of wavelength λ, the reliefs then being formed in this layer of transparent material.
Avec un substrat 11 en silice, le réseau conforme à l'invention est apte à fonctionner dans le domaine ultraviolet.With a silica substrate 11, the network according to the invention is capable of operating in the ultraviolet range.
Avec un matériau tel que la silice, l'efficacité de diffraction dans les conditions de Bragg pour une gravure optimisée des reliefs 12 est supérieure à 90%, pour une ouverture inférieure à f/3, quelle que soit la direction de polarisation du faisceau lumineux incident 10 pour laquelle le profil est optimisé.With a material such as silica, the diffraction efficiency under Bragg conditions for an optimized etching of the reliefs 12 is greater than 90%, for an opening less than f / 3, whatever the direction of polarization of the light beam. incident 10 for which the profile is optimized.
On précise que les optimisations sont obtenues à l'aide d'un logiciel du genre de celui dont il a été question plus haut.It is specified that the optimizations are obtained using software of the kind of that which was mentioned above.
On a donc vu comment obtenir un réseau de diffraction focalisant par transmission conforme à l'invention, ce réseau ayant une très forte efficacité de ' diffraction dans l'ordre 1 et réalisant une déviation D de 60°.Thus we have seen how to obtain a diffraction grating by focusing transmission according to the invention, the network having a very high efficiency diffraction in the order 1 and performing a D 60 ° deflection.
Pour la longueur d'onde λ considérée, la fonction du réseau conforme à l'invention des figures 5 et 6Aest de modifier le faisceau lumineux incident 10.For the wavelength λ considered, the function of the grating according to the invention of FIGS. 5 and 6A is to modify the incident light beam 10.
Ce réseau transforme donc un front d'onde 18 (plan ou sphérique) en un front d'onde sphérique 20.This network therefore transforms a wavefront 18 (plane or spherical) into a spherical wavefront 20.
D'une manière générale le réseau transforme un front d'onde incident en un front d'onde émergent.In general, the network transforms an incident wavefront into an emerging wavefront.
Lors de l'enregistrement du réseau, les fronts d'onde utilisés sont les conjugués des fronts d'ondes incidents et émergents réels (c'est-à-dire ceux qui interviennent lors de l'utilisation du composant). Il n'y a pas de contrainte particulière sur ces fronts d'ondes FR si ce n'est que leur rayon de courbure R et leur diamètre D (voir la figure βjβ) vérifient R>3,5D afin de conserver une bonne efficacité de diffraction pour le réseau réalisé.When recording the network, the wave fronts used are the conjugates of the actual incident and emerging wave fronts (that is to say, those which intervene during the use of the component). There is no particular constraint on these FR wave fronts except that their radius of curvature R and their diameter D (see figure βjβ) verify R> 3.5D in order to maintain good efficiency of diffraction for the network produced.
Les applications immédiates pour ce réseau de diffraction sont :The immediate applications for this diffraction grating are:
- les lentilles sphériques standards qui transforment un front d'onde plan en un front d'onde sphérique (d'où une focalisation en un point) ou qui transforment un front d'onde sphérique en un front d'onde plan (d'où une collimation) ,- standard spherical lenses which transform a plane wavefront into a spherical wavefront (hence a focusing at a point) or which transform a spherical wavefront into a plane wavefront (hence collimation),
- les lentilles cylindriques qui transforment un front d'onde plan en un front d'onde cylindrique (d'où une focalisation sur une ligne) ou qui transforment un front d'onde cylindrique en un front d'onde plan (d'où une collimation),- cylindrical lenses which transform a plane wavefront into a cylindrical wavefront (hence focusing on a line) or which transform a cylindrical wavefront into a plane wavefront (hence a collimation),
- la conjugaison, un front d'onde sphérique incident étant alors transformé en un front d'onde sphérique émergent.- conjugation, an incident spherical wavefront then being transformed into an emerging spherical wavefront.
La transformation d'un front d'onde 18The transformation of a wavefront 18
(plan ou sphérique) en un front d'onde sphérique 20 peut être réalisée par un hologramme enregistré par interférence entre une onde sphérique issue d'un point source et une onde de référence (plane ou sphérique) .(plane or spherical) in a spherical wavefront 20 can be produced by a hologram recorded by interference between a spherical wave coming from a source point and a reference wave (plane or spherical).
La différence entre le réseau conforme à l'invention et un tel hologramme est l'origine de la différence de phase que l'on donne au faisceau lumineux incident . Dans un hologramme, la différence de phase est donnée par une différence locale de l'indice de réfraction du matériau dans lequel est formé l'hologramme, cette différence étant proportionnelle à la quantité de lumière présente localement lors de l'enregistrement de cet hologramme. A la surface du réseau conforme à l'invention, c'est le profil de la gravure qui donne la différence de phase.The difference between the network according to the invention and such a hologram is the origin of the phase difference that is given to the incident light beam. In a hologram, the phase difference is given by a local difference in the refractive index of the material in which the hologram is formed, this difference being proportional to the amount of light present locally during the recording of this hologram. On the surface of the network according to the invention, it is the profile of the etching which gives the phase difference.
Cependant, dans les deux cas, les franges d'interférence sont positionnées spatialement aux mêmes endroits (pour réaliser^la même fonction) .However, in both cases, the interference fringes are positioned spatially in the same places (to achieve ^ the same function).
Il est à noter que le profil de phase du réseau de diffraction conforme à l'invention est gravé à la surface du substrat 11 et non pas enregistré dans le volume de ce substrat 11.It should be noted that the phase profile of the diffraction grating according to the invention is etched on the surface of the substrate 11 and not recorded in the volume of this substrate 11.
Les degrés de liberté disponibles pour le profil de la gravure sont la forme, la profondeur et aussi le taux de remplissage qui, comme on l'a vu, permettent d'optimiser l'efficacité de diffraction pour un seul ordre.The degrees of freedom available for the profile of the etching are the shape, the depth and also the filling rate which, as we have seen, make it possible to optimize the diffraction efficiency for a single order.
De plus, la résistance du réseau de diffraction focalisant conforme à l'invention à un flux lumineux incident est identique à celle du matériau constitutif du substrat 11 sur lequel ce réseau est formé.In addition, the resistance of the focusing diffraction grating according to the invention to an incident light flux is identical to that of the material constituting the substrate 11 on which this grating is formed.
Cette résistance au flux lumineux est nettement supérieure à celle des gélatines bichro atées utilisées pour l'enregistrement des hologrammes.This resistance to light flux is much higher than that of bichroated gelatins used for recording holograms.
On explique en faisant référence aux figures 7 et 8 un procédé de fabrication d'un réseau de diffraction focalisant par transmission, du genre de celui qui est représenté sur les figures 5 et 6Aet qui permet la focalisation du faisceau lumineux 10 de longueur d'onde λ. On utilise le substrat de silice 11 qui est transparent à cette longueur d'onde λ et l'on forme un hologramme apte à focaliser le faisceau lumineux 10 puis on inscrit la figure d'interférence contenue dans cet hologramme sur une face du substrat 11. Pour ce faire, on recouvre cette face d'une couche 22 de résine photosensible dont l'épaisseur est égale à la profondeur h souhaitée pour les reliefs du réseaux. On forme ensuite l'hologramme dans cette couche de résine photosensible 22.Explaining with reference to FIGS. 7 and 8, a method of manufacturing a diffraction grating focusing by transmission, of the kind which is shown in FIGS. 5 and 6A and which allows the focusing of the light beam 10 of wavelength, is explained. λ. The silica substrate 11 is used, which is transparent at this wavelength λ, and a hologram capable of focusing the light beam 10 is formed, then the interference figure contained in this hologram is written on one face of the substrate 11. To do this, this face is covered with a layer 22 of photosensitive resin whose thickness is equal to the depth h desired for the reliefs of the networks. The hologram is then formed in this layer of photosensitive resin 22.
Pour ce faire, on utilise une source lumineuse 24 apte à fournir un faisceau lumineux à rayons parallèles 26 de longueur d'onde λ. On réalise donc de préférence l'enregistrement de la figure d'interférence de l'hologramme à cette longueur d'onde d'utilisation λ car, dans le cas contraire, il faudrait utiliser des fronts d'onde complexes et difficiles à obtenir. Pour former l'hologramme dans la couche de résine photosensible 22, on envoie le faisceau lumineux 26 sous l'angle d'incidence Ql t de préférence égal à 30°, à travers le substrat 4, en direction de la face portant la couche de résine photosensible 22. Au moyen d'un miroir semi-transparent 28 placé sur la trajectoire du faisceau 26, on prélève une partie 30 de celui-ci.To do this, a light source 24 capable of providing a light beam with parallel rays 26 of wavelength λ is used. The hologram interference figure is therefore preferably recorded at this wavelength of use λ because, otherwise, complex wave fronts which are difficult to obtain should be used. To form the hologram in the layer of photosensitive resin 22, the light beam 26 is sent at the angle of incidence Q lt , preferably equal to 30 °, through the substrate 4, in the direction of the face carrying the layer of photosensitive resin 22. By means of a semi-transparent mirror 28 placed on the path of the beam 26, a part 30 of the latter is removed.
On dévie la partie 30 ainsi prélevée au moyen d'un miroir 32 de façon que le faisceau lumineux réfléchi par ce miroir 32 ait également un angle d'incidence θλ par rapport à la couche 22.The part 30 thus removed is deflected by means of a mirror 32 so that the light beam reflected by this mirror 32 also has an angle of incidence θ λ relative to the layer 22.
On dispose un écran opaque 34 percé d'un trou 36 sur le trajet de ce faisceau réfléchi pour que ce trou 36 constitue une source lumineuse ponctuelle. On précise que le faisceau réfléchi par le miroir 32 est focalise sur le trou 36 au moyen d'une optique appropriée 38.There is an opaque screen 34 pierced with a hole 36 in the path of this reflected beam so that this hole 36 constitutes a point light source. It is specified that the beam reflected by the mirror 32 is focused on the hole 36 by means of appropriate optics 38.
Le diamètre du trou 36 est égal à quelques fois la longueur d'onde λ. La lumière issue de la source ponctuelle interfère, dans la couche de résine photosensible 22, avec la partie non prélevée 40 du faisceau 26, d'où la formation de l'hologramme recherché 42 dans cette couche (figure 8) .The diameter of the hole 36 is equal to a few times the wavelength λ. The light from the point source interferes, in the photosensitive resin layer 22, with the non-sampled part 40 of the beam 26, hence the formation of the hologram sought 42 in this layer (Figure 8).
On développé- ensuite la couche de résine photosensible 22 ainsi insolée et l'on grave le substrat 11 à travers la couche de résine photosensible développée. Pour ce faire, on utilise par exemple un procédé de gravure ionique.The photosensitive resin layer 22 thus exposed is then developed and the substrate 11 is etched through the developed photosensitive resin layer. To do this, an ion etching process is used for example.
On obtient ainsi un réseau de diffraction focalisant conforme à l'invention, du genre de celui des figures 5 et 6A» On précise que les franges d'interférence de l'hologramme sont des courbes de même déphasage entre une surface d'onde sphérique et une surface d'onde plane inclinée.One thus obtains a focusing diffraction grating according to the invention, of the kind of that of FIGS. 5 and 6A "It is specified that the interference fringes of the hologram are curves of the same phase shift between a spherical wave surface and an inclined plane wave surface.
D'un côté du substrat 11, le pas de l'ensemble des franges d'interférence est faible, ce qui permettra une grande déviation des rayons lumineux tandis que de l'autre côté du substrat, le pas est plus grand et la déviation donnée aux rayons lumineux sera plus faible. Sur les bords du composant, les franges d'interférence s'incurvent, d'où une déviation des rayons lumineux vers un point (foyer) .On one side of the substrate 11, the pitch of all the interference fringes is small, which will allow a large deflection of the light rays while on the other side of the substrate, the pitch is larger and the deviation given to light rays will be weaker. On the edges of the component, the interference fringes curve, resulting in a deflection of the light rays towards a point (focus).
Localement, les franges peuvent être considérées comme rectilignes et l'on est alors dans un cas de diffraction conique : le vecteur d'onde incident n'est plus dans le plan défini par la normale au substrat et la normale locale aux franges.Locally, the fringes can be considered as rectilinear and we are then in a case of conical diffraction: the incident wave vector is no longer in the plane defined by the normal to the substrate and the local normal to the fringes.
La variation du pas et l'angle non nul entre ce plan et le plan défini par la normale au substrat et le vecteur d'onde incident font que le composant ne fonctionne plus exactement dans les conditions de Bragg.The variation of the pitch and the non-zero angle between this plane and the plane defined by the normal to the substrate and the incident wave vector cause the component no longer works exactly under Bragg conditions.
L'efficacité de diffraction baisse donc légèrement sur les bords. On a calculé que pour un composant ouvert a f/7, l'efficacité de diffraction globale baissait de 3% par rapport à l'efficacité de diffraction obtenue dans les conditions de Bragg.The diffraction efficiency therefore drops slightly at the edges. It was calculated that for an open component at f / 7, the overall diffraction efficiency decreased by 3% compared to the diffraction efficiency obtained under Bragg conditions.
Il faut cependant noter que l'efficacité de diffraction de ce composant reste supérieure à 94% quelle que soit la polarisation incidente.It should however be noted that the diffraction efficiency of this component remains greater than 94% whatever the incident polarization.
Pour une ouverture égale a f/3,5 et donc supérieure à la précédente, l'efficacité de diffraction du composant reste tout de même supérieure a 90% quelle que soit la direction de polarisation incidente pour laquelle le profil a été optimisé.For an opening equal to f / 3.5 and therefore greater than the previous one, the diffraction efficiency of the component nevertheless remains greater than 90% whatever the incident polarization direction for which the profile has been optimized.
Le réseau de diffraction objet de l'invention constitue donc un composant diffractif focalisant de très grande efficacité à une longueur d'onde donnée, sans restriction de polarisation.The diffraction grating object of the invention therefore constitutes a focusing diffractive component of very high efficiency at a given wavelength, without polarization restriction.
Cette longueur d'onde peut se situer dans le domaine visible ou le domaine ultraviolet.This wavelength can be in the visible range or the ultraviolet range.
Dans le domaine ultraviolet, ce composant est le seul composant diffractif focalisant de grande efficacité.In the ultraviolet field, this component is the only focusing diffractive component of high efficiency.
La qualité de focalisation est théoriquement limitée par la diffraction.The focusing quality is theoretically limited by diffraction.
Le composant est réalisable en deux étapes : enregistrement holographique de la fonction optique à la longueur d'onde de fonctionnement, puas transfert de la figure d'interférence à la surface du substrat .The component can be produced in two stages: holographic recording of the optical function at the operating wavelength, then transfer of the interference pattern to the surface of the substrate.
L'invention permet que le faisceau incident et le faisceau focalise soient inclinés de 60° l'un par rapport à l'autre. Le faisceau incident peut être collimaté ou non, l'enregistrement de la figure d'interférence ayant lieu de manière holographique.The invention allows the incident beam and the focused beam to be inclined by 60 ° relative to each other. The incident beam can be collimated or not, the recording of the interference figure taking place in a holographic manner.
Cependant, l'ouverture de l'optique réalisée ne doit pas dépasser f/3,5 pour conserver une forte efficacité de diffraction (supérieure ou égale a 90%) .However, the aperture of the optics produced must not exceed f / 3.5 to maintain a high diffraction efficiency (greater than or equal to 90%).
La particularité supplémentaire de ce composant est sa résistance à un flux lumineux, cette résistance correspondant à celle du matériau dans lequel est forme le réseau de diffraction.The additional characteristic of this component is its resistance to a luminous flux, this resistance corresponding to that of the material in which the diffraction grating is formed.
L'avantage de ce composant par rapport a une optique diffractive kmoforme standard est que sa gravure est binaire et donc plus simple à réaliser puisqu'il n'est pas nécessaire d'aligner avec une très grande précision des masques de gravure successifs.The advantage of this component compared to standard diffractive kmoform optics is that its etching is binary and therefore simpler to carry out since it is not necessary to align with very high precision successive etching masks.
Bien entendu, un réseau de diffraction conforme à l'invention, du genre de celui qui est représenté sur la figure 5, permet également de colli ater un faisceau lumineux divergent envoyé vers la face du substrat 11 ou sont les reliefs 12 (ou vers l'autre face de ce substrat). Of course, a diffraction grating according to the invention, of the kind which is represented in FIG. 5, also makes it possible to colli ate a diverging light beam sent towards the face of the substrate 11 where the reliefs 12 are 'other side of this substrate).

Claims

REVENDICATIONS
1. Réseau de diffraction focalisant par transmission, destiné à être utilisé avec un rayonnement de longueur d'onde déterminée, ce réseau étant caractérisé en ce qu'il comprend un élément solide (11) qui est transparent à cette longueur d'onde et sur une face duquel est formé un ensemble de reliefs (12), cet ensemble étant délimité par deux niveaux plans, les reliefs formant des arcs successifs dont le pas va en diminuant d'un côté à l'autre de l'élément, de sorte qu'en éclairant l'élément par le rayonnement, sous une incidence oblique fonction du pas moyen des arcs, ce rayonnement est focalisé avec une grande efficacité. 1. Diffraction grating focusing by transmission, intended for use with radiation of determined wavelength, this grating being characterized in that it comprises a solid element (11) which is transparent at this wavelength and on one face of which is formed a set of reliefs (12), this set being delimited by two flat levels, the reliefs forming successive arcs whose pitch decreases from one side to the other of the element, so that 'by illuminating the element with radiation, at an oblique incidence depending on the average pitch of the arcs, this radiation is focused with great efficiency.
2. Réseau de diffraction selon la revendication 1, caractérisé en ce que chaque relief (12), vu en coupe transversale, possède un plan de symétrie (P) .2. Diffraction grating according to claim 1, characterized in that each relief (12), seen in cross section, has a plane of symmetry (P).
3. Réseau de diffraction selon la revendication 2, caractérisé en ce que les reliefs (12) ont, vus en coupe transversale, une forme choisie dans le groupe comprenant les créneaux, les dents de scie et les sinusoïdes.3. Diffraction grating according to claim 2, characterized in that the reliefs (12) have, seen in cross section, a shape chosen from the group comprising slots, saw teeth and sinusoids.
4. Réseau de diffraction selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la profondeur (h) des reliefs est déterminée de manière à obtenir une efficacité de diffraction maximale pour le réseau.4. diffraction grating according to any one of claims 1 to 3, characterized in that the depth (h) of the reliefs is determined so as to obtain maximum diffraction efficiency for the grating.
5. Réseau de diffraction selon la revendication 3, caractérisé en ce que les reliefs (12) ont, vus en coupe transversale, la forme de créneaux et en ce que le taux de remplissage de ces créneaux ainsi que la profondeur de ceux-ci sont déterminés de manière à obtenir une efficacité de diffraction maximale pour le réseau. 5. Diffraction grating according to claim 3, characterized in that the reliefs (12) have, seen in cross section, the shape of slots and in that the filling rate of these slots as well as the depth of these are determined so as to obtain maximum diffraction efficiency for the grating.
6. Réseau de diffraction selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le pas moyen des arcs successifs est égal à ou voisin de la longueur d'onde du rayonnement avec lequel le réseau est destiné à être utilisé, de sorte que ce rayonnement est focalisé avec une très grande efficacité lorsque l'élément (11) est éclairé par le rayonnement, sous une incidence oblique voisine de 30°.6. diffraction grating according to any one of claims 1 to 5, characterized in that the mean pitch of the successive arcs is equal to or close to the wavelength of the radiation with which the grating is intended to be used, of so that this radiation is focused with great efficiency when the element (11) is illuminated by the radiation, at an oblique incidence close to 30 °.
7. Procédé de fabrication d'un réseau de diffraction focalisant destiné à être utilisé avec un rayonnement de longueur d'onde déterminée, ce réseau de diffraction comprenant un élément (11) qui est transparent à cette longueur d'onde, ce procédé étant caractérisé en ce qu'il comprend les étapes suivantes : - on forme un hologramme (42) apte à focaliser le rayonnement, et - on inscrit la figure d'interférence contenue dans l'hologramme sur une face de l'élément (11).7. A method of manufacturing a focusing diffraction grating intended to be used with radiation of determined wavelength, this diffraction grating comprising an element (11) which is transparent at this wavelength, this method being characterized in that it comprises the following steps: - a hologram (42) is formed capable of focusing the radiation, and - the interference figure contained in the hologram is written on one face of the element (11).
8. Procédé selon la revendication 7, caractérisé en ce que l'on recouvre cette face d'une couche de résine photosensible (22) , on forme l'hologramme (42) dans cette couche, on développe la couche ainsi insolée et l'on grave la face de l'élément à travers la couche développée. 8. Method according to claim 7, characterized in that this face is covered with a layer of photosensitive resin (22), the hologram (42) is formed in this layer, the layer thus exposed is developed and the the face of the element is etched through the developed layer.
9. Procédé selon l'une quelconque des revendications 7 et 8, caractérisé en ce que l'hologramme (42) est formé à la longueur d'onde du rayonnement .9. Method according to any one of claims 7 and 8, characterized in that the hologram (42) is formed at the wavelength of the radiation.
10. Procédé selon la revendication 9, caractérisé en ce que l'hologramme (42) est formé sous une incidence oblique voisine de 30°. 10. Method according to claim 9, characterized in that the hologram (42) is formed under an oblique incidence close to 30 °.
PCT/FR1997/001624 1996-09-18 1997-09-15 High-efficiency focusing diffraction network and method for manufacturing same WO1998012582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9611378A FR2753539B1 (en) 1996-09-18 1996-09-18 HIGHLY EFFICIENT FOCUSING DIFFRACTION NETWORK AND MANUFACTURING METHOD THEREOF
FR96/11378 1996-09-18

Publications (1)

Publication Number Publication Date
WO1998012582A1 true WO1998012582A1 (en) 1998-03-26

Family

ID=9495850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001624 WO1998012582A1 (en) 1996-09-18 1997-09-15 High-efficiency focusing diffraction network and method for manufacturing same

Country Status (2)

Country Link
FR (1) FR2753539B1 (en)
WO (1) WO1998012582A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066818A1 (en) * 2008-12-09 2010-06-17 Delphi Technologies, Inc. Diffractive combiner for multicolour and monochrome display, production method, and head-up display device using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1588191A1 (en) * 2003-01-31 2005-10-26 Osram Opto Semiconductors GmbH Optoelectronic sensor module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578845A (en) * 1968-02-12 1971-05-18 Trw Inc Holographic focusing diffraction gratings for spectroscopes and method of making same
JPS63222341A (en) * 1987-03-12 1988-09-16 Matsushita Electric Ind Co Ltd Optical pickup
DE4110614A1 (en) * 1991-04-02 1992-10-08 Rupp & Hubrach Kg Rugged lens e.g. for spectacles - has main body with diffractive focussing features on side covered with protective e.g. polysiloxane coating of lower refractive index
EP0649037A2 (en) * 1993-10-18 1995-04-19 Matsushita Electric Industrial Co., Ltd. Diffractive optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578845A (en) * 1968-02-12 1971-05-18 Trw Inc Holographic focusing diffraction gratings for spectroscopes and method of making same
JPS63222341A (en) * 1987-03-12 1988-09-16 Matsushita Electric Ind Co Ltd Optical pickup
DE4110614A1 (en) * 1991-04-02 1992-10-08 Rupp & Hubrach Kg Rugged lens e.g. for spectacles - has main body with diffractive focussing features on side covered with protective e.g. polysiloxane coating of lower refractive index
EP0649037A2 (en) * 1993-10-18 1995-04-19 Matsushita Electric Industrial Co., Ltd. Diffractive optical device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 017 (P - 813) 17 January 1989 (1989-01-17) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066818A1 (en) * 2008-12-09 2010-06-17 Delphi Technologies, Inc. Diffractive combiner for multicolour and monochrome display, production method, and head-up display device using same
JP2012511739A (en) * 2008-12-09 2012-05-24 デルファイ・テクノロジーズ・インコーポレーテッド Diffraction combiner for multi-color display and monochrome display, manufacturing method thereof, and head-up display device using the same
US8477424B2 (en) 2008-12-09 2013-07-02 Delphi Technologies, Inc. Diffractive combiner for multicolor and monochrome display, method of manufacture and head-up display device using same

Also Published As

Publication number Publication date
FR2753539B1 (en) 1998-10-23
FR2753539A1 (en) 1998-03-20

Similar Documents

Publication Publication Date Title
EP0021993B1 (en) Integrated fresnel lens
EP0126686B1 (en) Optical waveguide employing a diffraction grating
EP0455539B1 (en) System for optical recording of data on disks and corresponding methods of reading and writing
EP3460547A1 (en) Optical coupling device for a photonic circuit
FR2861183A1 (en) Binary type diffractive optical component for scalar optical system, has composite artificial material with two microstructures in respective portions in which effective index decreases and increases with filling factor
FR3065132A1 (en) DEVICE AND METHOD FOR MULTISPECTRAL IMAGING IN THE INFRARED
EP0007268B1 (en) Optical radiation source for producing a divergent radiation beam with a uniform angular aperture
WO2001050554A1 (en) Network structure using high dispersion volume holography
FR2498340A1 (en) METHOD AND APPARATUS FOR DETECTING AN OBJECTIVE FOCUSING ERROR SIGNAL
EP3924757B1 (en) Optical metasurfaces, and associated manufacturing methods and systems
EP0995145B1 (en) Diffractive optics with synthetic aperture and variable focal length and laser cutting device incorporating such an optics
EP3571544B1 (en) Device for changing the shape of a light beam
EP0708509B1 (en) Single wavelength emitting device
EP2926187B1 (en) Device for controlling the phase of an optical wavefront
WO1998012582A1 (en) High-efficiency focusing diffraction network and method for manufacturing same
EP1397813B1 (en) Hybrid optical component for x ray applications and method associated therewith
WO2021083787A1 (en) Diffractive optical element comprising a metasurface for tirf microscopy
EP0811173B1 (en) Wide-angle spectral rejector and method for making same
WO2004057390A1 (en) Integrated optics coupling element comprising a grating produced in a cladding and method for making same
EP2145331B1 (en) Method and system for reading high density optical information
FR2572196A1 (en) METHOD AND DEVICE FOR STABLE CONTROLABLE OPTICAL PHASE MODULATION
WO2024074241A1 (en) Optical substrate having integrated antennas, and spectrometer comprising same
FR2966940A1 (en) DIRECT LASER WRITING BENCH OF MESA STRUCTURES HAVING NEGATIVE SLOPED FLANGES
FR2799844A1 (en) OPTICAL DEVICE FOR CONTROLLING, IN PARTICULAR SHAPING, OF A COHERENT LIGHT BEAM
FR2798200A1 (en) OPTICAL SPLITTING MEMBER FOR POLARIZATION SEPARATION OF MONOCHROMATIC LIGHT

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IL JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998514339

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase