WO1997012549A1 - Appareil d'imagerie a rayons x - Google Patents

Appareil d'imagerie a rayons x Download PDF

Info

Publication number
WO1997012549A1
WO1997012549A1 PCT/JP1996/002896 JP9602896W WO9712549A1 WO 1997012549 A1 WO1997012549 A1 WO 1997012549A1 JP 9602896 W JP9602896 W JP 9602896W WO 9712549 A1 WO9712549 A1 WO 9712549A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
imaging device
solid
ray image
Prior art date
Application number
PCT/JP1996/002896
Other languages
English (en)
French (fr)
Inventor
Terutoshi Fujita
Katsutoshi Itoh
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to DE69637732T priority Critical patent/DE69637732D1/de
Priority to EP96932819A priority patent/EP0858772B1/en
Priority to JP51416097A priority patent/JP4065563B2/ja
Priority to US09/051,193 priority patent/US6281506B1/en
Publication of WO1997012549A1 publication Critical patent/WO1997012549A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/501Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/58Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/64Circuit arrangements for X-ray apparatus incorporating image intensifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50005Imaging and conversion tubes characterised by form of illumination
    • H01J2231/5001Photons
    • H01J2231/50031High energy photons
    • H01J2231/50036X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50057Imaging and conversion tubes characterised by form of output stage
    • H01J2231/50068Electrical

Definitions

  • the present invention relates to an X-ray imaging apparatus having a built-in camera for extracting an electric image signal, and more particularly to an improvement in a camera unit having a function of rotating an image.
  • An X-ray image pickup device is useful for examining the inside of a human body or an object, and after converting a transmission density distribution or an X-ray image of X-rays radiated on the human body or an object into a visible light image, furthermore, an electrical This is converted into an image signal, and for example, an X-ray transmission density distribution or an X-ray image is displayed on a monitor device in real time, or image information is stored in a storage device such as a computer and used.
  • the X-ray image imaging device consists of an X-ray generator that generates X-rays, and an X-ray image intensifier tube that intensifies and converts the X-rays, that is, X-ray images from the X-ray generator that have passed through the object, into visible light images
  • an X-ray image intensifier tube that intensifies and converts the X-rays, that is, X-ray images from the X-ray generator that have passed through the object, into visible light images
  • It has a monitor device that enables real-time monitoring using a camera that captures an output image and outputs an electrical image signal.
  • X-rays emitted from the X-ray generator pass through the object and enter the X-ray image intensifier tube as an X-ray image.
  • the X-ray image is enhanced by the X-ray image intensifier, converted into a visible light image, and displayed on the output surface of the X-ray image intensifier as an output image.
  • the output image of the output surface of the X-ray image intensifier is transmitted to the imaging surface of the imaging device of the camera via the lens.
  • the image projected on the imaging surface of the imaging device is converted into an electric image signal by the imaging device and displayed on a monitor device.
  • an image capturing apparatus including an X-ray generator, an X-ray image intensifier tube and a camera interposed therebetween is moved in an arbitrary direction and position around the subject.
  • a method of rotating the camera includes fixing a substrate including a camera, a circuit for operating the camera, and a signal circuit for processing a video signal obtained from the camera to a disk-shaped flange, There is a method of rotating the camera with respect to the X-ray image intensifier by fixing the flange with a bearing to the support frame of the lens fixed to the X-ray image intensifier.
  • FIG. 15 is a schematic view showing an example of an X-ray image capturing apparatus capable of rotating an image used today.
  • the X-ray image capturing apparatus 101 converts an X-ray, that is, an X-ray image from an X-ray generator obtained by capturing an object to be photographed, into a visible light image and converts it.
  • the X-ray image intensifier tube 111 fixed to the output surface 113 side of the X-ray image intensifier tube 111, captures the output image output on the output surface, converts it to an image signal, and shows it It has a camera 121 as an imaging device for outputting an image to a monitor device that does not.
  • a support frame 123 a is fixed to the output side of the housing 111 containing the X-ray image intensifier tube 111.
  • the camera 1 2 1 is formed into a disc-shaped lens 1 2 3 fixed at a predetermined interval with respect to the output image 1 1 4 of the X-ray image intensifier 1 1 CCD image sensor 1 2 7 positioned at the imaging position of the circuit board 1 2 5, motor 1 2 9 rotating the circuit board 1 2 5, and imaging output via the circuit board 1 2 5 It consists of a signal transmission 131, which guides the output signal of the element 127 to the outside and supplies power to the imaging element 127.
  • the image sensor 1 27 is formed by a circuit board 125 that is rotatably held by a support frame 125 a fixed to the support frame 123 a and a visible light image that has passed through the lens 123. Can be rotated around the central axis A of.
  • the signal transmission leakage 1 3 1 is a gear 1 3 3 that rotates the image sensor 1 2 7 and the circuit board 1 2 5 around the center of the visible light image passing through the lens 1 2 3, a support frame 1 2 5 a Concentrically with the auxiliary frame 125b inserted in the support frame 125a, it is rotatably mounted by the bearing 135, and the output signal output from the image sensor 127 is sent to the outside. It is fixed to the output electrode drum 1 3 7 and the auxiliary frame 1 2 5 b of the cylindrical support frame 1 2 5 a, and connects the multiple ring electrodes 1 3 6 of the drum 1 3 7 with the signal line and the power line. It has a plurality of brushes 1 39 that are electrically connected.
  • the electrode drum 1337 is coaxially arranged with the center of rotation when the circuit board 125 and the gear 133 are rotated, that is, the center axis A of the visible light image passing through the lens 123.
  • the output signal of the image pickup device 127 outputted through the circuit board 125 is output from the electrode drum of the signal transmission mechanism 131.
  • the image is outputted from the image pickup device 127 to an external device (not shown) by the device 13 7 and the brush 13 9. According to this configuration, the limitation of the rotation angle of the image sensor 127 due to the influence of the signal line or the electric wire attached to the circuit board 125 is avoided.
  • the length of the camera that is, the camera 122 in the rotation axis direction is increased by using the electrode drum 1337.
  • the lens 123 and the imaging center of the output image 111 of the X-ray image intensifier tube 111 capture the image.
  • the center and the center of the imaging surface of the image sensor 127 are rotated by the rotation of the image sensor 127. Power ⁇ Must be united.
  • the image forming surface of the output image 114 by the lens 123 should be brought into contact with the imaging surface of the image sensor 127 without inclination.
  • An object of the present invention is to provide an X-ray image capturing apparatus having a small-sized camera, which has a low component cost and a low cost, has no limitation on the rotation angle even when the object is rotated.
  • the present invention has been made based on the above problems, and has an X-ray image intensifier tube for converting an X-ray image into a true circular output visible light image; and an optical lens structure for forming the output visible light image at a predetermined position.
  • a solid-state imaging device disposed at an image forming position by the optical lens assembly; a signal processing circuit board for processing the output image signal of the solid-state imaging device; and a solid-state image sensor fixed to the X-ray image intensifier tube.
  • the solid-state imaging device is rotated about the optical center axis with respect to the X-ray image intensifier tube, and the support frame on which the optical lens structure, the solid-state imaging device, and the signal processing circuit board are primarily supported.
  • An X-ray image pickup apparatus comprising: a rotation mechanism configured to rotate the signal processing circuit board; the signal processing circuit board being disposed across the optical center axis; the solid-state imaging device being fixed to the signal processing circuit board;
  • the structure is A rotation drive motor is fixed to the processing circuit board directly or mechanically via another member, and a rotation drive motor is fixed to the support frame, and the solid-state imaging device and the signal processing circuit board are fixed to the support frame by the motor.
  • a structure in which the optical lens structure is integrally rotated.
  • a plurality of slip rings are provided in the vicinity of the solid-state imaging device at the same position and rotatably together with the solid-state imaging device.
  • Another object of the present invention is to provide an X-ray image pickup apparatus characterized in that a drive control power supply and an output image signal are fed to the solid-state image pickup device and the signal processing circuit board via a ring.
  • the X-ray image capturing apparatus of the present invention is characterized in that the slip ring is fixed to a signal processing circuit board or a rotatable flat plate which is disposed substantially perpendicularly to the optical center axis separately therefrom. I do.
  • the X-ray image pickup apparatus of the present invention includes an anamorphic lens system in which the optical lens structure includes a cylindrical lens, the solid-state image pickup device has a ⁇ -shaped image receiving surface, and the output of the X-ray image intensifier tube is controlled by the anamorphic lens system. It is characterized in that one direction of the visible light image is compressed or expanded to form an elliptical image on the image receiving surface of the solid-state imaging device so that the major-axis directions match each other. Further, the X-ray image pickup apparatus of the present invention is characterized in that the optical lens structure is located in a space inside the support frame, and the motor is arranged in a space around the optical lens structure.
  • the X-ray image pickup apparatus of the present invention is characterized in that the optical lens structure has a built-in electric diaphragm, and the CTi signal of the electric diaphragm is supplied via a slip ring.
  • the X-ray image capturing apparatus is characterized in that the cylindrical lens forms an image so as to compress the image in the vertical direction of the solid-state image sensor.
  • FIG. 1 is a schematic diagram showing an X-ray image capturing apparatus that captures an output image on an output surface of an X-ray image intensifier tube to which an embodiment of the present invention is applied;
  • FIG. 2 is a schematic diagram showing directions of rotation of an imaging device and an X-ray image forming unit holding device in the X-ray image imaging device shown in FIG. 1,
  • FIG. 3 is a cross-sectional view showing the X-ray image intensifier tube and the imaging device of the X-ray image imaging device shown in FIG. 1 in detail,
  • FIG. 4 is a partially enlarged view illustrating in detail the imaging device fixed to the X-ray image intensifier tube as shown in FIG. 3,
  • FIG. 5 is a schematic diagram showing respective states of an image sensor and a slip ring of the image pickup device shown in FIG. 4,
  • FIG. 6 is a schematic diagram showing the relationship between the image receiving surface of the image sensor of the imaging device shown in FIG. 4 and the output image of the output surface of the X-ray image intensifier tube passing through the anamorphic lens;
  • FIG. 7 is a schematic diagram showing the relationship between the shape of the imaging surface of the imaging device of the imaging device shown in FIG. 1 and the magnification of the lens,
  • FIG. 8 is a schematic diagram showing the relationship between the image receiving surface of the image sensor of the imaging device shown in FIG. 4 and the aberration of the output image of the output surface of the X-ray image intensifier tube passing through the anamorphic lens;
  • FIG. 9 is a schematic diagram illustrating a method of fixing the camera and the lens of the imaging device shown in FIG. 4,
  • FIG. 10 explains in more detail the method of fixing the camera and lens shown in FIG. Partially enlarged view
  • FIG. 11 is a schematic cross-sectional view showing another embodiment of the imaging apparatus shown in FIG. 1, and FIG. 12 is an output surface of an X-ray image intensifier tube to which another embodiment of the present invention is applied.
  • FIGS. 13A, 13B, and 13C are schematic diagrams showing the positional adjustment relationship of a lens combined with the camera of the X-ray imaging apparatus shown in FIG. 12, respectively.
  • Fig. 14 shows the assembly drawing of the X-ray image intensifier and camera, and
  • FIG. 15 is a schematic diagram showing an example of an imaging device of a known X-ray image imaging device.
  • FIG. 1 is a schematic view showing an example of an X-ray image pickup apparatus to which an embodiment of the present invention is applied.
  • the X-ray image capturing apparatus 1 includes an X-ray generator 11 that generates X-rays, and X-rays, that is, X-rays, from the X-ray generator 11 that has passed through the ⁇ ⁇ body 0.
  • an X-ray image intensifier tube 13 for converting an image into an image and converting it, and using a recording medium such as a film or a photograph to convert the output image converted to a visible light image through the X-ray image intensifier tube 13
  • X-ray image intensifier tube 13 to display an output image converted to a visible light image by the X-ray image intensifier tube 13 on the monitor device 21 capable of monitoring without
  • a camera 31 that captures the output image and outputs an electrical image signal.
  • the output image of the output screen 17a of the X-ray image intensifier tube 13 is formed on the rectangular imaging surface of the CCD image sensor 37 of the camera 35 by the anamorphic lens system 33 of the camera 31.
  • the visible light image formed on the imaging surface of the image sensor 37 is converted into an image signal by the image sensor 37, subjected to predetermined image processing by the image processing device 39, and displayed on the monitor device 21. Is done.
  • the X-ray imaging apparatus 1 has an X-ray generator 11, an X-ray image intensifier tube 13 arranged on the opposite side of the subject 0, and a camera 31 as shown in FIG.
  • the X-ray generator 11 and the camera 31 are connected by a C-shaped C-arm 19.
  • the X-ray generator 11 and the camera 31 can image the subject 0 from any direction by rotating the C-arm 19.
  • the X-ray image intensifier tube 13 and the X-ray generation device are required to observe the state of the subject 0 from various directions.
  • the C-arm 19, which holds the unit 11 integrally is rotated in the direction of the arrow ⁇
  • the output image of the X-ray image intensifier tube 13, which is made to the image sensor 37 by the lens 33 is In order to make the monitor device 21 output 0 so that it is in an upright state, the image sensor 37, that is, the camera 31 is reversed in the direction of the arrow 8) according to the amount of rotation of the X-ray image intensifier tube 13. Rotate.
  • FIG. 3 is a cross-sectional view illustrating an X-ray imaging unit 41 integrally assembled with the X-ray image intensifier tube 13 and the camera 31 of the X-ray imaging apparatus 1 shown in FIGS. 1 and 2. It is a figure.
  • the X-ray image intensifier tube 13 has an input screen 15 a formed inside an input window 15 made of, for example, aluminum at one end of the vacuum envelope 14.
  • an output fluorescent screen 17 On the inner surface of the output glass substrate 17 at the other end of the vacuum envelope 14 facing the input screen 15a, there is an output fluorescent screen 17 that outputs a visible light image that can be captured by the camera 31. a is formed.
  • the first to third focusing electrodes 18 a, 18 1) and 18 (;, and the anode 19 are arranged. .
  • the X-rays emitted from the X-ray generator 11 pass through the subject 0 and are input as an X-ray image to the input screen 15a of the X-ray image intensifier tube 13.
  • the X-ray image is converted into an electron image on the input screen 15a, and accelerated and focused by the first to third focusing electrodes 18a, 181 118 and 18c and the anode 19, and It is converted to a visible light image by the output screen 17a.
  • the X-ray image intensifier tube 13 is attached to the housing 42, the insulator 42b and the plurality of columns 42c, for example, at the outer periphery near the input window 15 and the outer periphery near the output glass 17. It is more firmly fixed.
  • the output-side end of the housing 42 is formed of a bottom plate 42 a having high mechanical strength and having an opening with a predetermined diameter at the center corresponding to the output glass 17.
  • the camera 31 is attached to the back of the bottom plate 4 2 a.
  • a camera flange 43 composed of a high strength L and a metal disk is fixed with six columns 49.
  • a rotating flange 47 a part of which is a gear 47a, is rotatably held via a bearing 45.
  • An anamorphic lens 33 is fixed to the front of the rotating flange 47, and a circuit board 55 to which a slip ring electrode substrate 57 and a CCD imaging element 37 are fixed is integrally fixed to the rear. ing.
  • These are endlessly rotatable by a motor 51 fixed to the force flange 43.
  • Power and signals between the circuit board 55 and an external device such as a monitor connected to the external cable 58 are transmitted through the plurality of slip rings of the electrode board 57 and the plurality of brushes 56 in contact therewith.
  • the camera 31 is covered with a shield case 35.
  • a high-voltage power cable 42 d is connected to the X-ray image intensifier tube through a part of the housing 42.
  • the camera 31 has the lens 33 and the image sensor 37 arranged at the image forming position of the output image passing through the lens 33, and the visible light emitted from the output fluorescent screen 17a. Convert the image to an electrical signal.
  • the lens 33 is fixed at a predetermined distance to the output screen 17a of the X-ray image intensifier tube 13 by a bottom plate 4 2a.
  • the rotatable rotating flange 47 is rotatably held about a central axis A passing through the output screen 17 a of the X-ray image intensifier tube 13.
  • the aperture of the lens 33 can be adjusted by an aperture motor (not shown) by an external control signal.
  • An electric zoom lens including an electric zoom mechanism 33 b capable of adjusting the magnification by changing the distance between the lenses via a zoom motor.
  • the camera flange 43 can be brought into contact with a slip ring, which will be described in detail later with reference to FIG. 5, and even if the rotating flange 47 shown below is rotated, the camera flange 43 is electrically connected to the slip ring.
  • a plurality of contact brushes 56 are arranged so as to enable conduction and do not limit the amount of rotation of the rotating flange 47.
  • each brush 56 is arranged at a predetermined position on a concentric circle defined with the rotation axis A as a center.
  • Prop 4 9 Force ⁇ Inside the circle connecting the positions to be placed, rotate the motor 51 1 so that it engages with the gear 4 7a of the rotating flange 4 7 by rotating the rotating flange 4 7 and rotating flange 4 7 A gear 53 is connected to the lens 33 connected to the lens 33.
  • the rotating flange 47 includes an image sensor 37, a circuit (not shown) for driving the image sensor 37, and a circuit unit 39 including an image processing circuit for processing a video signal photoelectrically converted by the image sensor 37.
  • the mounted circuit board 55 is fixed.
  • An electrode board 57 having a plurality of slip rings 57 a is arranged between the gear 47 a and the circuit board 55 on the cylindrical portion of the rotating flange 47.
  • the circuit board 55 and the electrode board 57 are separated from each other by a predetermined interval on the rotating flange 47 by four insulating spacers 58a and the same number of screws 58 arranged between them. It is firmly fixed.
  • the electrode substrate 57 has a plurality of concentric electrodes around the rotation axis A, that is, a slip ring 57a. These slip rings are connected to a signal line and a power line from the circuit board 55, a TO aperture 33a of the lens 33, a signal line of the electric zoom 3b, and the like.
  • the circuit board 55 and the electrode board 57 to which the image sensor 37 is fixed at the center are assembled integrally with the rotary flange 47 as a support.
  • the rotation of the motor 51 fixed to the camera flange 43 is transmitted to the meshed gears 53 and 47a, and the circuit board 55 and the electrode board 5 are moved in any direction and in any direction. Endlessly rotated to any angle.
  • the power supplied to the circuit board 55 or the lens 33 and the video signal output from the image sensor 37 are transmitted to the rotating flange 47 by the slip ring 57 a and the brush 56 of the electrode board 57. It is reliably delivered without being limited by the rotation angle.
  • the output fluorescent screen 17a of the X-ray image intensifier 13 has a substantially circular shape.
  • the entire area of the output image to be output is incident on the imaging surface of the imaging element 37. In this case, there is no deviation between the axis passing through the lens 33, that is, the rotation axis A and the imaging surface of the imaging element 37.
  • the circuit board 55 and the electrode board 57 have a relatively thin disk mounted perpendicular to the center axis A, and the lens 33 is fixed in front of the rotating flange 47. Therefore, the size of the X-ray image pickup device, that is, the length in the axial direction can be suppressed shorter than that of the conventional device shown in FIG.
  • the high component processing accuracy required to match the rotation axis A when the camera 31 is rotated with the center axis of the lens 33, that is, the optical axis, is appropriately secured only for the rotating flange 47. By doing so, sufficient assembly accuracy can be obtained, and the cost is reduced.
  • the size of the output screen 17a of the X-ray image intensifier tube 13a is, for example, 30 mm in diameter, and the size of the light receiving surface of the CCD image sensor 37 is large.
  • the aspect ratio is 4: 3
  • the distance from the output screen 17a to the front end of the lens 33 is E
  • the distance between the rear end of the lens 33 and the imaging surface 37a of the CCD image sensor 37 is E.
  • F is the distance between them, it is set to F-EZ2. Therefore, the depth of focus of the lens on the image sensor side is shallow, but the lens 33 and the image sensor 37 are both fixed to the rotating flange 47 and rotate together, so that the optical axis does not change and the focus is not out of focus. There is an advantage that it hardly occurs.
  • the optical image P output from the output screen 17 a of the X-ray image intensifier tube 13 is a cylindrical lens 33 of an anamorphic lens 33.
  • the image is compressed in the vertical direction, and is projected as an elliptical optical image C on the horizontally long imaging surface 37 a of the solid-state imaging device 37.
  • the anamorphic lens 33 shown in FIG. 1 includes one or a plurality of cylindrical lens systems 33c and a single lens system 33d. As shown in FIG. 7, the anamorphic lens 33 forms a substantially circular output image P of the X-ray image intensifier tube 13 so as to be inscribed in the outer edge of the rectangular imaging surface 37 a of the imaging device 37. In order to project, the short side direction Q of the imaging surface of the imaging device 37 is reduced.
  • One is to form a perfect circular image B so as to be in contact with the top and bottom of the imaging surface 37a when there is no operation of the cylindrical lens system, and enlarge the image in the horizontal direction by the operation of the cylindrical lens system.
  • the other is a method in which a perfect circular image P is vertically oriented by a cylindrical lens system so as to be in contact with the left and right sides of the imaging surface 37a as in this embodiment. This is a method of compressing an image.
  • an anamorphic lens having a cylindrical lens system a force that can realize both of these methods.
  • an aberration is generated in a horizontal image for enlarging an image, and the horizontal resolution is deteriorated. Aberration occurs in the direction.
  • the television system of the X-ray image capturing apparatus 1 is the NTSC system, and the number of scanning lines is standardized to 525. Of these, approximately 485 scanning lines appear on the effective screen, and accordingly, approximately 485 pixels are arranged in the vertical direction of the effective imaging surface of the corresponding solid-state imaging device.
  • the number of pixels in the effective imaging plane in the horizontal direction is 768 in the so-called 400,000 pixel CCD solid-state imaging device often used in X-ray imaging devices, and all pixels in the horizontal direction are used at the center. Is done. Since the resolution of the solid-state imaging device camera is determined by this number of pixels, the vertical resolution is worse than the horizontal resolution.
  • the deterioration of the vertical resolution due to the vertical aberration generated by the cylindrical lens can be tolerated up to 40% of the horizontal direction. From this, aberrations due to the cylindrical lens system according to the present invention are practically negligible. Therefore, this effect does not need to be corrected by adding multiple lenses, which means that the anamorphic lens system can be composed of a single cylindrical lens.
  • the aberration of the image projected by the anamorphic lens is also generated by the single focus lens system, which is generated equally in all directions. Therefore, a single-focal lens system requires a small aberration, and it is easy to design a single-focal lens system with a small aberration composed of a plurality of spherical lenses. In addition, single focus lenses composed of spherical lenses are inexpensive.
  • FIGS. 9 and 10 show a structure for easily fine-tuning this. That is, the lens body 61 containing the anamorphic lens 33 is fixed to the camera 31 via the mounting bracket 62.
  • the lens body 61 can be rotated at an arbitrary angle with respect to the mounting bracket 62, and can be fixed by a fixing screw 63.
  • the mounting bracket 62 is screwed into a corresponding female screw portion of the rotating flange 47 with a standardized screw 64 called a C-mount and mounted.
  • the lens body 61 To attach the lens body 61 to the camera 32, attach the mounting bracket 62 to the lens body 61 in advance, and screw it into the lens mounting portion of the rotating flange 47. At this time, the angle of the anamorphic lens 33 with respect to the solid-state imaging device 37 is undefined. Next, the entire X-ray imaging apparatus 1 is configured and operated, and the lens body 61 is rotated to a position where a true circular image force is reproduced by observing an image on the television monitor, and fine adjustment is performed. Tighten the fixing screw 63 at the position where a true circular image is displayed correctly.
  • the elliptical optical image has the major axis, that is, the horizontal axis that is four times three times the minor axis, that is, the vertical axis, and the imaging surface 3a. 7 a ⁇ a so that it contacts the top, bottom, left and right sides of the surface.
  • the video signal distorted into an ellipse obtained from the camera 31 is subjected to compression processing only in the horizontal direction by the image processing device 39, and is output to the CRT television monitor 21 with the output optical image of the original X-ray image intensifier tube. It is displayed as the same perfect circular image.
  • the image may be directly supplied to the CRT television monitor 21 having a deflection size of 1: 1 to display a true circular image. This can be realized simply by reducing the amplitude of the horizontal deflection of the CRT TV monitor 21.
  • the force having a structure capable of rotating the entire anamorphic lens body with respect to the mounting bracket to the camera is not limited thereto.
  • one or more pieces that act on the magnification in only one direction in the anamorphic lens system Similar results can be obtained by using a structure that can rotate only the lens composed of.
  • connection between the lens body and the camera is not limited to the screw-in method.
  • two orthogonal directions with different lens magnifications can be solid-state. It is possible to precisely match the horizontal and vertical directions of the image sensor. For this reason, it is not necessary to provide a special dedicated mounting at the mounting part of the solid-state imaging device camera and the lens. For example, by using a screw-in type mounting mechanism, the cost can be reduced.
  • incorporation of the solid-state imaging device into a camera does not require any special precision in the rotation direction with respect to the lens mounting portion, and the camera can be easily manufactured.
  • the mounting of the anamorphic lens system and the solid-state image sensor can be performed by using a standard screw system called C-mount, which is widely used for the lens and the lens.
  • C-mount a standard screw system
  • a relatively inexpensive X-ray imaging device can be configured by incorporating it into a solid-state image sensor ⁇ > o
  • the cylindrical lens 33 of the anamorphic lens 33 is constituted by one cylindrical lens. It can also be composed of a cylindrical lens of ⁇ . Further, although the cylindrical lens 33c and all the constituent lenses of the single focus lens system 33d are arranged and integrated in one housing, they may be separated. By using a cylindrical lens for the anamorphic lens 33, an anamorphic optical device smaller and less expensive than an anamorphic lens system using an expensive prism lens can be configured.
  • FIG. 11 is a schematic diagram showing another embodiment of the camera shown in FIG. Note that the same components as those shown in FIG. 4 are denoted by the same reference numerals, and detailed description is omitted.
  • the camera 31 shown in FIG. 11 includes a single substrate 55 on which a CCD imaging device 37, a circuit section 39, and a slip ring 57a are provided.
  • the length of the camera in the axial direction can be reduced, and the X-ray imaging apparatus can be made more compact.
  • FIGS. 12 to 14 show the same or the same CCD image pickup device in combination with a plurality of types of X-ray image intensifier tubes with different fluorescent screen diameters output by a single camera 31.
  • An X-ray imaging device that can make almost the same image c
  • There are many types of commonly used X-ray image intensifiers such as 15 mm, 20 mm, 25 mm, and 30 mm in diameter of the perfect circular output optical image.
  • some solid-state imaging devices such as CCD imaging devices have imaging surfaces of many sizes, such as 2 Z 3 inch, 1 Z 2 inch, and 1/3 inch format size.
  • anamorphic optical devices having different reduction ratios are required.
  • one of the three lens systems needs to be replaced in order to change the reduction ratio.
  • optical devices, solid-state imaging devices, and their signal processing circuit elements have been integrated into the housing of the X-ray image intensifier tube to make them compact and non-adjustable. It is not desirable to prepare many types and combine them in various ways.
  • an object of the present invention is to provide an X-ray imaging apparatus capable of changing an image magnification without changing an anamorphic optical apparatus having a specific lens configuration.
  • an anamorphic optical device is provided with a single focus lens system composed of a plurality of lenses and a cylindrical lens system composed of two or more lenses, and one or more lenses of the cylindrical lens system are used as other components.
  • This is an X-ray imaging apparatus configured to be moved to an arbitrary position or a fixed position along the optical axis direction with respect to the lens.
  • a cylindrical lens system 32 composed of two cylindrical lenses 32a and 32b is arranged on the X-ray image intensifier tube side, and a plurality of spherical lenses are arranged on the solid-state imaging device side. Become a single focus lens system 3 3d force ⁇ arranged.
  • the one cylindrical lens 32a on the X-ray image intensifier tube side of the two cylindrical lenses has a structure that can move along the optical axis direction with respect to the other lenses. .
  • the anamorphic lens 33 can change the lens action of the cylindrical lens system 32 independently of the single focus lens system 33 d by moving one lens in the cylindrical lens system 32. Therefore, it is possible to change the lens action only in the direction of receiving the lens action of the cylindrical lens system and the single focus lens system, and to adjust the image forming position to the position where the image is formed by the lens action of the single focus lens system only.
  • Fig. 13 shows the relationship between each lens when using the anamorphic lens 33, the output images Pa, Pb, and Pc of the X-ray image intensifier tube 13 and the position and image diameter of the imaging surface 37a of the solid-state imaging device 37. ing.
  • (A) of the figure shows the case where the diameter of the output optical image Pa of the X-ray image intensifier tube 13 is 25 mm
  • (b) of the figure shows the case where the Pb is 2 Omm
  • (c) of the figure Shows the case where Pc is 15 mm.
  • the size of the imaging surface 37a of the solid-state imaging device is the same.
  • the distance between the output optical image of the X-ray image intensifier tube and the solid-state imaging device imaging surface is D1a, Dlb, D1c
  • the distance between the solid-state imaging device imaging surface and the lens 33 is D2a.
  • D2b, D2c the distance between the two cylindrical lenses 32a, 32b is D3a, D3b, D3c
  • the distance between the X-ray image intensifier tube and the cylindrical lens 32a close to it is D4a, D4b, D As 4c, they can be changed.
  • the positional relationship between the cylindrical lens 32b and the single focus lens system 33 on the solid-state imaging device side and the distance between them remain unchanged.
  • an elliptical image C of the same size can be formed on the imaging surface 37a of the solid-state imaging device.
  • the same size elliptical image C is formed on the imaging surface 18a of the solid-state image sensor. It is imaged.
  • FIG. 14 shows a specific example of a combination state of an X-ray image intensifier, an anamorphic lens, and a solid-state imaging device, and a mechanism for changing each distance by the combination.
  • the cylindrical lens 32a on the X-ray image intensifier tube side is supported by a support structure 71, which is movably supported along the housing 72 along the optical axis direction. Thereby, the distance D3 between the cylindrical lenses 32a and 32b can be adjusted.
  • the structure for moving is omitted.
  • the lenses constituting the cylindrical lens 32b and the single focus lens system 33d on the solid-state image sensor side are supported by the support structure 73; T together with the lens in the optical axis direction along the body 72. It is movably supported along.
  • the connecting portion of the anamorphic lens 33 with the rotating flange of the housing 72 is provided with a male screw, and the connecting portion of the rotating flange 47 is connected with a female screw force.
  • the distance D 2 between the imaging surface of the solid-state imaging device and the analytic lens 33 is roughly determined by inserting a ring spacer 74 between the body 72 and the rotating flange 47. Further, the distance can be precisely adjusted by moving the support structure 73 in the housing. Also, the distance between the output fluorescent screen 17a of the X-ray image intensifier tube and the imaging surface 37a of the solid-state imaging device 37 is set between the bottom plate 42a and the camera flange 43 to connect them. It can be adjusted by the length of the support 49.
  • the cylindrical lens is moved and fixed only at several types of positions. Adjustment can be omitted by making it possible.
  • this anamorphic lens 33 is an elliptical image of the same size at different magnifications by moving one lens of the cylindrical lens system along the optical axis direction with respect to the other lens. It is capable of forming an image on the imaging surface of a solid-state image sensor. Therefore, it is possible to cope with various X-ray image intensifier tube output image diameters with a single optical lens and image sensor configuration.
  • a single optical lens system can be used for an X-ray image intensifier having a different output image diameter or a solid-state imaging device having a different imaging surface size. . Therefore, a low-cost X-ray imaging apparatus can be realized comprehensively without using a large number of anamorphic optical systems having different magnifications.
  • a CCD sensor having a substantially square image receiving surface has been developed today, and in this case, an anamorphic lens may not be used.
  • the X-ray image capturing apparatus includes a lens, an image sensor, a circuit for migrating the image sensor, and a substrate provided with a circuit for processing a video signal obtained from the image sensor.
  • -It has a camera that is rotatable physically, and even if the X-ray image intensifier tube and the X-ray generator are rotated around the object, it can output the image output on the output surface. , Can be displayed on the monitor device as an upright image if necessary.
  • an X-ray image capturing apparatus that hardly shifts the center of the X-ray image intensifier tube, the lens, and the image sensor, and does not cause the focus shift is provided at low cost.

Description

明 細 書
X線像撮像装置 技術分野
この発明は、 画像電気信号を取り出すカメラを内蔵する X線像撮像装置に関し、 特に画像を回転する機能を有するカメラ部の改良に関する。
背景技術
X線像撮像装置は、 人体や物体の内部を調べるために有用であり、 人体や物体 に照射された X線の透過濃度分布または X線像を可視光像に変換した後、 さらに、 電気的画像信号に変換して、 例えば、 モニタ装置に、 X線の透過濃度分布または X線像をリアルタイムで表示または画像情報をコンンピュータ等の記憶装置に保 存して利用するものである。
X線像撮像装置は、 X線を発生する X線発生器と、 対象物を通過した X線発生 器からの X線すなわち X線像を可視光像に増強して変換する X線像増強管と、 X 線像増強管により可 像に変換された出力像を、 モニタ装置に X線像増強管に より可^:像に変換された出力像を表示させるために、 X線像増強管の出力像を 撮像して電気的画像信号を出力するカメラを用いてリアルタイムでモニタ可能と するモニタ装置を有している。
X線発生器から放射された X線は、 対象物を通過し、 X線像として X線像増強 管に入射する。 X線像は、 X線像増強管により増強され、 さらに可視光像に変換 されて、 出力像として X線像増強管の出力面に表示される。
X線像増強管の出力面の出力像は、 レンズを介してカメラの撮像素子の撮像面 に^される。 撮像素子の撮像面に投影された像は、 撮像素子により電気的画像 信号に変換され、 モニタ装置に表示される。
X線像の撮像装置においては、 X線発生器と被写体を挟んで配置した X線像増 強管およびカメラを含む撮像装置を、被写体の回りの任意の方向および位置に移 動させる。
このような X線像撮像装置においては、 被写体の回りを回転する方角と 向 に、 カメラを回転させて観察者が画像の位置を任意の方向に回転させて画像の方 向を修正すること力必要となる。
上述した X線像撮像装置において、 カメラを回転させる方法としては、 カメラ とカメラを ΙΚ¾ιする回路とカメラから得られる映像信号を処理する信号回路を含 む基板を円盤状のフランジに固定し、 X線像増強管に固定されたレンズの支持枠 に、 ベアリングによりフランジを固定することで、 X線像増強管に対してカメラ を回転させる方法がある。
し力、しな力《ら、 この方法では、 撮像素子を含むカメラが回転されることにより、 基板に取り付けられた信号線および電源線に、 捩れが生じる問題がある。 この場 合、 信号線および電,が捩じ切れることがないよう回転角度力制限される。 こ のことは、 対象物を観察する際に、 カメラを 向に回転させなければ所定の回 転位置に到達しない等の理由により、 観察のための時間が増大される問題がある。 第 1 5図は、 今日利用されている画像回転可能な X線像撮像装置の一例を示す 概略図である。
第 1 5図に示されるように、 X線像撮像装置 1 0 1は、 被撮影対象物を ® ¾し た X線発生器からの X線すなわち X線像を可視光像に増強して変換する X線像増 強管 1 1 1、 X線像増強管 1 1 1の出力面 1 1 3側に固定され、 出力面に出力さ れた出力像を撮像して画像信号に変換して図示しないモニタ装置に映像を出力さ せるための撮像装置としてのカメラ 1 2 1を有する。
X線像増強管 1 1 1力収容されたハウジング 1 1 5の出力側に、 支持枠 1 2 3 aが固定されている。
カメラ 1 2 1は、 支持枠 1 2 3 aにより X線像増強管 1 1 1の出力像 1 1 4に 対して所定の間隔で固定されたレンズ 1 2 3、 円盤状に形成され、 回転可能な回 路基板 1 2 5の結像位置に位置された C C D撮像素子 1 2 7、 回路基板 1 2 5を 回転するモータ 1 2 9、 並びに、 回路基板 1 2 5を経由して出力される撮像素子 1 2 7の出力信号を外部に案内し、 撮像素子 1 2 7を TOする電源を供給する信 号伝達 1 3 1により構成される。 このとき、 撮像素子 1 2 7は、 支持枠 1 2 3 aに固定された支持枠 1 2 5 aに回転可能に保持された回路基板 1 2 5により、 レンズ 1 2 3を通過した可視光像の中心軸 Aを回転軸として回転可能となる。 信号伝達漏 1 3 1は、 撮像素子 1 2 7および回路基板 1 2 5を、 レンズ 1 2 3を通過した可視光像の中心を回転軸として回転させるギヤ 1 3 3、 支持枠 1 2 5 aと同心円状に、 支持枠 1 2 5 aに挿入された補助枠 1 2 5 bに対してベアリ ング 1 3 5により回転可能に装着され、 撮像素子 1 2 7から出力された出力信号 を外部に出力する電極ドラム 1 3 7、 並びに円筒状の支持枠 1 2 5 aの補助枠 1 2 5 bに固定され、 «@ドラム 1 3 7の複数のリング電極 1 3 6と信号線および 電源線を電気的に接続する複数のブラシ 1 3 9を有している。 なお、 電極ドラム 1 3 7は、 回路基板 1 2 5およびギヤ 1 3 3が回転される際の回転中心すなわち レンズ 1 2 3を通過した可視光像の中心軸 Aに、 同軸に配置される。
第 1 5図に示した X線像撮像装置 1 0 1によれば、 回路基板 1 2 5を経由して 出力される撮像素子 1 2 7の出力信号は、 信号伝達機構 1 3 1の電極ドラム 1 3 7とブラシ 1 3 9により撮像素子 1 2 7から図示しない外部装置に出力される。 この構成によれば、 回路基板 1 2 5に取り付けられる信号線あるいは電^^の 影響による撮像素子 1 2 7の回転角の制限は回避される。
しかしながら、 第 1 5図に示した例では、 電極ドラム 1 3 7を用いることによ り、 カメラすなわちカメラ 1 2 1の回転軸方向の長さが増大する問題がある。 また、 カメラ 1 2 1としては、 どの回転位置においても画像を表示画面の中心 に表示させるため、 レンズ 1 2 3による X線像増強管 1 1 1の出力像 1 1 4の結 像中心と撮像素子 1 2 7の撮像面の中心と力《ー致すること力必要となることから、 撮像素子 1 2 7が回転されることで定義される回転軸と撮像素子 1 2 7の撮像面 の中心力《一致されなければならない。 さらに、 画像の周辺部で解像度が低下しな いようにするために、 レンズ 1 2 3による出力像 1 1 4の結像面を撮像素子 1 2 7の撮像面に傾きなく—致させることが必要となる。 そのために、 レンズ 1 2 3 の中心軸と撮像素子 1 2 7が回転されることで定義される軸が傾きなく一致して いることが要求される。 このことから、 電極ドラム 1 3 7とべァリング 1 3 5お よびべァリング 1 3 5と支持枠 1 2 5 aの補助枠 1 2 5 bを結合する場合、 それ ぞれの傾きおよび偏心が許容値に収まるよう、 組み立てる必要がある。 このこと は、 また、 電極ドラム 1 3 7、 支持枠 1 2 5 a並びに支持枠 1 2 3 aのそれぞれ に、 高い加工精度を必要とする。 従って、組立コストおよび部品コストが増大さ れる問題がある。
この発明の目的は、 部品コストおよび コストが低く、 対象物が回転される 場合であつても回転角度の制限がなく、 さらに小型のカメラを有する X線像撮像 装置を提供することにある。
この発明は、 上記問題点に基づきなされたもので、 X線像を真円形の出力可視 光像へ変換する X線像増強管と、 前記出力可視光像を所定位置に結像させる光学 レンズ構体と、 この光学レンズ構体による結像位置に配置された固体撮像素子と、 この固体撮像素子の,および出力画像信号の処理をする信号処理回路基板と、 上記 X線像増強管に 的に固定され且つ上言 B¾学レンズ構体、 固体撮像素子お よび信号処理回路基板が «的に支持された支持枠と、上記 X線像増強管に対し て上記固体撮像素子を光学中心軸を中心にして回転させる回転機構とを具備する X線像撮像装置において、 上記信号処理回路基板は上記光学中心軸を横切って配 置されるとともに上記固体撮像素子は前記信号処理回路基板に固定され、 上記光 学レンズ構体は前記信号処理回路基板に直接または他の部材を介して機械的に一 体的に固定され、 上記支持枠に回転駆動モータが固定されこのモータにより前記 支持枠に対して上記固体撮像素子、 信号処理回路基板および光学レンズ構体が一 体になって回転させられる構造になっており、 上記固体撮像素子の近傍に複数の スリップリングが同' C ^に且つ前記固体撮像素子とともに回転可能に設けられ、 このスリップリングを介して上記固体撮像素子および信号処理回路基板に駆動制 御電源および出力画像信号を fei するように構成されていることを特徴とする X 線像撮像装置を提供するものである。
またこの発明の X線像撮像装置は、 スリップリングが信号処理回路基板または それとは別に光学中心軸に対して略垂直に配置された回転可能な平板に同 狀に 固定されていることを特徴とする。
さらにこの発明の X線像撮像装置は、 光学レンズ構体がシリンドリカルレンズ からなるアナモフィックレンズ系を備え、 固体撮像素子は^形の受像面を有し、 上記アナモフィックレンズ系により X線像増強管の出力可視光像の一方向を圧縮 または伸張して楕円形状の像として固体撮像素子の受像面に相互の長径方向を一 致させて結像することを特徴とする。 またさらにこの発明の X線像撮像装置は、 光学レンズ構体が支持枠の内側空間 に位置し、 モータは光学レンズ構体のまわりの空間に配置されていることを特徴 とする。
さらにまたこの発明の X線像撮像装置は、 光学レンズ構体が、 電動絞りを内蔵 し、 この電動絞りの CTi信号がスリップリングを介して供給されることを特徴と する。
またさらにこの発明の X線像撮像装置は、 シリンドリカルレンズが、 固体撮像 素子の垂直方向に画像を圧縮するように結像させることを特徴とする。 図面の簡単な説明
第 1図は、 この発明の実施例が適用される X線像増強管の出力面の出力像を撮 像する X線像撮像装置を示す概略図、
第 2図は、 第 1図に示した X線像撮像装置における撮像装置と X線像形成ュニ ット保持装置の回転の方向を示す概略図、
第 3図は、 第 1図に示した X線像撮像装置の X線像増強管と撮像装置とを詳細 に示す断面図、
第 4図は、 第 3図に示したように X線像増強管に固定される撮像装置を詳細に 説明する部分拡大図、
第 5図は、 第 4図に示した撮像装置の撮像素子とスリップリングのそれぞれの 状態を示す概略図、
第 6図は、 第 4図に示した撮像装置の撮像素子の受像面とアナモフィックレン ズを通った X線像増強管の出力面の出力像の関係を示す模式図、
第 7図は、 第 1図に示した撮像装置の撮像素子の撮像面の形状とレンズの倍率 の関係を示す概略図、
第 8図は、 第 4図に示した撮像装置の撮像素子の受像面とアナモフィ ックレン ズを通った X線像増強管の出力面の出力像の収差の関係を示す模式図、
第 9図は、 第 4図に示した撮像装置のカメラとレンズとの固定方法を説明する 概略図、
第 1 0図は、 第 9図に示したカメラとレンズの固定方法をより詳細に説明する 部分拡大図、
第 1 1図は、 第 1図に示した撮像装置の別の実施例を示す概略断面図、 第 1 2図は、 この発明の他の実施例が適用される X線像増強管の出力面の出力 像を撮像する X線像撮像装置を示す概略図、
第 1 3 A図、 第 1 3 B図および第 1 3 C図は、 それぞれ、 第 1 2図に示した X 線像撮像装置のカメラに組み合わせられるレンズの位置調整の関係を示す模式図、 第 1 4図は、 X線像増強管およびカメラの組み立て図、 および、
第 1 5図は、 周知の X線像撮像装置の撮像装置の一例を示す概略図である。 発明の詳細な説明 以下、 図面を参照して、 この発明の実施例について詳細に説明する。
第 1図は、 この発明の実施例が適用される X線像撮像装置の一例を示す概略図 、あ^ >。
第 1図に示されるように、 X線像撮像装置 1は、 X線を発生する X線発生器 1 1と、 ¾^体 0を通過した X線発生器 1 1からの X線すなわち X線像を可 像 に増強して変換する X線像増強管 1 3と、 X線像増強管 1 3を介して可視光像に 変換された出力像を、 フィルムまたは写真の うな記録媒体を用いることなくモ ニタ可能とするモニタ装置 2 1、 並びに、 モニタ装置 2 1に対して X線像増強管 1 3により可視光像に変換された出力像を表示させるために、 X線像増強管 1 3 の出力像を撮像して電気的画像信号を出力するカメラ 3 1を有している。
X線像増強管 1 3の出力スクリーン 1 7 aの出力像は、 カメラ 3 1のアナモフ イツクレンズ系 3 3によりカメラ 3 5の C C D撮像素子 3 7の長方形の撮像面に される。 撮像素子 3 7の撮像面に された可視光像は、 撮像素子 3 7によ り画像信号に変換され、 画像処理装置 3 9により所定の画像処理が施されて、 モ ニタ装置 2 1に表示される。
ところで、 X線像撮像装置 1は、 第 2図に示すように X線発生器 1 1、 被検体 0の反対側に配置した X線像増強管 1 3およびカメラ 3 1を回転軸 Aを中心とし て回転させることにより被検体 0を様々な方向から観察可能に構成されている。 X線発生器 1 1とカメラ 3 1は、 C字型の Cアーム 1 9によって接続されてい る。 X線発生器 1 1とカメラ 3 1は、 Cアーム 1 9を回転させることにより任意 の方向から被検体 0を撮像可能になっている。
このように、 X線像増強管 1 1を回転可能な X線像撮像装置 1においては、 被 検体 0の状態をさまざまな方向から観察するために、 X線像増強管 1 3および X 線発生器 1 1を一体的に保持する Cアーム 1 9を矢印 αの方向に回転させた場合、 レンズ 3 3により撮像素子 3 7に される X線像増強管 1 3の出力像を、 被検 体 0が直立した状態となるようモニタ装置 2 1に出力させるために、 X線像増強 管 1 3が回転された量に合わせて撮像素子 3 7すなわちカメラ 3 1が矢印) 8の方 向に逆回転させる。
第 3図は、 第 1図および第 2図に示した X線像撮像装置 1の X線像増強管 1 3 とカメラ 3 1力一体に組み立てられた X線像撮像ュニット 4 1を説明する断面図 である。
第 1図および第 2図に示した X線像撮像装置 1の X線像増強管 1 3とカメラ 3 1は、 この第 3図に示されるように、 X線像増強管 1 3のハウジング 4 2に、一 体的に組み立てられている。
X線像増強管 1 3は、 真空外囲器 1 4の一端部に、 例えば、 アルミニウム製の 入力窓 1 5の内側に形成された入力スクリーン 1 5 aを有している。 この入カス クリーン 1 5 aと対向する真空外囲器 1 4の他端部の出力ガラス基板 1 7の内面 には、 したカメラ 3 1が撮像可能な可視光像を出力する出力蛍光スクリーン 1 7 aが形成されている。
入力スクリーン 1 5 a出力スクリーン 1 7 aとの間には、 第 1ないし第 3の集 束電極 1 8 a , 1 8 1)ぉょび1 8 (;、 ならびに陽極 1 9が配置されている。
X線発生器 1 1から放射された X線は、被検体 0を通過し、 X線像として X線 像増強管 1 3の入力スクリーン 1 5 aに入力される。 X線像は、 入力スクリーン 1 5 aで電子像に変換され、 第 1ないし第 3の集束電極 1 8 a , 1 8 1^ぉょび1 8 cならびに陽極 1 9により加速 ·集束されるとともに出力スクリーン 1 7 aに より可視光像に変換される。 X線像増強管 1 3は、 例えば、 入力窓 1 5の近傍の外周部と出力ガラス 1 7の 近傍の外周部で、 ハウジング 4 2に、 絶縁体 4 2 bおよび複数の支柱 4 2 cによ り、 強固に固定されている。
ハウジング 4 2の出力側の端部は、 出力ガラス 1 7に対応する中心部が所定の 直径の開口を有する機械的強度の強いボトムプレート 4 2 aで構成されている。 ボトムプレート 4 2 aの裏面には、 カメラ 3 1力く取り付けられている。
ボトムプレート 4 2 aの後部には、 強度の強 L、金属円盤からなるカメラフラン ジ 4 3が 6本の支柱 4 9で固定されている。 カメラフランジ 4 3の中央部には、 外周の一部がギヤ 4 7 aになっている回転フランジ 4 7がべァリング 4 5を介し て回転可能に保持されている。 回転フランジ 4 7の前方には、 アナモフィ ックレ ンズ 3 3が固定され、 後方には、 スリップリング用電極基板 5 7および C C D撮 像素子 3 7力固定された回路基板 5 5が一体的に固定されている。 これらは、 力 メラフランジ 4 3に固定されたモータ 5 1によりェンドレスに回転可能になって いる。
電極基板 5 7の複数のスリップリング、 それに接する複数のブラシ 5 6を介し て回路基板 5 5と、 外部ケーブル 5 8に接続されるモニタ等の外部機器との間の 電源や信号が ί¾1される。 カメラ 3 1は、 シールドケース 3 5で覆われている。 なお、 ハウジング 4 2の一部を通して、 高圧電源ケーブル 4 2 dが X線像増強管 に接続されている。
上述したように、 カメラ 3 1は、 レンズ 3 3とレンズ 3 3を通った出力像の結 像位置に配置された撮像素子 3 7を有し、 出力蛍光スクリーン 1 7 aを出射され た可視光像を電気信号に変換する。
さらに、 第 4図により、 詳細に説明する。
レンズ 3 3は、 ボトムプレート 4 2 aにより X線像増強管 1 3の出力スクリー ン 1 7 aに対して所定の距離に固定されるカメラフランジ 4 3の概ね中央にベア リング 4 5を介して回転可能に保持された回転フランジ 4 7により、 X線像増強 管 1 3の出力スクリーン 1 7 aを通る中心軸 Aの回りを回転可能に保持されてい る。 また、 レンズ 3 3は、 外部からの制御信号により図示しない絞りモータにより 開口径を調整可能な ¾«/絞り 3 3 a、 詳述しない複数のレンズ、 並びに、 外部か らの制御信号により図示しないズームモータを介してレンズ相互の間隔を変化す ることにより倍率を調整可能な電動ズーム機構 3 3 bを含む、 電動ズームレンズ でのる。
カメラフランジ 4 3には、 第 5図を用いて後段に詳述するスリップリングと接 触可能で、 以下に示す回転フランジ 4 7が回転された場合であつてもスリップリ ングとの間に電気的導通を可能とし、 しかも、 回転フランジ 4 7が回転される回 転量に制限を与えることない複数の接触ブラシ 5 6力配置されている。 なお、 そ れぞれのブラシ 5 6は、 回転軸 Aを中心として定義される同心円上の所定の位置 に配置される。
カメラフランジ 4 3の中央には、 以下に示す回路基板 5 5に固定された撮像素 子 3 7の中心を、 レンズ 3 3を通る軸線すなわち回転軸 Aに一致させて保持する 6本の支柱 4 9により固定されている。
支柱 4 9力 <配置される位置を結んだ円の内側には、 回転フランジ 4 7のギヤ 4 7 aと嚙み合うように、 モータ 5 1の回転を回転フランジ 4 7および回転フラン ジ 4 7と接続されたレンズ 3 3に^するギヤ 5 3力 配置されている。
回転フランジ 4 7には、 撮像素子 3 7と、 撮像素子 3 7を駆動する図示しない 回路、 及び撮像素子 3 7で光電変換された映像信号を処理する画像処理回路 を含む回路部 3 9が設けられた回路基板 5 5が固定されている。
回転フランジ 4 7の筒状部あって、 ギヤ 4 7 aと回路基板 5 5との間には、 複 数のスリップリング 5 7 aを有する電極基板 5 7が、 配置されている。 これら、 回路基板 5 5及び電極基板 5 7は、 これらの間に配置された 4個の絶縁スぺーサ 5 8 a及び同数のねじ 5 8 により、 回転フランジ 4 7に、所定間隔をおいて、 強固に固定されている。
電極基板 5 7は、 第 5図に示すように、 回転軸 Aを中心とした同心円状の複数 の電極すなわちスリップリング 5 7 aを有している。 これらスリップリングには、 回路基板 5 5からの信号線及び電源線やレンズ 3 3の TO絞り 3 3 aおよび電動 ズーム 3 bの 信号線等 5 9力 接続される。 撮像素子 3 7が中央に固定された回路基板 5 5および電極基板 5 7は、 回転フ ランジ 4 7を支持体として、 一体的に組み立てられる。
この構造により、 カメラフランジ 4 3に固定されたモータ 5 1の回転は、 啮み 合ったギヤ 5 3及び 4 7 aに伝達され、 回路基板 5 5および電極基板 5 Ίが、 任 意の方向及び任意の角度に、 エンドレスに回転される。 この場合、 回路基板 5 5 あるいはレンズ 3 3に供給する電源および撮像素子 3 7から出力される映像信号 は、 電極基板 5 7のスリップリング 5 7 aおよびブラシ 5 6により、 回転フラン ジ 4 7の回転角度に制限されることなく、 確実に受け渡される。
また、 レンズ 3 3と撮像素子 3 7は、 回転フランジ 4 7の筒状部により一体に 回転されることから、 X線像増強管 1 3の概ね円形の出力蛍光スクリーン 1 7 a から概ね円形に出力される出力像の全域が、 撮像素子 3 7の撮像面に入射される。 この場合、 レンズ 3 3を通る軸線すなわち回転軸 Aと撮像素子 3 7の撮像面の中 、がずれることもない。
なお、 回路基板 5 5および電極基板 5 7は、 中心軸 Aを垂直に横切る方向の比 較的薄い円盤を近接して取り付けてあり、 レンズ 3 3は、 回転フランジ 4 7の前 方に固定されているので、 X線像撮像装置の大きさすなわち軸方向の長さは、 第 1 5図に示した従来の装置よりも短く抑えられる。
さらに、 カメラ 3 1が回転される際の回^軸 Aとレンズ 3 3の中心軸すなわち 光軸を一致させるために要求される高い部品加工精度は、 回転フランジ 4 7につ いてのみ適切に確保されることで、十分な組み立て精度が得られることから、 コ ストが低減される。
なお、 X線像増強管 1 3の出力スクリーン 1 7 aの大きさカ^ 例えば直径 3 0 mmであって、 C C D撮像素子 3 7の受光面の大きさ力く、 例えば一辺が 1 7 mm で、 縦横比が 4 : 3である場合に、 出力スクリーン 1 7 aからレンズ 3 3の前端 までの距離を Eとし、 レンズ 3 3の後端から C C D撮像素子 3 7の撮像面 3 7 a との間の距離と Fとすると、 F - EZ2に設定される。 そのため、 撮像素子側の レンズ焦点深度は、 浅いがレンズ 3 3および撮像素子 3 7がともに回転フランジ 4 7に固定されて一緒に回転するので、 光学軸の変化が起こらず、 かつ焦点の狂 いも生じにくいという利点がある。
0 次に、 アナモフィックレンズ 3 3とカメラ 3 1の撮像素子 3 7の関係について 詳細に説明する。
第 6図を参照すれば、 X線像増強管 1 3の出力スクリーン 1 7 aから出力され た光学像 Pは、 アナモフィックレンズ 3 3のシリンドリカルレンズ 3 3。により 垂直方向に圧縮され、 楕円形光学像 Cとして固体撮像素子 3 7の水平方向に長い 形の撮像面 3 7 aに、 投影される。
第 1図に示したアナモフィックレンズ 3 3は、 1枚または複数枚のシリンドリ カルレンズ系 3 3 cと単^^レンズ系 3 3 dで構成されている。 このアナモフィ ックレンズ 3 3は、 第 7図に示すように、撮像素子 3 7の長方形の撮像面 3 7 a の外縁に内接するように、 X線像増強管 1 3の概ね円形の出力像 Pを投影するた めに、 撮像素子 3 7の撮像面の短辺方向 Qを縮小する。
次に、 第 8図を用いて、 垂直方向を圧縮して C C Dの長方形の撮像面に投影す ることにより、 シリンドリカルレンズ系による収差の影響を低減することができ ることについて説明する。
シリンドリカルレンズ系による は、 画像の倍率を変更する方向については 大きく、 これに垂直な方向では小さい。 ここで、 シリンドリカルレンズ系を用い たアナモフィックレンズにより真円形の像を楕円形の像に変換して固体撮像素子 の撮像面に結像させるには、 第 8図に示すように 2通りの方法がある。
一つは、 シリンドリカルレンズ系の作用がない場合に撮像面 3 7 aの上下に接 するように真円形像 Bを結像させ、 シリンドリカルレンズ系の作用によりその水 平方向に像を拡大して楕円形像 Aとする方法であり、 もう一つは、 本実施例のよ うに、 撮像面 3 7 aの左右に接するように真円形像 Pをシンドリカルレンズ系に より垂^向に像を圧縮する方法である。
シリンドリカルレンズ系を有するアナモフィ ックレンズでは、 このどちらの方 法も実現できる力 前述の方法では、 像を拡大する水平方向の結像に収差が発生 して水平解像度が悪化し、 後述の方法では、 垂直方向に収差が生じる。
ところで、通常、 X線像撮像装置 1のテレビジョン方式は N T S C方式であり、 走査線の本数は 5 2 5本に規格化されている。 このうち有効画面に現れる走査線は概ね 485本程度であるため、 これに対応 する固体撮像素子の有効撮像面の垂直方向にはおよそ 485個の画素が並んでい る。 一方、 有効撮像面の水平方向の画素数は、 X線像撮像装置に多く使用される いわゆる 40万画素 CCD固体撮像素子では 768個であり、 中心部ではこの水 平方向のすべての画素が利用される。 固体撮像素子カメラの解像度はこの画素数 により決定されるため、 垂直解像度は水平解像度に比べて悪い。 これはテレビ方 式が PAL方式でも、 SECAM方式でも同様である。 例えば、 NTSC方式の 固体撮像素子カメラでの解像度は、 X線像増強管の出力像の直径が 15 mmの場 合、 出力スクリーン上の水平解像度は (768Z15) =51. 2本 Zmmであ り、 垂直解像度は (485Z15) =32. 3本 Zmmで、 垂直解像度は水平解 像度より 4割近く悪い。 従って、 CCD固体撮像素子の撮像面に投影される画像 の垂直解像度は、 水平解像度よりも 4割近く悪くても実質的に許容されることに なる。
以上のように、 収差により解像度の悪化する方向を固体撮像素子の垂直方向と することで、 シリンドリカルレンズによって発生する垂直方向の収差による垂直 解像度の劣化は、 水平方向の 4割まで許容できる。 このことから、 本発明による シリンドリカルレンズ系による収差は事実上無視できることになる。 そのため、 この影響はは複数枚のレンズを付加してで補正する必要がなく、 アナモフィック レンズ系は 1枚のシリンドリカルレンズで構成することもできることを意味して いる。
なお、 アナモフィックレンズにより投影される像の収差は、 単焦点レンズ系に よっても発生し、 これは全方向に等しく発生する。 従って単焦点レンズ系は収差 は小さいことが必要である力、 複数枚の球面レンズで構成する収差の小さい単焦 点レンズ系の設計は容易である。 また球面レンズにより構成された単焦点レンズ は低価格である。
X線像増強管 13の真円形の出力像 Pを C CD撮像素子の長方形の撮像面に楕 円形像 Cとして結像させる場合には、 第 7図に示したように、 楕円形像 Cを、 撮 像面 37 aの水平方向すなわち長辺方向と楕円形像 Cの長軸方向とを正確に一致 させる必要がある。
2 そこで、 第 9図および第 1 0図は、 これを容易に微調整する構造を示すもので ある。 すなわち、 アナモフィックレンズ 3 3を内蔵するレンズ本体 6 1は、 取付 け金具 6 2を介してカメラ 3 1に固定される。 そして、 このレンズ本体 6 1は取 付け金具 6 2に対して任意の角度に回転でき、 固定ねじ 6 3により固定できるよ うになつている。 また、 取付け金具 6 2は、 C—マウントと呼ばれる規格化され たねじ 6 4により、 回転フランジ 4 7の対応する雌ねじ部分に捩じ込まれて取付 けられる。
レンズ本体 6 1をカメラ 3 2に取付けるには、 前もってレンズ本体 6 1に取付 け金具 6 2を装着しておき、 これを回転フランジ 4 7のレンズ取付け部にねじ込 む。 この時点では、 固体撮像素子 3 7に対するアナモフィックレンズ 3 3の角度 は不定である。 次に、 X線像撮像装置 1の全体を構成して動作させ、 テレビモニ タ上の画像を観測して真円形の画像力再現される位置にレンズ本体 6 1を回転さ せて微調整し、 正確に真円形の画像が表示される位置で固定ねじ 6 3を締め付け て固定する。
例えば、 撮像面 3 7 aの縦横比が 3 : 4の場合は、 楕円形光学像は長軸すなわ ち水平方向の軸を短軸すなわち垂直方向の軸の 4ノ 3倍で、 撮像面 3 7 aの上下 左右の面縁に接するように ¾ ^される。 そして、 カメラ 3 1から得られる楕円形 に歪んだ映像信号は、 画像処理装置 3 9で水丰方向についてのみ圧縮処理され、 C R Tテレビモニタ 2 1に元の X線像増強管の出力光学像と同じ真円形の映像と して表示されるようになっている。
なお、 画像処理装置 3 9を経由せず、 偏向サイズを 1対 1の比率にした C R T テレビモニタ 2 1に直接供給して真円形の画像を表示させるようにしてもよい。 これは、 単に C R Tテレビモニタ 2 1の水平偏向の振幅を縮小するのみで実現で きる。
上記の実施例では、 アナモフィックレンズ本体の全体をカメラへの取付け金具 に対して回転できる構造である力 それに限らず、 例えばアナモフィックレンズ 系の中の一方向のみの倍率に作用する 1枚または複数枚で構成されるレンズのみ を回転できる構造としても同様の結果が得られる。
3 なお、 レンズ本体とカメラとの接続には、 ねじ込み方式に限定されないことは 当然である。 このように、 アナモフィックレンズ系をカメラへ固定した状態でレ ンズ本体の全体またはレンズ系の一部を任意の方向に回転できるように構成する ことにより、 レンズの倍率の異なる直交する 2方向を固体撮像素子の水平、垂直 方向に精密に一致させることができる。 そのため、 固体撮像素子カメラおよびレ ンズの取付け部には、 特定の専用取付け を設ける必要がない。 例えばねじ込 み式の取付け機構にすることで、 安価にできる。 また、 固体撮像素子のカメラへ の組み込みは、 レン ¾付け部に対する回転方向について特別の精度を必要とせ ず、 カメラは簡易に製造できる。 また、 アナモフィックレンズ系および固体撮像 素子力メラの取付けを、 "^のレンズおよび力メラに広く採用されている C一マ ゥントと呼ばれる規格化されたねじ方式にすることができ、 一般用途の安価な固 体撮像素子力メラに組み込んで比較的安価な X線像撮像装置を構成することがで き ^> o
上 ΐ己実施例では、 アナモフィックレンズ 3 3のシリンドリカルレンズ 3 3は、 1枚のシリンドリカルレンズにより構成されているが、 複! ^のシリンドリカル レンズで構成することもできる。 また、 シリンドリカルレンズ 3 3 cと、 単焦点 レンズ系 3 3 dのすベての構成レンズを 1つの筐体内に配置して一体化したある が、各々を分離してもよい。 なお、 アナモフィックレンズ 3 3にシリンドリカル レンズを使用することにより、 高価なプリズムレンズを用いたアナモフィックレ ンズ系よりも小型で安価なアナモフィック光学装置を構成することができる。 第 1 1図は、 第 4図に示したカメラの別の実施の形態を示す概略図である。 な お、 第 4図に示した構成と同一の構成には同一の符号を附して詳細な説明を省略 する。 第 1 1図に示すカメラ 3 1は、 1枚の基板 5 5に C C D撮像装置 3 7、 回 路部 3 9およびスリップリング 5 7 aを設けたものである。
この構造によれば、 カメラの軸方向の長さを短縮でき、 X線像撮像装置をより コンパク卜にできる。
第 1 2図ないし第 1 4図に示す^例は、 単一のカメラ 3 1によつて出力蛍光 スクリーンの直径が異なる複数種類の X線像増強管と組み合わせて C C D撮像素 子に、 同一または略同一の画像を^させることができる X線像撮像装置である c 一般に数多く使用されて L、る X線像増強管は、 その真円形の出力光学像の直径 が、 1 5 mm、 2 0 mm、 2 5 mm、 3 O mmというように、 多種類存在する。 また、 C C D撮像素子などの固体撮像素子も、 2 Z 3インチ、 1 Z 2インチ、 1 /3インチフォーマツトサイズ等、 多数のサイズの撮像面を持つ素子がある。 従って、 組み合わせる X線像増強管と固体撮像素子により、 縮小率が異なるァ ナモフィック光学系装置が多数必要となる。 前述の実施例のアナモフィック光学 系では、 その縮小率を変更するには、 3つのレンズ系の内その 1つのレンズ系を 交換する必要がある。最近は、光学装置、 固体撮像素子及びその信号処理回路素 子を X線像増強管のハウジング内に一体的に組込んで、 コンパクト化及び無調整 化するようになっているので、 これらの部品を多種類用意して種々組合わせるこ とは望ましくない。
この実施例は、 以上の課題を解決するものであり、 特定のレンズ構成のアナモ フィ ック光学装置のままで像倍率を変更できる X線撮像装置を提供することを目 的とする。 そのために、 複数のレンズで構成される単焦点レンズ系、 2以上のレ ンズで構成されるシリンドリカルレンズ系を備えてアナモフィック光学装置を構 成し、 そのシリンドリカルレンズ系の 1または複数のレンズを他のレンズに対し て光軸方向に沿って任意の位置または一定の位置に移動させるように構成した X 線撮像装置である。
ここで、 アナモフィックレンズ 3 3は、 X線像増強管側に 2枚のシリンドリカ ルレンズ 3 2 a、 3 2 bからなるシリンドリカルレンズ系 3 2が配置され、 固体 撮像素子側に複数枚の球面レンズからなる単焦点レンズ系 3 3 d力《配置される。 そして、 2枚のシリンドリカルレンズの内の X線像増強管側の 1枚のシリンドリ カルレンズ 3 2 aは、 他のレンズに対して光軸方向に沿って移動することができ る構造になっている。
アナモフィックレンズ 3 3は、 シリンドリカルレンズ系 3 2内の 1枚のレンズ を動かすことにより単焦点レンズ系 3 3 dとは独立にシリンドリカルレンズ系 3 2のレンズ作用を変更することができる。 従って、 シリンドリカルレンズ系と単 焦点レンズ系のレンズ作用を受ける方向のみのレンズ作用を変更し、 結像位置を 単焦点レンズ系のみのレンズ作用で結像する位置と合わせること力可能である。 第 13図は、 このアナモフィックレンズ 33を使用したときの各レンズ、 X線 像増強管 13の出力画像 Pa, Pb, Pc及び固体撮像素子 37の撮像面 37 a の位置及び像径の関係を示している。 同図の (a) は、 X線像増強管 13の出力 光学像 P aの直径が 25 mmの場合、 同図の (b) は、 同 Pbが 2 Ommの場合、 同図の (c) は、 同 P cが 15mmの場合を示している。 なお、 いずれの場合も 固体撮像素子の撮像面 37 aのサイズは同じである。
各々の場合で、 X線像増強管の出力光学像と固体撮像素子撮像面との距離を D 1 a, Dlb, D 1 c、 固体撮像素子の撮像面とレンズ 33との距離を D 2 a, D2 b, D2c、 2枚のシリンドリカルレンズ 32 a, 32 bの間の距離を D 3 a, D3b, D3c、 X線像増強管とそれに近いシリンドリカルレンズ 32aと の距離をの D4a, D4b, D 4 cとして、 それらを変えることができるように なっている。 ただし、 固体撮像素子側のシリンドリカルレンズ 32bと単焦点レ ンズ系 33の位置関係及びそれらの間の距離は変わらない。
そして、 各距離を変えることにより、 固体撮像素子の撮像面 37 aに同じ大き さの楕円形の像 Cとして結像させることができる。
つまり、 X線像増強管の出力光学像 Pの直径が 25 mm、 2 Omm. 15mm のどの場合にも同じ大きさの固体撮像素子の撮像面 18 aに同じ大きさの楕円形 の像 Cとして結像される。
これらの場合の第 13図の各距離は、 例えば、
D 1 a >D 1 b >D 1 c、
D2a<D2b<D2 c
D3a〉D3b>D3 c、 および、
D4 a〉D4 b〉D4 c、 となる。
第 14図は、 X線像増強管、 アナモフィックレンズ、 及び固体撮像素子の組み 合わせ状態、 それにより各距離を変える機構の具体例を示している。 X線像増強 管側のシリンドリカルレンズ 32 aは、 支持構造体 71に支持され、 これは筐体 72に沿って光軸方向に沿って移動可能に支持されている。 これによりシリンド リカルレンズ 32 aと 32 b間の距離 D 3を調整できる。 図では移動するための 構造は省略してある。 また、 固体撮像素子側のシリンドリカルレンズ 3 2 bと単焦点レンズ系 3 3 d を構成するレンズは支持構造体 7 3に支持さ; T これらは一緒に 体 7 2に沿つ て光軸方向に沿って移動可能に支持されている。
アナモフィックレンズ 3 3の筐体 7 2の回転フランジとの接続部には雄ねじが 設けられ、 回転フランジ 4 7の接続部には雌ねじ力設けられて接続されている。 固体撮像素子の撮像面とアナ乇フィックレンズ 3 3との距離 D 2は、 リング状 スぺーサ 7 4を德体 7 2と回転フランジ 4 7の間に入れることにより大まかに定 められる。 そしてさらに、 筐体内で支持構造体 7 3を移動することにより精密に 距離を調整することができるようになつている。 また、 X線像増強管の出力蛍光 スクリーン 1 7 aと固体撮像素子 3 7の撮像面 3 7 aとの距離は、 ボトムプレー ト 4 2 aとカメラフランジ 4 3の間に設け両者を接続する支柱 4 9の長さにより 調整することができるようになつている。
X線撮像装置に使用する X線像増強管の出力像径または固体撮像素子の撮像面 サイズが、 数種類に限られるときは、 シリンドリカルレンズの移動する位置を数 種の位置に限って移動し固定できるようにすることで調整を省くことができる。
_hのようにして、 このアナモフィ ックレンズ 3 3はシリンドリカルレンズ系 の 1枚のレンズを他のレンズに対して光軸方向に沿つて移動することにより、 異 なる倍率で同じ大きさの楕円形像として固体 ¾i像素子の撮像面に結像させること カ^!能である。 したがって、 単一の光学レンズ及び撮像素子の構成で、 種々の X 線像増強管出力像径に対応することができる。
なお、 以上は固体撮像素子の撮像面のサイズが同じ場合についての説明である が、 固体撮像素子の撮像面のサイズが異なる場合も、 上述のようにレンズ系と像 の位置関係を変えることにより対応可能である。
以上説明したようにこの実施例によれば、 単一の光学レンズ系で、 出力像径の 異なる X線像増強管、 又は撮像面サイズの異なる固体撮像素子に対応して使用す ることができる。 したがって、 多数の倍率が異なるアナモフィック光学系装置を ^とせず、総合的に低価格の X線撮像装置を実現できる。
なお、 今日では、 受像面が概ね正方形に形成された C C Dセンサも開発されて おり、 この場合には、 アナモフィックレンズを用いなくともよい。
7 以上説明したように、 この発明の X線像撮像装置は、 レンズと、 撮像素子と、 撮像素子を mi¾する回路と、 撮像素子から得られる映像信号を処理する回路が配 設された基板とがー体的に回転可能に形成されたカメラを有し、 X線像増強管と X線発生器が対象物の回りを回転された場合であつても、 出力面に出力された出 力像を、必要に応じて直立像としてモニタ装置に表示できる。 なお、 上述した構 成によれば、 X線像増強管、 レンズおよび撮像素子の中心のずれがほとんどなく、 また、 ピントのずれも生じない X線像撮像装置が低コス卜で提供される。
8

Claims

請求の範囲
1. X線像を真円形の出力可視光像へ変換する X線像増強管と、 前記出力可視光 像を所定位置に結像させる光学レンズ構体と、 この光学レンズ構体による結像位 置に配置された固体撮像素子と、 この固体撮像素子の駆動および出力画像信号の 処理をする信号処理回路基板と、 上記 X線像増強管に 的に固定され且つ上記 光学レンズ構体、 固体撮像素子および信号処理回路基板が a«的に支持された支 持枠と、上記 X線像増強管に対して上記固体撮像素子を光学中心軸を中心にして 回転させる回転機構とを具備する X線像撮像装置において、
上記信号処理回路基板は上記光学中心軸を横切って配置されるとともに上記固 体撮像素子は前記信号処理回路基板に固定さ t
上記光学レンズ構体は前記信号処理回路基板に直接または他の部材を介して機 械的に一体的に固定され、
上記支持枠に回転 ΙΚί¾モー夕が固定されこのモータにより前記支持枠に対して 上記固体撮像素子、 信号処理回路基板および光学レンズ構体が一体になつて回転 させられる構造になっており、
上記固体撮像素子の近傍に複数のスリップリングが同心状に且つ前記固体撮像 素子とともに回転可能に設けられ、 このスリップリングを介して上記固体撮像素 子および信号処理回路基板に駆動制御電源および出力画像信号を伝達するように 構成されていることを特徴とする X線像撮像装置。
2. 上記スリップリングは、 上記信号処理回路基板またはそれとは別に上記光学 中^ Ιώに対して略垂直に配置された回転可能な平板に同心状に固定されている請 求項 1記載の X線像撮像装置。
3. 上記光学レンズ構体はシリンドリカルレンズからなるアナモフィックレンズ 系を備え、 上記固体撮像素子は長方形の受像面を有し、上記アナモフィックレン ズ系により上記 X線像増強管の出力可視光像の一方向を圧縮または伸張して楕円 形状の像として上記固体撮像素子の受像面に相互の長径方向を一致させて結像す る請求項 1記載の X線像撮像装置。
9
4. 上記光学レンズ構体は、 上記固体撮像素子に対して光学中心軸のまわりに任 意角度変更調整して位置決めする任意角度微調整機構を備えて tゝる請求項 3記載 の X線像撮像装置。
5. 上記光学レンズ構体は上記支持枠の内側空間に位置し、 上記モータは前記光 学レンズ構体のまわりの空間に配置されている請求項 1記載の X線像撮像装置。
6. 上記光学レンズ構体は、 電動絞りを内蔵し、 この電動絞りの駆動信号力上記 スリップリングを介して供給される請求項 1記載の X線像撮像装置。
7. 上記光学レンズ構体は、 複数のレンズで構成される単焦点レンズ系、 及び 2 1:のシリンドリカルレンズ系を備え、 前記シリンドリカルレンズ系の 1又は複 のレンズが他のレンズに対して光軸方向に沿って任意の位置又は一定の位置 に移動可能に構成されている請求項 3記載の X線像撮像装置。
8. 上記シリンドリカルレンズは、 固体撮像素子の垂直方向に画像を圧縮するよ うに結像させる請求項 3 , 4または 7の tヽづれかに記載の X線像撮像装置。
PCT/JP1996/002896 1995-10-05 1996-10-04 Appareil d'imagerie a rayons x WO1997012549A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69637732T DE69637732D1 (de) 1995-10-05 1996-10-04 Röntgen aufnahme vorrichtung
EP96932819A EP0858772B1 (en) 1995-10-05 1996-10-04 X-ray imaging apparatus
JP51416097A JP4065563B2 (ja) 1995-10-05 1996-10-04 X線像撮像装置
US09/051,193 US6281506B1 (en) 1995-10-05 1996-10-04 X-ray imaging apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP25840495 1995-10-05
JP7/258404 1995-10-05
JP25840595 1995-10-05
JP7/258405 1995-10-05
JP8/200325 1996-07-30
JP20032596 1996-07-30

Publications (1)

Publication Number Publication Date
WO1997012549A1 true WO1997012549A1 (fr) 1997-04-10

Family

ID=27327795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002896 WO1997012549A1 (fr) 1995-10-05 1996-10-04 Appareil d'imagerie a rayons x

Country Status (6)

Country Link
US (1) US6281506B1 (ja)
EP (1) EP0858772B1 (ja)
JP (1) JP4065563B2 (ja)
CN (1) CN1191787C (ja)
DE (1) DE69637732D1 (ja)
WO (1) WO1997012549A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789064B2 (en) 1999-12-17 2017-10-17 Gp Pharm, S.A. Method for delivering a peptide to a subject at a modulated rate via microcapsules of lactic-co-glycolic copolymer containing said peptide

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034816A1 (de) * 1998-12-04 2000-06-15 Rodenstock Präzisionsoptik Gmbh Bilderzeugendes system mit zoomobjektiv
FR2798551B1 (fr) 1999-09-14 2001-11-30 Eppra Dispositif de radiologie comportant des moyens d'agrandissement d'images perfectionnees
IL135571A0 (en) * 2000-04-10 2001-05-20 Doron Adler Minimal invasive surgery imaging system
US6692430B2 (en) * 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
JP4663230B2 (ja) * 2001-06-28 2011-04-06 ギブン イメージング リミテッド 小さな横断面面積を有するインビボ・イメージング・デバイスおよびその構成方法
IL162420A0 (en) * 2001-12-11 2005-11-20 C2Cure Inc Apparatus, method and system for intravascular ph otographic imaging
DE10392670B4 (de) 2002-05-16 2012-10-11 C2Cure Inc. Miniatur-Kamerakopf
WO2004056088A1 (de) * 2002-12-18 2004-07-01 Siemens Aktiengesellschaft Kamerasystem mit bilddrehung, insbesondere für medizinische anwendungen
US7300397B2 (en) * 2004-07-29 2007-11-27 C2C Cure, Inc. Endoscope electronics assembly
US7600915B2 (en) * 2004-12-01 2009-10-13 Trinity Orthopedics, Llc Imager based object positioner system and method
US20060221218A1 (en) * 2005-04-05 2006-10-05 Doron Adler Image sensor with improved color filter
DE602005012824D1 (de) * 2005-08-22 2009-04-02 Unisantis Fze Vorrichtung und Verfahren zum Positionieren einer Röntgenlinse und Röntgengerät mit einer solchen Vorrichtung
DE102006001850B4 (de) * 2006-01-13 2015-03-26 Siemens Aktiengesellschaft Bildgebendes medizintechnisches Gerät und Verfahren
KR100850716B1 (ko) * 2006-12-01 2008-08-06 삼성전자주식회사 이미지형성체 및 그 제조방법
US7557356B2 (en) * 2006-12-06 2009-07-07 Intematix Corporation Camera-based x-ray digital image detector
CN101301204B (zh) * 2007-05-11 2011-03-09 Ge医疗系统环球技术有限公司 X射线成像系统
US20090046171A1 (en) * 2007-08-16 2009-02-19 C2Cure, Inc. Non-linear color correction
EP2304400A1 (en) * 2008-06-25 2011-04-06 Bioptigen, Inc. Volume phase grating spectrometers and related methods and systems
JP5483903B2 (ja) * 2009-03-02 2014-05-07 キヤノン株式会社 X線撮影装置
US9257763B2 (en) 2013-07-02 2016-02-09 Gyrus Acmi, Inc. Hybrid interconnect
US9510739B2 (en) 2013-07-12 2016-12-06 Gyrus Acmi, Inc. Endoscope small imaging system
CN104840308A (zh) * 2015-01-28 2015-08-19 张家港市协和医疗器械有限公司 一种带有x摄片机的担架
WO2018115325A1 (en) * 2016-12-22 2018-06-28 Teknologisk Institut System and method of x-ray dark field analysis
CN111458896B (zh) * 2020-04-28 2023-05-02 中国科学院西安光学精密机械研究所 全波段高精度变焦光学系统像面对接与共轴调整方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298186A (ja) * 1989-05-11 1990-12-10 Toshiba Corp X線tv装置
JPH047637B2 (ja) * 1983-06-26 1992-02-12 Guru Oputeikusu Ando Shisutemuzu Ltd

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8701169A (nl) 1987-05-15 1988-12-01 Philips Nv Beeldopneem- en -weergeefstelsel en hiervoor geschikte beeldopneeminrichting.
DE3733593A1 (de) * 1987-10-05 1989-04-20 Thyssen Industrie Vorrichtung zur aufnahme eines gegenstands, insbesondere zwecks dessen wiedergabe auf dem bildschirm eines bildschirmgeraets
JPH047637A (ja) 1990-04-25 1992-01-13 Mitsubishi Electric Corp プログラム図作成装置
EP0506177A3 (en) 1991-03-25 1993-01-20 N.V. Philips' Gloeilampenfabrieken Television pick-up and display system, and television pick-up device and optical system suitable for use in such a system
US5408521B1 (en) * 1992-04-14 1997-08-26 Xre Corp Angiographic x-ray system wih 360 degree scanning
DE4224615B4 (de) * 1992-07-25 2004-04-29 Instrumentarium Imaging Ziehm Gmbh Röntgendiagnostikeinrichtung mit Bildverstärker-Fernsehkette
JPH06114045A (ja) 1992-10-07 1994-04-26 Toshiba Corp X線診断装置
JP3360908B2 (ja) 1993-12-28 2003-01-07 株式会社東芝 X線診断装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047637B2 (ja) * 1983-06-26 1992-02-12 Guru Oputeikusu Ando Shisutemuzu Ltd
JPH02298186A (ja) * 1989-05-11 1990-12-10 Toshiba Corp X線tv装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0858772A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789064B2 (en) 1999-12-17 2017-10-17 Gp Pharm, S.A. Method for delivering a peptide to a subject at a modulated rate via microcapsules of lactic-co-glycolic copolymer containing said peptide

Also Published As

Publication number Publication date
US6281506B1 (en) 2001-08-28
CN1191787C (zh) 2005-03-09
JP4065563B2 (ja) 2008-03-26
EP0858772A1 (en) 1998-08-19
DE69637732D1 (de) 2008-12-11
EP0858772A4 (en) 2006-05-24
CN1202810A (zh) 1998-12-23
EP0858772B1 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
WO1997012549A1 (fr) Appareil d&#39;imagerie a rayons x
JP4262305B2 (ja) 自己立体映像ビデオ装置
JPH0614272A (ja) 固体イメージ・センサの用途を広げるためのアナモルフィック光ファイバ・テーパを用いたシステムおよび方法
JPH06222481A (ja) パノラマカメラ装置
JP6751426B2 (ja) 撮像装置
JP2887361B2 (ja) 透過電子顕微鏡用又は電子エネルギー損失分析電子顕微鏡用の撮像方法及び撮像装置
JP3321941B2 (ja) 画像合成装置
JPH0730793A (ja) 画像撮影装置
JPS5812645A (ja) X線テレビジヨン撮像装置
JP2000149848A (ja) 透過電子顕微鏡像観察装置
JPS6312617Y2 (ja)
JPS60103876A (ja) ディジタル放射線像撮影装置
JP2680307B2 (ja) 固体カラー撮像装置
JPH10104058A (ja) X線撮像装置
JP2006350017A (ja) 撮像装置
JP2804932B2 (ja) ステレオ像観察撮影装置
JPH09233388A (ja) X線撮影装置
JPH07222058A (ja) X線tv装置
JPH01160266A (ja) X線撮影装置
KR100340459B1 (ko) 영상장치의 포커싱 방법
JPH1028271A (ja) 撮像装置
Murphy et al. Application of a Plumbicon TV camera tube in a 2000-line imaging system
JPH01261084A (ja) 撮像管カメラ及びテレビ電話装置
JP2000139884A (ja) X線像撮像装置
JPS60111635A (ja) X線撮影装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96198574.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996932819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09051193

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996932819

Country of ref document: EP