WO1998011616A1 - Plate- or rod-like fuel cell cooling element and fuel cell stack with one or more fuel cell cooling elements - Google Patents

Plate- or rod-like fuel cell cooling element and fuel cell stack with one or more fuel cell cooling elements Download PDF

Info

Publication number
WO1998011616A1
WO1998011616A1 PCT/DE1997/001833 DE9701833W WO9811616A1 WO 1998011616 A1 WO1998011616 A1 WO 1998011616A1 DE 9701833 W DE9701833 W DE 9701833W WO 9811616 A1 WO9811616 A1 WO 9811616A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
heat
section
cooling element
cooling
Prior art date
Application number
PCT/DE1997/001833
Other languages
German (de)
French (fr)
Inventor
Volker Peinecke
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO1998011616A1 publication Critical patent/WO1998011616A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0043Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a plate or rod-shaped fuel cell cooling element with high thermal conductivity. It also relates to a fuel cell stack, consisting of stacked individual cells with one or more fuel cell cooling elements arranged between the individual cells.
  • Plate or tubular cooling devices for fuel cells which are powered by a cooling medium, e.g. Water or air.
  • a cooling medium e.g. Water or air.
  • the cow! cautions have the advantage of being able to dissipate a relatively high amount of heat per unit of time.
  • supply and discharge lines for the cooling medium, pumps and heat exchangers must be provided, which make such devices technologically complex and expensive.
  • Such a cow! Devices are used particularly in the case of fuel cells with a solid electrolyte, such as Membrane fuel cells, which consist of a stack of several individual cells, are used.
  • a solid electrolyte such as Membrane fuel cells, which consist of a stack of several individual cells.
  • the individual cells are arranged in parallel and electrically connected in series. The same current flows through each individual cell.
  • Bipolar plates are placed between the individual cells, each connecting the anode side of one individual cell to the cathode side of the next cell.
  • bipolar plates are now partially designed as cooling plates to dissipate the waste heat generated in the individual cells, such as. B. from DE 42 34 093 A1, DE 39 07 819 A1 or from EP 0 295 629 A1 is known.
  • the cooling plates are hollow and are penetrated by a cooling medium. flows. Usually water is used, less often air. The waste heat is then released from the cooling medium to a heat exchanger.
  • pl attenformi ge cooling elements which are not provided with a cavity. Rather, there are pipes that are trapped by the coolant and are embedded in a plate-shaped body for heat absorption.
  • Fuel cells cooled in this way are very sensitive to overheating. On the one hand, a sufficiently high temperature must be maintained in order to achieve optimum efficiency in the generation of electrical energy with the fuel cell. On the other hand, the local temperature inside the fuel cell must not exceed a certain level, since even minor overheats can severely shorten the life of an individual cell.
  • the known liquid cooling systems operate with a control system, such as EP 0 295 629 A1, which, however, does not exclude a temperature gradient in the individual cell in the flow direction of the cooling medium and thus local overheats.
  • a solution is also known from EP 0 473 540 A2, in which the air supplying the oxygen for the process also serves as a cooling agent. On the one hand, a considerable excess of air must be used; on the other hand, special temperature compensation bodies are required, through which the air can absorb the heat. A temperature gradient along the chemically active zones cannot be avoided with this solution.
  • a Kuhl ⁇ element specify the initially stated type which is of simple construction and the supervisedised to a comparable and constant operating temperature of a Warmetra- gers contributes and is therefore suitable for use in fuel cells.
  • the object is achieved in that since the cooling element has a heat discharge section and a heat receiver that is in heat-conducting contact with the heat carrier, the cross-section of which increases in the direction of the heat discharge section.
  • the cooling element can be designed in such a way that the cross section of the heat absorption section increases.
  • the cooling element can also be designed in such a way that the cross section of the heat absorption section increases quadratically.
  • Cooling water or cooling air can be dispensed with up to a certain range of the heat output to be dissipated.
  • the cooling element can also be designed in such a way that the heat absorbing part is surrounded by a shell that complements the cooling element to form a cuboid or cylindrical shape and whose thermal conductivity is lower than that of the cooling element. It can therefore be snug against the warming elements.
  • Individual rod-shaped cooling elements can also be introduced into a plate-shaped shell.
  • the cooling element can preferably consist of copper or aluminum.
  • the wrapping of the cooling element according to the invention has the particular advantage that it can also be used for fuel cells with aggressive media.
  • the cover, which covers the heat absorption section, in which the cooling element is in heat-conducting contact with the heat carrier, can thus be made of a resistant material, for example titanium or stainless steel.
  • the cooling element is particularly suitable for use in fuel cell stack, consisting of stacked single cells with one or more fuel cells arranged between the single cells, which connect the individual cells electrically and which are in heat-conducting contact with the individual cells via the heat absorption section stand.
  • F ⁇ g.1 the schematic sectional view of a plate-shaped cooling element according to the invention in the assembly with the individual cells of a fuel cell
  • Fig. 2 shows the construction of a cooling element according to the invention. 1 in section
  • Fig. 3 shows the heat flow in an arrangement.
  • Fig. 2 shows the heat flow in an arrangement.
  • 5 shows a diagram for the heat flow in the longitudinal direction of the cooling element
  • 6 shows a diagram for the temperature profile of a known cooling device with a constant cross section
  • FIG. 10 shows the perspective illustration of a fuel cell stack with a cooling element according to FIGS. 2 and
  • FIG. 11 shows the perspective illustration of a fuel cell stack with a rod-shaped cooling element according to the invention.
  • the exemplary embodiment relates to an application of the invention for a fuel stack 11.
  • 1 shows four individual cells 1 of such a stack, a cooling plate 2 being inserted between two of the individual cells.
  • the cooling plate 2 extends beyond the upper level of the individual cells 1 and the cell frame 3 and forms a heat dissipation section 4 there.
  • the cooling plate 2 consists of two parts, an outer cooling plate 5 and the cooling element according to the invention with the heat absorption section 6 and the heat discharge section 4. This protrudes beyond the cell frame 3 and becomes outside the fuel cell cooled, which is primarily air cooling.
  • the air can either be passed by natural convection or blown past by forced convection. the. If water is used as the cooling medium, it is pumped past the hot discharge sections 4 of the individual cooling plates 2.
  • the cooling elements are inserted in a form-locking manner in the cooling plates 1 and 5, which are designed with a cavity.
  • the material of the cooling plate sleeve 5 has a lower thermal conductivity than the cooling elements, which are made of copper or aluminum, for example.
  • the local, outward temperature gradient oil / _> x must be kept low. This depends on the total heat flow Q (x) along the length x of the cooling plate 2 in the direction of the heat discharge section 4, the cross section A (x) of the heat absorption sections 6 and the thermal conductivity, as is illustrated in FIG. 3:
  • This variant corresponds to the known cooling plates with a constant cross-section.
  • a diagram of such a temperature profile is shown in FIG. 6. This means that the temperature T rises sharply and the temperature distribution 1 becomes uneven, which is undesirable.
  • cross section A (x) increases linearly with the length x (FIG. 7)
  • a (x) Ai x
  • the temperature profile for this variant is shown in FIG. 8.
  • FIG. 9 shows a conventional fuel cell, the individual cells 1 of which are clamped between two end plates 7 and connected to one another by bipolar plates 8.
  • a cooling medium usually water, flows through the bipolar plates 8 via supply and discharge lines, not shown here, and act as cooling plates. The waste heat is then released from the cooling medium to a heat exchanger, also not shown here.
  • FIG. 10 shows again a plate-shaped cooling element according to the invention in assembly with the individual cells of a fuel cell as in FIG. 2, but this time in a perspective view.
  • the cooling plate 2 here consists of a cooling plate sleeve 1 e 5 and a rod-shaped cooling element, which in turn has a heat absorption section 6, which is conical here, and a cyl inderfor i gene heat discharge section 6.

Abstract

Plate-like or tubular cooling devices for fuel cells are known through which flows a cooling medium, for example water or air. These elements have a costly design and a temperature gradient in the direction of flow of the cooling medium. The temperature in a heat transfer medium (1) may be strongly evened out by cooling elements with a heat evacuation section (4) and a heat absorbing section (6) in thermoconductive contact with a heat transfer medium (1). The cross-section of the heat absorbing section (6) increases in the direction of the heat evacuation section (4). This solution is suitable for all types of ordinary fuel cells.

Description

PLATTEN- ODER STABFORMIGES BRENNSTOFFZELLEN-KÜHLELEMENT SOWIE BRENNSTOFFZELLENSTAPEL MIT EINEM ODER MEHREREN BRENNSTOFFZELLEN-KÜHLELEMENTEN PLATE OR BAR FUEL CELL COOLING ELEMENT AND FUEL CELL STACK WITH ONE OR MORE FUEL CELL COOLING ELEMENTS
Beschre bungDescription
Die Erfindung betrifft ein platten- oder stabformiges Brennstoffzellen-Kuhlelement mit hoher Wärmeleitfähigkeit. Sie betrifft außerdem einen Brennstoffzel 1 enstapel , bestehend aus übereinander gestapelten Einzelzellen mit einem oder mehreren zwischen den Einzelzellen angeordneten Brenn- stoffzel len-Kuhlelementen .The invention relates to a plate or rod-shaped fuel cell cooling element with high thermal conductivity. It also relates to a fuel cell stack, consisting of stacked individual cells with one or more fuel cell cooling elements arranged between the individual cells.
Es sind platten- oder rohrformige Kühlvorrichtungen für Brennstoffzellen bekannt, die von einem Kuhlmedium, z.B. Wasser oder Luft, durchströmt werden. Die Kuh! vorn chtungen haben den Vorteil, eine relativ hohe Wärmemenge pro Zeiteinheit abfuhren zu können. Es sind jedoch Zu- und Abfuhrungs- leitungen für das Kuhlmedium, Pumpen und Wärmetauscher vorzusehen, die derartige Vorrichtungen technologisch aufwendig und kostspielig werden lassen.Plate or tubular cooling devices for fuel cells are known which are powered by a cooling medium, e.g. Water or air. The cow! cautions have the advantage of being able to dissipate a relatively high amount of heat per unit of time. However, supply and discharge lines for the cooling medium, pumps and heat exchangers must be provided, which make such devices technologically complex and expensive.
Derartige Kuh! Vorrichtungen werden insbesondere bei Brenn- stoffzel len mit Festelektrolyt, wie z.B. Membranbrennstoffzellen, die aus einem Stapel von mehreren Einzelzellen bestehen, eingesetzt. Die Einzelzellen sind brennstofftechnisch parallel angeordnet und elektrisch in Reihe geschaltet. Durch ede Einzelzelle fließt der gleiche Strom. Zwischen die Einzelzellen werden bipolare Platten gelegt, die jeweils die Anodenseite einer Einzelzelle mit der Kathodenseite der nächsten Zelle verbinden.Such a cow! Devices are used particularly in the case of fuel cells with a solid electrolyte, such as Membrane fuel cells, which consist of a stack of several individual cells, are used. In terms of fuel technology, the individual cells are arranged in parallel and electrically connected in series. The same current flows through each individual cell. Bipolar plates are placed between the individual cells, each connecting the anode side of one individual cell to the cathode side of the next cell.
Diese bipolaren Platten werden nun teilweise als Kuhlplatten ausgeführt, um die in den Einzelzellen entstehende Abwarme abzuführen, wie z. B. aus DE 42 34 093 A1 , DE 39 07 819 A1 oder aus EP 0 295 629 A1 bekannt ist. Die Kühlplatten sind hohl ausgebildet und werden von einem Kuhlmedium durch- strömt. Meist wird Wasser, seltener wird Luft verwendet. Die Abwarme wird dann vom Kuhlmedium an einen Wärmetauscher abgegeben.These bipolar plates are now partially designed as cooling plates to dissipate the waste heat generated in the individual cells, such as. B. from DE 42 34 093 A1, DE 39 07 819 A1 or from EP 0 295 629 A1 is known. The cooling plates are hollow and are penetrated by a cooling medium. flows. Mostly water is used, less often air. The waste heat is then released from the cooling medium to a heat exchanger.
Es sind, z. B. aus DE 39 03 261 A1 oder EP 0 128 023 A1 , weitere nach dem gleichen Prinzip arbeitende, pl attenformi ge Kuhlelemente bekannt, die nicht mit einem Hohlraum versehen sind. Vielmehr dienen dort vom Kuhlmittel durchf lossene Rohre, die in einen plattenformi gen Korper eingebettet sind, zur Wärmeaufnahme.There are e.g. B. from DE 39 03 261 A1 or EP 0 128 023 A1, further working on the same principle, pl attenformi ge cooling elements are known which are not provided with a cavity. Rather, there are pipes that are trapped by the coolant and are embedded in a plate-shaped body for heat absorption.
Derartig gekühlte Brennstoffzellen sind sehr uberhi tzungsempf i ndl i ch . Einerseits ist eine genügend hohe Temperatur einzuhalten, um mit der Brennstoffzelle einen optimalen Wirkungsgrad bei der Erzeugung elektrischer Energie zu erreichen. Andererseits darf die örtliche Temperatur im Inneren der Brennstoffzelle eine bestimmte Hohe nicht überschreiten, da schon geringe uberhi tzungen die Lebensdauer einer Einzelzelle stark verkurzen können. Die bekann- ten Flussigkei tskuhlungen arbeiten zwar mit einer Regelung, wie beispielsweise EP 0 295 629 A1 zeigt, die aber einen Temperaturgradienten in der Einzelzelle in Fließrichtung des Kuhlmediums und somit örtliche uberhi tzungen nicht aus- sch 1 i eßt .Fuel cells cooled in this way are very sensitive to overheating. On the one hand, a sufficiently high temperature must be maintained in order to achieve optimum efficiency in the generation of electrical energy with the fuel cell. On the other hand, the local temperature inside the fuel cell must not exceed a certain level, since even minor overheats can severely shorten the life of an individual cell. The known liquid cooling systems operate with a control system, such as EP 0 295 629 A1, which, however, does not exclude a temperature gradient in the individual cell in the flow direction of the cooling medium and thus local overheats.
Aus EP 0 473 540 A2 ist darüber hinaus eine Losung bekannt, bei der die den Sauerstoff für den Prozeß liefernde Luft gleichzeitig als Kuhlmittel dient. Hierbei muß einmal mit einem erheblichen Luftuberschuß gearbeitet werden, zum ande- ren sind spezielle Temperaturausgleichskorper erforderlich, über die die Luft die Warme aufnehmen kann. Ein Temperaturgradient entlang der chemisch aktiven Zonen ist bei dieser Losung nicht zu vermeiden.A solution is also known from EP 0 473 540 A2, in which the air supplying the oxygen for the process also serves as a cooling agent. On the one hand, a considerable excess of air must be used; on the other hand, special temperature compensation bodies are required, through which the air can absorb the heat. A temperature gradient along the chemically active zones cannot be avoided with this solution.
Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Kuhl¬ element der eingangs genannten Art anzugeben, das konstruktiv einfach aufgebaut ist und das zu einer vergleich- maßigten und konstanten Betriebstemperatur eines Warmetra- gers beitragt und so für den Einsatz in Brennstoffzelle geeignet ist.The invention is therefore based on the object, a Kuhl ¬ element specify the initially stated type which is of simple construction and the maßigten to a comparable and constant operating temperature of a Warmetra- gers contributes and is therefore suitable for use in fuel cells.
Erfi ndungsgemaß wird die Aufgabe dadurch gelost, daß da Kuhlelement einen Wärmeaustragsabschnitt und einen mit de Warmetrager in wärmeleitendem Kontakt stehenden Warmeaufnah meabschmtt aufweist, dessen Querschnitt in Richtung auf de Wärmeaustragsabschnitt zunimmt.Invention, the object is achieved in that since the cooling element has a heat discharge section and a heat receiver that is in heat-conducting contact with the heat carrier, the cross-section of which increases in the direction of the heat discharge section.
In bevorzugter Weise kann das Kuhlelement so ausgebilde sein, daß der Querschnitt des Warmeaufnahmeabschm tts linea zunimm .In a preferred manner, the cooling element can be designed in such a way that the cross section of the heat absorption section increases.
In ebenso bevorzugter Weise kann das Kuhlelement auch so ausgebildet sein, daß der Querschnitt des Warmeaufnahmeab- schmtts quadratisch zunimmt.In a likewise preferred manner, the cooling element can also be designed in such a way that the cross section of the heat absorption section increases quadratically.
Weitere Möglichkeiten der Querschm ttszunahme sind denkbar.Other possibilities for increasing cross-section are conceivable.
Mit einer solchen Konstruktion ist es möglich, in dem Warmetrager, z.B. der Oberflache einer Einzelzelle in Brennstoffzellen, über die gesamte Flache eine verglei chmaßigte Temperatur und eine hohe Warmeaustragsrate zu erhalten. Auf Kuhlwasser oder Kuhlluft kann bis zu einem bestimmten Bereich der abzuführenden Wärmeleistung ganz verzichtet werden.With such a construction it is possible to use e.g. the surface of a single cell in fuel cells to obtain a uniform temperature and a high heat transfer rate over the entire surface. Cooling water or cooling air can be dispensed with up to a certain range of the heat output to be dissipated.
In bevorzugter Weise kann das Kuhlelement weiterhin auch so ausgebildet sein, daß der Warmeaufnahmeabschmtt von einer das Kuhlelement zu einer Quader- oder Zylinderform erganzen- den Hülle umgeben ist, deren Wärmeleitfähigkeit geringer ist als die des Kuhlelements. Es kann so an den Warmetragern satt anliegen. Es können auch einzelne stabforrmge Kuhlelemente in eine pl attenformige Hülle eingebracht sein.In a preferred manner, the cooling element can also be designed in such a way that the heat absorbing part is surrounded by a shell that complements the cooling element to form a cuboid or cylindrical shape and whose thermal conductivity is lower than that of the cooling element. It can therefore be snug against the warming elements. Individual rod-shaped cooling elements can also be introduced into a plate-shaped shell.
Das Kuhlelement kann bevorzugt aus Kupfer oder Aluminium bestehen . Die Einhüllung des erfl ngungsgemaßen Kuhlelements hat insbesondere den großen Vorteil, daß es auch für Brennstoffze len mit aggressiven Medien anwendbar ist. Die Hülle, die den Warmeaufnahmeabschm tt bedeckt, in dem das Kuhlelement mit dem Warmetrager in wärmeleitendem Kontakt steht, kann so aus einem resistenten Material, z.B. Titan oder Edelstahl, gefertigt sein.The cooling element can preferably consist of copper or aluminum. The wrapping of the cooling element according to the invention has the particular advantage that it can also be used for fuel cells with aggressive media. The cover, which covers the heat absorption section, in which the cooling element is in heat-conducting contact with the heat carrier, can thus be made of a resistant material, for example titanium or stainless steel.
Das Kuhlelement ist in besonderer Weise geeignet für die Verwendung in Brennstoffzel lenstapeln, bestehend aus übereinander gestapelten Einzelzellen mit einem oder mehreren zwischen den Einzelzellen angeordneten Brennstoffzel len- Kuhlele enten , die die Einzelzellen elektrisch verbinden und die über den Warmeaufnahmeabsch tt in wärmeleitendem Kontakt mit den Einzelzellen stehen.The cooling element is particularly suitable for use in fuel cell stack, consisting of stacked single cells with one or more fuel cells arranged between the single cells, which connect the individual cells electrically and which are in heat-conducting contact with the individual cells via the heat absorption section stand.
Die Erfindung soll nachstehend anhand eines Ausfuhrungsbei - spieles naher erläutert werden. In den zugehörigen Zeichnun- gen zeigen:The invention will be explained in more detail below on the basis of an exemplary embodiment. In the associated drawings show:
Fιg.1 die schematische Schnittdarstellung eines erfin- dungsgemaßen plattenformi gen Kuhlelements im Zusammenbau mit den Einzelzellen einer Brennstoff- zelle,Fιg.1 the schematic sectional view of a plate-shaped cooling element according to the invention in the assembly with the individual cells of a fuel cell,
Fig. 2 den erfindungsgemaßen Aufbau eines Kuhlelements gem. Fig. 1 im Schnitt,Fig. 2 shows the construction of a cooling element according to the invention. 1 in section,
Fig. 3 den Warmefluß in einer Anordnung gem. Fig. 2,Fig. 3 shows the heat flow in an arrangement. Fig. 2,
Fig. 4 ein Diagramm für die Warmefreisetzung in dem Warmetrager,4 shows a diagram for the heat release in the heat carrier,
Fig. 5 ein Diagramm für den Wärmestrom in Längsrichtung des Kuhlelements, Fig. 6 ein Diagramm für den Temperaturverlauf einer bekannten Kühl Vorrichtung mit gleichbleibendem Querschnitt,5 shows a diagram for the heat flow in the longitudinal direction of the cooling element, 6 shows a diagram for the temperature profile of a known cooling device with a constant cross section,
Fig. 7 ein Diagramm für den Temperaturverlauf bei sich linear vergrößerndem Querschnitt,7 shows a diagram for the temperature profile with a linearly increasing cross section,
Fig. 8 ein Diagramm für den Temperaturverlauf bei quadra- tisch zunehmendem Querschnitt des Warmeaufnahmeabschm tts ,8 shows a diagram for the temperature profile with a square increasing cross section of the heat absorption section,
Fig. 9 einen herkömmlichen Brennstoffze 11 enstapel im9 shows a conventional fuel stack 11 in the stack
Schm tt ,Schmtt,
Fig. 10 die Perspektivdarstellung eines Brennstoffzel len- stapels mit einem Kuhlelement gemäß Fig. 2 undFIG. 10 shows the perspective illustration of a fuel cell stack with a cooling element according to FIGS. 2 and
Fig. 11 die Perspektivdarstellung eines Brennstoffzel len- stapeis mit einem stabformigen Kuhlelement gemäß der Erfindung.11 shows the perspective illustration of a fuel cell stack with a rod-shaped cooling element according to the invention.
Das Ausfuhrungsbeispi el bezieht sich auf eine Anwendung der Erfindung für einen Brennstoffze 11 enstapel . Fig. 1 zeigt vier Einzelzellen 1 eines solchen Stapels, wobei zwischen zwei der Einzelzellen eine Kuhlplatte 2 eingelegt ist. Die Kuhlplatte 2 erstreckt sich über die obere Ebene der Einzelzellen 1 und den Zellenrahmen 3 hinaus und bildet dort einen Wärmeaustragsabschnitt 4.The exemplary embodiment relates to an application of the invention for a fuel stack 11. 1 shows four individual cells 1 of such a stack, a cooling plate 2 being inserted between two of the individual cells. The cooling plate 2 extends beyond the upper level of the individual cells 1 and the cell frame 3 and forms a heat dissipation section 4 there.
Wie Fig. 2 anschaulich zeigt, besteht die Kuhlplatte 2 aus zwei Teilen, einer äußeren Kuhlpl atten-Hul le 5 und dem erf indungsgemaßen Kuhlelement mit dem Warmeaufnahmeabschm tt 6 und dem Wärmeaustragsabschnitt 4. Dieser ragt über den Zellenrahmen 3 hinaus und wird außerhalb der Brennstoffzelle gekühlt, wofür in erster Linie eine Luftkühlung in Frage kommt. Die Luft kann entweder durch Naturkonvektion vorbei- gefuhrt oder durch erzwungene Konvektion vorbei geblasen wei— den. Bei Wasser als Kuhlmedium wird dieses an den Warmeaus- tragsabschm tten 4 der einzelnen Kuhlplatten 2 vorbeigepumpt. In die Kühl pl atten-Hul 1 en 5, die mit einem Hohlraum ausgeführt sind, werden die Kuhlelemente formschl ussi g ein- gesetzt. Das Material der Kuhlplatten-Hul le 5 hat eine geringere Wärmeleitfähigkeit als die Kühl ele ente , die z.B. aus Kupfer oder Aluminium bestehen. Diese Materialien sind zwar nicht sehr korrosionsbeständig, haben aber konstruktionsbedingt keinen Kontakt zu den von korrosiven Medien durchf lossenen Kanälen der Brennstoffzelle. Die Warmeaufnahmeabschm tte 6 sind so gestaltet, daß sich ihr Querschnitt nach außen hin vergrößert. Im Ausfuhrungsbei spi el nach Fig. 2 nimmt der Querschnitt nach außen hin linear zu.As FIG. 2 clearly shows, the cooling plate 2 consists of two parts, an outer cooling plate 5 and the cooling element according to the invention with the heat absorption section 6 and the heat discharge section 4. This protrudes beyond the cell frame 3 and becomes outside the fuel cell cooled, which is primarily air cooling. The air can either be passed by natural convection or blown past by forced convection. the. If water is used as the cooling medium, it is pumped past the hot discharge sections 4 of the individual cooling plates 2. The cooling elements are inserted in a form-locking manner in the cooling plates 1 and 5, which are designed with a cavity. The material of the cooling plate sleeve 5 has a lower thermal conductivity than the cooling elements, which are made of copper or aluminum, for example. Although these materials are not very corrosion-resistant, due to their construction they have no contact with the channels of the fuel cell that are traversed by corrosive media. The Warmnahmnahmeabschm 6 are designed so that their cross section increases outwards. 2, the cross section increases linearly towards the outside.
Um die Temperatur zu verg 1 ei chmaßi ge , muß der lokale, nach außen gerichtete Temperaturgradient ö l/ _>x gering gehalten werden. Dieser hangt vom Gesamtwarmestrom Q(x) entlang der Lange x der Kuhlplatte 2 in Richtung auf den Wärmeaustragsabschnitt 4, dem Querschnitt A(x) der Warmeaufnahmeab- schnitte 6 und der Wärmeleitfähigkeit ab, wie in Fig. 3 verdeutlicht ist:To compensate for the temperature, the local, outward temperature gradient oil / _> x must be kept low. This depends on the total heat flow Q (x) along the length x of the cooling plate 2 in the direction of the heat discharge section 4, the cross section A (x) of the heat absorption sections 6 and the thermal conductivity, as is illustrated in FIG. 3:
_)τ/3x = Q(x)/(A (x) 7t )_) τ / 3x = Q (x) / (A (x) 7t)
Nimmt man über die Lange x eine konstante War ef rei ssetzungIf one takes a constant release of goods over the length x
q(x) = const. = qoq (x) = const. = qo
an, wie das der Fall ist bei einer ideal betriebenen Brenn- stoffzelle (Fig. 4), so nimmt der Gesamtwarmestrom Q(x) in dem Warmeaufnahmeabschm tt 6 linear mit der Lange x nach außen hin zu gemäßAs is the case with an ideally operated fuel cell (FIG. 4), the total heat flow Q (x) in the heat absorption section 6 increases linearly with the length x towards the outside
Q( x ) = Qo xQ (x) = Qo x
Bei einem konstanten Querschnitt A(x) = const. = Ao der Warmeaufnahmeabsch tte 6 nehmen damit der Temperaturgradient )T tx linear und die Temperatur T quadratisch mit der Lange x zu :With a constant cross section A (x) = const. = Ao of the heat absorption section 6 take the temperature gradient) T tx linear and the temperature T quadratically with the length x to:
3 τ/ -»x = Q ( x ) / ( A ( x ) λ, ) = Qo / ( Ao λ ) x3 τ / - »x = Q (x) / (A (x) λ,) = Qo / (Ao λ) x
T(x) = To + 0,5 Qo/(Aoλ )x2 = To + Ki χ2 T (x) = To + 0.5 Qo / (Aoλ) x 2 = To + Ki χ 2
Diese Variante entspricht den bekannten Kuhlplatten mit gleichbleibendem Querschnitt. Ein Diagramm eines solchen Temperaturverlaufs zeigt Fig. 6. Dies bedeutet, daß die Tem- peratur T stark ansteigt und die Temperaturvertei 1 ung ungleichmäßig wird, was unerwünscht ist.This variant corresponds to the known cooling plates with a constant cross-section. A diagram of such a temperature profile is shown in FIG. 6. This means that the temperature T rises sharply and the temperature distribution 1 becomes uneven, which is undesirable.
Verwendet man dagegen die erf indungsgemaßen Kuhlelemente mit einem über der Lauflange x zunehmenden Querschnitt A(x) ≠ const. > 0, so wird der Temperaturgradient t)T/ Px erniedrigt und die Temperatur T verglei chmaßi gt.On the other hand, if the cooling elements according to the invention are used with a cross section A (x) ≠ const increasing over the barrel length x. > 0, the temperature gradient t) T / Px is reduced and the temperature T is compared.
Nimmt der Querschnitt A(x) beispielsweise linear mit der Lange x zu (Fig. 7)For example, the cross section A (x) increases linearly with the length x (FIG. 7)
A(x) = Ai x,A (x) = Ai x,
so bleibt der Temperaturgradient e> T/ -x konstant und die Temperatur T hat einen linear zunehmenden Verlauf:the temperature gradient e> T / -x remains constant and the temperature T has a linear increase:
e>T/2x = Q(x)/(A(x) λ) = Qo/(Aι λ)e> T / 2x = Q (x) / (A (x) λ) = Qo / (Aι λ)
T(x) = To + Qo/(Aι λ )χ = To + K2XT (x) = To + Qo / (Aι λ) χ = To + K2X
Bei einem quadratisch mit der Lange x zunehmendem QuerschnittIn the case of a square cross section increasing with the length x
A(x) = A2X2 A (x) = A2X 2
wird der Temperaturgradient ^T/^x kleiner mit der Lange x mit ?T/Px ^l/x (x ^ 0) und die Temperatur verlauft logarithmisch mit der Länge x gemäß T(x ) **! n( ) : 3T/_)x = Q(x)/(A(x) ) = Qo/(A2 ) 1/Xthe temperature gradient ^ T / ^ x becomes smaller with the length x with? T / Px ^ l / x (x ^ 0) and the temperature is logarithmic with the length x according to T (x) * *! n (): 3T / _) x = Q (x) / (A (x)) = Qo / (A 2 ) 1 / X
T(x) = To + K3 ln(x)T (x) = To + K 3 ln (x)
(qualitativ, da für x = 0 nicht definiert).(qualitative, since undefined for x = 0).
Der Temperaturverlauf für diese Variante ist in Fig. 8 gezeigt.The temperature profile for this variant is shown in FIG. 8.
Fig. 9 zeigt dagegen eine herkömmliche Brennstoffzelle, deren Einzelzellen 1 zwischen zwei Endplatten 7 eingespannt und durch bipolare Platten 8 miteinander verbunden sind. Die bipolaren Platten 8 werden über hier nicht gezeigte Zu- und Ableitungen von einem Kuhlmedium, in der Regel Wasser, durchströmt und fungieren als Kuhlplatten. Die Abwarme wird dann vom Kuhlmedium an einen hier ebenfalls nicht gezeigten Wärmetauscher abgegeben.9, on the other hand, shows a conventional fuel cell, the individual cells 1 of which are clamped between two end plates 7 and connected to one another by bipolar plates 8. A cooling medium, usually water, flows through the bipolar plates 8 via supply and discharge lines, not shown here, and act as cooling plates. The waste heat is then released from the cooling medium to a heat exchanger, also not shown here.
Fig. 10 zeigt noch einmal ein erf i ndungsgemaßes plattenfor- rmges Kuhlelement im Zusammenbau mit den Einzelzellen einer Brennstoffzelle wie in Fig. 2, diesmal jedoch in einer Per- spektivdarstel lung.FIG. 10 shows again a plate-shaped cooling element according to the invention in assembly with the individual cells of a fuel cell as in FIG. 2, but this time in a perspective view.
In Fig. 11 ist eine weitere Variante dargestellt. Die Kuhlplatte 2 besteht hier aus einer Kuhlplatten-Hul 1 e 5 und einem stabforrmgen Kuhlelement, das wiederum einen Warmeaufnahmeabsch tt 6, der hier kegelförmig ausgebildet ist, und einem zyl inderfor i gen Wärmeaustragsabschnitt 6 aufweist. Another variant is shown in FIG. The cooling plate 2 here consists of a cooling plate sleeve 1 e 5 and a rod-shaped cooling element, which in turn has a heat absorption section 6, which is conical here, and a cyl inderfor i gene heat discharge section 6.

Claims

Ansprüche Expectations
1. Platten- oder stabforrmges Brennstoffzel len- Kuhlelement mit hoher Wärmeleitfähigkeit, dadurch gekennzeichnet, daß das Kuhlelement einen Wärmeaustragsabschnitt (4) und einen mit dem Warmetrager (1) in wärmeleitendem Kontakt stehenden Warmeaufnahmeabschm tt (6) aufweist, dessen Querschnitt in Richtung auf den Warmeaustrags- abschnitt (4) zunimmt.1. Platten- or stabforrmges Fuel cell len- cooling element with high thermal conductivity, characterized in that the cooling element has a heat discharge section (4) and one with the heat carrier (1) in heat-conducting contact heat absorption section (6), the cross section of which in the direction of the Heat discharge section (4) increases.
2. Kuhlelement nach Anspruch 1, dadurch gekennzeichnet, daß der Querschnitt des Warmeaufnahmeabschm tts ( 6 ) 1 i near zunimmt.2. Cooling element according to claim 1, characterized in that the cross section of the heat absorption abt (6) 1 i near increases.
3. Kuhlelement nach Anspruch 1, dadurch gekennzeichnet, daß der Querschnitt des Warmeaufnahmeabschm tts (6) quadratisch zunimmt.3. Cooling element according to claim 1, characterized in that the cross section of the heat absorption abt (6) increases quadratically.
4. Kuhlelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Warmeaufnahme- abschmtt (6) von einer das Kuhlelement zu einer Quaderoder Zylinderform ergänzenden Hülle umgeben ist, deren Wärmeleitfähigkeit geringer ist als die des Kuhlelements.4. Cooling element according to one of the preceding claims, characterized in that the heat-absorbing part (6) is surrounded by a sheath which supplements the cooling element to form a cuboid or cylindrical shape and whose thermal conductivity is lower than that of the cooling element.
5. Kuhlelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es aus Kupfer besteht.5. Cooling element according to one of the preceding claims, characterized in that it consists of copper.
6. Kuhlelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es aus Aluminium besteht .6. Cooling element according to one of the preceding claims, characterized in that it consists of aluminum.
7. Brennstoffzel lenstapel , bestehend aus übereinander gestapelten Einzelzellen mit einem oder mehreren zwischen den Einzelzellen angeordneten Brennstoffzellen-Kuhlelementen nach einem oder mehereren der vorhergehenden Ansprüche, die die Einzelzellen elektrisch verbinden und die über den Wärmeaufnahmeabschnitt (6) in wärmele tendem Kontakt mit den Einzelzellen stehen. 7. Fuel cell lenstapel, consisting of stacked individual cells with one or more fuel cell cooling elements arranged between the individual cells according to one or more of the preceding claims, which electrically connect the individual cells and which over the The heat absorption section (6) is in warm contact with the individual cells.
PCT/DE1997/001833 1996-09-11 1997-08-23 Plate- or rod-like fuel cell cooling element and fuel cell stack with one or more fuel cell cooling elements WO1998011616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19636904A DE19636904C1 (en) 1996-09-11 1996-09-11 Plate- or rod-shaped fuel cell cooling element
DE19636904.5 1996-09-11

Publications (1)

Publication Number Publication Date
WO1998011616A1 true WO1998011616A1 (en) 1998-03-19

Family

ID=7805257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001833 WO1998011616A1 (en) 1996-09-11 1997-08-23 Plate- or rod-like fuel cell cooling element and fuel cell stack with one or more fuel cell cooling elements

Country Status (2)

Country Link
DE (1) DE19636904C1 (en)
WO (1) WO1998011616A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007763B4 (en) * 2000-02-20 2017-04-06 General Motors Corp. (N.D.Ges.D. Staates Delaware) A fuel cell assembly
FR3095301B1 (en) * 2019-04-19 2021-04-16 Psa Automobiles Sa PRISMATIC ELECTROCHEMICAL CELL STORAGE DEVICE WITH DRAINAGE INSERTS, AND ASSOCIATED BATTERY

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0128023A1 (en) * 1983-06-02 1984-12-12 Engelhard Corporation Cooling assembly for fuel cells
JPS61260551A (en) * 1985-05-14 1986-11-18 Fuji Electric Co Ltd Air cooling type fuel cell
JPS6477874A (en) * 1987-09-18 1989-03-23 Sanyo Electric Co Cooling plate of air cooling type fuel cell
JPH01241765A (en) * 1988-03-22 1989-09-26 Fuji Electric Co Ltd Air-cooled fuel cell
US5514486A (en) * 1995-09-01 1996-05-07 The Regents Of The University Of California, Office Of Technology Transfer Annular feed air breathing fuel cell stack

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826741A (en) * 1987-06-02 1989-05-02 Ergenics Power Systems, Inc. Ion exchange fuel cell assembly with improved water and thermal management
CA1297310C (en) * 1987-06-15 1992-03-17 Martin L. Abrams Fuel cell stack cooling system
JPH01294365A (en) * 1988-02-04 1989-11-28 Fuji Electric Co Ltd Cooling plate structure of fuel cell
EP0473540B1 (en) * 1990-08-27 1996-10-16 Sulzer Innotec Ag Heat management in fuel cells with solid electrolyte
DE4234093A1 (en) * 1992-10-09 1994-04-14 Siemens Ag Component for installation in a process engineering facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0128023A1 (en) * 1983-06-02 1984-12-12 Engelhard Corporation Cooling assembly for fuel cells
JPS61260551A (en) * 1985-05-14 1986-11-18 Fuji Electric Co Ltd Air cooling type fuel cell
JPS6477874A (en) * 1987-09-18 1989-03-23 Sanyo Electric Co Cooling plate of air cooling type fuel cell
JPH01241765A (en) * 1988-03-22 1989-09-26 Fuji Electric Co Ltd Air-cooled fuel cell
US5514486A (en) * 1995-09-01 1996-05-07 The Regents Of The University Of California, Office Of Technology Transfer Annular feed air breathing fuel cell stack

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 113 (E - 497) 9 April 1987 (1987-04-09) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 298 (E - 784) 10 July 1989 (1989-07-10) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 578 (E - 864) 20 December 1989 (1989-12-20) *

Also Published As

Publication number Publication date
DE19636904C1 (en) 1997-11-27

Similar Documents

Publication Publication Date Title
EP3655631B1 (en) Energy storage device for the storage of electrical energy used as heat and method therefor
DE2026622C2 (en) Corona reactor core for ozone generation
EP2599153B1 (en) Power supply device with cooling arrangement
DE3546280C2 (en)
WO2018024483A1 (en) Temperature-control device for a battery housing of a vehicle
DE2829987B2 (en) Thermoelectric generator and method for converting thermal energy into electrical energy
DE3044314A1 (en) HOUSING FOR RECEIVING PRINTED CIRCUITS ASSEMBLED WITH HEAT-GENERATING COMPONENTS
DE10236998A1 (en) Electrochemical cell especially a proton exchange membrane fuel cell or electrolysis cell has element to automatically alter the cross section of a flow channel
EP2356714A2 (en) Fuel cell without bipolar plates
DE202010002352U1 (en) Electrochemical energy storage
EP3476000B1 (en) Device for energy conversion, in particular fuel cell or electrolyzer
DE19724020A1 (en) Heat radiation device with heat pipe for energy storage battery apparatus e.g. using sodium-sulphur battery
DE10007763B4 (en) A fuel cell assembly
DE102010007902A1 (en) Temperature control arrangement for an electrical component and photovoltaic inverter with it
EP3139107B1 (en) Thermal storage device and method for operating a thermal storage device
WO1998011616A1 (en) Plate- or rod-like fuel cell cooling element and fuel cell stack with one or more fuel cell cooling elements
EP3633303B1 (en) Energy storage device for the storage of electrical energy used as heat and method therefor
DE19636902C1 (en) Fuel cell stack
EP3379191B1 (en) Thermal storage device and method for operating a thermal storage device
WO2001086026A1 (en) Bipolar multi-purpose electrolytic cell for high current loads
WO2011026779A2 (en) Method for temperature control of fuel cell or electrolytic converter stacks
EP3647677B1 (en) Energy storage device for the storage of electrical energy used as heat and method therefor
DE2036926C3 (en) Hot plate press
WO2021228526A1 (en) Cell stack with heatable end plate
DE102006058294B4 (en) Repeating unit for a fuel cell stack

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998513114

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA