WO1998006679A1 - Graphite particles and lithium secondary cell using them as cathode material - Google Patents

Graphite particles and lithium secondary cell using them as cathode material Download PDF

Info

Publication number
WO1998006679A1
WO1998006679A1 PCT/JP1997/002762 JP9702762W WO9806679A1 WO 1998006679 A1 WO1998006679 A1 WO 1998006679A1 JP 9702762 W JP9702762 W JP 9702762W WO 9806679 A1 WO9806679 A1 WO 9806679A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite particles
particles
graphite
lithium secondary
weight
Prior art date
Application number
PCT/JP1997/002762
Other languages
English (en)
French (fr)
Inventor
Yoshito Ishii
Tatsuya Nishida
Atsushi Fujita
Kazuo Yamada
Original Assignee
Hitachi Chemical Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Company, Ltd. filed Critical Hitachi Chemical Company, Ltd.
Priority to EP97934729A priority Critical patent/EP0918040B1/en
Priority to CA002262613A priority patent/CA2262613C/en
Priority to DE69718327T priority patent/DE69718327T2/de
Priority to US09/230,889 priority patent/US6344296B1/en
Publication of WO1998006679A1 publication Critical patent/WO1998006679A1/ja
Priority to US10/150,107 priority patent/US6953640B2/en
Priority to US11/214,828 priority patent/US7410727B2/en
Priority to US11/311,253 priority patent/US7378191B2/en
Priority to US11/311,252 priority patent/US7288342B2/en
Priority to US11/311,249 priority patent/US7335447B2/en
Priority to US11/655,880 priority patent/US7399553B2/en
Priority to US12/170,466 priority patent/US7700239B2/en
Priority to US12/719,037 priority patent/US7947395B2/en
Priority to US13/085,618 priority patent/US8129051B2/en
Priority to US13/359,660 priority patent/US8580437B2/en
Priority to US14/072,821 priority patent/US8802297B2/en
Priority to US14/454,768 priority patent/US9508980B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a novel graphite particle and a method for producing the same, a graphite paste using the graphite particle, a negative electrode for a lithium secondary battery using a graphite paste, a method for producing the same, and a lithium secondary battery. More specifically, a lithium secondary battery suitable for use in portable devices, electric vehicles, power storage, etc., having excellent rapid charge / discharge characteristics, cycle characteristics, etc., graphite particles for use in the negative electrode thereof, and a method for producing the same, The present invention relates to a graphite base using graphite particles, a negative electrode for a lithium secondary battery using graphite paste, and a method for producing the same. Background art
  • Conventional graphite particles include, for example, natural graphite particles, artificial graphite particles obtained by graphitizing coke, organic polymer materials, artificial graphite particles obtained by graphitizing pitch and the like, and graphite particles obtained by pulverizing these. These graphite particles are mixed with an organic binder and an organic solvent to form a graphite paste. The graphite paste is applied to the surface of a copper foil, and the solvent is dried to be used as a negative electrode for a lithium secondary battery. I have. For example, as shown in JP-B-62-234343, the use of graphite for the negative electrode eliminates the problem of internal short circuit due to lithium dendrite and improves cycle characteristics. Improvements are being made.
  • the lithium secondary battery is excellent in rapid charge / discharge characteristics and cycle characteristics, or has a small irreversible capacity in the first cycle, and has a small irreversible capacity in the cycle characteristics or a small first cycle.
  • Graphite particles that can improve discharge characteristics and cycle characteristics are required.
  • An object of the present invention is to provide graphite particles (graph parts) suitable for a negative electrode of a lithium secondary battery which solves the above-mentioned disadvantages and has excellent rapid charge / discharge characteristics and cycle characteristics.
  • the present invention also provides graphite particles suitable for a negative electrode of a lithium secondary battery having a small irreversible capacity in the first cycle and excellent cycle characteristics.
  • the present invention is excellent in rapid charge / discharge characteristics and cycle characteristics, or has a small irreversible capacity in the first cycle and excellent cycle characteristics, or has a small irreversible capacity in the first cycle and excellent rapid charge / discharge characteristics and cycle characteristics.
  • Another object of the present invention is to provide a method for producing graphite particles suitable for a negative electrode of a lithium secondary battery.
  • the present invention is excellent in rapid charge / discharge characteristics and cycle characteristics, or has a small irreversible capacity in the first cycle and excellent cycle characteristics, or has a small irreversible capacity in the first cycle and excellent rapid charge / discharge characteristics and cycle characteristics.
  • Another object of the present invention is to provide a graphite paste suitable for a negative electrode of a lithium secondary battery.
  • the present invention provides a high capacity, excellent rapid charge / discharge characteristics and cycle characteristics, or a small irreversible capacity in the first cycle and excellent cycle characteristics, or a rapid charge / discharge characteristic with a small irreversible capacity in the first cycle.
  • An object of the present invention is to provide a negative electrode for a lithium secondary battery having excellent cycle characteristics and a method for producing the same.
  • the present invention has a high capacity, excellent rapid charge / discharge characteristics and cycle characteristics.
  • An object of the present invention is to provide a lithium secondary battery having a small irreversible capacity in the cycle and excellent cycle characteristics, or a small irreversible capacity in the first cycle and excellent rapid charge / discharge characteristics and cycle characteristics.
  • the graphite particles of the present invention have the following features (1) to (6).
  • the present invention is characterized in that 1 to 50% by weight of a graphitization catalyst is added to graphitizable aggregate (or raw material) or graphite and a graphitizable binder, mixed, calcined, and then pulverized. And a method for producing graphite particles as described above.
  • the present invention relates to a graphite paste obtained by adding an organic binder and a solvent to the graphite particles or the graphite particles produced by the above method, and mixing them.
  • the negative electrode for a lithium secondary battery of the present invention is made using the graphite paste, and has the following features (1) to (3).
  • a negative electrode for a lithium secondary battery obtained by applying the graphite paste to a current collector and integrating the same.
  • a lithium secondary battery negative electrode obtained by integrating a mixture of graphite particles and an organic binder with a current collector, the mixture of the graphite particles and the organic binder after pressurization and integration is combined.
  • the organic binder is contained in an amount of 3 to 20% by weight based on the mixture. Negative electrode for lithium secondary batteries.
  • the present invention provides an organic binder to a graphite particle obtained by adding 1 to 50% by weight of a graphitizing catalyst to a graphitizable aggregate or graphite and a graphitizable binder, and mixing, firing and pulverizing the graphite particles. And mixing by adding a solvent, and applying the mixture to a current collector, drying the solvent, and pressing and integrating the mixture to produce the negative electrode for a lithium secondary battery according to the above (2).
  • a graphite particle obtained by adding 1 to 50% by weight of a graphitizing catalyst to a graphitizable aggregate or graphite and a graphitizable binder, and mixing, firing and pulverizing the graphite particles. And mixing by adding a solvent, and applying the mixture to a current collector, drying the solvent, and pressing and integrating the mixture to produce the negative electrode for a lithium secondary battery according to the above (2).
  • the present invention further provides a casing, a cover, at least one pair of a negative electrode and a positive electrode arranged via a separator, and an electrolytic solution present around the separator, wherein the negative electrode is formed using the graphite particles. And a lithium secondary battery.
  • FIG. 1A and 1B are scanning electron micrographs of the graphite particles according to the present invention
  • FIG. 1A is a photograph of the outer surface of the particles
  • FIG. 1B is a photograph of a cross section of the particles.
  • FIG. 2 is a partial cross-sectional front view of a cylindrical lithium secondary battery.
  • FIG. 3 is a graph showing the relationship between the discharge capacity and the number of charge / discharge cycles.
  • FIG. 4 is a graph showing the relationship between discharge capacity and charge / discharge current.
  • FIG. 5 is a schematic diagram of a lithium secondary battery used in the measurement of charge / discharge characteristics and irreversible capacity in an example of the present invention.
  • the graphite particles in the present invention are roughly classified into six types according to their characteristics.
  • the first graphite particles of the present invention are obtained by assembling or bonding a plurality of flat particles so that their orientation planes are non-parallel.
  • flat particles are particles having a shape having a major axis (major axis) and a minor axis (minor axis), and are not perfectly spherical. For example, this includes those in the form of scales, flakes, and some lumps.
  • the orientation planes are non-parallel means that the flat surface that is present in the shape of each particle, in other words, the plane that is the most flat, is the orientation surface, and a plurality of particles A state in which the alignment planes are gathered without being aligned in a certain direction.
  • Each flat particle is made of graphitizable material (aggregate) or graphite. Preferably, there is.
  • the flat particles are aggregated or bonded.
  • Binding refers to a state in which the particles are bonded together via a binder or the like
  • aggregation refers to a state in which the particles are not bonded to each other using a binder or the like. A state in which the shape of the aggregate is maintained. From the viewpoint of mechanical strength, those that are bonded are preferable.
  • the average size of each flat particle is preferably 110 to 100 zm, and more preferably 115 to 500 / m. Is preferably 2 to 3 or less.
  • the number of flat particles aggregated or bonded in one graphite particle is preferably three or more.
  • the average particle size can be measured with a laser diffraction particle size distribution meter.
  • the graphite particles are used for the negative electrode, the graphite crystals are unlikely to be oriented on the current collector, and lithium is easily inserted into and released from the negative electrode graphite. Can be done.
  • FIG. 1A and 1B show scanning electron microscope photographs of an example of the graphite particles of the present invention.
  • FIG. 1A is a scanning electron micrograph of the outer surface of the graphite particles according to the present invention
  • FIG. 1B is a scanning electron micrograph of the cross section of the graphite particles.
  • FIG. 1A it can be observed that many fine flake-like graphite particles are bonded together with their orientation planes being non-parallel to form graphite particles.
  • the second graphite particles of the present invention have an aspect ratio of 5 or less. These graphite particles have a tendency that the particles are hardly oriented on the current collector, and easily absorb and release lithium as described above.
  • the aspect ratio is preferably from 1.2 to 5. If the aspect ratio is less than 1.2, the conductivity tends to decrease due to the decrease in the contact area between the particles. For the same reason, a more preferable range is 1.3 or more.
  • the upper limit of the aspect ratio of the graphite particles is 5, more preferably 3 or less.
  • the most preferable aspect ratio is 1.3 to 3.
  • the aspect ratio is represented by AZB, where A is the length of the graphite particle in the major axis direction and B is the length of the graphite particle in the minor axis direction.
  • the aspect ratio in the present invention is obtained by magnifying graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value.
  • the graphite particles having an aspect ratio of 5 or less are preferably aggregates or aggregates of smaller graphite particles.
  • the third graphite particles of the present invention have a specific surface area of 8 m 2 / g or less.
  • the specific surface area is preferably 5 m 2 Zg less, more preferably 1. 5 ⁇ 5m 2 / g, is rather more preferably is in the range of 2 to 5 m 2 / g.
  • the specific surface area exceeds 8 m 2 / g, the irreversible capacity of the obtained lithium secondary battery in the first cycle becomes large, the energy density is small, and a large amount of binder is required when producing a negative electrode.
  • the specific surface area can be measured by a known method such as the BET method (nitrogen gas adsorption method).
  • the fourth graphite particles of the present invention have a crystallite size L c (002) in the c-axis direction of the crystal in X-ray wide-angle diffraction of the graphite particles of 500 or more, and a crystallite size L a ( (110) is less than 100 OA.
  • the crystallite size L c (00 2) in the c-axis direction of the crystal is preferably in the range of 100 to 100 000 A (provided that L c (00 2) by X-ray wide angle diffraction is 300 A It is difficult to clearly measure the above).
  • the size L a (110) of the crystallite in the plane direction of the crystal is preferably in the range of 800-50. Discharge occurs when the crystallite size L c (002) in the c-axis direction is less than 500 A or the crystallite size L a (110) in the plane direction exceeds 100,000 people. There is a problem that the capacity is reduced.
  • the interlayer distance d (002) of the crystal in the X-ray wide angle diffraction of the graphite particle is preferably 3.38 A or less, and the range of 3.37 to 3.35 A is preferable. More preferred.
  • the interlayer distance d (002) of the crystal exceeds 3.38, the discharge capacity tends to decrease.
  • the fifth graphite particle of the present invention wherein the 1 0 2 to 1 0 6 people pore volume of pores in the range of, black lead per particle weight is 0. 4 ⁇ 2.
  • O cc / g When the graphite particles are used for a negative electrode, the pores of the graphite particles absorb the expansion and contraction of the electrode due to charge and discharge, thereby suppressing the destruction of the inside of the electrode and resulting cycle characteristics of the lithium secondary battery. Can be improved.
  • 1 0 2 to 1 0 6 people pore volume of pores in the range of, 0. 4 ⁇ i. 5 is more preferably in the range of CcZg, is 0.6 to 1. Range of 2 cc / g Is more preferable.
  • the pore volume can be determined by measuring the pore size distribution by the mercury intrusion method.
  • the size of the pores can also be determined by measuring the pore size distribution by the mercury-porosimeter method.
  • the sixth graphite particles of the present invention 1 X 1 0 2 ⁇ 2 X 1 0 4 person pore body volume of pores in the range of 0 per graphite particles by weight. 0 8-0. In 4 cc / g There is a feature.
  • the expansion and contraction of the electrode due to charging and discharging are absorbed by the pores of the graphite particles, so that destruction inside the electrode is suppressed, and the resulting cycle characteristics of the lithium secondary battery are obtained. Can be improved.
  • the pore volume in the range of 1 X 10 2 to 2 X 10 4 A is 0.1 to 0.3 ccZg.
  • the pore volume in this size range is less than 0.08 cc / g, the cycle characteristics deteriorate. If the pore volume exceeds 0.4 cc / g, the pore size used to integrate the graphite particles and the current collector is reduced. A large amount of adhesive is required, and the capacity of the lithium secondary battery to be produced is reduced.
  • the pore volume in this range can also be determined by measuring the pore size distribution by the mercury intrusion method.
  • the graphite particles have the characteristics of the first graphite particles, that is, a plurality of flat particles, and are aggregated or bonded so that the orientation planes are non-parallel. It is preferable to have it.
  • the graphite particles are used for the negative electrode, the graphite crystals are less likely to be oriented on the current collector, and lithium is easily absorbed and released in the negative electrode graphite, so that the lithium secondary battery obtained is further improved in the rapid charge / discharge characteristics and cycle characteristics. Can be up.
  • first graphite particles and the third to sixth graphite particles of the present invention have the characteristics of the second graphite particles, that is, have an aspect ratio of 5 or less. This is preferable because the particles tend to be less likely to be oriented on the electric conductor and the lithium can be easily inserted and extracted as described above.
  • the aspect ratio of the graphite particles is more preferably 3 or less, and the lower limit is preferably 1.2 or more, more preferably 1.3 or more.
  • first to second graphite particles and the fourth to sixth graphite particles of the present invention preferably have the characteristics of the third graphite particles, that is, preferably have a specific surface area of 8 m 2 / g or less. , 5 more preferably mVg or less, arbitrary more preferable it is 2 ⁇ 5 m 2 / g.
  • a specific surface area 8 m 2 / g or less.
  • 5 more preferably mVg or less arbitrary more preferable it is 2 ⁇ 5 m 2 / g.
  • the specific surface area increases, the irreversible capacity tends to increase, and the energy density of the manufactured lithium secondary battery tends to decrease.
  • the specific surface area is increased, not only the irreversible capacity of the obtained lithium secondary battery is increased, but also a large amount of binder is required when producing the negative electrode.
  • the interlayer distance d (002) of the crystals in the X-ray wide-angle diffraction of the graphite powder is such that the discharge capacity is large. Due to the tendency, the number is preferably 3.38 or less, more preferably 3.37 A or less.
  • the crystallite size L c (002) in the c-axis direction is preferably 500 or more, more preferably 100 A or more, since the discharge capacity tends to increase.
  • the characteristics of the fifth or sixth graphite particles that is, those having a pore volume of pores of a specific size, The expansion and contraction of the electrode due to the discharge is absorbed by the pores of the graphite particles, so that the rupture inside the electrode is suppressed, and the cycle characteristics of the resulting lithium secondary battery are preferably improved.
  • the size of the first to sixth graphite particles in the present invention is preferably from 1 to 100 tfm, more preferably from 10 to 50 m, in terms of average particle size.
  • a graphitization catalyst is added to a graphitizable raw material or graphite and a graphitizable binder. It can be obtained by mixing, firing, and then pulverizing. This allows Pores are formed after the graphitization catalyst has escaped, giving the graphite particles of the present invention good properties.
  • the amount of the graphitization catalyst is preferably 3 to 20% by weight.
  • the above graphite particles can also be adjusted by appropriately selecting the mixing method of the graphite or the aggregate and the binder, adjusting the mixing ratio such as the amount of the binder, and the pulverizing conditions after firing.
  • coke powder for example, coke powder, resin carbide, and the like can be used.
  • resin carbide for example, resin carbide, and the like.
  • coke powder such as needle coke, which is easily graphitized, is preferred.
  • the graphite for example, natural graphite powder, artificial graphite powder and the like can be used, but there is no particular limitation as long as the powder is in the form of powder.
  • the particle size of the graphitizable raw material or graphite is preferably smaller than the particle size of the graphite particles produced in the present invention.
  • examples of the graphitization catalyst include metals such as iron, nickel, titanium, gayne, and boron, and graphitization catalysts such as carbides and oxides thereof. Of these, carbides or oxides of gay or boron are preferred.
  • the graphitizing catalyst preferably has an average particle size of 150 jwm or less, more preferably 100 urn or less, and even more preferably 50 urn or less. If the average particle size exceeds 150 m, the degree of crystal growth tends to vary, and the discharge capacity tends to vary.
  • the amount of the graphitization catalyst to be added is 1 to 50% by weight, preferably 5 to 40% by weight, more preferably 5 to 30% by weight based on the obtained graphite particles.
  • the content is less than 1% by weight, the growth of graphite crystals is deteriorated, and at the same time, the pore volume in the graphite particles tends to be small.
  • the content exceeds 50% by weight, the workability tends to deteriorate, and the pore volume in the graphite particles tends to increase.
  • the binder for example, organic materials such as tar, pitch, thermosetting resin and thermoplastic resin are preferable.
  • the amount of the binder is preferably 5 to 80% by weight, more preferably 10 to 80% by weight, and more preferably 15 to 8% by weight, based on the flat or graphitizable raw material or graphite. More preferably, 0% by weight is added. If the amount of the binder is too large or too small, the graphite particles to be produced tend to have a large area ratio and specific surface area.
  • the method of mixing the graphitizable aggregate or graphite and the binder is not particularly limited, and is performed using a kneader or the like.
  • the temperature is preferably 50 to 300 ° C.
  • the temperature is preferably 20 to 100 ° C.
  • the above mixture is baked and graphitized.
  • the mixture Before the treatment, the mixture may be formed into a predetermined shape. Further, after molding, it may be pulverized before graphitization to adjust the particle size, and then graphitized.
  • the firing is preferably performed under conditions in which the mixture is hardly oxidized, and examples thereof include a method of firing in a nitrogen atmosphere, an argon gas atmosphere, and a vacuum.
  • the graphitization temperature is preferably at least 200 ° C., more preferably at least 250 ° C., even more preferably at 280 to 320 ° C.
  • the graphitization temperature is low, the development of graphite crystals will be poor, the discharge capacity will tend to be low, and the added graphitization catalyst will tend to remain in the graphite particles produced. If the graphitization catalyst remains in the graphite particles to be produced, the discharge capacity decreases. If the graphitization temperature is too high, the graphite may sublime.
  • the method of pulverizing the graphitized material is not particularly limited.
  • known methods such as a jet mill, a vibration mill, a pin mill, and a hammer mill can be used.
  • the average particle size is preferably from 1 to 100 / im, and more preferably from 10 to 50 m. If the average particle size is too large, the surface of the electrode to be produced tends to have irregularities.
  • the first to sixth graphite particles can be obtained through the steps described above.
  • the graphite paste of the present invention is prepared by mixing the above graphite particles, an organic binder, a solvent and the like.
  • organic binder examples include polyethylene, polypropylene, ethylene propylene turbomer, butadiene rubber, styrene-butadiene rubber, butyl rubber, and a polymer compound having a high ionic conductivity.
  • polystyrene resin examples include polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, and polyaphthalene. Crylonitrile and the like can be used.
  • a polymer compound having a high ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.
  • the mixing ratio of the graphite particles to the organic binder is 3 to 100 parts by weight of the organic particles per 100 parts by weight of the graphite particles. It is preferably 0 parts by weight.
  • the solvent is not particularly limited, and an organic solvent such as N-methyl-12-pyrrolidone, dimethylformamide, and isopropanol is used.
  • the amount of the solvent is not particularly limited as long as it can be adjusted to a desired viscosity, but it is preferably used in an amount of 30 to 70% by weight based on the graphite paste.
  • the negative electrode for a lithium secondary battery of the present invention is roughly classified into three types based on its characteristics.
  • the first negative electrode for a lithium secondary battery of the present invention is characterized by using each of the above graphite particles.
  • This negative electrode for a lithium secondary battery can be obtained by molding the graphite paste into a sheet-like or pellet-like shape.
  • the graphite paste is applied to a current collector and integrated with the current collector to form a negative electrode.
  • a metal current collector such as a foil of nickel, copper or the like, or a mesh
  • the integration can be performed by a molding method such as a roll, a press, or the like, or may be integrated by combining these.
  • the mixture of the graphite particles and the organic binder and the current collector are integrated, and the density of the mixture of the graphite particles and the binder after the integration is reduced. 1.5 to 1.9 gZcm 3 .
  • the density is preferably 1. 5 5 ⁇ 1. 8 5 g / cm 3, more preferably 1. 6 ⁇ 1. 8 5 g / cm 3, further good Mashikuhashi 6 to 8 g / cm 3 Range.
  • the graphite particles used for the negative electrode for the second lithium secondary battery may be any material as long as the density can be set in the above range, and materials other than the above-described graphite particles of the present invention, for example, natural graphite Among these, the use of the graphite particles of the present invention makes it possible to increase the discharge capacity, rapid charge / discharge characteristics, and cycle characteristics of the resulting lithium secondary battery when the negative electrode is densified. Is preferred because it is possible to improve
  • the types of the organic binder, the current collector and the solvent used for the second negative electrode for a lithium secondary battery, and the mixing ratio thereof can be the same as those of the first negative electrode for a lithium secondary battery.
  • a method of pressurizing for example, a roll, a press or the like can be used.
  • the amount of the organic binder is 3 to 20% by weight, preferably 11 to 10% by weight, based on the mixture of the graphite particles and the organic binder. -20% by weight. Thereby, the discharge capacity per weight of the mixture of the negative electrode for a lithium secondary battery to be produced can be increased.
  • the content of the organic binder is preferably in the range of 12 to 16% by weight based on the mixture of the graphite particles and the organic binder. When the amount of the organic binder is less than 3% by weight, the bond between the graphite particles and between the graphite particles and the current collector is weak.
  • the discharge capacity per weight of the graphite particles and the discharge capacity per weight of the mixture of the graphite particles and the organic binder are reduced.
  • the graphite particles expand and contract due to charge and discharge, and the charge and discharge are repeated, so that breakage easily occurs between the graphite particles and between the graphite particles and the current collector, so that the cycle characteristics are also reduced.
  • the content exceeds 20% by weight, the conductivity of the negative electrode decreases due to the presence of many organic binders having low conductivity between the graphite particles and between the graphite particles and the current collector, and the weight of the graphite particles decreases.
  • the discharge capacity per unit weight decreases, and as a result, the discharge capacity per weight of the mixture of the graphite particles and the organic binder decreases. Furthermore, since the organic binder does not exhibit charge / discharge, adding more than 20% by weight of the organic binder reduces the amount of the graphite particles to less than 80% by weight. However, the discharge capacity per weight of the mixture of the graphite particles and the organic binder is reduced.
  • each of the graphite particles of the present invention is used as the graphite particles used for the third lithium secondary battery negative electrode
  • the discharge capacity when the density of the negative electrode of the obtained lithium secondary battery is increased. It is preferable because the amount, rapid charge / discharge characteristics and cycle characteristics can be improved.
  • the type of the organic binder, the current collector and the solvent used for the third negative electrode for a lithium secondary battery, the mixing ratio thereof, the molding conditions for the final current collector and the mixture, and the like are different from those of the first negative electrode for a lithium secondary battery. The same can be applied.
  • the molding conditions as in the second negative electrode for a lithium secondary battery, the density of the mixture of the graphite particles and the binder after integration is 1.5 to 1.5.
  • It is preferably 9 g / cm 3 .
  • Each of the negative electrodes for a lithium secondary battery obtained as described above is arranged with the positive electrodes facing each other via a separator, and is injected with an electrolyte so as to be compared with a conventional lithium secondary battery.
  • a lithium secondary battery having high capacity, excellent rapid charge / discharge characteristics and cycle characteristics, and small irreversible capacity can be manufactured.
  • the teeth iNi0 2, LiCo0 2, Ru can be used LiMn 2 0 4, etc. either alone or in combination.
  • lithium salts such as LiClO "LiPF 6 , LiAsF LiBF 4 , and LiSO 3 CF 3 can be used in a non-aqueous solvent such as ethylene carbonate, getyl carbonate, dimethoxetane, dimethyl carbonate, tetrahydrofuran, and propylene carbonate.
  • a so-called dissolved organic electrolyte can be used.
  • separator for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof containing polyolefin such as polyethylene and polypropylene as a main component can be used.
  • FIG. 2 shows a partial cross-sectional front view of an example of a cylindrical lithium secondary battery.
  • 1 is a positive electrode
  • 2 is a negative electrode
  • 3 is a separator
  • 4 is a positive electrode tab
  • 5 is a negative electrode tab
  • 6 is a positive electrode cover
  • 7 is a battery can
  • 8 is a gasket.
  • Example 1 the first, second and third graphite particles of the present invention were used as graphite particles, and the first negative electrode material for lithium secondary batteries of the present invention was used as a negative electrode material for a lithium secondary battery. This is an example of study.
  • the obtained graphite particles were found to have an interlayer distance d (002) of 3.36 OA and a crystallite size L c (002) 100 OA or more by X-ray wide-angle diffraction. Furthermore, the specific surface area by the BET method was 3.5 m 2 / g.
  • a lithium secondary battery having the shape shown in FIG. 2 was manufactured as follows. LiCoO 2 and 88 wt% as a positive electrode active material (a positive electrode active material), 7 % by weight of natural flake graphite of 1 m average particle size as a conductive agent and polyvinylidene Ihibi two isopropylidene as a binding agent (PVDF) 5 % Of N-methyl-1-pyrrolidone (50% by weight of the paste, the same proportion is added in the following examples) and mixed with the mixture to form a positive electrode mixture. The paste was adjusted.
  • a paste of the positive electrode mixture was applied to both sides of an aluminum foil having a thickness of 25 am, and then vacuum dried at 120 ° C for 1 hour. After vacuum drying, the electrodes were pressure-formed by a roller-press to a thickness of 190.
  • the applied amount of the positive electrode mixture per unit area was 49 mg / cm 2 , and the positive electrode 1 was produced by cutting out a piece having a width of 40 mm and a length of 285 mm.
  • the positive electrode mixture was not applied to the portion of the positive electrode 1 having the length of 10 at both ends, and the aluminum foil was exposed, and the positive electrode tab 4 was pressure-bonded to one of the parts by ultrasonic bonding.
  • the paste of the negative electrode mixture was applied to both surfaces of a copper foil having a thickness of 10 and then vacuum-dried at 120 ° C for 1 hour. After vacuum drying, the electrode was pressure-formed with a roller press to a thickness of 1 75 fim. The applied amount of the negative electrode mixture per unit area was 2 Oig / cm 2 , the width was 4 Oram, and the length was 290 ran.
  • the negative electrode 2 is coated with copper foil at the both ends of the negative electrode 2 where the negative electrode mixture is not applied and the negative electrode tab 5 is crimped by ultrasonic bonding. did.
  • Separee 3 used a polyethylene microporous membrane with a thickness of 25 urn and a width of 44 h.
  • a positive electrode was placed, a separator 3, a negative electrode 2, and a separator 3 were overlaid in this order, and this was wound to form an electrode group.
  • This was inserted into an AA size battery can 7, the negative electrode tab 5 was welded to the bottom of the can, and a throttle portion for caulking the positive electrode lid 6 was provided.
  • an electrolyte (not shown) in which lithium hexafluorophosphate is dissolved at 1 mol / liter in a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1 was injected into the battery can 7.
  • the positive electrode lid 6 was crimped to obtain a lithium secondary battery.
  • charge / discharge was repeated at a charge / discharge current of 300 mA, a charge end voltage of 4.15 V, and a discharge end voltage of 2.8 V.
  • the charge / discharge current was varied from 30 O mA to 900 mA, and rapid charge / discharge was performed. The results are shown in Figs.
  • the interlayer distance d (002) of the graphite particles obtained by X-ray wide angle diffraction of the obtained graphite particles was 3.336, and the crystallite size Lc (002) was more than 1000. there were. Furthermore, the specific surface area by the BET method is 4.3 m 2 / g.
  • Coke powder having an average particle size of 20 urn was calcined at 280 ° C. in a nitrogen atmosphere to obtain graphite particles having an average particle size of 20 ⁇ m.
  • the obtained graphite particles had an average value of aspect ratio of 6, specific surface area of 1 lm 2 / g, interlayer distance d (002) of crystal of 3.3365 and crystallite size L c (0 2) was made of 800 scale graphite.
  • a lithium secondary battery was produced from the obtained scaly graphite through the same steps as in Example 1, and the same battery characteristics test as in Example 1 was performed. The results are shown in FIGS.
  • Fig. 3 is a graph showing the relationship between the battery discharge capacity and the number of charge / discharge cycles when the charge / discharge of the lithium secondary battery was repeated.
  • Curve 9 in Fig. 3 shows the discharge of the lithium secondary battery obtained in Example 1. Capacity, curve 10 shows the discharge capacity of the lithium secondary battery obtained in Example 2, and curve 11 shows the discharge capacity of the lithium secondary battery obtained in Example 3.
  • the maximum discharge capacity of the lithium secondary battery obtained in Example 1 was 750 mAh, and the rate of decrease in the discharge capacity with respect to the maximum capacity at the 500th cycle was 8%.
  • the maximum discharge capacity of the lithium secondary battery obtained in Example 2 was 720 mAh, and the rate of decrease in the discharge capacity relative to the maximum capacity at the 500th cycle was 12%.
  • the maximum discharge capacity of the lithium secondary battery obtained in Example 3 was 650 mAh, and the rate of decrease in the discharge capacity relative to the maximum capacity at the 500th cycle was 31%.
  • Fig. 4 shows the relationship between charge / discharge current and discharge capacity when rapid charge / discharge was performed.
  • Curve 12 shows the discharge capacity of the lithium secondary battery obtained in Example 1
  • curve 13 shows the discharge capacity of the lithium secondary battery obtained in Example 2
  • curve 14 shows the discharge capacity of the lithium secondary battery obtained in Example 3.
  • the discharge capacity of the lithium secondary battery obtained in Example 1 was 63 OmAh and the discharge capacity of the lithium secondary battery obtained in Example 2 was 520 mAh.
  • the discharge capacity of the lithium secondary battery obtained in Example 3 was 35 O mAh.
  • the lithium secondary batteries using the first, second, and third graphite particles of the present invention have high capacity, excellent charge / discharge cycle characteristics, and rapid charge / discharge characteristics. It was confirmed to have.
  • the specific surface area of the obtained graphite particles by the BET method was 2.9 m 2 / g, and the interlayer distance d (002) of the graphite particles by X-ray wide-angle diffraction was 3.36 A and the crystallite size L c (002) were 100 A or more. Further, according to a scanning electron micrograph (SEM photograph) of the obtained graphite particles, the graphite particles have a structure in which flat particles are aggregated or bonded so that a plurality of oriented planes are non-parallel.
  • SEM photograph scanning electron micrograph
  • Fig. 5 is a schematic diagram of this lithium secondary battery.
  • the evaluation of the sample electrode was performed by using LiPF 4 as an electrolyte 16 in a glass cell 15 as shown in Fig. 5 as ethylene carbonate (EC) and dimethyl carbonate ( DMC) (EC and DMC were mixed at a volume ratio of 1: 1), and a solution of 1 mol / liter was added to the mixed solvent.
  • the sample electrode (negative electrode) 17, separator 18 and counter electrode ( (Positive electrode) 19 are stacked and arranged, and reference electrode 20 is suspended from above to make a lithium secondary battery. Made.
  • a mixture of 50 parts by weight of coke powder having an average particle diameter of 10 ⁇ m, 10 parts by weight of tar pitch, 5 parts by weight of gay carbonide and 10 parts by weight of coal tar is stirred at 100 ° C. for 1 hour. did.
  • the powder was fired at 280 ° C. in a nitrogen atmosphere and then pulverized to produce graphite particles having an average particle diameter of 20 urn.
  • the obtained graphite particles were arbitrarily selected from 100 particles, and the average value of the aspect ratio was measured. As a result, it was 4.5.
  • the specific surface area of the obtained graphite particles by the BET method was 4.9
  • the interlayer distance d (002) of the crystal by X-ray wide-angle diffraction of the graphite particles was 3.362 A and the crystallite size Lc (002) was 100 OA or more.
  • the obtained graphite particles had a structure in which flat particles were aggregated or bonded so that a plurality of orientation planes became non-parallel.
  • Table 1 shows the charge capacity per unit weight of the graphite particles in the first cycle, the discharge capacity per unit weight of the graphite particles, the irreversible capacity, and the discharge capacity per unit weight of the graphite particles in the 50th cycle.
  • the rapid charge-discharge characteristics evaluation was charged at a constant current of 0. 3mA / cm 2, discharge current 0.3, 2.0, in the case of changing the 4.0 and 6. 0 mA / cm 2
  • Table 2 shows the discharge capacity.
  • the specific surface area of the obtained graphite particles by the BET method was 6.3 mV, and the interlayer distance d (002) of the graphite particles by X-ray wide-angle diffraction was 3.368 persons and the crystallite
  • the size L c (002) was 70 OA.
  • the obtained graphite particles had a structure in which a plurality of flat particles were aggregated or bonded so that the orientation planes were non-parallel.
  • Table 1 shows the charge capacity per unit weight of the graphite particles in the first cycle, the discharge capacity per unit weight of the graphite particles, the irreversible capacity, and the discharge capacity per unit weight of the graphite particles in the 50th cycle.
  • the rapid charge-discharge characteristics evaluation was charged at a constant current of 0. 3mA / cin 2, the discharge current of 0.3, 2.0, in the case of changing the 4.0 and 6. 0 mA / cm 2
  • Table 2 shows the discharge capacity.
  • Coke powder having an average particle size of 22 was calcined at 280 ° C. in a nitrogen atmosphere to obtain graphite particles having an average particle size of 20%.
  • the obtained graphite particles have an average value of 7 and a specific surface area of 8.5 m 2 / g by the BET method.
  • the interlayer distance d (002) of the crystal by X-ray wide angle diffraction is 3.368 A and graphite having a crystallite size L c (002) of 800 were in the form of graphite.
  • Table 1 shows the charge capacity per unit weight of the graphite particles in the first cycle, the discharge capacity per unit weight of the graphite particles, the irreversible capacity, and the discharge capacity per unit weight of the graphite particles in the 50th cycle.
  • the rapid charge-discharge characteristics evaluation was charged at a constant current of 0. 3mAZcm 2, the discharge current of 0.3, 2.0, the discharge capacity in the case of changing the 4.0 and 6. 0 mA / cm 2 Is shown in Table 2.
  • the lithium secondary battery using the i-th, second and third graphite particles of the present invention has a larger discharge capacity than Example 7 and an irreversible capacity in the first cycle. It is clear that it is small and has excellent cycle characteristics and rapid discharge characteristics.
  • Examples 8 to 11 show the study on the fourth graphite particles of the present invention as graphite particles and the first negative electrode material for lithium secondary batteries of the present invention as negative electrode materials for lithium secondary batteries. It is an example.
  • the obtained graphite particles were arbitrarily selected from 100 particles, and the average value of the aspect ratio was determined to be 1.7.
  • the interlayer distance d (002) of the graphite particles obtained by X-ray wide-angle diffraction of the obtained graphite particles was 3.360, and the crystallite size L a (110) in the plane direction was 720 A.
  • the crystallite size L c (002) in the c-axis direction was 180 A.
  • the lithium secondary battery shown in FIG. 2 was manufactured as follows. 88% by weight of LiCoO 2 as a positive electrode active material, ⁇ % by weight of flake natural graphite with an average particle size of 1 m as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder ) was added at 5% by weight, and N-methyl-2-pyrrolidone was added thereto and mixed to adjust the paste for a mixture for forming a positive electrode.
  • PVDF polyvinylidene fluoride
  • a paste of the positive electrode mixture was applied to both surfaces of an aluminum foil having a thickness of 25 m, and then dried under vacuum at 120 ° C for 1 hour. After vacuum drying, the electrode was pressure-formed by a roller press to a thickness of 190 m. The applied amount of the positive electrode mixture per unit area was 49 mg / cm, and the positive electrode 1 was produced by cutting out a piece having a width of 40 mm and a length of 285 mm. However, the positive electrode mixture was not applied to the portions of both ends of the positive electrode 1 having a length of 10 mm, and the aluminum foil was exposed.
  • the paste of the negative electrode mixture was applied to both sides of a copper foil having a thickness of 10 m, and then dried in vacuum at 120 ° C for 1 hour. After vacuum drying, the electrodes were pressure-formed by a roller press to a thickness of 1.5 to 5 ma.
  • the applied amount of the negative electrode mixture per unit area was 2 Omg / cm, and the negative electrode 2 was prepared by cutting it out to a size of 40 mm in width and 290 in length.
  • the negative electrode 2 is coated with the negative electrode tab 5 on one side by ultrasonic bonding in a portion where the length of both ends of the negative electrode 10 is hidden, where the negative electrode mixture is not applied and the copper foil is exposed. And crimped.
  • the separator 3 As the separator 3, a polyethylene microporous membrane having a thickness of 25 m and a width of 44 countries was used. Next, as shown in FIG. 1, the positive electrode 1, the separator 3, the negative electrode 2, and the separator 3 were superimposed in this order, and wound up to form an electrode group. This was inserted into an AA size battery can 7, the negative electrode tab 5 was welded to the bottom of the can, and a throttle portion for caulking the positive electrode lid 6 was provided. Then, an electrolyte (not shown) in which 1 mol liter of lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1 is injected into the battery can 7, and then the positive electrode tab is formed. After welding 4 to the positive electrode cover 6, the positive electrode cover 6 was caulked to obtain a lithium secondary battery.
  • charge / discharge was repeated at a charge / discharge current of 300 mA, a charge end voltage of 4.15 V, and a discharge end voltage of 2.8 V.
  • the charge / discharge current was varied from 300 mA to 600 mA, and rapid charge / discharge was performed.
  • the discharge capacity per unit weight of the graphite particles in the first cycle and the maintenance ratio of the discharge capacity per unit weight of the graphite particles in the 100th cycle were measured. The results are shown in Table 3.
  • a mixture of 55 parts by weight of coke powder having an average particle diameter of 10 im, 22 parts by weight of tar pitch, 8 parts by weight of boron nitride having an average particle diameter of 25 urn, and 15 parts by weight of coal tar was prepared.
  • the mixture was stirred at ° C for 1 hour.
  • the powder was fired at 800 ° C. in a nitrogen atmosphere, further fired at 280 ° C., and pulverized to obtain graphite particles having an average particle diameter of 20 m.
  • SEM photograph scanning electron micrograph
  • the obtained graphite particles were arbitrarily selected from 100 particles, and the average value of the aspect ratio was measured.
  • the interlayer distance d (002) of the graphite particles obtained by X-ray wide-angle diffraction of the obtained graphite particles was 3.336 A, and the crystallite size L a (110) in the plane direction was 560 And the crystallite size L c (002) in the c-axis direction was 176.
  • a lithium secondary battery was manufactured through the same steps as in Example 8, and a battery characteristic test similar to that in Example 8 was performed. The results are shown in Table 3.
  • Example 1 0 The results are shown in Table 3.
  • the interlayer distance d (002) of the obtained graphite particles by X-ray wide angle diffraction is 3.390
  • the crystallite size L a (110) is 460 in the plane direction.
  • the crystallite size L c (002) in the c-axis direction was 300.
  • graphite particles having an average particle size of 20 were obtained through the same steps as in Example 10. According to a scanning electron micrograph (SEM photograph) of the obtained graphite particles, the graphite particles had a structure in which flat particles were aggregated or bonded so that a plurality of oriented planes became non-parallel. The obtained graphite particles were arbitrarily selected from 100 particles, and the average value of the aspect ratio was measured. As a result, it was 2.2.
  • the interlayer distance d (002) of the obtained graphite particles by X-ray wide-angle diffraction was 3.357
  • the size L a (111) of the crystallite in the plane direction was 170
  • the crystallite size L c (002) in the A and c axis directions was 205 A.
  • Example 8 Using the obtained graphite particles, a lithium secondary battery was manufactured through the same steps as in Example 8, and a battery characteristic test similar to that of Example 1 was performed. The results are shown in Table 3. Item Example 8 Example 9 Example 10 Example 11 Discharge capacity 722 688 467 730
  • the lithium secondary battery using the fourth graphite particles of the present invention showed a high capacity at a discharge capacity at a charge / discharge current of 300 mA, and Even when the charge / discharge current is increased to 600 mA, the discharge capacity is maintained at 70% or more, and it is clear that the rapid charge / discharge characteristics are excellent.
  • Examples 12 to 15 the fifth and sixth graphite particles of the present invention were used as graphite particles, and the first negative electrode for lithium secondary batteries of the present invention was used as a negative electrode material for lithium secondary batteries. This is an example of study on materials.
  • the resulting graphite particles pore size distribution measurement by mercury porosimetry (Shimadzu Poasaiza one 9 3 2 0 forms used) the result of having pores in the range of 1 0 2 ⁇ 1 0 6 A, graphite particles by weight
  • the total pore volume per unit was 0.6 cc / g.
  • the pore volume in the range of 1 ⁇ 10 2 to 2 ⁇ 10 4 A was 0.2 Occ / g per graphite particle weight.
  • 100 obtained graphite particles were arbitrarily selected, and the average value of the aspect ratio was measured.
  • the specific surface area of the graphite particles determined by the BET method was 1.5 m 2 / g.
  • the inter-layer distance d (002) of the crystal was 3.362 and the size Lc (002) of the crystallite was 100 or more. Further, according to a scanning electron micrograph (SEM photograph) of the obtained graphite particles, the graphite particles had a structure in which flat particles were aggregated or bonded so that a plurality of orientation planes became non-parallel. .
  • FIG. 5 is a schematic diagram of a lithium secondary battery.
  • the evaluation of the sample electrode was performed by using LiPF 6 as the electrolyte 2 in ethylene glass carbonate (EC) and dimethyl carbonate (DMC) (EC) as shown in Fig. 5. And DMC are mixed in a volume ratio of 1: 1) with a solution of 1 mol Z liter dissolved in a mixed solvent, and sample electrode 3, separator 4 and counter electrode 5 are stacked and arranged.
  • a lithium secondary battery was fabricated by suspending the reference electrode 6 from above. Lithium metal was used for the counter electrode 5 and the reference electrode 6, and a polyethylene microporous membrane was used for Separation 4.
  • Table 4 shows the charge capacity and discharge capacity per unit weight of the graphite particles in the first cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.
  • the resulting graphite particles pore size distribution measurement by mercury porosimetry (Shimadzu Poasaiza one 9 3 2 0 forms used) the result of having pores in the range of 1 0 2 ⁇ 1 0 b A, graphite particles by weight
  • the total pore volume per unit is 1.5 cc / g Met.
  • 1 X 1 0 2 ⁇ 2 X 1 0 4 person pore volume in the range was 0. 1 3ccZg per graphite particles by weight.
  • 100 obtained graphite particles were arbitrarily selected and the average value of the aspect ratio was measured. The result was 2.3.
  • the specific surface area of the graphite particles measured by the BET method was 3.6 m 2 Zg.
  • the interlayer distance d (002) (13.361 A) and the crystallite size Lc (002) of the crystal by X-ray wide angle diffraction of the graphite particles were 100 A or more.
  • the obtained graphite particles had a structure in which flat particles were aggregated or bonded so that a plurality of orientation planes became non-parallel.
  • Table 4 shows the charge capacity and the discharge capacity per unit weight of the graphite particles in the first cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.
  • Table 4 shows the charge capacity and the discharge capacity per unit weight of the graphite particles in the first cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.
  • the pore volume in the range of 1 ⁇ 10 2 to 2 ⁇ 10 4 A was 0.42 cc / g per weight of graphite particles.
  • the obtained graphite particles were arbitrarily selected from 100 particles, and the average value of the aspect ratio was measured to be 2.8.
  • the specific surface area of the graphite particles measured by the BET method was 8.3 m 2 /
  • the interlayer distance d (002) of the crystal by X-ray wide-angle diffraction of graphite particles is 3.365 A and the crystallite size Lc (002) is more than 100 there were.
  • Table 4 shows the charge capacity and the discharge capacity per unit weight of the graphite particles in the first cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.
  • the lithium secondary batteries obtained by using the fifth and sixth graphite particles of the present invention have high capacity and excellent cycle characteristics.
  • Examples 16 to 21 are examination examples of the second negative electrode material for a lithium secondary battery in the present invention as the negative electrode material for a lithium secondary battery.
  • B of the obtained graphite particles The specific surface area by the ET method is 2.lm 2 / ⁇ , the interlayer distance d (002) of the crystal by X-ray wide-angle diffraction of graphite particles is 3.365, and the crystallite size L c ( 0 02) had more than 1 000 people. Further, according to a scanning electron micrograph (SEM photograph) of the obtained graphite particles, the graphite particles have a structure in which flat particles are aggregated or bonded such that a plurality of orientation planes are non-parallel. Was.
  • Fig. 5 is a schematic diagram of a lithium secondary battery.As shown in Fig. 5, the evaluation of the sample electrode was performed by using LiPF s as the electrolyte solution 2 in ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • a solution prepared by dissolving in a mixed solvent having a volume ratio of 1: 1) so as to have a molarity of 1 mol Z liter is placed, and a sample electrode 3, a separator 4 and a counter electrode 5 are stacked and arranged. 6 was suspended from above to produce a lithium secondary battery.
  • a sample electrode was obtained through the same steps as in Example 16 except that the compression force in the press was set to 4 OMPa.
  • the thickness of the mixture of graphite particles and PVDF of the obtained sample electrode was 80 urn and the density was 1.63 g / cm 3 .
  • a lithium secondary battery was produced through the same steps as in Example 16, and the same test as in Example 16 was performed, but no decrease in discharge capacity was confirmed.
  • As rapid charge and discharge characteristics evaluation was charged at a constant current of 0. 3 mA / cm 2, discharge current 0.5, 2.0, 4.0 and 6. when changing to 0 mA / cm 2 Table 5 shows the discharge capacity.
  • a sample electrode was obtained through the same steps as in Example 1 except that the compression force in the press was set to 8 OMPa.
  • the thickness of the mixture of graphite particles and PVDF of the obtained sample electrode was 80 urn, and the density was 1.75 g / cm 3 .
  • Example 16 a lithium secondary battery was produced through the same steps as in Example 16, and the same test as in Example 16 was performed, but no decrease in discharge capacity was confirmed.
  • rapid charge and discharge characteristics evaluation was charged at a constant current of 0. 3 mA / cm 2, discharge current 0.5, 2.0, 4.0 and 6. when changing to 0 mA / cm 2 Table 5 shows the discharge capacity.
  • a sample electrode was obtained through the same steps as in Example 16 except that the compression force in the press was set to i 0 OMPa.
  • the thickness of the mixture of graphite particles and PVDF of the obtained sample electrode was 80 m, and the density was 1.85 g / cm 3 .
  • Example 16 a lithium secondary battery was produced through the same steps as in Example 16, and the same test as in Example 16 was performed, but no decrease in discharge capacity was confirmed.
  • rapid charge and discharge characteristics evaluation was charged at a constant current of 0. 3 mA / cm 2, the discharge current 0.5, 2.0, discharge when changing to 4.0 and 6. 0 kXcm 2 Table 5 shows the capacities.
  • a sample electrode was obtained through the same steps as in Example 16 except that the compression force in the press was set to 2 OMPa.
  • the thickness of the mixture of graphite particles and PVDF of the obtained sample electrode was 80 m, and the density was 1.45 g / cm 3 .
  • Example 16 a lithium secondary battery was produced through the same steps as in Example 16, and the same test as in Example 16 was performed, but no decrease in discharge capacity was confirmed.
  • rapid charge and discharge characteristics evaluation was charged at a constant current of 0. 3 mA / cm 2, discharge current 0.5, 2.0, 4.0 and 6. when changing to 0 mA / cm 2 Table 5 shows the discharge capacity.
  • Example 2 1 A sample electrode was obtained through the same steps as in Example 16 except that the compression force in the press was set to 14 OMPa.
  • the thickness of the mixture of graphite particles and PVDF of the obtained sample electrode was 80, and the density was 1.93 g / cm 3 .
  • Example 16 a lithium secondary battery was fabricated.
  • the discharge capacity was reduced by 15.7%.
  • rapid charge and discharge characteristics evaluation was charged at a constant current of 0. 3 mA / cm 2, discharge current 0.5, 2.0, 4.0 and 6. when changing to 0 mA / cm 2 Table 5 shows the discharge capacity.
  • the lithium secondary battery using the second negative electrode for a lithium secondary battery of the present invention has a high discharge capacity and excellent rapid discharge characteristics.
  • Examples 22 to 29 are examination examples of the third negative electrode material for a lithium secondary battery in the present invention as a negative electrode material for a lithium secondary battery.
  • FIG. 5 is a schematic diagram of a lithium secondary battery.
  • the evaluation of the sample electrode was performed by using LiPF as the electrolyte 2 in ethylene glass (EC) and dimethyl carbonate (DMC) (EC) in the glass cell 1 as shown in Figure 1.
  • DMC in a mixed solvent of volume ratio of 1: 1), a solution of 1 molnoliter dissolved in a mixed solvent, sample electrode 3, separator 4 and counter electrode 5 are stacked and arranged. 6 was suspended from above to produce a lithium secondary battery.
  • Example 22 To 87% by weight of the graphite particles obtained in Example 22, vinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added at a solid content of 13% by weight and kneaded. I got a strike. Through the same steps as in Example 22, a sample electrode having a mixture layer of graphite particles and PVDF with a thickness of 80 urn and a density of 1.5 g / cm 3 was obtained.
  • PVDF vinylidene fluoride
  • Example 22 To 85% by weight of the graphite particles obtained in Example 22, vinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added at a solid content of 15% by weight and kneaded to obtain a graphite list. Through the same steps as in Example 22, a sample electrode having a mixture layer of graphite particles and PVDF with a thickness of 80 m and a density of 1.5 g / cm 3 was obtained.
  • PVDF vinylidene fluoride
  • Example 22 To 82% by weight of the graphite particles obtained in Example 22, 18% by weight of solid content of vinylidene fluoride (PVDF) dissolved in monomethyl-2-pyrrolidone was added and kneaded to obtain a graphite list. Through the same steps as in Example 22, a sample electrode having a mixture layer of graphite particles and PVDF having a thickness of 80 ⁇ m and a density of 5 g / cm 3 was obtained.
  • PVDF vinylidene fluoride
  • Example 22 20% by weight of solid content of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 80% by weight of the graphite particles obtained in Example 22 and kneaded to obtain a graphite paste.
  • PVDF polyvinylidene fluoride
  • Example 22 Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 97.5% by weight of the graphite particles obtained in Example 2 at 2.5% by weight as a solid content, and the mixture was kneaded to obtain a graphite paste. Obtained. Through the same steps as in Example 22 below, a sample electrode having a mixture layer of graphite particles and PVDF with a thickness of 80 m and a density of 1.5 g / cm 3 was obtained.
  • PVDF Polyvinylidene fluoride
  • Example 22 Vinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone (22% by weight) was added to 78% by weight of the graphite particles obtained in 2 (22% by weight) and kneaded to obtain a graphite base.
  • PVDF Vinylidene fluoride
  • the third lithium secondary battery of the present invention has a high capacity, and is excellent in rapid charging and cyclogenesis.
  • the ⁇ particles of the present invention are suitable for lithium, which is excellent in cycling quickly.
  • the nest of the present invention is small in the first cycle, which is suitable for lithium niobate with excellent cycling properties.
  • the Hi & ⁇ -st of the present invention is excellent in cycling quickly or small in the first cycle, and is good for cycling i ⁇ or in the first cycle, and cycling in the first cycle. It is suitable for lithium secondary batteries with excellent! ⁇ .
  • High capacity excellent for sudden J3 ⁇ 4 filling and cycling, or small for moving in the first cycle, good for cycling i ⁇ or in the first cycle ⁇ ! It is a small and fast moving lithium-ion battery.
  • the lithium of the present invention has a high capacity, is excellent in abrupt $ 3 ⁇ 43 ⁇ 4m tt 3 ⁇ 4 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ It is superior to Cyno.

Description

明 細 書 黒鉛粒子及びそれを負極に用いたリチウムニ次電池 技術分野
本発明は、 新規な黒鉛粒子及びその製造法、 黒鉛粒子を用いた黒鉛ペースト、 黒鉛べ一ストを用いたリチウムニ次電池用負極及びその製造法並びにリチウム二 次電池に関する。 さらに詳しくは、 ポータブル機器、 電気自動車、 電力貯蔵等に 用いるのに好適な、 急速充放電特性、 サイクル特性等に優れたリチウム二次電池 と、 その負極に用いるための黒鉛粒子及びその製造法、 黒鉛粒子を用いた黒鉛べ ースト、 黒鉛ペース卜を用いたリチウム二次電池用負極及びその製造法に関する。 背景技術
従来の黒鉛粒子としては、 例えば天然黒鉛粒子、 コークスを黒鉛化した人造黒 鉛粒子、 有機系高分子材料、 ピッチ等を黒鉛化した人造黒鉛粒子、 これらを粉砕 した黒鉛粒子などがある。 これらの黒鉛粒子は、 有機系結着剤及び有機溶剤と混 合して黒鉛ペーストとし、 この黒鉛ペーストを銅箔の表面に塗布し、 溶剤を乾燥 させてリチウム二次電池用負極として使用されている。 例えば、 特公昭 (J P— B ) 6 2— 2 3 4 3 3号公報に示されるように、 負極に黒鉛を使用することでリ チウムのデンドライ 卜による内部短絡の問題を解消し、 サイクル特性の改良を図 つている。
しかしながら、 黒鉛結晶が発達している天然黒鉛粒子及びコ一クスを黒鉛化し た人造黒鉛粒子は、 c軸方向の結晶の層間の結合力が、 結晶の面方向の結合に比 ベて弱いため、 粉碎により黒鉛層間の結合が切れ、 アスペクト比が大きい、 いわ ゆる鱗状の黒鉛粒子となる。 この鱗状の黒鉛粒子は、 ァスぺク ト比が大きいため に、 バインダと混練して集電体に塗布して電極を作製したときに、 鱗状の黒鉛粒 子が集電体の面方向に配向し、 その結果、 黒鉛結晶へのリチウムの吸蔵
(occlus ion) ·放出 (release)の繰り返しによって発生する c軸方向の歪みによ り電極内部の破壊が生じ、 サイクル特性が低下する問題があるばかりでなく、 急 速充放電特性が悪くなる傾向にある。 また、 従来のような面方向の結晶子 (crystal H te)の大きさが大きい黒鉛粒子 は、 リチウムの吸蔵 '放出に時間を要する。 さらに、 従来のようなアスペクト比 が大き 、鱗状の黒鉛粒子は、 比表面積が大きいため場合によっては得られるリチ ゥム二次電池の第一サイクル目の不可逆容量が大きいばかりでなく、 集電体との 密着性が悪く、 多くのバインダが必要となる問題点がある。 集電体との密着性が 悪いと、 集電効果が低下し、 放電容量、 急速充放電特性、 サイクル特性等力低下 する問題がある。 そこで、 リチウム二次電池の急速充放電特性及びサイクル特性 に優れた又は第一サイクル目の不可逆容量が小さく、 サイクル特性に傻れた若し くは第一サイクル目の不可逆容量が小さく、 急速充放電特性及びサイクル特性が 向上できる黒鉛粒子が要求されている。
発明の開示
本発明は、 上記の欠点を解決し急速充放電特性及びサイクル特性に優れたリチ ゥム二次電池の負極に好適な黒鉛粒子 (graph e part i cl es) を提供するもので ある。
また本発明は、 第一サイクル目の不可逆容量が小さく、 サイクル特性に優れた リチウムニ次電池の負極に好適な黒鉛粒子を提供するものである。
また本発明は、 急速充放電特性及びサイクル特性に優れ、 又は第一サイクル目 の不可逆容量が小さくサイクル特性に優れ、 又は第一サイクル目の不可逆容量が 小さく急速充放電特性及びサイクル特性に優れた、 リチウムニ次電池の負極に好 適な黒鉛粒子の製造法を提供するものである。
また本発明は、 急速充放電特性及びサイクル特性に優れ、 又は第一サイクル目 の不可逆容量が小さくサイクル特性に優れ、 又は第一サイクル目の不可逆容量が 小さく急速充放電特性及びサイクル特性に優れた、 リチウムニ次電池の負極に好 適な黒鉛ペーストを提供するものである。
また本発明は、 高容量で、 急速充放電特性及びサイクル特性に優れ、 又は第一 サイクル目の不可逆容量が小さくサイクル特性に優れ、 又は第一サイクル目の不 可逆容量が小さく急速充放電特性及びサイクル特性に優れた、 リチウム二次電池 用負極及びその製造法を提供するものである。
また本発明は、 高容量で、 急速充放電特性及びサイクル特性に優れ、 又は第一 サイクル目の不可逆容量が小さくサイクル特性に優れ、 又は第一サイクル目の不 可逆容量が小さく急速充放電特性及びサイクル特性に優れた、 リチウムニ次電池 を提供するものである。
本発明の黒鉛粒子は、 次の (1) 〜 (6) の特徴を有する。
( 1 ) 扁平状の粒子を複数、 配向面力 <非平行となるように集合又は結合させて なる黒鉛粒子。
(2) 黒鉛粒子のァスぺクト比が 5以下である黒鉛粒子。
(3) 比表面積が 8m2Zg以下である黒鉛粒子。
(4) 黒鉛粒子の X線広角回折における結晶の c軸方向 (厚み方向) の結晶子 の大きさが 5 00 A以上及び面方向の結晶子の大きさが 1 000人以下である黒 鉛粒子。
(5) 1 02 〜1 06 Aの範囲の大きさの細孔の細孔体積が、 黒鉛粒子重量当 たり 0. 4-2. 0 cc/gである黒鉛粒子。
(6) 1 X 1 02 ~2 X 1 0 人の範囲の大きさの細孔の細孔体積が、 黒鉛粒 子重量当たり 0. 08〜0. 4ccZgである黒鉛粒子。
また本発明は、 黒鉛化可能な骨材 (又は原料) 又は黒鉛と黒鉛化可能なバイン ダに黒鉛化触媒を 1〜5 0重量%添加して混合し、 焼成した後粉砕することを特 徴とする上記記載の黒鉛粒子の製造法に関する。
また本発明は、 前記の黒鉛粒子若しくは前記の方法で製造された黒鉛粒子に有 機系結着剤及び溶剤を添加し、 混合してなる黒鉛ペーストに関する。
また本発明のリチウム二次電池用負極 (negative electrode) は前記黒鉛ぺー ストを用いて作られ、 次の (1) 〜 (3) の特徴を有する。
( 1 ) 前記黒鉛ペーストを集電体に塗布、 一体化してなるリチウム二次電池用 負極。
(2) 黒鉛粒子及び有機系結着剤の混合物を集電体とを一体化してなるリチウ ムニ次電池用負極において、 加圧、 一体化後の黒鉛粒子及び有機系結着剤の混合 物の密度が 1. 5〜1. 9 g/cm3 であるリチウム二次電池用負極。
( 3 ) 黒鉛粒子及び有機系結着剤の混合物を集電体と一体化してなるリチウム 二次電池用負極において、 有機系結着剤を該混合物に対して 3 ~ 20重量%含有 してなるリチウムニ次電池用負極。
また本発明は、 黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダに黒鉛化触 媒を 1〜5 0重量%添加し、 これを混合、 焼成、 粉砕した黒鉛粒子に有機系結着 剤及び溶剤を添加して混合し、 該混合物を集電体に塗布し、 溶剤を乾燥させた後、 加圧して一体化することを特徴とする前記 (2) のリチウム二次電池用負極の製造 法に関する。
さらに本発明は、 ケーシング、 カバー、 少なくとも 1対の負極と正極とをセパ レータを介して配置したもの、 かつその周辺に存在する電解液からなり、 前記負 極が上記黒鉛粒子を用いて作られたものであるリチウムニ次電池に関する。
図面の簡単な説明
図 1 A及び 1 Bは本発明になる黒鉛粒子の走査型電子顕微鏡写真であり、 図 1 Aは粒子の外表面の写真、 図 1 Bは粒子の断面の写真である。
図 2は円筒型リチウムニ次電池の一部断面正面図である。
図 3は放電容量と充放電サイクル回数の関係を示すグラフである。
図 4は放電容量と充放電電流の関係を示すグラフである。
図 5は本発明の実施例で、 充放電特性及び不可逆容量の測定に用いたリチウム 二次電池の概略図である。
発明を実施するための最良の形態
本発明における黒鉛粒子は、 その特徴から大きく 6つに分けられる。
本発明の第 1の黒鉛粒子は扁平状の粒子を複数、 配向面が非平行となるように 集合又は結合させたものである。
本発明において、 「扁平状の粒子」 とは、 長軸 (major axi s) と短軸 (minor axi s) を有する形状の粒子のことであり、 完全な球状でないものをいう。 例えば 鱗状、 鳞片状、 一部の塊状等の形状のものがこれに含まれる。
複数の扁平状の粒子において、 「配向面が非平行」 とは、 それぞれの粒子の形 状において有する扁平した面、 換言すれば最も平らに近い面を配向面として、 複 数の粒子がそれぞれの配向面を一定の方向にそろうことなく集合している状態を いう。
個々の扁平状の粒子は、 材質的には、 黒鉛化可能な原料 (骨材) または黒鉛で あることが好ましい。
この黒鉛粒子において扁平状の粒子は集合又は結合している。 「結合」 とは互 いの粒子がバインダー等を介して接着されている状態をいい、 「集合」 とは互い の粒子がバインダー等で接着されてはないが、 その形状等に起因して、 その集合 体としての形状を保っている状態をいう。 機械的な強度の面から、 結合している ものが好ましい。
個々の扁平粒子の大きさとしては、 平均粒径で 1一 1 0 0 z mであること力好 ましく、 1 一 5 0 / mであることがより好ましく、 これらが集合又は結合した黒 鉛粒子の平均粒径の 2ノ 3以下であることが好ましい。 1つの黒鉛粒子において、 扁平状の粒子の集合又は結合する数としては、 3個以上であることが好ましい。 なお、 本発明において平均粒径は、 レーザー回折粒度分布計により測定すること ができる。
該黒鉛粒子を負極に使用すると、 集電体上に黒鉛結晶が配向し難く、 負極黒鉛 にリチウムを吸蔵 ·放出し易くなるため、 得られるリチウムニ次電池の急速充放 電特性及びサイクル特性を向上させることができる。
なお、 図 1 A及び 1 Bに本発明の黒鉛粒子の一例の走査型電子顕微鏡写真を示 す。 図 1 Aは本発明になる黒鉛粒子の外表面の走査型電子顕微鏡写真、 図 1 Bは 黒鉛粒子の断面の走査型電子顕微鏡写真である。 図 1 Aにおいては、 細かな鱗片 状の黒鉛粒子が数多く、 それらの粒子の配向面を非平行にして結合し、 黒鉛粒子 を形成している様子が観察できる。
本発明の第 2の黒鉛粒子は、 アスペクト比が 5以下であるものである。 この黒 鉛粒子は、 集電体上で粒子が配向し難い傾向があり、 上記と同様にリチウムを吸 蔵 ·放出し易くなる。
アスペクト比は 1 . 2〜5であることが好ましい。 アスペクト比が 1 . 2未满 では、 粒子間の接触面積が減ることにより、 導電性が低下する傾向にある。 同様 の理由で、 より好ましい範囲は 1 . 3以上である。
一方、 黒鉛粒子のアスペク ト比の上限としては 5であり、 3以下であることが より好ましい。 ァスぺク ト比が 5より大きくなると、 急速充放電特性が低下し易 くなる傾向がある。 従って、 最も好ましいァスぺク ト比は 1 . 3〜3である。 なお、 ァスぺク ト比は、 黒鉛粒子の長軸方向の長さを A、 短軸方向の長さを B としたとき、 AZBで表される。 本発明におけるァスぺクト比は、 顕微鏡で黒鉛 粒子を拡大し、 任意に 1 00個の黒鉛粒子を選択し、 A/Bを測定し、 その平均 値をとつたものである。
さらに、 ァスぺク ト比が 5以下である黒鉛粒子としては、 より小さい黒鉛粒子 の集合体又は結合体であることが好ましい。
本発明の第 3の黒鉛粒子は、 比表面積が 8 m2 /g以下のものである。 比表面積 は、 好ましくは 5m2Zg以下、 より好ましくは 1. 5~5m2/g 、 さらに好まし くは 2〜5m2/g の範囲とされる。 該黒鉛粒子を負極に使用すると、 得られるリ チウムニ次電池の急速充放電特性及びサイクル特性を向上させることができ、 ま た、 第一サイクル目の不可逆容量を小さくすることができる。 比表面積が、 8 m2 /g を超えると、 得られるリチウム二次電池の第一サイクル目の不可逆容量が大 きくなり、 エネルギー密度が小さく、 さらに負極を作製する際多くの結着剤が必 要になるという問題がある。 一方、 1. 5 m2Zg未満では、 得られるリチウム二 次電池の急速充放電特性、 サイクル特性等が低下する傾向にある。 比表面積の測 定は、 BET法 (窒素ガス吸着法) などの既知の方法をとることができる。
本発明の第 4の黒鉛粒子は、 黒鉛粒子の X線広角回折における結晶の c軸方向 の結晶子の大きさ L c ( 002 ) が 500人以上、 面方向の結晶子の大きさ L a (1 1 0) は 1 0 0 O A以下のものである。 該黒鉛粒子を負極に使用すると、 得 られるリチウムニ次電池の急速充放電特性及びサイクル特性を向上させることが できる。 結晶の c軸方向の結晶子の大きさ L c ( 00 2 ) は、 好ましくは 1 0 0 0 - 1 0000 0 Aの範囲 (但し X線広角回折による L c ( 00 2 ) は 30 0 0 A以上は明確に測定することは困難である) とされる。 また、 結晶の面方向の結 晶子の大きさ L a (1 1 0) は好ましくは 8 0 0 -5 0人の範囲とされる。 c軸方向の結晶子の大きさ L c ( 002 ) が 5 0 0 A未満であるか又は面方向 の結晶子の大きさ L a ( 1 1 0 ) 力く1 00 0人を超えると、 放電容量が小さくな るという問題点がある。
また、 第 4の黒鉛粒子において、 黒鉛粒子の X線広角回折における結晶の層間 距離 d (0 0 2 ) は 3. 38 A以下が好ましく、 3. 37~3. 3 5 Aの範囲が より好ましい。 結晶の層間距離 d ( 0 0 2 ) が 3 . 3 8人を超えると放電容量が 小さくなる傾向がある。
本発明の第 5の黒鉛粒子は、 1 0 2 〜 1 0 6 人の範囲の細孔の細孔体積が、 黒 鉛粒子重量当たり、 0 . 4〜2 . O cc/gであることを特徴とする。 該黒鉛粒子 を負極に使用すると、 充電 ·放電にともなう電極の膨張,収縮を黒鉛粒子の細孔 が吸収するため、 電極内部の破壊が抑えられ、 その結果得られるリチウム二次電 池のサイクル特性を向上させることができる。 1 0 2 〜 1 0 6 人の範囲の細孔の 細孔体積は、 0 . 4〜i . 5 ccZgの範囲であることがより好ましく、 0 . 6〜 1 . 2 cc/gの範囲であることがさらに好ましい。 全細孔体積が、 0 . 4 ccZg 未満ではサイクル特性が低下し、 2 . 0 cc/g を超えると黒鉛粒子と集電体とを 一体化する際に使用する結着剤を多く必要となり、 作成するリチウムニ次電池の 容量が低下する問題がある。 前記細孔体積は、 水銀圧入法による細孔径分布測定 により求めることができる。 細孔の大きさもまた水銀圧入法 (a mercury- poros imeter method) による細孔径分布測定により知ることができる。
本発明の第 6の黒鉛粒子は、 1 X 1 0 2 〜2 X 1 0 4 人の範囲の細孔の細孔体 積が、 黒鉛粒子重量当たり 0 . 0 8〜0 . 4 cc/gであることを特徴とする。 該 黒鉛粒子を負極に使用すると、 充電 ·放電にともなう電極の膨張 ·収縮を黒鉛粒 子の細孔が吸収するため、 電極内部の破壊が抑えられ、 その結果得られるリチウ ムニ次電池のサイクル特性を向上させることができる。 1 X 1 0 2 〜2 X 1 0 4 Aの範囲の細孔体積は、 0 . 1〜0 . 3 ccZgであることがより好ましい。 この 大きさの範囲の細孔体積が、 0 . 0 8 cc/g未満ではサイクル特性が低下し 0 . 4 cc/g を超えると黒鉛粒子と集電体とを一体化する際に使用する結着剤を多く 必要となり、 作成するリチウムニ次電池の容量が低下する問題がある。 この範囲 の細孔体積もまた水銀圧入法による細孔径分布測定により求めることができる。 本発明の前記第 2〜 6の黒鉛粒子においては、 その黒鉛粒子が第 1の黒鉛粒子 の特徴を有すること、 即ち、 扁平状の粒子を複数、 配向面が非平行となるように 集合又は結合させたものであることが好ましい。 該黒鉛粒子を負極に使用すると、 集電体上に黒鉛結晶が配向し難く、 負極黒鉛にリチウムを吸蔵 ·放出し易くなる ため、 得られるリチウムニ次電池の急速充放電特性及びサイクル特性をさらに向 上させることができる。
また、 本発明の前記第 1の黒鉛粒子及び第 3 ~ 6の黒鉛粒子は、 第 2の黒鉛粒 子の特徴を有すること、 即ち、 ァスぺク卜比が 5以下であることが、 集電体上で 粒子が配向し難い傾向があり、 上記と同様にリチゥムを吸蔵 ·放出し易くなるの で好ましい。 該黒鉛粒子のアスペク ト比は、 3以下であることがより好ましく、 下限としては 1 . 2以上が好ましく、 1 . 3以上がより好ましい。
また、 本発明の第 1〜 2の黒鉛粒子及び第 4 ~ 6の黒鉛粒子は、 第 3の黒鉛粒 子の特徴を有すること、 即ち、 比表面積が 8 m2 /g以下であることが好ましく、 5 mVg以下であることがより好ましく、 2〜5 m2/gであることがさらに好ま しい。 比表面積が大きくなると、 不可逆容量が大きくなる傾向があり、 作製する リチウムニ次電池のエネルギー密度が小さくなる傾向がある。 また、 比表面積が 大きくなると、 得られるリチウムニ次電池の不可逆容量が大きくなるばかりでな く、 負極を作製する際に多くの結着剤 (bi nder) が必要になるという傾向がある。 また、 本発明の前記第 1〜 3の黒鉛粒子及び第 5〜 6の黒鉛粒子においては、 黒鉛粉末の X線広角回折における結晶の層間距離 d ( 0 0 2 ) は、 放電容量が大 きくなる傾向があるため、 3 . 3 8人以下が好ましく、 3 . 3 7 A以下であるこ とがより好ましい。 また c軸方向の結晶子の大きさ L c ( 0 0 2 ) は、 放電容量 が大きくなる傾向があるため、 5 0 0人以上が好ましく、 1 0 0 0 A以上である ことがより好ましい。
さらに、 本発明の前記第 1〜4の黒鉛粒子においては、 前記第 5又は 6の黒鉛 粒子の特徴、 即ち、 特定の大きさの細孔の細孔体積を有するものであることが、 充電 ·放電にともなう電極の膨張 ·収縮を黒鉛粒子の細孔が吸収するため、 電極 内部の破壌が抑えられ、 その結果得られるリチウムニ次電池のサイクル特性を向 上させることができるので好ましい。
本発明における前記第 1 ~ 6の黒鉛粒子の大きさとしては、 平均粒径で、 1〜 1 0 0 tf mが好ましく、 1 0〜5 0 mがより好ましい。
本発明の上記各黒鉛粒子の各特徴を満たすための方法に特に制限はないが、 黒 鉛化可能な原料又は黒鉛と黒鉛化可能なバインダに黒鉛化触媒を 1 ~ 5 0重量% 添加して混合し、 焼成した後粉砕することにより得ることができる。 これにより、 黒鉛化触媒の抜けた後に細孔が生成され、 本発明の黒鉛粒子の良好な特性を与え る。 黒鉛化触媒の量は 3〜2 0重量%であることが好ましい。
また、 上記各黒鉛粒子は、 黒鉛又は骨材とバインダとの混合方法、 バインダ量 等の混合割合の調整、 焼成後の粉碎条件等を適宜選択することにより調整するこ ともできる。
黒鉛化可能な原料としては、 例えば、 コークス粉末、 樹脂の炭化物等が使用で きる。 黒鉛化できる粉末材料であれば特に制限はない。 中でも、 ニードルコーク ス等の黒鉛化しやすいコークス粉末が好まし 、。
また黒鉛としては、 例えば天然黒鉛粉末、 人造黒鉛粉末等が使用できるが粉末 状であれば特に制限はない。 黒鉛化可能な原料又は黒鉛の粒径は、 本発明で作製 する黒鉛粒子の粒径より小さいことが好ましい。
さらに黒鉛化触媒としては、 例えば鉄、 ニッケル、 チタン、 ゲイ素、 硼素等の 金属、 これらの炭化物、 酸化物などの黒鉛化触媒が使用できる。 これらの中で、 ゲイ素または硼素の炭化物または酸化物が好まし 、。
また黒鉛化触媒の平均粒径は 1 5 0 jw m以下であることが好ましく、 1 0 0 u rn以下であることがより好ましく、 5 0 u rn以下であることがさらに好ましい。 平均粒径が 1 5 0 mを超えるものでは、 結晶の成長度合にばらつきが生じやす くなり、 放電容量のばらつきが生じる傾向にある。
これらの黒鉛化触媒の添加量は、 得られる黒鉛粒子に対して 1 ~ 5 0重量%、 好ましくは 5〜4 0重量%の範囲、 より好ましくは 5〜3 0重量%の範囲とされ る。 1重量%未満であると黒鉛の結晶の成長が悪くなると同時に、 黒鉛粒子内の 細孔体積が小さくなる傾向にある。 一方 5 0重量%を超えると作業性が悪くなる と同時に、 黒鉛粒子内の細孔体積が大きくなる傾向にある。
バインダとしては、 例えば、 タール、 ピッチ、 熱硬ィ匕性樹脂、 熱可塑性樹脂等 の有機系材料が好ましい。 バインダの配合量は、 扁平状の黒鉛化可能な原料又は 黒鉛に対し、 5〜8 0重量%添加することが好ましく、 1 0〜8 0重量%添加す ることがより好ましく、 1 5〜8 0重量%添加することがさらに好ましい。 バイ ンダの量が多すぎたり少なすぎると、 作製する黒鉛粒子のァスぺク 卜比及び比表 面積が大きくなり易いという傾向がある。 黒鉛化可能な骨材又は黒鉛とバインダの混合方法は、 特に制限はなく、 ニーダ 一等を用いて行われるが、 バインダの軟化点以上の温度で混合することが好まし い。 具体的にはバインダがピッチ、 タール等の際には、 5 0〜3 0 0 °Cが好まし く、 熱硬化性榭脂の場合には、 2 0〜 1 0 0 °Cが好ましい。
次に上記の混合物を焼成し、 黒鉛化処理を行う。 なお、 この処理の前に、 上記 混合物を所定形状に成形してもよい。 さらに成形後、 黒鉛化前に粉砕し、 粒径を 調整した後、 黒鉛化してもよい。 焼成は前記混合物が酸化し難い条件で焼成する ことが好ましく、 例えば窒素雰囲気中、 アルゴンガス雰囲気中、 真空中で焼成す る方法が挙げられる。 黒鉛化の温度は、 2 0 0 0 °C以上が好ましく、 2 5 0 0 °C 以上であることがより好ましく、 2 8 0 0〜3 2 0 0 °Cであることがさらに好ま しい。
黒鉛化の温度が低いと、 黒鉛の結晶の発達が悪く、 放電容量が低くなる傾向が あると共に添加した黒鉛化触媒が作製する黒鉛粒子に残存し易くなる傾向がある。 黒鉛化触媒が、 作製する黒鉛粒子中に残存すると、 放電容量が低下する。 黒鉛化 の温度が高すぎると、 黒鉛が昇華することがある。
次に、 得られた黒鉛化物を粉砕することが好ましい。 黒鉛化物の粉砕方法は、 特に制限はない。 例えばジヱッ トミル、 振動ミル、 ピンミル、 ハンマーミル等の 既知の方法をとることができる。 粉砕後の粒径は、 平均粒径が 1〜 1 0 0 /i m力く 好ましく、 1 0〜 5 0 mであることがより好ましい。 平均粒径が大きくなりす ぎる場合は作製する電極の表面に凹凸ができ易くなる傾向がある。
本発明においては、 上記に示す工程を経ることにより、 前記第 1〜6の黒鉛粒 子を得ることができる。
本発明の黒鉛ペーストは、 前記黒鉛粒子、 有機系結着剤、 溶剤等を混合して作 成される。
有機系結着剤としては、 ポリエチレン、 ポリプロピレン、 エチレンプロピレン ターボリマー、 ブタジエンゴム、 スチレンブタジエンゴム、 ブチルゴム、 イオン 伝導率の大きな高分子化合物等が使用できる。
前記イオン伝導率の大きな高分子化合物としては、 ポリフッ化ビニリデン、 ポ リエチレンオキサイ ド、 ポリェピクロルヒ ドリン、 ボリフォスファゼン、 ポリア クリロニ卜リル等が使用できる。
これらの中では、 イオン伝導率の大きな高分子化合物が好ましく、 ポリフッ化 ビニリデンが特に好ましい。
黒鉛粒子と有機系結着剤との混合比率は、 黒鉛粒子 1 0 0重量部に対して、 有 機系結着剤を 3〜! 0重量部とすることが好ましい。
溶剤としては特に制限はなく、 N—メチル一 2—ピロリ ドン、 ジメチルホルム アミ ド、 イソプロパノ一ル等の有機溶剤が用いられる。
溶剤の量に特に制限はなく、 所望の粘度に調整できればよいが、 黒鉛ペース卜 に対して、 3 0〜7 0重量%用いられることが好ましい。
本発明のリチウム二次電池用負極は、 その特徴から大きく 3つに分けられる。 本発明の第 1のリチウムニ次電池用負極は、 前記の各黒鉛粒子を使用すること を特徴とする。 このリチウム二次電池用負極は、 前記黒鉛ペーストを、 シート状、 ペレツ 卜状等の形状に成形することにより得ることができる。
黒鉛ペーストは集電体に塗布し、 該集電体と一体化して負極とされる。
集電体としては、 例えばニッケル、 銅等の箔、 メッシュなどの金属集電体が使 用できる。 なお一体化は、 例えばロール、 プレス等の成形法で行うことができ、 またこれらを組み合わせて一体化してもよい。
本発明の第 2のリチウムニ次電池用負極は、 黒鉛粒子及び有機系結着剤の混合 物と集電体とが一体化され、 一体化後の該黒鉛粒子及び結着剤の混合物の密度が 1 . 5〜 1 . 9 gZcm3 であることを特徴とする。 前記密度は、 好ましくは 1 . 5 5〜1 . 8 5 g/cm3 、 より好ましくは 1 . 6〜 1 . 8 5 g/cm3 、 さらに好 ましくはし 6〜し 8 g/cm3 の範囲とされる。 本発明における負極を構成す る黒鉛粒子及び結着剤の混合物の密度を高くすることにより、 この負極を用いて 得られるリチウ厶二次電池は、 体積当たりのエネルギー密度を大きくすることが できる。 黒鉛粒子及び有機系結着剤の混合物の密度が 1 . 9 g/cm3 を超えると、 急速充電特性が低下し、 1 . 5 g/cm3 未満では得られるリチウム二次電池の体 積当たりのエネルギー密度が小さくなる。
第 2のリチウム二次電池用負極に用いる黒鉛粒子は、 前記範囲に密度を設定で きるものであればよく、 前記の本発明の各黒鉛粒子以外の材料、 例えば天然黒鉛 等も用いることができる力《、 これらの中で、 前記本発明の各黒鉛粒子を用いると、 得られるリチウムニ次電池の負極を高密度化したときの放電容量、 急速充放電特 性及びサイクル特性を向上させることができるので好ましい。
第 2のリチウムニ次電池用負極に用いる有機系結着剤、 集電体及び溶剤の種類、 それらの混合比等は、 第 1のリチウム二次電池用負極と同様にすることができる。 一体化後の黒鉛粒子及び有機系結着剤の混合物の密度を前記範囲とするために は、 集電体と黒鉛粒子及び有機系結着剤の混合物とを一体化する際に加圧するこ とが好ましい。 加圧の方法としては、 例えばロール、 プレス等で行うことができ る。
本発明の第 3のリチウム二次電池用負極は、 有機系結着剤の配合量を、 黒鉛粒 子と有機系結着剤の混合物に対して、 3〜2 0重量%、 好ましくは 1 1〜2 0重 量%とすることを特徴とする。 これにより作製するリチウムニ次電池用負極の該 混合物の重量当たりの放電容量を大きくすることができる。 有機系結着剤の配合 虽は、 黒鉛粒子と有機系結着剤の混合物に対して、 より好ましくは 1 2〜 1 6重 量%の範囲とされる。 有機系結着剤の配合量が 3重量%未満では、 黒鉛粒子間及 び黒鉛粒子と集電体間の結合が弱い為、 それぞれの界面での抵抗が大きくなり、 作製するリチウムニ次電池用負極の導電性が低下し、 黒鉛粒子の重量当たりの放 電容量及び黒鉛粒子と有機系結着剤の混合物の重量当たりの放電容量が低下する。 また、 黒鉛粒子は充放電により膨張、 収縮し、 充放電を繰り返すことによって、 黒鉛粒子間及び黒鉛粒子と集電体との間に破壊が生じ易くなるため、 サイクル特 性も低下する。 一方 2 0重量%を超えると、 黒鉛粒子間及び黒鉛粒子と集電体の 間に導電性の低い有機系結着剤が多く介在することで負極の導電性が低下し、 黒 鉛粒子の重量当たりの放電容量が低下し、 その結果黒鉛粒子と有機系結着剤の混 合物の重量当たりの放電容量が低下する。 さらに、 有機系結着剤は、 充放電は示 さないため、 有機系結着剤を 2 0重量%を超える量を添加すると、 黒鉛粒子の配 合量が 8 0重量%未満と少なくなるため、 黒鉛粒子と有機系結着剤の混合物の重 量当たりの放電容量が小さくなる。
第 3のリチウムニ次電池用負極に用いる黒鉛粒子として、 前記本発明の各黒鉛 粒子を用いると、 得られるリチウム二次電池の負極を高密度化したときの放電容 量、 急速充放電特性及びサイクル特性を向上させることができるので好ましい。 第 3のリチウムニ次電池用負極に用いる有機系結着剤、 集電体及び溶剤の種類、 それらの混合比等、 終電体と混合物の成形条件などは、 第 1のリチウム二次電池 用負極と同様とすることができる。 成形条件としては、 第 2のリチウム二次電池 用負極のように、 一体化後の該黒鉛粒子及び結着剤の混合物の密度が 1 . 5〜1 .
9 g/cm3 とすることが好ましい。
以上のようにして得られる各リチウム二次電池用負極はセパレ一タを介して正 極を対向して配置し、 かつ電解液を注入することにより、 従来のリチウム二次電 池に比較して、 高容量で、 急速充放電特性及びサイクル特性に優れ、 かつ不可逆 容量が小さいリチウムニ次電池を作製することができる。
本発明におけるリチウム二次電池の正極に用いられる材料については特に制限 はなく、 し iNi02、 LiCo02 、 LiMn204 等を単独又は混合して使用することができ る。
電解液としては、 L iClO" LiPF6 、 LiAsF LiBF4 、 LiS03CF3等のリチウム塩 を例えばエチレンカーボネート、 ジェチルカーボネート、 ジメ トキシェタン、 ジ メチルカーボネート、 テトラヒ ドロフラン、 プロピレンカーボネート等の非水系 溶剤に溶解したいわゆる有機電解液を使用することができる。
セパレ一タとしては、 例えばポリエチレン、 ポリプロピレン等のポリオレフィ ンを主成分とした不織布、 クロス、 微孔フィルム又はこれらを組み合わせたもの を使用することができる。
なお、 図 2に円筒型リチウムニ次電池の一例の一部断面正面図を示す。 図 2に おいて、 1は正極、 2は負極、 3はセパレ一夕、 4は正極タブ、 5は負極タブ、 6は正極蓋、 7は電池缶及び 8はガスケッ トである。
以下、 本発明を実施例により、 必要に応じ図面を引用し説明する。
例 1〜例 7は、 黒鉛粒子としては、 本発明における第 1 , 2及び 3の黒鉛粒子 を、 リチウム二次電池用負極材としては、 本発明における第 1のリチウム二次電 池用負極材に関する検討例である。
例 1
( 1 ) 黒鉛粒子の調整 平均粒径が 1 0 zmのコークス粉末 70重量部、 タールピッチ 20重量部、 酸 化鉄 1 0重量部及びコールタール 2 0重量部を混合し、 1 0 0°Cで 1時間攪拌し た。 次いで、 窒素雰囲気中で 2 800°Cで焼成したのち粉砕し、 平均粒径が 20 fimの黒鉛粒子を得た。 得られた黒鉛粒子の走査型電子顕微鏡写真 (SEM写 真) によれば、 この黒鉛粒子は、 扁平状の粒子が複数、 配向面が非平行となるよ うに結合した構造をしていた。 得られた黒鉛粒子を 1 00個任意に選び出し、 了 スぺクト比の平均値を測定した結果、 1. 8であった。 また得られた黒鉛粒子の X線広角回折による結晶の層間距離 d ( 002 ) は 3. 3 6 OA及び結晶子の大 きさ L c ( 0 02 ) 1 00 OA以上であった。 さらに BET法による比表面積は 3. 5m2/g であった。
(2) リチウム二次電池の作製
図 2に示す形状のリチウムニ次電池を以下のようにして作製した。 正極活物質 (a positive electrode active material) として LiCo02を 88重量%、 導電剤 として平均粒径が 1 mの鱗片状天然黒鉛を 7重量%及び結着剤としてポリフッ ィヒビ二リデン (PVDF) を 5重量%添加して、 これに N—メチル一 2—ピロリ ドン (ペーストの 50重量%、 以下の例でも同様の割合を添加) を加え混合して 正極合剤 (a mixture for forming a positive electrode) のペーストを調整し た。 同様に負極活物質 (a negative electrode active material) として (1 ) で得た黒鉛粉末 90重量%及び結着剤として PVDFを 1 0重量%添加して、 こ れに N—メチル— 2—ピロリ ドン (ペーストの 5 0重量%、 以下の例でも同様の 割合を添加) を加え混合して負極合剤 (a mixture for forming a negative electrode)のペーストを得た。
次に正極合剤のペーストを厚みが 25 amのアルミニウム箔の両面に塗布し、 その後 1 20°Cで 1時間真空乾燥した。 真空乾燥後、 ローラ一プレスによって電 極を加圧成形して厚みを 1 90 とした。 単位面積当りの正極合剤塗布量は 4 9 mg/cm2 であり、 幅が 40 mmで長さが 2 8 5咖の大きさに切り出して正極 1を 作製した。 但し、 正極 1の両端の長さ 1 0誦の部分は正極合剤が塗布されておら ずアルミニウム箔が露出しており、 この一方に正極タブ 4を超音波接合によって 圧着している。 —方、 負極合剤のペーストを厚みが 1 0 の銅箔の両面に塗布し、 その後 1 2 0 °Cで 1時間真空乾燥した。 真空乾燥後、 ローラープレスによって電極を加圧 成形して厚みを 1 7 5 fim とした。 単位面積当りの負極合剤塗布量は 2 O ig/ cm2 であり、 幅が 4 O ramで長さが 2 9 0 ranの大きさに切り出して負極 2を作製し た。 これを正極 1と同様に、 負極 2の両端の長さ 1 0 mmの部分は負極合剤が塗布 されておらず銅箔が露出しており、 この一方に負極タブ 5を超音波接合によって 圧着した。
セパレ一夕 3は、 厚みが 2 5 u rnで幅が 4 4隱のボリエチレン製の微孔膜を用 いた。 次いで図 2に示すように正極し セパレータ 3、 負極 2及びセパレー夕 3 の順で重ね合わせ、 これを捲回して電極群とした。 これを単三サイズの電池缶 7 に挿入して、 負極タブ 5を缶底溶接し、 正極蓋 6をかしめるための絞り部を設け た。 この後体積比で 1 : 1のエチレンカーボネートとジメチルカーボネートの混 合溶媒に六フッ化リン酸リチウムを 1モル/リッ トル溶解させた電解液 (図示せ ず) を電池缶 7に注入した後、 正極タブ 4を正極蓋 6に溶接した後、 正極蓋 6を かしめてリチウム二次電池を得た。
得られたリチウム二次電池を用いて、 充放電電流 3 0 0 mA, 充電終止電圧を 4 . 1 5 V及び放電終止電圧 2 . 8 Vで充放電を繰り返した。 また、 充放電電流を 3 0 O mAから 9 0 0 mAの範囲で変化させ、 急速充放電も行った。 その結果を図 3及 び図 4に示す。
例 2
平均粒径が 1 0 のコークス粉末 7 0重量部、 タールピッチ 1 0重量部、 酸 化鉄 2重量部及びコールタール 2 0重量部を混合し、 1 0 0 °Cで 1時間攪拌した。 次いで、 窒素棼囲気中で 2 8 0 0 °Cで焼成したのち粉砕し、 平均粒径が 2 0 m の黒鉛粒子を得た。 電子顕微鏡で得られた黒鉛粒子を観察した結果、 扁平状の粒 子が複数配向面が非平行となるように集合又は結合して形成された黒鉛粒子であ ることが確認された。 得られた黒鉛粒子を 1 0 0個任意に選び出し、 アスペクト 比の平均値を測定した結果、 4 . 8であった。 また得られた黒鉛粒子の X線広角 回折による結晶の層間距離 d ( 0 0 2 ) は 3 . 3 6 3人及び結晶子の大きさ L c ( 0 0 2 ) は 1 0 0 0人以上であった。 さらに B E T法による比表面積は 4 . 3 m2/gであった。
得られた黒鉛粒子を例 1と同様の工程を経てリチウムニ次電池を作製し、 例 1 と同様の電池特性試験を行った。 その結果を図 3及び図 4に示す。
例 3
平均粒径が 2 0 u rnのコークス粉末を窒素棼囲気中で 2 8 0 0 °Cで焼成し、 平 均粒径が 2 0 umの黒鉛粒子を得た。 得られた黒鉛粒子は、 ァスぺクト比の平均 値が 6、 比表面積は 1 l m2/g 、 結晶の層間距離 d ( 0 0 2 ) は 3 . 3 6 5人及 び結晶子の大きさ L c ( 0 0 2 ) は 8 0 0人の鱗状黒鉛であつた。
得られた鱗状黒鉛を例 1と同様の工程を経てリチウムニ次電池を作製し、 例 1 と同様の電池特性試験を行った。 その結果を図 3及び図 4に示す。
本発明の例 1、 例 2及び例 3で得たリチウ厶二次電池のリチウムの吸蔵 ·放出 に関する比較試験結果を下記に示す。 図 3は、 リチウム二次電池の充放電を繰り 返し行った際の電池の放電容量と充放電サイクル回数の関係を示すグラフである 図 3における曲線 9は例 1で得たリチウムニ次電池の放電容量、 曲線 1 0は例 2 で得たリチウムニ次電池の放電容量及び曲線 1 1は例 3で得たリチウムニ次電池 の放電容量を示す。
図 3において例 1で得たリチウムニ次電池の最高の放電容量は 7 5 0 mAhであ り、 5 0 0サイクル目における放電容量の最高容量に対する容量低下率は 8 %で あつた。 例 2で得たリチウムニ次電池の最高の放電容量は 7 2 0 mAhであり、 5 0 0サイクル目における放電容量の最高容量に対する容量低下率は 1 2 %であつ た。 また例 3で得たリチウム二次電池の最高の放電容量は 6 5 0 mAhであり、 5 0 0サイクル目における放電容量の最高容量に対する容量低下率は 3 1 %であつ た。
さらに図 4に急速充放電を行った場合の充放電電流と放電容量の関係を示す。 曲線 1 2は例 1で得たリチウムニ次電池の放電容量、 曲線 1 3は例 2で得たリチ ゥムニ次電池の放電容量及び曲線 1 4は例 3で得たリチウムニ次電池の放電容量 を示す。 充放電電流 9 0 0 mAにおいて、 例 1で得たリチウム二次電池の放電容量 が 6 3 O mAh 、 例 2で得たリチウム二次電池の放電容量が 5 2 0 mAhであるのに 対して、 例 3で得たリチウム二次電池の放電容量は 3 5 O mAh であった。 これら の充放電電流 3 0 OmAh における放電容量に対する容量低下率は、 例 1で得たリ チウムニ次電池は 1 6 %、 例 2で得たリチウムニ次電池は 2 8 %及び例 3で得た リチウムニ次電池は 4 6 %であつた。
例し 例 2及び例 3の試験結果により、 本発明の第 1, 2及び 3の黒鉛粒子を 用いたリチウム二次電池は、 高容量で、 充放電のサイクル特性に優れ、 急速充放 電特性を有することが確認された。
例 4
平均粒径が 1 0 / mのコークス粉末 5 0重量部、 タールピッチ 2 0重量部、 炭 化ゲイ素 1 0重量部及びコールタール 2 0重量部を混合し、 1 0 0°Cで 1時間攪 拌した。 次いで、 窒素雰囲気中で 2 8 0 0 °Cで焼成した後粉砕し、 平均粒径が 2 0 / m の黒鉛粒子を作製した。 得られた黒鉛粒子を 1 0 0個任意に選び出し、 ァ スぺクト比の平均値を測定した結果、 1. 5であった。 また得られた黒鉛粒子の BET法による比表面積は、 2. 9 m2/gであり、 黒鉛粒子の X線広角回折によ る結晶の層間距離 d ( 0 0 2 ) は 3. 3 6 0 A及び結晶子の大きさ L c (0 0 2 ) は 1 0 0 0 A以上であった。 さらに得られた黒鉛粒子の走査型電子顕微鏡写 真 (SEM写真) によれば、 この黒鉛粒子は、 扁平状の粒子が複数配向面が非平 行となるように集合又は結合した構造をしていた。
次いで得られた黒鉛粒子 9 0重量%に^^1ーメチルー 2—ピロリ ドンに溶解した ポリフッ化ビニリデン ( P V D F ) を固形分で 1 0重量%加えて混練し、 黒鉛べ —ストを得た。 この黒鉛ペーストを厚さが 1 0 / mの圧延銅箔に塗布し、 さらに 乾燥して、 面圧 4 9 OMPa (0. 5 トン Zcm2 ) の圧力で圧縮成形し、 試料電極 とした。 黒鉛粒子層の厚さは 7 5 //m及び密度は 1. 5 g/cm3 とした。
作製した試料電極を 3端子法による定電流充放電を行い、 リチウムニ次電池用 負極としての評価を行った。 図 5はこのリチウム二次電池の概略図であり、 試料 電極の評価は、 図 5に示すようにガラスセル 1 5に、 電解液 1 6として LiPF4 を エチレンカーボネート (EC) 及びジメチルカ一ボネート (DMC) (ECと D MCは体積比で 1 : 1 ) の混合溶媒に 1モル/リツ トルの濃度になるように溶解 した溶液を入れ、 試料電極 (負極) 1 7、 セパレータ 1 8及び対極 (正極) 1 9 を積層して配置し、 さらに参照極 2 0を上部から吊るしてリチウム二次電池を作 製して行った。 なお、 対極 1 9及び参照極 2 0には金属リチウムを使用し、 セパ レータ 1 8にはポリエチレン微孔膜を使用した。 得られたリチウム二次電池を用 いて試料電極 1 7と対極 1 9の間に、 試料電極の面積に対して、 0. 3mAZcm2 の定電流で 5 mV (Vvs. Li/Lr ) まで充電し、 1 V (Vvs. Li/Lに ) まで放 電する試験を繰り返した。 表 1に 1サイクル目の黒鉛粒子の単位重量当りの充電 容量、 黒鉛粒子の単位重量当りの放電容量、 不可逆容量及び 5 0サイクル目の黒 鉛粒子の単位重量当りの放電容量を示す。 また、 急速充放電特性評価として、 0. 3 mA/cm2 の定電流で充電し、 放電電流を 0. 3、 2. 0、 4. 0及び 6. OmA /cm2 に変化させたときの放電容量を表 2に示す。
例 5
平均粒径が 1 0 ;umのコークス粉末 5 0重量部、 タールピッチ 1 0重量部、 炭 化ゲイ素 5重量部及びコールタール 1 0重量部を混合し、 1 0 0°Cで 1時間撹拌 した。 次いで、 窒素雰囲気中で 2 8 0 0°Cで焼成した後粉砕し、 平均粒径が 2 0 urnの黒鉛粒子を作製した。 得られた黒鉛粒子を 1 0 0個任意に選び出し、 ァス ぺクト比の平均値を測定した結果、 4. 5であった。 また得られた黒鉛粒子の B ET法による比表面積は、 4. 9
Figure imgf000020_0001
であり、 黒鉛粒子の X線広角回折による 結晶の層間距離 d ( 0 0 2 ) は 3. 3 6 2 A及び結晶子の大きさ L c ( 0 0 2 ) は 1 0 0 O A以上であった。 さらに得られた黒鉛粒子は、 扁平状の粒子が複数配 向面が非平行となるように集合又は結合した構造をしていた。
以下例 4と同様の工程を経てリチウム二次電池を作製し、 例 4と同様の試験を 行った。 表 1に 1サイクル目の黒鉛粒子の単位重量当りの充電容量、 黒鉛粒子の 単位重量当りの放電容量、 不可逆容量及び 5 0サイクル目の黒鉛粒子の単位重量 当りの放電容量を示す。 また急速充放電特性評価として、 0. 3mA/cm2 の定電 流で充電し、 放電電流を 0. 3、 2. 0、 4. 0及び 6. 0 mA/ cm2 に変化させ たときの放電容量を表 2に示す。
例 6
平均粒径が 1 0 m のコークス粉末 5 0重量部、 タールピッチ 5重量部及びコ 一ルタール 5重量部を混合し、 1 0 0°Cで 1時間攪拌した。 次いで、 窒素雰囲気 中で 2 8 0 0 °Cで焼成した後粉砕し、 平均粒径が 2 0 umの黒鉛粒子を作製した c 得られた黒鉛粒子を 1 0 0個任意に選び出し、 ァスぺク 卜比の平均値を測定した 結果、 5であった。 また得られた黒鉛粒子の BET法による比表面積は、 6. 3 mV であり、 黒鉛粒子の X線広角回折による結晶の層間距離 d ( 0 0 2 ) は 3. 3 6 8人及び結晶子の大きさ L c ( 0 0 2 ) は 7 0 O Aであった。 さらに得られ た黒鉛粒子は、 扁平状の粒子が複数、 配向面が非平行となるように集合又は結合 した構造をしていた。
以下例 4と同様の工程を経てリチウムニ次電池を作製し、 例 4と同様の試験を 行った。 表 1に 1サイクル目の黒鉛粒子の単位重量当りの充電容量、 黒鉛粒子の 単位重量当りの放電容量、 不可逆容量及び 5 0サイクル目の黒鉛粒子の単位重量 当りの放電容量を示す。 また急速充放電特性評価として、 0. 3mA/cin2 の定電 流で充電し、 放電電流を 0. 3、 2. 0、 4. 0及び 6. 0 mA/cm2 に変化させ たときの放電容量を表 2に示す。
例 7
平均粒径が 2 2 のコークス粉末を窒素雰囲気中で 2 8 0 0 °Cで焼成して、 平均粒径が 2 0 Άの黒鉛粒子を得た。 得られた黒鉛粒子は、 ァスぺク ト比の平 均値が 7、 B ET法による比表面積が 8. 5m2/g . X線広角回折による結晶の 層間距離 d ( 0 0 2 ) が 3. 3 6 8 A及び結晶子の大きさ L c ( 0 0 2 ) が 8 0 0人の鳞状の黒鉛であった。
以下例 4と同様の工程を経てリチウム二次電池を作製し、 例 4と同様の試験を 行った。 表 1に 1サイクル目の黒鉛粒子の単位重量当りの充電容量、 黒鉛粒子の 単位重量当りの放電容量、 不可逆容量及び 5 0サイクル目の黒鉛粒子の単位重量 当りの放電容量を示す。 また急速充放電特性評価として、 0. 3mAZcm2 の定電 流で充電し、 放電電流を 0. 3、 2. 0、 4. 0及び 6. 0 mA/cm2 に変化させ たときの放電容量を表 2に示す。 表 1
Figure imgf000022_0001
表 1及び表 2に示されるように、 本発明の第 i, 第 2及び第 3の黒鉛粒子を用 いたリチウムニ次電池は例 7に対して放電容量が大きく 第一サイクル目の不可 逆容量が小さく、 サイクル特性及び急速放電特性に優れることが明らかである。 例 8〜例 1 1は、 黒鉛粒子としては、 本発明における第 4の黒鉛粒子を、 リチ ゥム二次電池用負極材としては、 本発明における第 1のリチウムニ次電池用負極 材に関しての検討例である。
例 8
( 1 ) 黒鉛粒子の調整
平均粒径が 1 0 m のコークス粉末 5 0重量部、 タールピッチ 2 0重量部、 平 均粒径が 6 5 /z m の酸化鉄 1 2重量部及びコールタール 1 8重量部を混合し、 2 0 0°Cで 1時間攪拌した。 次いで、 窒素雰囲気中で 8 0 0 °Cで焼成し、 さらに 2 8 0 0 °Cで焼成したのち扮砕し、 平均粒径が 2 0 imの黒鉛粒子を得た。 得られ た黒鉛粒子の走査型電子顕微鏡写真 (S EM写真) によれば、 この黒鉛粒子は、 扁平状の粒子が複数配向面が非平行となるように集合又は結合した構造をしてい た。 得られた黒鉛粒子を 1 0 0個任意に選び出し、 ァスぺク 卜比の平均値を測定 した結果、 1. 7であった。 また得られた黒鉛粒子の X線広角回折による結晶の 層間距離 d ( 0 0 2 ) は 3. 3 6 0人、 面方向の結晶子の大きさ L a ( 1 1 0 ) は 7 2 0 A及び c軸方向の結晶子の大きさ L c ( 0 0 2 ) は 1 8 0 0 Aであった。
(2) リチウム二次電池の作製
図 2に示すリチウム二次電池は以下のようにして作製した。 正極活物質 (a positive electrode active material) として LiCo02を 8 8重量%、 導電剤とし て平均粒径が 1 m の鱗片状天然黒鉛を Ί重量%及び結着剤としてポリフッ化ビ 二リデン (PVDF) を 5重量%添加して、 これに N—メチルー 2—ピロリ ドン を加え混合して正極合剤 (a mixture for forming a positive electrode) のぺ ーストを調整した。 同様に負極活物質 (a negative electrode active material) として (1 ) で得た黒鉛粉末 9 0重量%及び結着剤として P VD Fを 1 0重量%添加して、 これに N—メチル— 2—ピロリ ドンを加え混合して負極合 剤 (a mixture for forming a negative electrode) のペース卜を得た 0
次に正極合剤のペーストを厚みが 2 5 mのアルミニウム箔の両面に塗布し、 その後 1 2 0°Cで 1時間真空乾燥した。 真空乾燥後、 ローラープレスによって電 極を加圧成形して厚みを 1 9 0 m とした。 単位面積当りの正極合剤塗布量は 4 9 mg/cm であり、 幅が 4 0mmで長さが 2 8 5 mmの大きさに切り出して正極 1を 作製した。 但し、 正極 1の両端の長さ 1 0mmの部分は正極合剤が塗布されておら ずアルミニゥム箔が露出しており、 この一方に正極タブ 4を超音波接合によつて 圧着している。
一方、 負極合剤のペーストを厚みが 1 0 mの銅箔の両面に塗布し、 その後 1 2 0°Cで 1時間真空乾燥した。 真空乾燥後、 ローラープレスによって電極を加圧 成形して厚みを 1 Ί 5 ma とした。 単位面積当りの負極合剤塗布量は 2 Omg/ cm であり、 幅が 4 0醐で長さが 2 9 0譲の大きさに切り出して負極 2を作製し た。 これを正極 1と同様に、 負極 2の両端の長さ 1 0隱の部分は負極合剤が塗布 されておらず銅箔が露出しており、 この一方に負極タブ 5を超音波接合によつて 圧着した。
セパレータ 3は、 厚みが 2 5 mで幅が 4 4國のポリエチレン製の微孔膜を用 いた。 次いで図 1に示すように正極 1、 セパレ一夕 3、 負極 2及びセパレータ 3 の順で重ね合わせ、 これを捲回して電極群とした。 これを単三サイズの電池缶 7 に挿入して、 負極タブ 5を缶底溶接し、 正極蓋 6をかしめるための絞り部を設け た。 この後体積比で 1 : 1のエチレンカーボネートとジメチルカーボネートの混 合溶媒に六フッ化リン酸リチウムを 1モル リットル溶解させた電解液 (図示せ ず) を電池缶 7に注入した後、 正極タブ 4を正極蓋 6に溶接した後、 正極蓋 6を かしめてリチウムニ次電池を得た。
得られたリチウムニ次電池を用 、て、 充放電電流 3 0 0 mA, 充電終止電圧を 4 . 1 5 V及び放電終止電圧 2 . 8 Vで充放電を繰り返した。 また、 充放電電流を 3 0 O mAから 6 0 0 mAの範囲で変化させ、 急速充放電も行った。 このときの 1サイ クル目の黒鉛粒子の単位重量当たりの放電容量及び 1 0 0サイクル目の黒鉛粒子 の単位重量当たりの放電容量の維持率を測定した。 その結果を表 3に示す。
例 9
平均粒径が 1 0 i m のコークス粉末 5 5重量部、 タールピッチ 2 2重量部、 平 均粒径が 2 5 urnの窒化硼素 8重量部及びコールタール 1 5重量部を混合し、 2 0 0 °Cで 1時間攪拌した。 次いで、 窒素雰囲気中で 8 0 0 °Cで焼成し、 さらに 2 8 0 0 °Cで焼成したのち粉砕し、 平均粒径が 2 0 mの黒鉛粒子を得た。 得られ た黒鉛粒子の走査型電子顕微鏡写真 (S E M写真) によれば、 この黒鉛粒子は、 扁平状の粒子が複数配向面が非平行となるように集合又は結合した構造をしてい た。 得られた黒鉛粒子を 1 0 0個任意に選び出し、 ァスぺク ト比の平均値を測定 した結果、 し 5であった。 また得られた黒鉛粒子の X線広角回折による結晶の 層間距離 d ( 0 0 2 ) は 3 . 3 6 3 A、 面方向の結晶子の大きさ L a ( 1 1 0 ) は 5 6 0人及び c軸方向の結晶子の大きさ L c ( 0 0 2 ) は 1 7 6 0人であつた。 得られた黒鉛粒子を例 8と同様の工程を経てリチウムニ次電池を作製し、 例 8 と同様の電池特性試験を行った。 その結果を表 3に示す。 例 1 0
平均粒径が 1 5 mのコークス粉末 5 7重量部、 タールピッチ 2 3重量部及び コールタール 2 0重量部を混合し、 2 0 0 °Cで 1時間攪拌した。 次いで、 窒素雰 囲気中で 8 0 0 °Cで焼成し、 さらに窒素雰囲気中で 2 6 0 0 °Cで焼成したのち粉 砕し、 平均粒径が 2 0 の黒鉛粒子を得た。 得られた黒鉛粒子の走査型電子顕 微鏡写真 (S E M写真) によれば、 この黒鉛粒子は、 扁平状の粒子が複数、 配向 面が非平行となるように集合又は結合した構造をしていた。 得られた黒鉛粒子を 1 0 0個任意に選び出し、 アスペクト比の平均値を測定した結果、 2 . 0であつ た。 また得られた黒鉛粒子の X線広角回折による結晶の層間距離 d ( 0 0 2 ) は 3 . 3 9 0人、 面方向の結晶子の大きさ L a ( 1 1 0 ) は 4 6 0人及び c軸方向 の結晶子の大きさ L c ( 0 0 2 ) は 3 0 0人であった。
得られた黒鉛粒子を例 8と同様の工程を経てリチウム二次電池を作製し、 例 9 と同様の電池特性試験を行った。 その結果を表 3に示す。
例 1 1
焼成を 3 0 0 0 °Cで行った以外は、 例 1 0と同様の工程を経て、 平均粒径が 2 0 の黒鉛粒子を得た。 得られた黒鉛粒子の走査型電子顕微鏡写真 (S E M写 真) によれば、 この黒鉛粒子は、 扁平状の粒子が複数配向面が非平行となるよう に集合又は結合した構造をしていた。 得られた黒鉛粒子を 1 0 0個任意に選び出 し、 アスペク ト比の平均値を測定した結果、 2 . 2であった。 また得られた黒鉛 粒子の X線広角回折による結晶の層間距離 d ( 0 0 2 ) は 3 . 3 5 7人、 面方向 の桔晶子の大きさ L a ( 1 1 0 ) は 1 7 3 0 A及び c軸方向の結晶子の大きさ L c ( 0 0 2 ) は 2 0 5 0 Aであった。
得られた黒鉛粒子を例 8と同様の工程を経てリチウム二次電池を作製し、 実施 例 1と同様の電池特性試験を行った。 その結果を表 3に示す。 項 目 例 8 例 9 例 10 例 11 放電容量 722 688 467 730
(mAh)
充放電電圧
300(mA) 100サイクル 目の放
電容量維持率 81 80 70 78
(%)
放電容量 688 669 359 380
(mAh)
充放電電圧
600 (mA) 100サイクル 目の放
電容量維持率 79 78 64 66
(%) 表 3に示されるように、 本発明の第 4の黒鉛粒子を用いたリチウムニ次電池は、 充放電電流が 3 0 0 mAにおける放電容量において高容量であることが示され、 ま た充放電電流を 6 0 0 mAに上げても放電容量は 7 0 %以上維持し、 急速充放電特 性に優れることが明らかである。
例 1 2〜例 1 5は、 黒鉛粒子としては、 本発明における第 5及び第 6の黒鉛粒 子を、 リチウム二次電池用負極材としては、 本発明における第 1のリチウム二次 電池用負極材に関しての検討例である。
例 1 2
平均粒径が 5 mのコークス粉末 4 0重量部、 タールピッチ 2 5重量部、 平均 粒径が 4 8 um の炭化ゲイ素 5重量部及びコールタール 2 0重量部を混合し、 2 0 0 °Cで 1時間攪拌した。 次いで、 窒素雰囲気中で 2 8 0 0 °Cで焼成した後粉砕 し、 平均粒径が 3 0 /z m の黒鉛粒子を作製した。 得られた黒鉛粒子を水銀圧入法 による細孔径分布測定 (島津ポアサイザ一 9 3 2 0形使用) を行った結果、 1 0 2 ~ 1 0 6 Aの範囲に細孔を有し、 黒鉛粒子重量当たりの全細孔体積は、 0 . 6 cc/g であった。 また、 1 X 1 0 2 ~ 2 X 1 0 4 Aの範囲の細孔体積は、 黒鉛 粒子重量当たり 0 . 2 O cc/gであった。 また得られた黒鉛粒子を 1 0 0個任意 に選び出し、 アスペク ト比の平均値を測定した結果、 し 5であり、 黒鉛粒子の B E T法による比表面積は、 1 . 5 m2/gであり、 黒鉛粒子の X線広角回折によ る結晶の層間距離 d ( 0 0 2 ) は 3. 3 6 2人及び結晶子の大きさ L c (0 0 2) は 1 0 0 0人以上であった。 さらに、 得られた黒鉛粒子の走査型電子顕微鏡 写真 (SEM写真) によれば、 この黒鉛粒子は、 扁平状の粒子が複数配向面が非 平行となるように集合又は結合した構造をしていた。
次いで得られた黒鉛粒子 9 0重量%に、 N—メチルー 2—ピロリ ドンに溶解し たポリフッ化ビニリデン (PVDF) を固形分で 1 0重量%加えて混練して黒鉛 ペーストを作製した。 この黒鉛ペース卜を厚さが 1 0 mの圧延銅箔に塗布し、 さらに乾燥して、 面圧 4 9 OMPa (0. 5 トン/ cm 2 ) の圧力で圧縮成形し、 試 料電極とした。 黒鉛粒子層の厚さは 9 0 j m及び密度は 1. 6 g/cm3 とした。 作製した試料電極を 3端子法による定電流充放電を行い、 リチウム二次電池用 負極としての評価を行った。 図 5はリチウム二次電池の概略図であり、 試料電極 の評価は図 5に示すようにガラスセル 1に、 電解液 2として LiPF6 をエチレン力 ーボネート (EC) 及びジメチルカーボネート (DMC) (ECと DMCは体積 比で 1 : 1 ) の混合溶媒に 1モル Zリツ トルの濃度になるように溶解した溶液を 入れ、 試料電極 3、 セパレ一タ 4及び対極 5を積層して配置し、 さらに参照極 6 を上部から吊るしてリチウム二次電池を作製して行った。 なお、 対極 5及び参照 極 6には金属リチウムを使用し、 セパレ一夕 4にはポリエチレン微孔膜を使用し た。 得られたリチウムニ次電池を用いて試料電極 3と対極 5の間に、 試料電極の 面積に対して、 0. 5mAZcm2 の定電流で 5 mV (Vvs. Li /し ) まで充電し、 I V (Vvs. Li/Li+ ) まで放電する試験を操り返した。 表 4に 1サイクル目の 黒鉛粒子の単位重量当りの充電容量、 放電容量及び 3 0サイクル目の黒鉛粒子の 単位重量当りの放電容量を示す。
例 1 3
平均粒径が 2 0 mのコークス粉末 5 0重量部、 ピッチ 2 0重量部、 平均粒径 が 4 8 mの炭化ゲイ素 7重量部及びコールタール 1 0重量部を混合し、 2 0 0 °Cで 1時間攪拌した。 次いで、 窒素雰囲気中で 2 8 0 0°Cで焼成した後粉砕し、 平均粒径が 3 0 urnの黒鉛粒子を得た。 得られた黒鉛粒子を水銀圧入法による細 孔径分布測定 (島津ポアサイザ一 9 3 2 0形使用) を行った結果、 1 02〜 1 0 b Aの範囲に細孔を有し、 黒鉛粒子重量当りの全細孔体積は、 1. 5cc/g であった。 また、 1 X 1 02 〜2 X 1 04 人の範囲の細孔体積は、 黒鉛粒子重量 当たり 0. 1 3ccZgであった。 また得られた黒鉛粒子を 1 00個任意に選び出 し、 アスペクト比の平均値を測定した結果、 2. 3であり、 黒鉛粒子の BET法 による比表面積は、 3. 6m2Zgであり、 黒鉛粒子の X線広角回折による結晶の 層間距離 d ( 0 0 2 ) (13. 3 6 1 A及び結晶子の大きさ L c ( 0 0 2 ) は 1 0 0 0 A以上であった。 さらに得られた黒鉛粒子は、 扁平状の粒子が複数配向面が 非平行となるように集合又は結合した構造をしていた。
以下例 1 2と同様の工程を経てリチウム二次電池を作製し、 例 1 2と同様の試 験を行った。 表 4に 1サイクル目の黒鉛粒子の単位重量当りの充電容量、 放電容 量及び 3 0サイクル目の黒鉛粒子の単位重量当りの放電容量を示す。
例 1 4
メソカーボンマイクロビーズ (川崎製鉄 (株) 製、 商品名 KMFC) を窒素雰 囲気中で 2 8 0 0 °Cで焼成し、 平均粒径が 2 5 urn の黒鉛粒子を得た。 得られた 黒鉛粒子を水銀圧入法による細孔径分布測定 (島津ポアサイザ一 9 3 2 0形使 用) を行った結果、 1 02 〜 1 06 Aの範囲に細孔を有し、 黒鉛粒子重量当りの 全細孔体積は、 0. 3 5cc/gであった。 また、 1 X 1 02 ~2 X 1 04 Aの範 囲の細孔体積は、 黒鉛粒子重量当たり 0. 0 6cc/g であった。 また得られた黒 鉛粒子を 1 0 0個任意に選び出し、 ァスぺク ト比の平均値を測定した結果、 1で あり、 黒鉛粒子の BET法による比表面積は、 1. 4m2Zgであり、 黒鉛粒子の X線広角回折による結晶の層間距離 d (0 0 2 ) は 3. 3 7 8人及び結晶子の大 きさ L c ( 0 0 2 ) は 5 0 0人であった。
以下例 1 2と同様の工程を経て、 リチウム二次電池を作製し、 例 1 2と同様の 試験を行った。 表 4に 1サイクル目の黒鉛粒子の単位重量当りの充電容量、 放電 容量及び 3 0サイクル目の黒鉛粒子の単位重量当りの放電容量を示す。
例 1 5
平均粒径が 5 mのコークス粉末 5 0重量部、 ピッチ 1 0重量部、 平均粒径が 6 5 (im の酸化鉄 3 0重量部及びコールタール 2 0重量部を混合し、 2 0 0 °Cで 1時間攪拌した。 次いで、 窒素雰囲気中で 2 8 0 0°Cで焼成した後粉砕し、 平均 粒径が 1 5 urnの黒鉛粒子を得た。 得られた黒鉛粒子を水銀圧入法による細孔径 分布測定 (島津ポアサイザ一 9 3 2 0形使用) を行った結果、 1 02〜1 06 A の範囲に細孔を有し、 黒鉛粒子重量当りの全細孔体積は、 2. l ccZgであった。 また、 1 X 1 02 ~2 X 1 04 Aの範囲の細孔体積は、 黒鉛粒子重量当たり 0. 4 2cc/gであった。 また得られた黒鉛粒子を 1 0 0個任意に選び出し、 ァスぺ クト比の平均値を測定した結果、 2. 8であり、 黒鉛粒子の BET法による比表 面積は、 8. 3m2/gであり、 黒鉛粒子の X線広角回折による結晶の層間距離 d ( 0 0 2 ) は 3. 3 6 5 A及び結晶子の大きさ L c (0 0 2) は 1 0 0 0人以上 であった。
以下例 1 2と同様の工程を経て、 リチウム二次電池を作製し、 例 1 2と同様の 試験を行った。 表 4に 1サイクル目の黒鉛粒子の単位重量当りの充電容量、 放電 容量及び 3 0サイクル目の黒鉛粒子の単位重量当りの放電容量を示す。
表 4
Figure imgf000029_0001
表 4に示されるように、 本発明の第 5及び第 6の黒鉛粒子を用いて得られたリ チウ厶二次電池は、 高容量でサイクル特性に優れることが明らかである。
例 1 6〜例 2 1は、 リチウム二次電池用負極材としては、 本発明における第 2 のリチウム二次電池用負極材に関しての検討例である。
例 1 6
平均粒径が 8 //Hiのコークス粉末 5 0重量部、 タールピッチ 2 0重量部、 炭化 ゲイ素 5重量部及びコールタール 1 5重量部を混合し、 1 0 0°Cで 1時間攪拌し た。 次いで、 窒素雰囲気中で 2 8 0 0°Cで焼成した後粉砕し、 平均粒径が 2 5 mの黒鉛粒子を作製した。 得られた黒鉛粒子を 1 0 0個任意に選び出し、 ァス ぺクト比の平均値を測定した結果、 し 5であった。 また得られた黒鉛粒子の B ET法による比表面積は、 2. lm2/^であり、 黒鉛粒子の X線広角回折による 結晶の層間距離 d ( 0 0 2 ) は 3. 3 6 5人、 結晶子の大きさ L c ( 0 02 ) は 1 000人以上であった。 さらに得られた黒鉛粒子の走査型電子顕微鏡写真 (S EM写真) によれば、 この黒鉛粒子は、 扁平状の粒子が複数配向面が非平行とな るように集合又は結合した構造をしていた。
次いで得られた黒鉛粒子 90重量%に?^—メチルー 2—ピロリ ドンに溶解した ボリフッ化ビニリデン (PVDF) を固形分で 1 0重量%加えて混練し、 黒鉛べ 一ストを得た。 この黒鉛ペーストを厚さが 1 0 mの圧延銅箔に塗布し、 さらに 乾燥して N—メチルー 2—ピロリ ドンを除去し、 プレスで 3 OMPaの圧力で圧縮 し、 黒鉛粒子と PVDFの混合物層の厚さが 8 0 jum及び密度が 1. 5 5 g/ cm3 の試料電極を得た。 得られた試料電極を 3端子法による定電流充放電を行い、 リチウム二次電池用負極としての評価を行った。 図 5はリチウム二次電池の概略 図であり、 試料電極の評価は図 5に示すようにガラスセル 1に、 電解液 2として LiPFs をエチレンカーボネート (EC) 及びジメチルカーボネート (DMC) (ECと DMCは体積比で 1 : 1) の混合溶媒に 1モル Zリットルの濂度になる ように溶解した溶液を入れ、 試料電極 3、 セパレータ 4及び対極 5を積層して配 置し、 さらに参照極 6を上部から吊るしてリチウムニ次電池を作製して行った。 なお、 対極 5及び参照極 6には金属リチウムを使用し、 セパレータ 4にはポリエ チレン微孔膜を使用した。 得られたリチウム二次電池を用いて試料電極 3と対極 5の間に、 試料電極の黒鉛粒子と PVDFの混合物の面積に対して、 0. 2mAZ cm2 の定電流で 5mV (Vvs. Li/Li+ ) まで充電し、 I V (Vvs. /W ) ま で放電する試験を 50サイクル繰り返したが放電容量の低下は確認されなかった。 また急速充放電特性評価として、 0. 3mA/cm2 の定電流で充電し、 放電電流を 0. 5、 2. 0、 4. 0及び 6. 0 mA/ cm2 に変化させ、 このときの黒鉛粒子と PVDFの混合物の体積に対する放電容量を表 5に示す。
例 1 7
プレスでの圧縮力を 4 OMPa とした以外は、 例 1 6と同様の工程を経て試料電 極を得た。 得られた試料電極の黒鉛粒子と PVDFの混合物の厚さは 80 urn及 び密度は 1. 63 g/cm3 であった。 次いで、 例 1 6と同様の工程を経て、 リチウム二次電池を作製し、 例 1 6と同 様の試験を行ったが放電容量の低下は確認されなかった。 また急速充放電特性評 価として、 0. 3 mA/ cm2 の定電流で充電し、 放電電流を 0. 5、 2. 0、 4. 0及び 6. 0 mA/cm2 に変化させたときの放電容量を表 5に示す。
例 1 8
プレスでの圧縮力を 8 OMPa とした以外は、 実施例 1と同様の工程を経て試料 電極を得た。 得られた試料電極の黒鉛粒子と PVDFの混合物の厚さは 8 0 urn 及び密度は 1. 7 5 g/cm3 であった。
次いで、 例 1 6と同様の工程を経て、 リチウム二次電池を作製し、 例 1 6と同 様の試験を行ったが放電容量の低下は確認されなかった。 また急速充放電特性評 価として、 0. 3 mA/cm2 の定電流で充電し、 放電電流を 0. 5、 2. 0、 4. 0及び 6. 0 mA/cm2 に変化させたときの放電容量を表 5に示す。
例 1 9
プレスでの圧縮力を i 0 OMPa とした以外は、 例 1 6と同様の工程を経て試料 電極を得た。 得られた試料電極の黒鉛粒子と PVDFの混合物の厚さは 8 0 m 及び密度は 1. 8 5 g/cm3 であった。
次いで、 例 1 6と同様の工程を経て、 リチウム二次電池を作製し、 例 1 6と同 様の試験を行つたが放電容量の低下は確認されなかつた。 また急速充放電特性評 価として、 0. 3 mA/cm2 の定電流で充電し、 放電電流を 0. 5、 2. 0、 4. 0及び 6. 0 kXcm2 に変化させたときの放電容量を表 5に示す。
例 2 0
プレスでの圧縮力を 2 OMPa とした以外は、 例 1 6と同様の工程を経て試料電 極を得た。 得られた試料電極の黒鉛粒子と PVDFの混合物の厚さは 8 0 m及 び密度は 1. 4 5 g/cm3 であった。
次いで、 例 1 6と同様の工程を経て、 リチウム二次電池を作製し、 例 1 6と同 様の試験を行ったが放電容量の低下は確認されなかった。 また急速充放電特性評 価として、 0. 3 mA/cm2 の定電流で充電し、 放電電流を 0. 5、 2. 0、 4. 0及び 6. 0 mA/cm2 に変化させたときの放電容量を表 5に示す。
例 2 1 プレスでの圧縮力を 1 4 OMPa とした以外は、 例 1 6と同様の工程を経て試料 電極を得た。 得られた試料電極の黒鉛粒子と PVDFの混合物の厚さは 8 0 及び密度は 1. 9 3 g/cm3 であった。
次いで、 例 1 6と同様の工程を経て、 リチウム二次電池を作製し、 例 1 6と同 様の試験を行つたところ放電容量は 1 5. 7 %低下した。 また急速充放電特性評 価として、 0. 3 mA/cm2 の定電流で充電し、 放電電流を 0. 5、 2. 0、 4. 0及び 6. 0 mA/cm2 に変化させたときの放電容量を表 5に示す。
表 5
Figure imgf000032_0001
表 5に示されるように、 本発明の第 2のリチウムニ次電池用負極を用いたリチ ゥム二次電池は、 高放電容惫で、 急速放電特性に優れることが示される。
例 2 2〜例 2 9は、 リチウム二次電池用負極材としては、 本発明における第 3 のリチウムニ次電池用負極材に関しての検討例である。
例 2 2
平均粒径が 1 のコ一クス粉末 5 0重置部、 タールピッチ 2 0重量部、 炭 化ゲイ素 5重量部及びコールタール 1 5重量部を混合し、 1 0 0°Cで 1時間攪拌 した。 次いで、 窒素雰囲気中で 3 0 0 0 °Cで焼成した後粉砕し、 平均粒径が 2 5 mの黒鉛粒子を得た。 得られた黒鉛粒子を 1 0 0個任意に選び出し、 ァスぺク 卜比の平均値を測定した結果、 1. 3であった。 また得られた黒鉛粒子の BET 法による比表面積は、 1. 9 m2Zg であり、 黒鉛粒子の X線広角回折による結晶 の眉間距離 d ( 002 ) は 3. 3 6 A及び結晶子の大きさ L c ( 00 2 ) は 1 0 0 OA以上であった。 さらに、 得られた黒鉛粒子の走査型電子顕微鏡写真 (SE M写真) によれば、 この黒鉛粒子は、 扁平状の粒子が複数配向面が非平行となる ように集合又は結合した構造をしていた。
次いで得られた黒鉛粒子 89重量%にN—メチルー 2—ピロリ ドンに溶解した ポリフッ化ビニリデン (PVDF) を固形分で 1 1重量%加えて混練し、 黒鉛べ 一ストを得た。 この黒鉛ペーストを厚さが 1 0 jc/mの圧延銅箔に塗布し、 さらに 乾燥して、 ローラーで圧縮し、 黒鉛粒子と PVDFの混合物層の厚さが 8 0 /im 及び密度が 1. 5 g/cm3 の試料電極を得た。
得られた試料電極を 3端子法による定電流充放電を行い、 リチウム二次電池用 負極としての評価を行った。 図 5はリチウム二次電池の概略図であり、 試料電極 の評価は、 図 1に示すようにガラスセル 1に、 電解液 2として LiPF をェチレン カーボネート (EC) 及びジメチルカ一ボネート (DMC) (ECと DMCは体 積比で 1 : 1) の混合溶媒に 1モルノリットルの濃度になるように溶解した溶液 を入れ、 試料電極 3、 セパレータ 4及び対極 5を積層して配置し、 さらに参照極 6を上部から吊るしてリチウム二次電池を作製して行った。 なお、 対極 5及び参 照極 6には金属リチウムを使用し、 セパレ一タ 4にはポリエチレン微孔膜を使用 した。 また得られたリチウム二次電池を用いて試料電極 3と対極 5の間に、 試料 電極の黒鉛粒子と PVDFの混合物の面積に対して、 0. SmAZcm2 の定電流で 5mV (Vvs. Li/Li+ ) まで充電し、 0. 3mAZcm2 の定電流で 1 V (Vvs. Li /IV ) まで放電する試験を操り返した。 このときの黒鉛粒子の重量当たりの放 電容量、 黒鉛粒子と PVDFの混合物の重量当たりの放電容量及び 50サイクル 後の黒鉛粒子と P V D Fの混合物の重量当たりの放電容量を表 6に示す。 また、 急速充放電特性評価として 0. 3 mAZcm2 の定電流で充電し、 放電電流を 3. 0 mA/cm2 に変化させたときの黒鉛粒子と P V D Fの混合物の重量当たりの放電容 量を表 6に合わせて示す。
例 23
例 22で得た黒鉛粒子 87重量%に N—メチル— 2—ピロリ ドンに溶解したポ リフッ化ビニリデン (PVDF) を固形分で 1 3重量%加えて混練し、 黒鉛べ一 ストを得た。 以下例 22と同様の工程を経て黒鉛粒子と PVDFの混合物層の厚 さが 80 urn及び密度が 1. 5 g/cm3 の試料電極を得た。
以下例 22と同様の工程を経て、 リチウム二次電池を作製し、 例 2 と同様の 試験を行った。 その結果を表 6に示す。
例 24
例 22で得た黒鉛粒子 85重量%に N—メチル— 2—ピロリ ドンに溶解したポ リフッ化ビニリデン (PVDF) を固形分で 1 5重量%加えて混練し、 黒鉛べ一 ストを得た。 以下例 22と同様の工程を経て黒鉛粒子と PVDFの混合物層の厚 さが 80 m及び密度が 1. 5 g/cm3 の試料電極を得た。
以下例 2 2と同様の工程を経て、 リチウム二次電池を作製し、 例 2 2と同様の 試験を行った。 その結果を表 6に示す。
例 25
例 22で得た黒鉛粒子 82重量%に 一メチル— 2—ピロリ ドンに溶解したポ リフッ化ビニリデン (PVDF) を固形分で 1 8重量%加えて混練し、 黒鉛べ一 ストを得た。 以下例 22と同様の工程を経て黒鉛粒子と PVDFの混合物層の厚 さが 80 um及び密度がし 5 g/cm3 の試料電極を得た。
以下例 2 2と同様の工程を経てリチウム二次電池を作製し、 例 22と同様の試 験を行った。 その結果を表 6に示す。
例 26
例 22で得た黒鉛粒子 80重量%に N—メチルー 2—ピロリ ドンに溶解したポ リフッ化ビニリデン (PVDF) を固形分で 20重量%加えて混練し、 黒鉛ぺー ストを得た。 以下例 22と同様の工程を経て黒鉛粒子と PVDFの混合物層の厚 さが 80 am及び密度が 1. 5 g/cm3 の試料電極を得た。
以下例 22と同様の工程を経て、 リチウム二次電池を作製し、 例 2 2と同様の 試験を行った。 その結果を表 6に示す。
例 27
例 22で得た黒鉛粒子 92重量%にN—メチルー 2—ピロリ ドンに溶解したポ リフッ化ビニリデン (PVDF) を固形分で 8重量%加えて混練し、 黒鉛ペース トを得た。 以下伊 122と同様の工程を経て黒鉛粒子と PVDFの混合物層の厚さ が 8 0 m及び密度が 1. 5 g/cm3 の試料電極を得た。
以下例 2 2と同様の工程を経て、 リチウム二次電池を作製し、 例 2 2と同様の 試験を行った。 その結果を表 6に示す。
例 2 8
例 2 2で得た黒鉛粒子 9 7. 5重量%にN—メチルー 2—ピロリ ドンに溶解し たポリフッ化ビニリデン (PVDF) を固形分で 2. 5重量%加えて混練し、 黒 鉛ペーストを得た。 以下例 2 2と同様の工程を経て黒鉛粒子と PVDFの混合物 層の厚さが 8 0 m及び密度が 1. 5 g/cm3 の試料電極を得た。
以下例 2 2と同様の工程を経てリチウム二次電池を作製し、 例 2 2と同様の試 験を行った。 その結果を表 6に示す。
例 2 9
例 2 2で得た黒鉛粒子 7 8重量%に N—メチルー 2—ピロリ ドンに溶解したポ リフッ化ビニリデン (PVDF) を固形分で 2 2重量%加えて混練し、 黒鉛べ一 ス卜を得た。 以下例 2 2と同様の工程を経て黒鉛粒子と PVDFの混合物層の厚 さが 8 0 及び密度が 1. 5 g/cm3 の試料電極を得た。
以下例 2 2と同様の工程を経てリチウム二次電池を作製し、 例 2 2と同様の試 験を行った。 その結果を表 6に示す。
表 6 項 目 例 22 例 23 例 24 例 25 例 26 例 27 例 28 例 29 黒鉛粒子と PVDF (有機系結 10 13 15 18 20 8 2. 5 22 着剤) との混合物に対する
PVDFの含有量 (%) 黒鉛粒子の重量当たりの放
電容量 (niAh/g) 325 338 355 359 363 320 275 335 (放電電流 0. 3mA/cm2) こ P ΓV V LiPt1のレリ泡/氏口 toク Jの "J
重量当たりの放電容量 293 294 302 294 290 294 267 261 (nAh/g)
(放電電流 0. 3mA/cm2 )
□υ v Λ ノレ £ίレン^ ¾j¾/ H _
PVDFの混合物の重量当たり 287 290 295 292 286 265 134 252 の放電容量 (mAh/g)
(放電電流 0. 3mA/cm2) 黒鉛粒子と PVDFの混合物の
重量当たりの放電容量 267 282 280 278 271 250 160 232 (mAh/g)
(放電電流 3. OmA/cm2)
表 6に示されるように、 本発明の第 3のリチウム二次電池は高容量で、 急速充 びサイクノ 生に優れること力 <明ら力、である。
¾Hhの利用可紐
本発明の^粒子は、 急 びサイクノ,に優れたリチウム: li¾ 也に好適なものである。
また本発明の ネ立子は、 第一サイクル目の^ Ti^*^'小さく、 サイクノ 性に優れたリチウムニ ¾¾¾に好適なものである。
また本発明の黒鉛粒子の製造法によ ま'、 急速充¾¾^¾¾びサイク 待性に 優れ又は第一サイクル目の^! 動く小さく、 サイクノ^ ¾に優; しくは第 —サイクル目の^ 小さく、 急 &びサイク に優れた リチウム: ^^也に な 粒子力^られる。
また本発明の Hi&^—ストは、 急 びサイクノ赚に優れ又は第 一サイクル目の^ 小さく、 サイク Λ ^生に優 i^しくは第一サイクル 目の^ ヽさく、 急 ϋ¾¾« Ι4¾びサイクノ!^ に優れたリチウム二 次電池に好適なものである。
また本発明のリ
Figure imgf000037_0001
高容量で、 急 J¾充 びサイクノ嚇に優れ又は第一サイクル目の 動く小さく、 サ イク に優 i^しくは第一サイクル目の^! 動く小さく、 急 特 ft¾びサイ に優れたリチウム 也に なものである。
また本発明のリチウム は、 高容量で、 急$¾¾ m tt¾びサイクノ 性に優れ又は第一サイクル目の柯越動く小さく、 サイクノ に優 i¾しく は第一サイクル目の^ 小さく、急 o¾¾¾c¾ tt¾びサイクノ に優 れたものである。

Claims

請 求 の 範 囲
I. 扁¥ ^の粒子を 、 面力 ¥ί亍となるように集合又は結合させてな る画立子。
2. HI&粒 i< アスペクト く5以下である請求項 1記載の 粒子。
3. ァスぺクト く 5以下である 粒子。
4. アスペクト i ^l. 2〜 5である請求項 3記載の黒鉛粒子。
5. Hi&粒 ^集合体又は結合体からなる請求項 3又は 4記載の 粒子。
6. it¾面 «^8m2/g以下である H ^粒子。
7. i ¾ffi¾^'2〜5m2/gである請求項 6記載の Hi&粒子。
8. 粒子が扁平状の粒子を^ seisj面カ ラとなるように集合又は結 合させてなる請求項 6又は 7言 Si¾の!!^粒子。
9. 11^粒 ^ァスぺクト く 5以下である請求項 6, 7又は 8記載の 粒 子。
10. 粒子の Χ 角回折における結晶の c軸;^] 0¥み^])の結晶^ 大きさが 500人 Ji¾ひ ^晶^大きさが 100 OA以下である 110 粒子。
II. ^粒? ©Χ$ ^角回折における結晶の層間 1¾¾1^3. 38 Α以下である 請求項 10記載の應立子。
12. His粒子が扁 の粒子を^ seisj面力 亍となるように集合又は結合 させてなる請求項 10又は 11記載の黒鉛粒子。
13. 粒 ァスぺクト It^ 5以下である請求項 10, 11又は 12記載の 應立子。
14. 102〜106 λの範囲の大きさの細孑しの細孔 く、黒 J&粒子 ¾■ [当た り 0. 4〜2. OccZgである ϋΐδ粒子。
15. 扁¥ ^の粒子を 、 S己向面が ¾τとなるように集合又は結合させてな る請求項 14記載の黒舰子。
16. 黒鉛粒 ί ^ァスぺクト J ^5以下である請求項 14又は 15言凍の黒鉛粒 子。
17. it m 8 mVg以下である請求項 1 4, 15又は 16霧 2«の黒鉛粒子。
18. 1 X 1 02〜2 X 1 04 人の IBfflの大きさの細孔の細孔 く、 HK^立子 S*当たり 0. 08〜 4 cc/ である黒鉛粒子。
19. 扁 の粒子を 面力 ^ϊとなるように集合又は結合させてなる 請求項 18言 ¾¾の麵立子。
20. 粒 TOァスぺクト く5以下である請求項 1 8又は 1 9記載の 粒 子。
21. 比表面積が 8m2/g以下である請求項 1 8, 1 9又は 20Ε¾の黒給粒子。
22. 應匕可能な原料又は と麵匕可能なバインダに黒鉛ィ瞧を 1〜 5 0fi»%添加して混合し、 舰した後粉时ることからなる IS求項 1, 3, 6,
1 0, 1 4または 1 8に言^の^粒子の ¾ί¾。
23. 画瞧の平均粒 く150 fim以下である請求項 22言 の |^粒子
24. 請求項 1, 3, 6, 1 0, 1 4または 1 8に言 の^^立子、 有 I ^結着 剤、 及び翻からなる ペースト。
25. 請求項 24 Ϊ凍の1^ベーストを集電体に^、 化してなるリチウム 二 Steffi負 ¾
26. 粒子及び有 縫剤の混^!と集電体とを 化してなるリチウム ^feffl負極において、 加圧、 "^化後の應立子及 0¾醒結着剤の混^! の密度が 1. 5〜 1. 9 g/cm3 であるリチウムニ次 負極。
27. 粒子が、 請求項 1, 3, 6, 1 0, 1 4または 1 8に記載したもので ある請求項 26言 e|¾のリチウム ^MMffl負
28. 麵匕可能な原料又は と、 駕匕可能なバインダに纖瞧を 1〜
5 oa*%添加し、 これを混合、 m.,粉砕した^ i&粒子に有麟鶴剤及び溶 剤を馳して混合し、 該混^!を集電体に »し、 翻を させた後、 加圧し て 化すること^fcとする請求項 26言 e¾のリチウム _i^¾¾ffl負極の^ t 法。
29. 黒鉛粒子及び有縣結着剤の混^!を集電体と 化してなるリチウムニ 翻負極において、 有»結着剤を該混^に対して 3〜20fi*%含有し てなるリチウムニ次 ®t!lffl負
30. 有 結着剤を該混^ ¾に対して 1 1〜2 Ofi»%含有してなる請求項 2 9 のリチウム^ 負
31. 黒 粒子が、 請求項 1 , 3, 6, 10, 14または 18言 giのものである 請求項 29又は 30記載のリチウ
Figure imgf000040_0001
32. ケーシング、 カバー、 少なくとも 1対の負極と正極とをセパレー夕を介し τ¾したもの、 およびその周囲に する からなり、 該負 ¾ ^請求項 2
5, 26, 29または 30 S ^の負極であるリチウム: «feo
33. 負@ ^請求項 1, 3, 6, 10, 14または 18記載の!^粒子を^ fflし て得られたものである請求項 32記載のリチウムニ ·ί¾¾¾ο
PCT/JP1997/002762 1996-08-08 1997-08-07 Graphite particles and lithium secondary cell using them as cathode material WO1998006679A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
EP97934729A EP0918040B1 (en) 1996-08-08 1997-08-07 Graphite particles and lithium secondary cell using them as cathode material
CA002262613A CA2262613C (en) 1996-08-08 1997-08-07 Graphite particles and lithium secondary cell using them as negative electrode
DE69718327T DE69718327T2 (de) 1996-08-08 1997-08-07 Graphitteilchen und lithiumsekundärzelle in denen dieselben als kathodematerial verwendet werden
US09/230,889 US6344296B1 (en) 1996-08-08 1997-08-07 Graphite particles and lithium secondary battery using the same as negative electrode
US10/150,107 US6953640B2 (en) 1996-08-08 2002-05-20 Graphite particles and lithium secondary battery using the same as negative electrode
US11/214,828 US7410727B2 (en) 1996-08-08 2005-08-31 Graphite particles and lithium secondary battery using the same as negative electrode
US11/311,249 US7335447B2 (en) 1996-08-08 2005-12-20 Graphite particles and lithium secondary battery using the same as negative electrode
US11/311,253 US7378191B2 (en) 1996-08-08 2005-12-20 Graphite particles and lithium secondary battery using the same as negative electrode
US11/311,252 US7288342B2 (en) 1996-08-08 2005-12-20 Graphite particles and lithium secondary battery using the same as negative electrode
US11/655,880 US7399553B2 (en) 1996-08-08 2007-01-22 Graphite particles and lithium secondary battery using the same as negative electrode
US12/170,466 US7700239B2 (en) 1996-08-08 2008-07-10 Graphite particles and lithium secondary battery using the same as negative electrode
US12/719,037 US7947395B2 (en) 1996-08-08 2010-03-08 Graphite particles and lithium secondary battery using the same as negative electrode
US13/085,618 US8129051B2 (en) 1996-08-08 2011-04-13 Graphite particles and lithium secondary battery using the same as negative electrode
US13/359,660 US8580437B2 (en) 1996-08-08 2012-01-27 Graphite particles and lithium secondary battery using the same as negative electrode
US14/072,821 US8802297B2 (en) 1996-08-08 2013-11-06 Graphite particles and lithium secondary battery using the same as negative electrode
US14/454,768 US9508980B2 (en) 1996-08-08 2014-08-08 Graphite particles and lithium secondary battery using the same as negative

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP8/209713 1996-08-08
JP20971396 1996-08-08
JP26426596 1996-10-04
JP8/264265 1996-10-04
JP28810996 1996-10-30
JP8/288109 1996-10-30
JP8/323921 1996-12-04
JP32392196 1996-12-04
JP34840696 1996-12-26
JP34840596 1996-12-26
JP8/348405 1996-12-26
JP8/348406 1996-12-26

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US09230889 A-371-Of-International 1997-08-07
US09/230,889 A-371-Of-International US6344296B1 (en) 1996-08-08 1997-08-07 Graphite particles and lithium secondary battery using the same as negative electrode
US09/824,000 Division US6444365B2 (en) 1996-08-08 2001-04-03 Graphite particles and lithium secondary battery using the same as negative electrode
US09/824,002 Division US6447956B2 (en) 1996-08-08 2001-04-03 Graphite particles and lithium secondary battery using the same as negative electrode

Publications (1)

Publication Number Publication Date
WO1998006679A1 true WO1998006679A1 (en) 1998-02-19

Family

ID=27553860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002762 WO1998006679A1 (en) 1996-08-08 1997-08-07 Graphite particles and lithium secondary cell using them as cathode material

Country Status (7)

Country Link
US (15) US6344296B1 (ja)
EP (2) EP1220349B1 (ja)
KR (4) KR100438476B1 (ja)
CN (4) CN1076711C (ja)
CA (3) CA2262613C (ja)
DE (2) DE69718327T2 (ja)
WO (1) WO1998006679A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026265A1 (ja) * 2017-08-03 2019-02-07 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630741B (zh) * 1996-08-08 2011-02-02 日立化成工业株式会社 石墨颗粒
DE69718327T2 (de) * 1996-08-08 2003-10-16 Hitachi Chemical Co Ltd Graphitteilchen und lithiumsekundärzelle in denen dieselben als kathodematerial verwendet werden
KR100269918B1 (ko) * 1997-08-28 2000-10-16 김순택 리튬 계열 이차 전지의 음극용 활물질 및 그의 제조 방법
US20020054995A1 (en) * 1999-10-06 2002-05-09 Marian Mazurkiewicz Graphite platelet nanostructures
CA2435980C (en) * 2001-01-25 2008-07-29 Hitachi Chemical Co., Ltd. Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell negative electrode and method for manufacturing same, and lithium secondary cell
JP2002348110A (ja) * 2001-05-28 2002-12-04 Mitsui Mining Co Ltd 黒鉛粒子、及びその製造方法
US6921610B2 (en) * 2001-07-11 2005-07-26 The Gillette Company Battery
US7052803B2 (en) * 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
WO2004056703A1 (ja) * 2002-12-19 2004-07-08 Jfe Chemical Corporation 複合黒鉛粒子およびその製造方法、ならびにこれを用いたリチウムイオン二次電池の負極材およびリチウムイオン二次電池
US20040234860A1 (en) * 2003-05-23 2004-11-25 Deyang Qu Alkaline electrochemical cell having modified graphite additive
EP1652250B1 (en) 2003-07-22 2011-12-28 Byd Company Limited Method of fabrication of modified graphite granules
KR20120045053A (ko) * 2003-09-05 2012-05-08 산요덴키가부시키가이샤 비수전해액 이차전지용 음극재, 그 제조방법, 상기 음극재를 이용한 비수전해액 이차전지용 음극 및 비수전해액 이차전지
US7557433B2 (en) 2004-10-25 2009-07-07 Mccain Joseph H Microelectronic device with integrated energy source
EP2472638A3 (en) * 2003-12-15 2013-09-11 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
KR20130024968A (ko) 2004-01-16 2013-03-08 히타치가세이가부시끼가이샤 리튬 이차전지용 음극 및 리튬 이차전지
KR101189533B1 (ko) * 2004-03-30 2012-10-11 가부시끼가이샤 구레하 비수전해질 이차 전지용 음극 재료, 그 제조 방법, 음극 및전지
CN100385719C (zh) * 2004-06-11 2008-04-30 肇庆市风华锂电池有限公司 锂离子二次电池负极材料及所得电池
JP4310646B2 (ja) * 2005-02-09 2009-08-12 ソニー株式会社 負極およびそれを用いた電池
JP4911909B2 (ja) * 2005-03-29 2012-04-04 三洋電機株式会社 リチウム二次電池用電極の製造方法
JP4244041B2 (ja) * 2005-04-07 2009-03-25 シャープ株式会社 リチウムイオン二次電池及びその製造方法
KR100719716B1 (ko) * 2005-09-27 2007-05-17 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
JP4797577B2 (ja) * 2005-10-31 2011-10-19 ソニー株式会社 電池
DK1961701T3 (en) * 2005-12-14 2017-09-18 Nippon Power Graphite Company Ltd GRAPHITE PARTICLES, CARBON GRAPHIT COMPOSITION PARTICULARS AND PROCEDURES FOR THEIR MANUFACTURING.
KR100861713B1 (ko) * 2006-02-09 2008-10-06 주식회사 엘지화학 전지모듈
JP4413888B2 (ja) 2006-06-13 2010-02-10 株式会社東芝 蓄電池システム、車載電源システム、車両、および蓄電池システムの充電方法
US20080067972A1 (en) * 2006-09-15 2008-03-20 Norio Takami Power supply system and motor car
JP4735579B2 (ja) * 2007-03-26 2011-07-27 ソニー株式会社 非水電解質電池
WO2009059247A1 (en) * 2007-11-01 2009-05-07 Lockheed Martin Corporation Safe reserve activated lithium ion battery
CN101323447B (zh) * 2008-07-21 2012-02-22 深圳市贝特瑞新能源材料股份有限公司 锂离子电池负极的石墨粉及其制备方法
WO2010038609A1 (ja) * 2008-09-30 2010-04-08 住友ベークライト株式会社 リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法
JP2010272380A (ja) * 2009-05-22 2010-12-02 Hitachi Ltd リチウム二次電池用負極およびそれを用いたリチウム二次電池
CA2778407C (en) * 2009-10-27 2018-03-06 Hitachi Chemical Company, Ltd. Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101117632B1 (ko) * 2010-07-07 2012-02-29 삼성에스디아이 주식회사 층간 거리가 조절된 결정성 탄소 재료 및 그의 제조 방법
US9437344B2 (en) 2010-07-22 2016-09-06 Nanotek Instruments, Inc. Graphite or carbon particulates for the lithium ion battery anode
CN103262314B (zh) * 2010-12-10 2015-07-01 日立化成株式会社 锂离子二次电池用负极材料及其制造方法、锂离子二次电池用负极和锂离子二次电池
CN102593434B (zh) * 2011-01-11 2015-11-25 上海杉杉科技有限公司 锂二次电池用复合石墨颗粒及其制备方法
KR20140026633A (ko) * 2011-07-29 2014-03-05 스미토모 베이클리트 컴퍼니 리미티드 리튬 이온 2차 전지용 탄소재의 제조 방법, 리튬 이온 2차 전지용 탄소재, 리튬 이온 2차 전지용 부극 활물질, 조성물, 리튬 이온 2차 전지 부극재용 탄소 복합재, 리튬 이온 2차 전지용 부극 합제, 리튬 이온 2차 전지용 부극 및 리튬 이온 2차 전지
CN102424376A (zh) * 2011-09-09 2012-04-25 湖州创亚动力电池材料有限公司 一种锂离子动力电池倍率型负极材料的制造方法及制品
US9368796B2 (en) 2011-10-21 2016-06-14 Show A Denko K.K. Graphite material, carbon material for battery electrode, and battery
TWI457278B (zh) 2011-10-21 2014-10-21 昭和電工股份有限公司 Production method of electrode material for lithium ion battery
CN103650220B (zh) 2011-10-21 2015-10-07 昭和电工株式会社 锂离子电池用电极材料的制造方法
US8568924B2 (en) * 2011-11-30 2013-10-29 CNano Technology Limited Modified battery anode with carbon nanotubes
WO2013128676A1 (ja) * 2012-02-29 2013-09-06 新神戸電機株式会社 リチウムイオン電池
HUE036038T2 (hu) * 2012-04-05 2018-06-28 Imerys Graphite & Carbon Switzerland Ltd Felület-oxidált alacsony fajlagos felületû grafit, eljárás annak elõállítására, és annak alkalmazása
JP5571270B1 (ja) 2012-10-12 2014-08-13 昭和電工株式会社 炭素材料、電池電極用炭素材料、及び電池
CN103022492A (zh) * 2012-11-28 2013-04-03 上海锦众信息科技有限公司 一种锂离子电池改良石墨复合负极材料的制备方法
US9997769B2 (en) 2013-02-04 2018-06-12 Showa Denko K.K. Graphite power for negative electrode active material of lithium-ion secondary battery
JP6304774B2 (ja) * 2013-03-15 2018-04-04 Necエナジーデバイス株式会社 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5996473B2 (ja) 2013-03-29 2016-09-21 Jxエネルギー株式会社 黒鉛の製造方法及び黒鉛製造用粒子
CN103241731B (zh) * 2013-04-01 2016-03-30 东莞市凯金新能源科技有限公司 二次锂离子电池用复合石墨材料的制备方法
US20160204422A1 (en) * 2013-08-20 2016-07-14 Graftech International Holdings Inc. Battery anode
WO2015115089A1 (ja) * 2014-01-29 2015-08-06 日本ゼオン株式会社 リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP6396343B2 (ja) 2014-02-04 2018-09-26 三井化学株式会社 リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法
CN103943860B (zh) * 2014-04-25 2016-03-30 焦作聚能能源科技有限公司 锂离子动力与储能电池用负极材料及其制备方法和电池
KR101685832B1 (ko) * 2014-07-29 2016-12-12 주식회사 엘지화학 흑연 2차 입자 및 이를 포함하는 리튬 이차전지
WO2016181960A1 (ja) * 2015-05-11 2016-11-17 昭和電工株式会社 リチウムイオン二次電池負極材用黒鉛粉の製造方法
KR20170016711A (ko) * 2015-08-04 2017-02-14 지에스에너지 주식회사 전해액 함습성이 우수한 리튬 이차 전지용 음극활물질 및 이의 제조방법
EP3408225B1 (de) 2016-01-29 2024-03-06 SGL Carbon SE Katalytisch wirksame additive für petrolstaemmige oder kohlestaemmige kokse
US10710094B2 (en) 2016-05-18 2020-07-14 Syrah Resources Ltd. Method and system for precision spheroidisation of graphite
KR102061442B1 (ko) 2016-06-08 2019-12-31 가부시키가이샤 인비젼 에이이에스씨 재팬 비수전해질 이차 전지
CN109314239A (zh) 2016-06-23 2019-02-05 昭和电工株式会社 石墨材料及使用其的二次电池用电极
US10710882B2 (en) 2016-06-27 2020-07-14 Syrah Resources Ltd. Purification process modeled for shape modified natural graphite particles
KR102338842B1 (ko) * 2016-07-13 2021-12-10 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR20180007618A (ko) * 2016-07-13 2018-01-23 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR102255125B1 (ko) * 2016-11-29 2021-05-21 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 이차 전지
US11380895B2 (en) * 2017-04-03 2022-07-05 The George Washington University Methods and systems for the production of crystalline flake graphite from biomass or other carbonaceous materials
US11196036B2 (en) 2017-04-10 2021-12-07 Nano And Advanced Materials Institute Limited High energy density fast charge Li ion battery and the method of preparing the same
CN111356651A (zh) * 2017-11-16 2020-06-30 株式会社大赛璐 电容器用电极材料
WO2019124425A1 (ja) 2017-12-22 2019-06-27 東海カーボン株式会社 リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法
CN108879014B (zh) * 2018-07-26 2020-11-27 桑顿新能源科技有限公司 一种锂离子电池负极材料的回收方法
JPWO2020144977A1 (ja) * 2019-01-10 2021-11-25 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
US10601047B1 (en) * 2019-04-02 2020-03-24 Chongqing Jinkang New Energy Automobile Co., Ltd. Pre-cracked anode particles for high-rate charging applications
WO2022216081A1 (ko) * 2021-04-08 2022-10-13 충남대학교산학협력단 흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지
WO2023044625A1 (zh) * 2021-09-22 2023-03-30 宁德时代新能源科技股份有限公司 复合人造石墨及其制备方法及包含所述复合人造石墨的二次电池和用电装置
US20230147558A1 (en) * 2021-11-09 2023-05-11 Microvast Power Systems Co., Ltd. Negative electrode material and method of preparing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127612A (ja) * 1984-11-26 1986-06-14 Agency Of Ind Science & Technol 導電性黒鉛材料の製造方法
JPH01294356A (ja) * 1988-05-20 1989-11-28 Hitachi Maxell Ltd リチウム二次電池
JPH03137011A (ja) * 1989-07-28 1991-06-11 Oriental Sangyo Kk 改良黒鉛粉末,該改良黒鉛粉末を含有する乾電池及び摺動部材

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4722395U (ja) 1971-04-03 1972-11-13
EP0067555A3 (en) 1981-05-22 1983-11-09 Fuji Photo Optical Co., Ltd. Apparatus for restoring the light transmittance of an image-transmitting optical fiber bundle used in fiberoptic endoscope
JPS59213610A (ja) 1983-05-18 1984-12-03 Showa Denko Kk 炭素成形体及びその製造法
US4945014A (en) * 1988-02-10 1990-07-31 Mitsubishi Petrochemical Co., Ltd. Secondary battery
JPH0222738A (ja) 1988-07-11 1990-01-25 Nec Field Service Ltd 再実行ジョブ名表示方式
US5475491A (en) 1989-02-10 1995-12-12 Canon Kabushiki Kaisha Exposure apparatus
US5257167A (en) 1989-08-24 1993-10-26 Delco Electronics Corporation Silhouette illuminated vehicle display apparatus
US5268398A (en) 1989-09-01 1993-12-07 Sumitomo Electric Industries, Ltd. Friction material and method of manufacturing such material
JPH0399126A (ja) 1989-09-12 1991-04-24 Sumitomo Chem Co Ltd 潜熱蓄熱板およびそれを用いた潜熱蓄熱式電気床暖房装置
JPH03137001A (ja) * 1989-10-19 1991-06-11 Mitsubishi Gas Chem Co Inc メタノールの改質方法
JP3017524B2 (ja) 1990-10-09 2000-03-13 富士写真フイルム株式会社 Icメモリカードにおけるデータ記録方法およびicメモリカードシステム
JP2637305B2 (ja) 1991-01-14 1997-08-06 株式会社東芝 リチウム二次電池
US5602789A (en) 1991-03-12 1997-02-11 Kabushiki Kaisha Toshiba Electrically erasable and programmable non-volatile and multi-level memory systemn with write-verify controller
JPH04308671A (ja) 1991-04-08 1992-10-30 Fuji Photo Film Co Ltd リチウム二次電池
JP3167767B2 (ja) 1991-12-27 2001-05-21 シャープ株式会社 リチウム二次電池用負極及びその製造方法
JP3291756B2 (ja) 1992-04-28 2002-06-10 三菱化学株式会社 非水溶媒二次電池およびその電極材料
JP3064662B2 (ja) 1992-04-30 2000-07-12 松下電器産業株式会社 非水電解液二次電池
JP3162531B2 (ja) 1993-03-18 2001-05-08 株式会社東芝 リチウム二次電池
JP3291758B2 (ja) 1992-06-02 2002-06-10 三菱化学株式会社 非水溶媒二次電池およびその電極材料
JPH0652860A (ja) 1992-07-27 1994-02-25 Sanyo Electric Co Ltd リチウム二次電池
JPH0684515A (ja) 1992-09-03 1994-03-25 Sanyo Electric Co Ltd 非水電解液二次電池
JP3529802B2 (ja) 1992-11-10 2004-05-24 株式会社リコー 二次電池用負極
JP2895694B2 (ja) 1992-12-08 1999-05-24 シャープ株式会社 情報記録・再生用スライダー、情報記録・再生用スライダーの製造方法および情報記録・再生装置
JP2991884B2 (ja) 1993-02-16 1999-12-20 シャープ株式会社 非水系二次電池
JP3238980B2 (ja) 1993-03-17 2001-12-17 三洋電機株式会社 リチウム二次電池
JP3188033B2 (ja) 1993-04-02 2001-07-16 三洋電機株式会社 非水系二次電池
JP3236400B2 (ja) * 1993-04-07 2001-12-10 旭化成株式会社 非水二次電池
JP3253185B2 (ja) 1993-09-03 2002-02-04 松下電器産業株式会社 非水電解質二次電池およびその負極の製造法
JP2948097B2 (ja) 1994-04-28 1999-09-13 呉羽化学工業株式会社 二次電池電極用黒鉛質材料およびその製造法
KR0169267B1 (ko) 1993-09-21 1999-02-01 사토 후미오 불휘발성 반도체 기억장치
JPH07105935A (ja) 1993-10-07 1995-04-21 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP3048808B2 (ja) 1993-11-10 2000-06-05 松下電器産業株式会社 非水電解質二次電池
JPH07192722A (ja) 1993-12-24 1995-07-28 Sanyo Electric Co Ltd リチウム二次電池
US5524462A (en) * 1994-01-18 1996-06-11 Loughlin; Robert W. Two piece shackle padlock
JP3082557B2 (ja) 1994-02-10 2000-08-28 松下電器産業株式会社 非水電解液二次電池の製造法
JP3202498B2 (ja) 1994-03-15 2001-08-27 株式会社東芝 半導体記憶装置
JPH07282799A (ja) 1994-04-01 1995-10-27 Nippon Steel Corp リチウム二次電池
JP3617550B2 (ja) 1994-04-01 2005-02-09 株式会社東芝 リチウム二次電池用負極、該負極を含むリチウム二次電池及び該リチウム二次電池用負極の製造方法
EP0675555B1 (en) 1994-04-01 1999-07-28 Kabushiki Kaisha Toshiba Negative electrode for use in lithium secondary battery and process for producing the same
CN1088266C (zh) 1994-04-08 2002-07-24 索尼公司 非水电解液二次电池
JP3556270B2 (ja) 1994-06-15 2004-08-18 株式会社東芝 リチウム二次電池
JPH08148185A (ja) * 1994-06-28 1996-06-07 Sharp Corp 非水系二次電池及び非水系二次電池用負極
US5601950A (en) 1994-06-29 1997-02-11 Sony Corporation Non-aqueous electrolyte secondary cell
JPH0831455A (ja) 1994-07-13 1996-02-02 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造法
JPH0831422A (ja) 1994-07-19 1996-02-02 Nippon Steel Corp リチウム二次電池負極用炭素材料とその製造方法
JPH0845548A (ja) 1994-08-03 1996-02-16 Matsushita Electric Ind Co Ltd リチウム二次電池およびその負極の製造法
JP3460742B2 (ja) * 1994-08-04 2003-10-27 三菱化学株式会社 非水溶媒二次電池電極材料の製造方法
JP3236170B2 (ja) * 1994-09-05 2001-12-10 松下電器産業株式会社 非水電解質二次電池用負極
JP3641648B2 (ja) 1994-09-13 2005-04-27 株式会社東芝 リチウム二次電池
JP3475530B2 (ja) 1994-11-29 2003-12-08 ソニー株式会社 非水電解質二次電池
JPH08180873A (ja) * 1994-12-26 1996-07-12 Sony Corp 負極材料の製造方法及び非水電解液二次電池
JP3422389B2 (ja) 1995-02-03 2003-06-30 東洋紡績株式会社 非水電解質二次電池
JPH08287950A (ja) 1995-04-18 1996-11-01 Sumitomo Chem Co Ltd 非水電解液とこれを用いたリチウム二次電池
JPH08315817A (ja) 1995-05-17 1996-11-29 Sony Corp 炭素負極材料の製造方法及び非水電解液二次電池
US5721308A (en) 1995-06-20 1998-02-24 Mitsubishi Chemical Corporation Pitch based carbon fiber and process for producing the same
DE69605486T2 (de) 1995-06-23 2000-07-13 Hitachi Chemical Co Ltd Sekundärbatterie mit Elektroden die ein mehrphasiges, poröses aktives Material enthalten
JPH0922738A (ja) 1995-07-03 1997-01-21 Hitachi Maxell Ltd 有機電解液二次電池
US5660948A (en) 1995-09-26 1997-08-26 Valence Technology, Inc. Lithium ion electrochemical cell
US5643695A (en) 1995-09-26 1997-07-01 Valence Technology, Inc. Carbonaceous electrode and compatible electrolyte
KR100722071B1 (ko) 1995-11-14 2007-08-16 오사까 가스 가부시키가이샤 리튬이차전지용음극재료,그의제조방법및그를이용한이차전지
US5753387A (en) * 1995-11-24 1998-05-19 Kabushiki Kaisha Toshiba Lithium secondary battery
EP0778283A3 (en) * 1995-12-05 1998-01-28 Pfizer Inc. Antibiotic macrolides
JPH09190821A (ja) 1996-01-09 1997-07-22 Hitachi Ltd リチウム二次電池
JP3459742B2 (ja) 1996-01-17 2003-10-27 キヤノン株式会社 露光装置及びそれを用いたデバイスの製造方法
JP3424419B2 (ja) 1996-01-19 2003-07-07 松下電器産業株式会社 非水電解液二次電池用負極炭素物質の製造法
JPH09249407A (ja) 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc 黒鉛複合物およびその製造方法
US5770018A (en) * 1996-04-10 1998-06-23 Valence Technology, Inc. Method for preparing lithium manganese oxide compounds
US5767950A (en) 1996-04-15 1998-06-16 Eastman Kodak Company Method and apparatus for calibrating iris of photographic printer
JP3740212B2 (ja) 1996-05-01 2006-02-01 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
CA2254076A1 (en) 1996-05-07 1997-11-13 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery using the same
US5677082A (en) * 1996-05-29 1997-10-14 Ucar Carbon Technology Corporation Compacted carbon for electrochemical cells
JP3538500B2 (ja) * 1996-06-12 2004-06-14 日機装株式会社 非水電解液系二次電池
JP3481392B2 (ja) 1996-06-13 2003-12-22 古河電気工業株式会社 電子部品リード部材及びその製造方法
JP3153471B2 (ja) 1996-06-14 2001-04-09 日本カーボン株式会社 リチウム電池負極材料用炭素又は黒鉛粉末とその製造方法
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
JPH1015805A (ja) 1996-07-02 1998-01-20 Tokyo Seimitsu Co Ltd ワイヤソー
DE69718327T2 (de) * 1996-08-08 2003-10-16 Hitachi Chemical Co Ltd Graphitteilchen und lithiumsekundärzelle in denen dieselben als kathodematerial verwendet werden
JP3285520B2 (ja) 1996-08-08 2002-05-27 日立化成工業株式会社 黒鉛粒子、黒鉛粒子の製造法、黒鉛粒子を用いた黒鉛ペースト、リチウム二次電池用負極及びリチウム二次電池
US5681357A (en) 1996-09-23 1997-10-28 Motorola, Inc. Gel electrolyte bonded rechargeable electrochemical cell and method of making same
US5665265A (en) 1996-09-23 1997-09-09 Motorola, Inc., Non woven gel electrolyte for electrochemical cells
JP3137011B2 (ja) 1996-12-06 2001-02-19 松下電器産業株式会社 感震装置
JP3305995B2 (ja) 1996-12-26 2002-07-24 日立化成工業株式会社 リチウム二次電池負極用黒鉛粒子
US5922494A (en) * 1997-04-14 1999-07-13 Valence Technology, Inc. Stabilized electrolyte for electrochemical cells and batteries
US5962720A (en) * 1997-05-29 1999-10-05 Wilson Greatbatch Ltd. Method of synthesizing unsymmetric organic carbonates and preparing nonaqueous electrolytes for alkali ion electrochemical cells
JP2001196293A (ja) 2000-01-14 2001-07-19 Canon Inc 露光装置及びそれを用いたデバイスの製造方法
CA2434015A1 (en) 2001-01-16 2002-07-18 Astrazeneca Ab Therapeutic chroman compounds
KR100603592B1 (ko) 2001-11-26 2006-07-24 학교법인 고황재단 영상 화질 향상 인자를 이용한 지능형 파문 스캔 장치 및 그 방법과 그를 이용한 영상 코딩/디코딩 장치 및 그 방법
US6614091B1 (en) 2002-03-13 2003-09-02 Motorola, Inc. Semiconductor device having a wire bond pad and method therefor
KR20130024968A (ko) * 2004-01-16 2013-03-08 히타치가세이가부시끼가이샤 리튬 이차전지용 음극 및 리튬 이차전지
JP5335016B2 (ja) 2010-12-21 2013-11-06 株式会社鷺宮製作所 弁構造体および該弁構造体を備えた逆止弁
CA2821830A1 (en) 2012-02-23 2013-08-23 Square Enix Holdings Co., Ltd. Moving image distribution server, moving image playback apparatus, control method, program, and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127612A (ja) * 1984-11-26 1986-06-14 Agency Of Ind Science & Technol 導電性黒鉛材料の製造方法
JPH01294356A (ja) * 1988-05-20 1989-11-28 Hitachi Maxell Ltd リチウム二次電池
JPH03137011A (ja) * 1989-07-28 1991-06-11 Oriental Sangyo Kk 改良黒鉛粉末,該改良黒鉛粉末を含有する乾電池及び摺動部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0918040A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026265A1 (ja) * 2017-08-03 2019-02-07 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Also Published As

Publication number Publication date
CN1645653A (zh) 2005-07-27
US6344296B1 (en) 2002-02-05
CA2696813C (en) 2012-04-17
US7378191B2 (en) 2008-05-27
KR20030097608A (ko) 2003-12-31
US20060159996A1 (en) 2006-07-20
CN100350653C (zh) 2007-11-21
KR100446828B1 (ko) 2004-09-04
US20070117016A1 (en) 2007-05-24
CN1076711C (zh) 2001-12-26
US7288342B2 (en) 2007-10-30
US6447956B2 (en) 2002-09-10
DE69739132D1 (de) 2009-01-08
US6953640B2 (en) 2005-10-11
US20140349173A1 (en) 2014-11-27
US7947395B2 (en) 2011-05-24
US20060001003A1 (en) 2006-01-05
CA2696813A1 (en) 1998-02-19
US7700239B2 (en) 2010-04-20
US20010033822A1 (en) 2001-10-25
CN101794882A (zh) 2010-08-04
EP1220349A1 (en) 2002-07-03
US6444365B2 (en) 2002-09-03
US7335447B2 (en) 2008-02-26
US20060093546A1 (en) 2006-05-04
US20020006376A1 (en) 2002-01-17
US8580437B2 (en) 2013-11-12
US20030022064A1 (en) 2003-01-30
US8802297B2 (en) 2014-08-12
CN1423350A (zh) 2003-06-11
US20080274404A1 (en) 2008-11-06
CA2262613C (en) 2006-11-28
US20110189542A1 (en) 2011-08-04
US20100159323A1 (en) 2010-06-24
KR100438476B1 (ko) 2004-07-07
KR100377993B1 (ko) 2003-03-29
DE69718327D1 (de) 2003-02-13
EP1220349B1 (en) 2008-11-26
US7410727B2 (en) 2008-08-12
US20140057159A1 (en) 2014-02-27
US7399553B2 (en) 2008-07-15
EP0918040B1 (en) 2003-01-08
US9508980B2 (en) 2016-11-29
KR20000029812A (ko) 2000-05-25
CA2262613A1 (en) 1998-02-19
KR100442178B1 (ko) 2004-07-30
DE69718327T2 (de) 2003-10-16
EP0918040A1 (en) 1999-05-26
US20060099509A1 (en) 2006-05-11
CN1275341C (zh) 2006-09-13
CA2668822A1 (en) 1998-02-19
CN1230159A (zh) 1999-09-29
US8129051B2 (en) 2012-03-06
CA2668822C (en) 2011-03-15
US20120189905A1 (en) 2012-07-26
EP0918040A4 (en) 2001-07-04

Similar Documents

Publication Publication Date Title
WO1998006679A1 (en) Graphite particles and lithium secondary cell using them as cathode material
JP3285520B2 (ja) 黒鉛粒子、黒鉛粒子の製造法、黒鉛粒子を用いた黒鉛ペースト、リチウム二次電池用負極及びリチウム二次電池
JP3305995B2 (ja) リチウム二次電池負極用黒鉛粒子
JP2001089118A (ja) 黒鉛粒子、その製造法、リチウム二次電池用負極及びリチウム二次電池
JP3321782B2 (ja) リチウム二次電池負極用黒鉛粒子
JP3325021B2 (ja) リチウム二次電池負極用黒鉛粒子及びリチウム二次電池負極用黒鉛ペースト
JP4135162B2 (ja) リチウム二次電池用負極
JPH10236808A (ja) 黒鉛粒子及びその製造法、黒鉛粒子を用いた黒鉛ペースト、リチウム二次電池用負極及びその製造法並びにリチウム二次電池
JP4483560B2 (ja) リチウム二次電池用負極
JP4811699B2 (ja) リチウム二次電池用負極
JP4066699B2 (ja) リチウム二次電池用負極
JP2002279973A (ja) リチウム二次電池用負極及びその製造法並びにリチウム二次電池
JP4828118B2 (ja) リチウム二次電池用負極
JP5853293B2 (ja) リチウム二次電池用負極
JP4687661B2 (ja) リチウム二次電池用負極及びリチウム二次電池
JP5704473B2 (ja) リチウム二次電池用負極及びリチウム二次電池
JP2008016455A (ja) リチウム二次電池用負極

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97197784.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997934729

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09230889

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997000949

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2262613

Country of ref document: CA

Ref document number: 2262613

Country of ref document: CA

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1997934729

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997000949

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997000949

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997934729

Country of ref document: EP