WO1997004809A1 - Sulfonated multiblock copolymer and uses therefor - Google Patents

Sulfonated multiblock copolymer and uses therefor Download PDF

Info

Publication number
WO1997004809A1
WO1997004809A1 PCT/US1996/012311 US9612311W WO9704809A1 WO 1997004809 A1 WO1997004809 A1 WO 1997004809A1 US 9612311 W US9612311 W US 9612311W WO 9704809 A1 WO9704809 A1 WO 9704809A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
article
sulfonated
styrene
ofthe
Prior art date
Application number
PCT/US1996/012311
Other languages
French (fr)
Inventor
Laurence Berlowitz-Tarrant
Timothy N. Tangredi
Gary E. Wnek
Robert J. Nicolosi
Original Assignee
Aegis Biosciences L.L.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aegis Biosciences L.L.C. filed Critical Aegis Biosciences L.L.C.
Priority to AU66011/96A priority Critical patent/AU6601196A/en
Publication of WO1997004809A1 publication Critical patent/WO1997004809A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/064Use of macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/90Stent for heart valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • Y10T428/1393Multilayer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]

Definitions

  • biocompatible materials for use in medical applications are acute. Many materials used for medical devices are selected for mechanical strength or stability in the body, but are capable of causing thrombogenesis and other undesirable side effects when in contact with blood or blood products.
  • Prior art approaches to preventing thrombogenesis include the covalent or non-covalent attachment of non-thrombogenic molecules to the surface of an implantable device. For example, heparin has been attached to the surface of implantable materials in an effort to reduce thrombogenicity ofthe material (see, e.g., U.S. Patents 3,826,678; 4,526,714; 4,613,517; 5,061,750).
  • bioactive materials that is, materials that can stimulate or promote normal tissue functions such as conduction, growth and differentiation of cells, and the production of materials characteristic of normal cellular activity.
  • endothelial cells should be attracted (i.e., conducted) to the surface of an implanted material. Cells attracted to the material surface should also produce the products typically expressed by normal cells; for example, endothelial cells should produce natural clot inhibitors.
  • This invention pertains to methods of using an anionic multiblock copolymer which is biocompatible and which has desirable properties such as nonthrombogenicity.
  • the anionic multiblock copolymer can also be used to deliver drugs, or to promote endothelialization or epithelialization, and other forms of conduction, growth, or differentiation of cells and tissues.
  • the invention features a nonthrombogenic article for use in contact with blood or blood products, the article having at least one surface, the surface comprising an anionic multiblock copolymer.
  • the multiblock copolymer is a sulfonated styrene-ethylene/butylene-styrene triblock copolymer.
  • the multiblock copolymer is at least 20%, 30%, 50%, 70%) or 90% sulfonated.
  • the nonthrombogenic article is a medical device.
  • the article comprises a hybrid material comprising a triblock copolymer and a material selected from the group consisting of Teflon®, Dacron®, titanium oxide, magnetic particles, and calcium phosphate.
  • the article is selected from the group consisting of stents, catheters, cannulae, tubing, vascular grafts, artificial hearts, heart valves, pacemakers, implants, artificial joints, and prostheses.
  • the article is an electrical lead, e.g., for an implanted medical device.
  • the invention features a method of manufacturing a thromboresistant article, the method comprising coating at least one surface of an article with an anionic multiblock copolymer.
  • the invention features a method of promoting cell growth, or adhesion, comprising contacting cells with an anionic multiblock copolymer, under conditions such that cell growth, differentiation, or production of normal cell products is promoted.
  • the cell are endothelial cells, epithelial cells, osteoblasts, or islet cells.
  • the invention provides a method of administering a therapeutic agent to a subject, the method comprising contacting the subject with an anionic multiblock copolymer, wherein the copolymer entraps the therapeutic agent, such that the therapeutic agent is delivered to said subject.
  • the invention provides a medical implant which can be modified in situ by application of an electric field.
  • the implant comprises an anionic multiblock copolymer, preferably a sulfonated styrene-ethylene/butylene-styrene triblock copolymer.
  • Figures 1 A and IB show the chemical structures of several molecules which have been immobilized in a sulfonated triblock copolymer.
  • Figure 2 depicts a cell which allows for the measurement of ionic conductivity through a membrane.
  • Figure 3 is a bar graph representing the effect of varying percentages of sulfonation on cell adhesion to selected copolymers ofthe invention.
  • Figure 4 is a bar graph depicting the amount of cell adhesion on several surfaces.
  • Figure 5 is a bar graph showing aortic endothelial cell prostacyclin production on several surfaces.
  • the present invention features methods of using an anionic copolymer.
  • the invention provides a method of manufacturing a thromboresistant article.
  • the method comprises coating at least one surface of an article with an anionic multiblock copolymer.
  • a thromboresistant article can also be fabricated entirely from an anionic multiblock copolymer.
  • block copolymer is known in the art, and refers to a copolymer of two or more monomers in which the polymeric chains contain long stretches (e.g., at least about 10 monomer units on average) of one kind of repeating unit linked covalently to one or more long stretches of repeating units of one or more different polymers.
  • a block copolymer of components A and B could have a partial structure (A) n (B) m (A)p, where n, m, and p are, independently, integers which are generally greater than 10 on average, and are each preferably, on average, in the range between 5 and 1000, more preferably between 10 and 100.
  • Preferred copolymers include multiblock (i.e., diblock, triblock, and the like) copolymers composed of hydrocarbon subunits (prior to sulfonation).
  • preferred blocks include styrene, ethylene/butylene, isoprene, butadiene, propylene, and the like.
  • Preferred sulfonated copolymers are not sulfonated in all blocks (e.g., only styrene is sulfonated).
  • a particularly preferred copolymer is styrene- ethylene/butylene-styrene, which is available from Shell Chemical. This copolymer can be sulfonated by methods known in the art. A suitable sulfonation method is described in U.S. Patent 5,468,574 to Ehrenberg et al.
  • This patent teaches, inter alia, the use of sulfur trioxide and triethyl phosphate in dichloroethane/cyclohexane solution for the sulfonation of styrene-ethylene butylene-styrene.
  • Sulfonation according to this method sulfonates principally the styrene blocks.
  • the copolymer can be sulfonated to a desired extent by controlling the sulfonation conditions; alternatively, the monomer units (e.g., the styrene monomer) can be separately sulfonated and then combined with the remaining monomer units and copolymerized.
  • the block lengths and other characteristics ofthe copolymer can be varied by changing the polymerization conditions; thus, it is possible to alter the copolymer morphology (e.g., microphase separation) and the bulk physical properties ofthe copolymer.
  • Other copolymers can also be used in the methods ofthe invention, as taught in the above-referenced U.S. Patent 5,468,574.
  • copolymers with sulfonate functional groups are particularly preferred, copolymers comprising other anionic moieties such as sulfates, phosphates, phosphonates, carboxylates, phenolates and the like, or mixtures thereof, may be useful according to the present invention. More than one type of anionic moiety group may be employed in a particular copolymer. Such copolymers are known in the art and/or can be made according to known techniques.
  • the sulfonated copolymers ofthe invention can be molded, cast, laminated, extruded, worked or shaped to provide a variety of useful forms, according to standard techniques for forming polymers.
  • the subject copolymers can be cast by dissolving the copolymer in a suitable solvent (for example, n-propanol and dichloroethane), casting the mixture into a form, and removing the solvent to yield the cast product, according to standard techniques.
  • a suitable solvent for example, n-propanol and dichloroethane
  • an IR lamp is used to dry and cure the copolymer.
  • the copolymers ofthe invention can also be used as a coating to cover a substrate.
  • Exemplary substrates include metals, ceramics, and polymers (natural or synthetic).
  • the sulfonated styrene-ethylene/butylene-styrene copolymer can be effectively grafted to a variety of ceramic and polymer substrates, including polyvinyl polymers (such as polyvinylchloride and polyethylene), mylar and the like.
  • Non-polymeric substrates can be employed by appropriate surface modification to facilitate grafting. Grafting can be by a variety of well-known techniques, including the use of corona discharge, UV irradiation, ionizing radiation, plasmas, and the like.
  • the copolymers ofthe invention may be used to form the surface of a wide variety of medical devices, as described below.
  • the sulfonated copolymer ofthe invention can also form hybrid materials with polymers or ceramic materials, thus combimng the physical or chemical properties of those materials with the biological, chemical, and controlled-release characteristics ofthe copolymer, to create novel hybrids.
  • the anionic copolymer is substantially soluble in organic solutions, porous structures are readily infiltrated.
  • Exemplary materials which can be infiltrated in this manner are: glass fiber mat; porous Teflon® (tetrafluoroethylene) and Dacron® (polyethylene terephthalate), e.g., as currently used in vascular grafts; porous or pitted native titanium oxide and sintered and non-sintered calcium phosphate, e.g., as used in coatings of dental and orthopedic implant devices.
  • Teflon® tetrafluoroethylene
  • Dacron® polyethylene terephthalate
  • porous or pitted native titanium oxide and sintered and non-sintered calcium phosphate e.g., as used in coatings of dental and orthopedic implant devices.
  • Another method of hybrid formation consists in particles of another material being suspended in the dissolved or suspended sulfonated copolymer ofthe invention, the particles remaining suspended in the sulfonated copolymer solution or suspension.
  • the inorganic material can be synthesized in situ, using, e.g., a sol-gel approach, to create a fine dispersion ofthe particles.
  • the particulate material can be e.g., a polymer, ceramic, or metallic powder.
  • the particle size can range, e.g., from about 100 nanometers to about 1000 microns in diameter, more preferably from about 10 microns to about 100 microns in diameter.
  • One illustrative hybrid formed in this manner is a hybrid of the sulfonated copolymer and suspended magnetic particles, metals, or metal oxides, with or without organic derivatization. Such a hybrid can be used, e.g., to coat orthopedic or dental implants. A magnetic field induced in this hybrid can improve bone healing in ways well-known in the art.
  • the invention features a nonthrombogenic article for use in contact with blood or blood products, the article comprising at least one surface, said surface comprising a sulfonated multiblock copolymer.
  • Articles, e.g., medical devices, for which the copolymer can form a surface include stents, catheters, cannulae, tubing (e.g., for use in kidney dialysis and heart-lung machines), vascular grafts, artificial hearts, heart valves, venous valves, pacemakers (including leads for pacemakers), implantable defibrillators, implants (for example, implants to be placed in bone), artificial joints, prostheses, and the like.
  • Such medical devices have significant advantages over current devices, e.g., cardiovascular devices which are thrombogenic and non-endothelializing, or implants to be placed in bone which induce encapsulation with fibrous connective tissue, rather than with bone.
  • cardiovascular devices which are thrombogenic and non-endothelializing, or implants to be placed in bone which induce encapsulation with fibrous connective tissue, rather than with bone.
  • stents are often placed after balloon angioplasty to prevent restenosis of the blood vessel.
  • the placement ofthe stents requires the use of clotting inhibitors for several weeks before and after angioplasty, resulting in long hospital stays, considerable expense and risk to the patient. Placement of a nonthrombogenic stent prepared according to the method ofthe present invention would reduce or eliminate the need for additional antithrombogenic measures.
  • the subject sulfonated copolymers have several properties which make them valuable for use in medical devices. As described in Example 1, infra, the sulfonated copolymers possess antithrombogenic properties. The ability to prevent thrombogenesis makes the subject sulfonated copolymers useful in applications which require contact with blood or blood products.
  • the copolymers have several advantages over coatings known in the art. For instance, a device composed of one ofthe subject copolymers is inherently antithrombogenic, that is, there is no antithrombogenic surface coating which can wash off or be abraded or degraded. Thus, the antithrombogenic properties of such a device are substantially permanent rather than temporary. Such properties is desirable in a permanently implanted device.
  • the magnitude ofthe antithrombogenic quality ofthe subject copolymers can be controlled by controlling the degree of sulfonation ofthe copolymer. As described in Example 1, increasing the degree of sulfonation from 30% to 74% more than doubles the time required for blood to clot. Thus, a copolymer having a predetermined degree of sulfonation can be used to ensure a desired antithrombogenic effect ofthe copolymer.
  • the sulfonated triblock copolymer is at least 20%, 30%, 50%, 70% or 90% sulfonated. Sulfonation is expressed as a percentage of available styrene units which are sulfonated.
  • sulfonated multiblock copolymers can be used as promoters of endothelialization or epithelialization. It is well known that anionic glycosaminoglycans (GAGs) are associated with cell membrane or extracellular matrix (ECM), and that the growth (and, under certain conditions, differentiation and cell-type- specific functions) of cells is promoted by GAGs.
  • GAGs anionic glycosaminoglycans
  • ECM extracellular matrix
  • the anionic nature ofthe subject sulfonated copolymers is analogous to GAGs; thus, articles which have a surface comprising the subject copolymers can promote cell growth, binding ofthe cells to the material, cell differentiation, and production of normal cell- or tissue-specific products. Accordingly, in one aspect, the invention features a method of promoting cell growth or adhesion. The method includes the step of contacting cells with a sulfonated multiblock copolymer, under conditions such that cell growth or adhesion is promoted.
  • Endothelialization is the growth of endothelial cells on a surface.
  • the endothelium, or lining ofthe blood vessels and the heart, has a vital role in resisting clotting and generally maintaining the integrity ofthe cardiovascular organs.
  • One ofthe functions of endothelial cells is to produce anti-clotting factors.
  • Implantation of a device into the blood vessels or the heart can cause foreign body responses, which can result in eventual organ failure, as well as clots produced by the disruption of normal circulation dynamics by the device. If a layer of endothelium could be induced to grow over the device, the implant would effectively cease to present a foreign surface to the bloodstream, and these problems would be reduced or eliminated.
  • the invention provides a method of promoting endothelialization or epithelialization.
  • Such a method is valuable both for promoting the conduction and growth of epithelial or endothelial cells in vivo (for example, on an implant or other medical device), and in vitro (for example, to grow cells for use in grafting, e.g., skin grafts).
  • Growth and conduction of other types of healthy cells including osteoblasts, odontoblasts, chondrocytes, and other connective tissue cells, as well as their induction or differentiation from precursor cells, can also be promoted in a similar fashion.
  • the integration of a bone implant into a bone can be improved by use of a sulfonated copolymer surface on the implant, such that osteoblast conduction, differentiation, and growth on and around the implant is promoted.
  • the ability ofthe gingival epithelium to grow on the surface ofthe material makes it useful in promoting bone and ligament healing in periodontal disease.
  • the invention provides methods of administering a therapeutic agent to a subject, i.e., controlled release.
  • Polymers are useful as drug carriers for controlled release. Up to 5 years of relatively steady release has been achieved (the Norplant birth control implant system is an example).
  • a first type of drug-release system is said to be 'diffusional' since simple diffusion ofthe drug through the polymer is the release mechanism. In such a system, the polymer generally does not significantly dissolve or degrade and, if implanted, must be surgically removed after the drug has been delivered.
  • Such controlled release materials are particularly suitable as permanent coatings on non- resorbed, implanted devices, such as tooth implants and cardiovascular stents.
  • Another type of polymeric drug release devices involves bioerodible polymers, where the polymer matrix erodes with time ('erosional') to non-toxic products which can be metabolized or eliminated, circumventing the need to surgically remove the polymer after release is complete.
  • the method comprises contacting the subject with a sulfonated multiblock copolymer, wherein the copolymer entraps a therapeutic agent, such that the therapeutic agent is delivered to the subject. It is believed that at least some ofthe subject sulfonated multiblock copolymers are hydrogels; thus, the copolymers can be made to entrap (or immobilize), and subsequently release, a variety of therapeutic agents.
  • Another possible location for a guest molecule occurs within the S-PS domain near a block region having a sulfonated styrene flanked by unsulfonated styrenes, the latter being hydrophobic. For these reason many types of molecular species can be trapped and immobilized in, or released from, the copolymeric matrix.
  • the therapeutic agent is entrapped by including the guest, e.g., therapeutic, agent in the casting solvent when the copolymer is cast, or coated onto a substrate.
  • the therapeutic agent is distributed throughout, and is integral with, the copolymer structure.
  • therapeutic agents include enzymes (for example, glucose oxidase or lumbrikinase, a fibrinolytic enzyme), antiinflammatories, analgesics, growth factors, antibiotics, steroids, hormones, antiviral agents, neurotransmitters or neuroregulators, antibodies, antiplatelet agents (such as carbamoylpiperidines) and the like.
  • the therapeutic agent is immobilized or associated with the sulfonated copolymer by adsorption or through ionic (e.g., electrostatic) interactions.
  • ionic e.g., electrostatic
  • neuroregulators such as dopamine are cationic and bind well to the subject copolymer. Since dopamine deficiency is linked to Parkinson's disease, an article comprising a sulfonated copolymer film that includes dopamine can be implanted in the brain to offer sustained doses ofthe neuroregulator.
  • the therapeutic agent is primarily immobilized on the surface ofthe copolymer, while in other embodiments, the therapeutic agent is distributed throughout the copolymer structure.
  • the anionic nature ofthe sulfonated copolymers permits the immobilization of cationic species through ionic interactions.
  • cationic species such as amines, amino acids, basic proteins, and the like can be immobilized on the copolymer surface or in the copolymer structure. It is believed that polycations are generally immobilized on the surface, whereas smaller cations are often found throughout the copolymer.
  • compound I ( Figure IA) is bound to about 80% ofthe sulfonate groups in a sulfonated copolymer film.
  • non-cationic species can be derivatized to yield a cationic derivative.
  • a non-cationic protein can be made cationic by conversion of carboxylates (Glu and Asp) to amines with ethylenediamine, or by addition of a polylysine "tail" to the protein.
  • Other compounds can similarly be modified to provide cationic derivatives by methods known in the art.
  • the rate of release is determined, at least in part, by how strongly the drug is bound to polymer. There are several ways to control the rate of release. In a preferred embodiment, the sulfonation level ofthe subject copolymer is modified.
  • S-PS sulfonated polystyrene
  • degree of swelling ofthe polymer is generally lower at lower sulfonation, making drug diffusion slower. It will be apparent to the skilled artisan that drugs can be selected or modified to obtain a desired (e.g., preselected) rate of release from a selected copolymer.
  • S-PS lamellae can function, at least in part, as cation-exchange regions, where as a cationic drug is released, cations such as Na + or K + (e.g., from the serum) diffuse into the polymer to replace the released drug.
  • the counter-ion for the S-PS phase can be a "modifier cation," such as a quaternary ammonium surfactant, which is tightly bound and not released from the polymer.
  • the function ofthe "modifier cation” is to "tune” or adjust the hydrophilic/hydrophobic balance in the copolymeric lamellae for binding of various drugs which are not readily released from the native copolymer, in which a typical counter-ion is Na + .
  • a partial exchange e.g., 10-20%) of native Na + with a modifier cation, followed by exchange ofthe remaining Na with a cationic drug, can produce a release rate considerably modified from the release rate ofthe native copolymer, permitting a fine-tuned rate of release.
  • a therapeutic agent can be released by diffusion, solubilization, and the like, it is also possible to cause release of an agent by applying an electric field to the copolymer entrapping the drug.
  • the electric field can be weak, preferably in the range of 5-20 volts/cm.
  • Modulation can be controlled by the hydrophobicity of molecular species lining the S-PS lamellae (as described above) and by controlling redox reactions that fine-tune the ionic conductivity (see, e.g., Example Three below).
  • the sulfonated copolymer can be used as a material for pulsatile release, in which periodic releases of a therapeutic agent can be controlled by application of pulses of electric current to the copolymer. In this way the sulfonated copolymer can be used as a field-stimulated gate, releasing chemicals on demand.
  • Ferrofluids are single- domain magnetic particles (ca. lOOA in diameter) that have organic surface functionality. Immersing the polymer film in a solution of a cationic ferrofluid leads to electrostatic attachment ofthe magnetic particles to surface sulfonates, rendering the membrane deformable in a magnetic field. By oscillating a magnet field near the film, a rapid sinusoidal deflection ofthe polymer can produce pulsatile release.
  • a polycation such as polylysine
  • a polyanionic material such as chondroitan sulfate
  • chondroitan sulfate can then be immobilized to the polycation layer.
  • a hydrophobic charged environment can be created which is similar to ECM.
  • Such an environment could be used to promote the growth of islets cells, osteoblasts, and the like.
  • Artificial organs such as an artificial pancreas, can therefore be made according to the present invention.
  • the sulfonated multiblock copolymer also functions as a size- exclusion membrane, and therefore could allow oxygen and nutrients to reach the cells, and insulin to pass out ofthe artificial organ, when implanted in vivo.
  • the surface ionic charge density can be increased by "layering", e.g., by first binding a polycation, such as poly(lysine), to a lightly sulfonated surface, and then binding a more heavily sulfonated polymer, e.g., sulfonated polystyrene, to the polycation layer.
  • the polyanion is a nucleic acid.
  • the invention provides a method of administering a nucleic acid construct to a cell, by contacting a cell with a nucleic acid construct immobilized on a polycationic surface which is immobilized on a sulfonated copolymer.
  • Gene therapy by delivery of nucleic acid/polycation complexes to cells is well known (see, e.g., U.S. Patent 5,166,320 to Wu).
  • the mode of immobilization ofthe therapeutic agent will be selected to ensure desirable characteristics ofthe resulting copolymer.
  • the skilled artisan will be able to incorporate the therapeutic agent in an amount or concentration sufficient to ensure that a therapeutically effective amount ofthe agent will be released to the subject when the copolymer is implanted into (or otherwise contacted with) the subject.
  • copolymer, therapeutic agent, and mode of immobilization or incorporation will be selected to ensure that the release ofthe agent occurs in a controlled fashion.
  • the invention provides copolymers which are useful as biosensors.
  • Example 2 the immobilization of redox-active molecules in a sulfonated multiblock copolymer is demonstrated.
  • a copolymer incorporating a redox-active molecule is useful as a biosensor where electrical communication between an electrode and a redox-active enzyme cofactor is important.
  • a cardiovascular implant can be coated with a sulfonated copolymer which inco ⁇ orates a therapeutic drug (for example, an antiinflammatory drug).
  • Such an implant would combine antithrombogenicity with the ability to improve endothelial cell growth on the implant surface, while releasing an antiinflammatory drug to speed the healing process.
  • Another example of a combination is an implant which features an immobilized TGF- ⁇ superfamily factor (e.g., bone morphogenic protein (BMP)) in the sulfonated copolymer.
  • BMP bone morphogenic protein
  • Such an implant would act to stimulate the growth and morphogenesis of bone on the implant surface through the additive effect ofthe natural growth factor derivative of demineralized bone and the bone-matrix stimulating effect ofthe sulfonated copolymer.
  • the mechanical strength or other qualities ofthe sulfonated multiblock copolymers ofthe invention is at least partly dependent on the degree of sulfonation ofthe copolymer, and can be adjusted by the inclusion of additives.
  • additives for example, the addition of polyterpenes increases the stiffness or rigidity ofthe copolymer.
  • Other methods of stiffening the subject sulfonated copolymers include radiation cross-linking, for example with gamma rays or high-energy electrons.
  • a stiffer copolymer can be desirable for those applications which require such stiffness for the production ofthe desired article, that is, where working ofthe article is more readily accomplished on a rigid workpiece.
  • addition of appropriate additives can increase the mechanical strength ofthe copolymer sufficiently to permit the use ofthe copolymer to form a finished article without an underlying substrate.
  • a heart valve must be rigid and strong to function efficiently and to prevent failure when implanted; thus, a strong, rigid copolymer is necessary, and may be obtained by appropriate choice of additives.
  • the skilled artisan will be able to determine additives appropriate for imparting desired qualities to the copolymers ofthe invention.
  • the subject copolymers also exhibit electromechanical properties; that is, application of a weak electric field causes the copolymer to move, bend, or deform in response to the field. This property is useful for providing implantable devices which can be modified in situ by application of an electric field, thus providing an implant which can be customized, adapted, or modified after implantation without removing the implant and without need for surgical intervention.
  • the degree of sulfonation of the copolymer determines, at least in part, the relative hydrophobicity ofthe copolymer, and the charge density on the copolymer surface. That is, the greater the extent of sulfonation ofthe copolymer, the more hydrophilic the copolymer will be, and the more anionic groups will be present on the copolymer surface.
  • the extent of sulfonation can thus determine properties such as the ability to interact with (e.g., retain on the surface or within the copolymer matrix) various molecules such as drugs, as well as determining cell affinity for the copolymer surface.
  • the copolymer is at least 20%, 30%, 50%, 70%, or 90% sulfonated.
  • the antithrombogenic properties ofthe sulfonated multiblock copolymers ofthe invention were demonstrated in an in vitro system.
  • Wells of a standard six-well tissue culture dish were coated with sulfonated styrene-ethylene/butylene-styrene triblock copolymers ofthe invention according to standard techniques.
  • the copolymers differed in the extent of sulfonation; both 30% and 74% sulfonated copolymers were tested.
  • Control wells were not coated with a copolymer; however, the control wells had an anionic (carboxylated) surface as a result ofthe standard manufacturing process.
  • a glass tube was used as an uncharged control surface.
  • NC No clot formed
  • F Fibrin appears
  • C Clot formed It can be seen from the Table that sulfonated styrene-ethylene-butylene-styrene block copolymer significantly retards fibrin formation and clotting. The more highly sulfonated copolymer shows greater antithrombogenic activity than the less sulfonated copolymer; both copolymers retard clotting more than the anionic control well or the untreated control surface.
  • the redox-active molecules shown in Figure 1 A were immobilized in the sulfonated triblock copolymer of styrene-ethylene/butylene-styrene.
  • the copolymers thus formed were examined by cyclic voltammetry to determine whether the added molecules were inco ⁇ orated and remained redox-active. In each case, the molecules were shown to be active by cyclic voltammetry.
  • FIG. 2 depicts a cell which allows for the measurement of ionic conductivity through a membrane including various molecules.
  • the cell 1 includes cathode side 3 and anode side 5, each side having an electrode (10, 10'), e.g., a platinum electrode, and the two sides 3, 5 being separated from each other by a membrane (20) of a material to be tested.
  • the electrodes 10, 10' are connected to a source of electric current (not shown) through leads 14, 14'.
  • Each half 3, 5 ofthe cell 1 is filled with an electrolyte solution (12), and the cell is supported by a clamp (30).
  • This result may reflect electrophoretic movement ofthe cationic ferrocene compound toward the cathode, or it might be due to a change in the S-PS phase ofthe polymer, which may expand due to the applied field, facilitating release, b)
  • the membrane 20 described above contains trimethylaminomethyl-ferrocene, the membrane still allows ions to pass; however, a membrane containing the more hydrophobic dimethylheptylaminomethylferrocene appears to have lower ionic conductivity. This observation suggests that the S-PS lamellae have been lined or modified with hydrophobic molecules, leading to a hydrophobic environment that slows or prevents movement of aqueous salt ions through the membrane, and consequent low conductivity.
  • endothelial cells to attach, grow, and express a differentiated phenotype was demonstrated in an in vitro system.
  • standard 24-well tissue culture plates were utilized. Enough wells in each plate to provide six replicates of each condition were coated with 150 microliters of solutions ofthe sulfonated copolymer of the invention at each of three different sulfonation levels. After polymer treatment, the wells were rinsed with sterile distilled water for thirty minutes, followed by three rinses with Hank's Balance Salt Solution.
  • Controls consisted of wells of normal culture ware (that is, culture ware that is treated to allow cell adhesion and cell growth, by carboxylation of the surface, thereby rendering the surface anionic) that were coated with the subject sulfonated styrene-ethylene/butylene-styrene copolymer, and, as a negative control, culture dishes obtained from the manufacturer that had not been treated to promote adhesion and growth of cells (untreated controls).
  • Into each of these wells were introduced 100,000 porcine aortic endothelial cells in 1 ml of Ml 99 medium (Sigma Chemical Co., St.
  • FIGS. 3 and 4 are graphs showing the results ofthe cell proliferation assay.
  • the proliferation of cells on the sulfonated polymer is related to the degree of sulfonation in the polymer (21%, 57% or 72%; greater sulfonation ofthe polymer increases cell proliferation), and Figure 4 indicates that the proliferation of aortic endothelial cells at the highest percentage sulfonation utilized compares favorably to the commercially-available anionically charged polystyrene culture dish, which is designed to promote cell adhesion and growth (first column: uncharged polystyrene culture dish; second column: commercially-available anionic polystyrene culture dish; third column: 72%) sulfonated styrene-ethylene/butylene-styrene block copolymer-treated culture dish).
  • Figure 5 shows the results of a phenotypic expression assay on the incubation media ofthe experimental and control conditions described above.
  • the assay utilized was the Biotrak 6-keto-prostaglandin Fla EIA.
  • the compound 6-keto-prostaglandin is normally produced by endothelial cells, but is not produced if the endothelial cells dedifferentiate.
  • the cells seeded on the sulfonated copolymer all continued to express the endothelial phenotype, and did not appear to dedifferentiate (first column: uncharged polystyrene culture dish; second column: commercially-available anionic polystyrene culture dish; third column: 72% sulfonated styrene-ethylene/butylene-styrene block copolymer-treated culture dish).
  • Teflon sheet (Xytex, Norton Co.) with 10 micron pore structure was dipped in an approximately 3% (w/w) solution ofthe sulfonated styrene-ethylene-butylene- styrene block copolymer (about 50% sulfonated), shaken to remove liquid droplets, and dried for several hours.
  • the treated material was noticeably different to the touch compared to the untreated Teflon sheet.
  • the wettability ofthe treated sheet was also altered compared to an untreated control: water beaded on the untreated porous Teflon, but wetted (and was absorbed into) the Teflon-sulfonated copolymer hybrid.
  • the hybrid material retains the strength and resilience of porous Teflon, but acquires characteristics ofthe sulfonated polymer (e.g., a non-thrombogenic surface, ability to grow and develop viable and healthy tissues on the surface, and ability to immobilize or deliver biologically important substances).
  • the copolymer can be driven into the porous structure electrophoretically.

Abstract

Sulfonated multiblock copolymers, and uses thereof, are disclosed. The sulfonated copolymers are useful for providing non-thrombogenic coatings, e.g., for medical devices, and for promoting cell growth, differentiation, or production of normal cell products. The sulfonated copolymers are also useful for administration of therapeutic agents.

Description

SULFONATED MULTIBLOCK COPOLYMER AND USES THEREFOR
Background ofthe Invention
The need for biocompatible materials for use in medical applications is acute. Many materials used for medical devices are selected for mechanical strength or stability in the body, but are capable of causing thrombogenesis and other undesirable side effects when in contact with blood or blood products. Prior art approaches to preventing thrombogenesis include the covalent or non-covalent attachment of non-thrombogenic molecules to the surface of an implantable device. For example, heparin has been attached to the surface of implantable materials in an effort to reduce thrombogenicity ofthe material (see, e.g., U.S. Patents 3,826,678; 4,526,714; 4,613,517; 5,061,750).
However, this approach has the disadvantage of providing a coating on the surface ofthe material only; thus, if the surface coating is abraded or washed off, the thrombogenic material will be exposed, possibly resulting in clot formation. Also, recent studies have concluded that heparinized surfaces are only modestly effective at preventing adverse outcomes in patients.
In addition to the need for biocompatibility of materials, it is now generally recognized that there is a further need for bioactive materials, that is, materials that can stimulate or promote normal tissue functions such as conduction, growth and differentiation of cells, and the production of materials characteristic of normal cellular activity. For example, endothelial cells should be attracted (i.e., conducted) to the surface of an implanted material. Cells attracted to the material surface should also produce the products typically expressed by normal cells; for example, endothelial cells should produce natural clot inhibitors.
Summary ofthe Invention
This invention pertains to methods of using an anionic multiblock copolymer which is biocompatible and which has desirable properties such as nonthrombogenicity. The anionic multiblock copolymer can also be used to deliver drugs, or to promote endothelialization or epithelialization, and other forms of conduction, growth, or differentiation of cells and tissues. In one aspect, the invention features a nonthrombogenic article for use in contact with blood or blood products, the article having at least one surface, the surface comprising an anionic multiblock copolymer. In a preferred embodiment, the multiblock copolymer is a sulfonated styrene-ethylene/butylene-styrene triblock copolymer. In preferred embodiments, the multiblock copolymer is at least 20%, 30%, 50%, 70%) or 90% sulfonated. In preferred embodiments, the nonthrombogenic article is a medical device. In preferred embodiments, the article comprises a hybrid material comprising a triblock copolymer and a material selected from the group consisting of Teflon®, Dacron®, titanium oxide, magnetic particles, and calcium phosphate. In preferred embodiments, the article is selected from the group consisting of stents, catheters, cannulae, tubing, vascular grafts, artificial hearts, heart valves, pacemakers, implants, artificial joints, and prostheses. In a preferred embodiments, the article is an electrical lead, e.g., for an implanted medical device.
In another aspect, the invention features a method of manufacturing a thromboresistant article, the method comprising coating at least one surface of an article with an anionic multiblock copolymer.
In still another aspect, the invention features a method of promoting cell growth, or adhesion, comprising contacting cells with an anionic multiblock copolymer, under conditions such that cell growth, differentiation, or production of normal cell products is promoted. In preferred embodiments, the cell are endothelial cells, epithelial cells, osteoblasts, or islet cells.
In yet another aspect, the invention provides a method of administering a therapeutic agent to a subject, the method comprising contacting the subject with an anionic multiblock copolymer, wherein the copolymer entraps the therapeutic agent, such that the therapeutic agent is delivered to said subject.
In another aspect, the invention provides a medical implant which can be modified in situ by application of an electric field. In this aspect, the implant comprises an anionic multiblock copolymer, preferably a sulfonated styrene-ethylene/butylene-styrene triblock copolymer.
Brief Description of the Drawings Figures 1 A and IB show the chemical structures of several molecules which have been immobilized in a sulfonated triblock copolymer.
Figure 2 depicts a cell which allows for the measurement of ionic conductivity through a membrane.
Figure 3 is a bar graph representing the effect of varying percentages of sulfonation on cell adhesion to selected copolymers ofthe invention.
Figure 4 is a bar graph depicting the amount of cell adhesion on several surfaces. Figure 5 is a bar graph showing aortic endothelial cell prostacyclin production on several surfaces.
Detailed Description ofthe Invention
The present invention features methods of using an anionic copolymer. In one aspect, the invention provides a method of manufacturing a thromboresistant article. The method comprises coating at least one surface of an article with an anionic multiblock copolymer. A thromboresistant article can also be fabricated entirely from an anionic multiblock copolymer. The term "block copolymer" is known in the art, and refers to a copolymer of two or more monomers in which the polymeric chains contain long stretches (e.g., at least about 10 monomer units on average) of one kind of repeating unit linked covalently to one or more long stretches of repeating units of one or more different polymers. For example, a block copolymer of components A and B could have a partial structure (A)n(B)m(A)p, where n, m, and p are, independently, integers which are generally greater than 10 on average, and are each preferably, on average, in the range between 5 and 1000, more preferably between 10 and 100. Preferred copolymers include multiblock (i.e., diblock, triblock, and the like) copolymers composed of hydrocarbon subunits (prior to sulfonation). For example, preferred blocks include styrene, ethylene/butylene, isoprene, butadiene, propylene, and the like. Preferred sulfonated copolymers are not sulfonated in all blocks (e.g., only styrene is sulfonated). A particularly preferred copolymer is styrene- ethylene/butylene-styrene, which is available from Shell Chemical. This copolymer can be sulfonated by methods known in the art. A suitable sulfonation method is described in U.S. Patent 5,468,574 to Ehrenberg et al. This patent teaches, inter alia, the use of sulfur trioxide and triethyl phosphate in dichloroethane/cyclohexane solution for the sulfonation of styrene-ethylene butylene-styrene. Sulfonation according to this method sulfonates principally the styrene blocks. The copolymer can be sulfonated to a desired extent by controlling the sulfonation conditions; alternatively, the monomer units (e.g., the styrene monomer) can be separately sulfonated and then combined with the remaining monomer units and copolymerized. The skilled artisan will appreciate that the block lengths and other characteristics ofthe copolymer can be varied by changing the polymerization conditions; thus, it is possible to alter the copolymer morphology (e.g., microphase separation) and the bulk physical properties ofthe copolymer. Other copolymers can also be used in the methods ofthe invention, as taught in the above-referenced U.S. Patent 5,468,574.
Although reference is made herein to sulfonated copolymers, other anionic copolymers may be used in the methods ofthe present invention. Thus, while copolymers with sulfonate functional groups are particularly preferred, copolymers comprising other anionic moieties such as sulfates, phosphates, phosphonates, carboxylates, phenolates and the like, or mixtures thereof, may be useful according to the present invention. More than one type of anionic moiety group may be employed in a particular copolymer. Such copolymers are known in the art and/or can be made according to known techniques.
The sulfonated copolymers ofthe invention can be molded, cast, laminated, extruded, worked or shaped to provide a variety of useful forms, according to standard techniques for forming polymers. For example, the subject copolymers can be cast by dissolving the copolymer in a suitable solvent (for example, n-propanol and dichloroethane), casting the mixture into a form, and removing the solvent to yield the cast product, according to standard techniques. In a preferred embodiment, after casting, an IR lamp is used to dry and cure the copolymer.
The copolymers ofthe invention can also be used as a coating to cover a substrate. Exemplary substrates include metals, ceramics, and polymers (natural or synthetic). In addition, the sulfonated styrene-ethylene/butylene-styrene copolymer can be effectively grafted to a variety of ceramic and polymer substrates, including polyvinyl polymers (such as polyvinylchloride and polyethylene), mylar and the like. Non-polymeric substrates can be employed by appropriate surface modification to facilitate grafting. Grafting can be by a variety of well-known techniques, including the use of corona discharge, UV irradiation, ionizing radiation, plasmas, and the like. The copolymers ofthe invention may be used to form the surface of a wide variety of medical devices, as described below.
The sulfonated copolymer ofthe invention can also form hybrid materials with polymers or ceramic materials, thus combimng the physical or chemical properties of those materials with the biological, chemical, and controlled-release characteristics ofthe copolymer, to create novel hybrids. Where the anionic copolymer is substantially soluble in organic solutions, porous structures are readily infiltrated. Exemplary materials which can be infiltrated in this manner are: glass fiber mat; porous Teflon® (tetrafluoroethylene) and Dacron® (polyethylene terephthalate), e.g., as currently used in vascular grafts; porous or pitted native titanium oxide and sintered and non-sintered calcium phosphate, e.g., as used in coatings of dental and orthopedic implant devices. By controlling the amount of polymer applied to a surface it is possible to only partially cover pore surfaces, thus producing a desired net porosity.
Another method of hybrid formation consists in particles of another material being suspended in the dissolved or suspended sulfonated copolymer ofthe invention, the particles remaining suspended in the sulfonated copolymer solution or suspension. Alternatively, the inorganic material can be synthesized in situ, using, e.g., a sol-gel approach, to create a fine dispersion ofthe particles. As an extension of this method, it is possible to prepare the particulate material in the sulfonated domains ofthe sulfonated copolymer of this invention after casting the sulfonated copolymer into a film, for example, by using the sol-gel approach described above. The particulate material can be e.g., a polymer, ceramic, or metallic powder. The particle size can range, e.g., from about 100 nanometers to about 1000 microns in diameter, more preferably from about 10 microns to about 100 microns in diameter. One illustrative hybrid formed in this manner is a hybrid of the sulfonated copolymer and suspended magnetic particles, metals, or metal oxides, with or without organic derivatization. Such a hybrid can be used, e.g., to coat orthopedic or dental implants. A magnetic field induced in this hybrid can improve bone healing in ways well-known in the art.
In another aspect, the invention features a nonthrombogenic article for use in contact with blood or blood products, the article comprising at least one surface, said surface comprising a sulfonated multiblock copolymer. Articles, e.g., medical devices, for which the copolymer can form a surface include stents, catheters, cannulae, tubing (e.g., for use in kidney dialysis and heart-lung machines), vascular grafts, artificial hearts, heart valves, venous valves, pacemakers (including leads for pacemakers), implantable defibrillators, implants (for example, implants to be placed in bone), artificial joints, prostheses, and the like. Such medical devices have significant advantages over current devices, e.g., cardiovascular devices which are thrombogenic and non-endothelializing, or implants to be placed in bone which induce encapsulation with fibrous connective tissue, rather than with bone. For example, stents are often placed after balloon angioplasty to prevent restenosis of the blood vessel. The placement ofthe stents requires the use of clotting inhibitors for several weeks before and after angioplasty, resulting in long hospital stays, considerable expense and risk to the patient. Placement of a nonthrombogenic stent prepared according to the method ofthe present invention would reduce or eliminate the need for additional antithrombogenic measures.
The subject sulfonated copolymers have several properties which make them valuable for use in medical devices. As described in Example 1, infra, the sulfonated copolymers possess antithrombogenic properties. The ability to prevent thrombogenesis makes the subject sulfonated copolymers useful in applications which require contact with blood or blood products. The copolymers have several advantages over coatings known in the art. For instance, a device composed of one ofthe subject copolymers is inherently antithrombogenic, that is, there is no antithrombogenic surface coating which can wash off or be abraded or degraded. Thus, the antithrombogenic properties of such a device are substantially permanent rather than temporary. Such properties is desirable in a permanently implanted device. Furthermore, the magnitude ofthe antithrombogenic quality ofthe subject copolymers can be controlled by controlling the degree of sulfonation ofthe copolymer. As described in Example 1, increasing the degree of sulfonation from 30% to 74% more than doubles the time required for blood to clot. Thus, a copolymer having a predetermined degree of sulfonation can be used to ensure a desired antithrombogenic effect ofthe copolymer. In preferred embodiments, the sulfonated triblock copolymer is at least 20%, 30%, 50%, 70% or 90% sulfonated. Sulfonation is expressed as a percentage of available styrene units which are sulfonated.
In another aspect ofthe invention, sulfonated multiblock copolymers can be used as promoters of endothelialization or epithelialization. It is well known that anionic glycosaminoglycans (GAGs) are associated with cell membrane or extracellular matrix (ECM), and that the growth (and, under certain conditions, differentiation and cell-type- specific functions) of cells is promoted by GAGs. The anionic nature ofthe subject sulfonated copolymers is analogous to GAGs; thus, articles which have a surface comprising the subject copolymers can promote cell growth, binding ofthe cells to the material, cell differentiation, and production of normal cell- or tissue-specific products. Accordingly, in one aspect, the invention features a method of promoting cell growth or adhesion. The method includes the step of contacting cells with a sulfonated multiblock copolymer, under conditions such that cell growth or adhesion is promoted.
Endothelialization is the growth of endothelial cells on a surface. The endothelium, or lining ofthe blood vessels and the heart, has a vital role in resisting clotting and generally maintaining the integrity ofthe cardiovascular organs. One ofthe functions of endothelial cells is to produce anti-clotting factors. Implantation of a device into the blood vessels or the heart can cause foreign body responses, which can result in eventual organ failure, as well as clots produced by the disruption of normal circulation dynamics by the device. If a layer of endothelium could be induced to grow over the device, the implant would effectively cease to present a foreign surface to the bloodstream, and these problems would be reduced or eliminated. We have found that aortic endothelial cells are conducted or attracted to a sulfonated copolymer surface and grow in an in vitro tissue culture system (data not shown). Furthermore, the growing cells were assayed by an enzyme immunoassay (EIA) and were found to produce prostacyclin, a product of normal endothelium. Thus, in a preferred embodiment, the invention provides a method of promoting endothelialization or epithelialization. Such a method is valuable both for promoting the conduction and growth of epithelial or endothelial cells in vivo (for example, on an implant or other medical device), and in vitro (for example, to grow cells for use in grafting, e.g., skin grafts). Growth and conduction of other types of healthy cells, including osteoblasts, odontoblasts, chondrocytes, and other connective tissue cells, as well as their induction or differentiation from precursor cells, can also be promoted in a similar fashion. For example, the integration of a bone implant into a bone can be improved by use of a sulfonated copolymer surface on the implant, such that osteoblast conduction, differentiation, and growth on and around the implant is promoted. In periodontal disease, the ability ofthe gingival epithelium to grow on the surface ofthe material makes it useful in promoting bone and ligament healing in periodontal disease.
In still another aspect, the invention provides methods of administering a therapeutic agent to a subject, i.e., controlled release. Polymers are useful as drug carriers for controlled release. Up to 5 years of relatively steady release has been achieved (the Norplant birth control implant system is an example). A first type of drug-release system is said to be 'diffusional' since simple diffusion ofthe drug through the polymer is the release mechanism. In such a system, the polymer generally does not significantly dissolve or degrade and, if implanted, must be surgically removed after the drug has been delivered. Such controlled release materials are particularly suitable as permanent coatings on non- resorbed, implanted devices, such as tooth implants and cardiovascular stents.
Another type of polymeric drug release devices involves bioerodible polymers, where the polymer matrix erodes with time ('erosional') to non-toxic products which can be metabolized or eliminated, circumventing the need to surgically remove the polymer after release is complete.
More recently, attention has focused on a third generation type of drug-release system. Development of these systems is driven by the recognition that in certain biomedical applications, continuous, low-level release may not be desirable. For example, for delivery of hormones such as insulin, pulsed release at specific times is desirable.
In a preferred embodiment, the method comprises contacting the subject with a sulfonated multiblock copolymer, wherein the copolymer entraps a therapeutic agent, such that the therapeutic agent is delivered to the subject. It is believed that at least some ofthe subject sulfonated multiblock copolymers are hydrogels; thus, the copolymers can be made to entrap (or immobilize), and subsequently release, a variety of therapeutic agents. Data from microscopy and x-ray scattering experiments show that a film formed from a sulfonated styrene-ethylene-butylene-styrene block copolymer has a lamellar morphology where the sulfonated PS (polystyrene) and EB (ethylene/butylene) phases form alternating plates or layers with thicknesses of about 200-300 A. The high ionic conductivities observed in polymer films of sulfonated styrene-ethylene-butylene-styrene block copolymer suggest that sulfonated PS 'sheets' extend through the thickness ofthe membrane. As with certain known block copolymers, there are distinct phases due to poor molecular compatibility (e.g., hydrophobicity/hydrophilicity) ofthe components, along with a thin interphase region at or near the block junctions where there is at least some small degree of mixing. As a result, there are least three locations for added molecules to reside in the film: largely in the EB phase if they are very non-polar or hydrophobic; largely in the S-PS (sulfonated polystyrene) phase if they are very hydrophilic; and at the interphase if the added molecule is, e.g., cationic with at least some hydrophobic character (e.g., a cationic surfactant). Another possible location for a guest molecule occurs within the S-PS domain near a block region having a sulfonated styrene flanked by unsulfonated styrenes, the latter being hydrophobic. For these reason many types of molecular species can be trapped and immobilized in, or released from, the copolymeric matrix.
In a preferred embodiment, the therapeutic agent is entrapped by including the guest, e.g., therapeutic, agent in the casting solvent when the copolymer is cast, or coated onto a substrate. In this way, the therapeutic agent is distributed throughout, and is integral with, the copolymer structure. Examples of therapeutic agents include enzymes (for example, glucose oxidase or lumbrikinase, a fibrinolytic enzyme), antiinflammatories, analgesics, growth factors, antibiotics, steroids, hormones, antiviral agents, neurotransmitters or neuroregulators, antibodies, antiplatelet agents (such as carbamoylpiperidines) and the like. In another embodiment, the therapeutic agent is immobilized or associated with the sulfonated copolymer by adsorption or through ionic (e.g., electrostatic) interactions. For example, neuroregulators such as dopamine are cationic and bind well to the subject copolymer. Since dopamine deficiency is linked to Parkinson's disease, an article comprising a sulfonated copolymer film that includes dopamine can be implanted in the brain to offer sustained doses ofthe neuroregulator.
In certain embodiments, the therapeutic agent is primarily immobilized on the surface ofthe copolymer, while in other embodiments, the therapeutic agent is distributed throughout the copolymer structure. For example, the anionic nature ofthe sulfonated copolymers permits the immobilization of cationic species through ionic interactions. Thus, cationic species such as amines, amino acids, basic proteins, and the like can be immobilized on the copolymer surface or in the copolymer structure. It is believed that polycations are generally immobilized on the surface, whereas smaller cations are often found throughout the copolymer. For example, compound I (Figure IA) is bound to about 80% ofthe sulfonate groups in a sulfonated copolymer film. Moreover, non-cationic species can be derivatized to yield a cationic derivative. For example, a non-cationic protein can be made cationic by conversion of carboxylates (Glu and Asp) to amines with ethylenediamine, or by addition of a polylysine "tail" to the protein. Other compounds can similarly be modified to provide cationic derivatives by methods known in the art. For diffusional release, the rate of release is determined, at least in part, by how strongly the drug is bound to polymer. There are several ways to control the rate of release. In a preferred embodiment, the sulfonation level ofthe subject copolymer is modified. Lower sulfonation increases the hydrophobicity ofthe sulfonated polystyrene (S-PS) phase and can lead to stronger binding of a hydrophobic, positively-charged drug. Also, the degree of swelling ofthe polymer is generally lower at lower sulfonation, making drug diffusion slower. It will be apparent to the skilled artisan that drugs can be selected or modified to obtain a desired (e.g., preselected) rate of release from a selected copolymer.
Other methods of controlling the rate of diffusional release can also be employed. For example, in the method described above, S-PS lamellae can function, at least in part, as cation-exchange regions, where as a cationic drug is released, cations such as Na+ or K+ (e.g., from the serum) diffuse into the polymer to replace the released drug. In an alternative embodiment, the counter-ion for the S-PS phase can be a "modifier cation," such as a quaternary ammonium surfactant, which is tightly bound and not released from the polymer. The function ofthe "modifier cation" is to "tune" or adjust the hydrophilic/hydrophobic balance in the copolymeric lamellae for binding of various drugs which are not readily released from the native copolymer, in which a typical counter-ion is Na+. A partial exchange (e.g., 10-20%) of native Na+ with a modifier cation, followed by exchange ofthe remaining Na with a cationic drug, can produce a release rate considerably modified from the release rate ofthe native copolymer, permitting a fine-tuned rate of release.
While a therapeutic agent can be released by diffusion, solubilization, and the like, it is also possible to cause release of an agent by applying an electric field to the copolymer entrapping the drug. The electric field can be weak, preferably in the range of 5-20 volts/cm. Modulation can be controlled by the hydrophobicity of molecular species lining the S-PS lamellae (as described above) and by controlling redox reactions that fine-tune the ionic conductivity (see, e.g., Example Three below). Thus the sulfonated copolymer can be used as a material for pulsatile release, in which periodic releases of a therapeutic agent can be controlled by application of pulses of electric current to the copolymer. In this way the sulfonated copolymer can be used as a field-stimulated gate, releasing chemicals on demand.
Yet another method for controlling release derives from the electrostatic qualities of the inventive membrane. Ferrofluids (available from, e.g., Ferrofluidics Inc.) are single- domain magnetic particles (ca. lOOA in diameter) that have organic surface functionality. Immersing the polymer film in a solution of a cationic ferrofluid leads to electrostatic attachment ofthe magnetic particles to surface sulfonates, rendering the membrane deformable in a magnetic field. By oscillating a magnet field near the film, a rapid sinusoidal deflection ofthe polymer can produce pulsatile release.
Furthermore, it is possible to immobilize compounds by "layering" materials on the sulfonated copolymer surface. For example, a polycation, such as polylysine, can be immobilized on the anionic copolymer surface, as described above. A polyanionic material, such as chondroitan sulfate, can then be immobilized to the polycation layer. In this fashion, a hydrophobic charged environment can be created which is similar to ECM. Such an environment could be used to promote the growth of islets cells, osteoblasts, and the like. Artificial organs, such as an artificial pancreas, can therefore be made according to the present invention. The sulfonated multiblock copolymer also functions as a size- exclusion membrane, and therefore could allow oxygen and nutrients to reach the cells, and insulin to pass out ofthe artificial organ, when implanted in vivo. In addition, the surface ionic charge density can be increased by "layering", e.g., by first binding a polycation, such as poly(lysine), to a lightly sulfonated surface, and then binding a more heavily sulfonated polymer, e.g., sulfonated polystyrene, to the polycation layer.
In another preferred embodiment, the polyanion is a nucleic acid. In this embodiment, the invention provides a method of administering a nucleic acid construct to a cell, by contacting a cell with a nucleic acid construct immobilized on a polycationic surface which is immobilized on a sulfonated copolymer. Gene therapy by delivery of nucleic acid/polycation complexes to cells is well known (see, e.g., U.S. Patent 5,166,320 to Wu).
It will be appreciated that the mode of immobilization ofthe therapeutic agent will be selected to ensure desirable characteristics ofthe resulting copolymer. For example, the skilled artisan will be able to incorporate the therapeutic agent in an amount or concentration sufficient to ensure that a therapeutically effective amount ofthe agent will be released to the subject when the copolymer is implanted into (or otherwise contacted with) the subject. Also, copolymer, therapeutic agent, and mode of immobilization or incorporation will be selected to ensure that the release ofthe agent occurs in a controlled fashion.
In still other embodiments, the invention provides copolymers which are useful as biosensors. In Example 2, the immobilization of redox-active molecules in a sulfonated multiblock copolymer is demonstrated. A copolymer incorporating a redox-active molecule is useful as a biosensor where electrical communication between an electrode and a redox-active enzyme cofactor is important. It will also be appreciated that the above aspects ofthe invention can be combined. For example, a cardiovascular implant can be coated with a sulfonated copolymer which incoφorates a therapeutic drug (for example, an antiinflammatory drug). Such an implant would combine antithrombogenicity with the ability to improve endothelial cell growth on the implant surface, while releasing an antiinflammatory drug to speed the healing process. Another example of a combination is an implant which features an immobilized TGF-β superfamily factor (e.g., bone morphogenic protein (BMP)) in the sulfonated copolymer. Such an implant would act to stimulate the growth and morphogenesis of bone on the implant surface through the additive effect ofthe natural growth factor derivative of demineralized bone and the bone-matrix stimulating effect ofthe sulfonated copolymer.
The mechanical strength or other qualities ofthe sulfonated multiblock copolymers ofthe invention is at least partly dependent on the degree of sulfonation ofthe copolymer, and can be adjusted by the inclusion of additives. For example, the addition of polyterpenes increases the stiffness or rigidity ofthe copolymer. Addition of multivalent cations, such as multivalent metal ions (e.g., AP+, Zn2+, and the like) or organic cations or polycations, such as polylysine, also increases the stiffness ofthe copolymer. Other methods of stiffening the subject sulfonated copolymers include radiation cross-linking, for example with gamma rays or high-energy electrons. A stiffer copolymer can be desirable for those applications which require such stiffness for the production ofthe desired article, that is, where working ofthe article is more readily accomplished on a rigid workpiece. Furthermore, addition of appropriate additives can increase the mechanical strength ofthe copolymer sufficiently to permit the use ofthe copolymer to form a finished article without an underlying substrate. For example, a heart valve must be rigid and strong to function efficiently and to prevent failure when implanted; thus, a strong, rigid copolymer is necessary, and may be obtained by appropriate choice of additives. The skilled artisan will be able to determine additives appropriate for imparting desired qualities to the copolymers ofthe invention.
The subject copolymers also exhibit electromechanical properties; that is, application of a weak electric field causes the copolymer to move, bend, or deform in response to the field. This property is useful for providing implantable devices which can be modified in situ by application of an electric field, thus providing an implant which can be customized, adapted, or modified after implantation without removing the implant and without need for surgical intervention.
Other properties ofthe subject sulfonated copolymers useful in the present invention can also be optimized for particular applications. For example, the degree of sulfonation of the copolymer determines, at least in part, the relative hydrophobicity ofthe copolymer, and the charge density on the copolymer surface. That is, the greater the extent of sulfonation ofthe copolymer, the more hydrophilic the copolymer will be, and the more anionic groups will be present on the copolymer surface. The extent of sulfonation can thus determine properties such as the ability to interact with (e.g., retain on the surface or within the copolymer matrix) various molecules such as drugs, as well as determining cell affinity for the copolymer surface. In preferred embodiments, the copolymer is at least 20%, 30%, 50%, 70%, or 90% sulfonated.
Exemplification
Example 1
The antithrombogenic properties ofthe sulfonated multiblock copolymers ofthe invention were demonstrated in an in vitro system. Wells of a standard six-well tissue culture dish were coated with sulfonated styrene-ethylene/butylene-styrene triblock copolymers ofthe invention according to standard techniques. The copolymers differed in the extent of sulfonation; both 30% and 74% sulfonated copolymers were tested. Control wells were not coated with a copolymer; however, the control wells had an anionic (carboxylated) surface as a result ofthe standard manufacturing process. A glass tube was used as an uncharged control surface.
To each well (and the glass tube) was added freshly drawn human blood. The time required for the blood in each well (or tube) to clot was measured; the wells were stirred periodically to determine fibrin and clot formation. The results are shown in the Table:
TABLE
Treatment Time in minutes)
0 8 10 15 20 25 30 35 40 45 55 65 75 anionic NC NC NC F C C C C C C C C C
(uncoated well) glass tube NC C C C C C C C C C C C C
30% NC NC NC NC NC F small C C C C C C sulfonation clot
74% NC NC NC NC NC NC NC NC NC NC NC NC C sulfonation
NC = No clot formed F = Fibrin appears C = Clot formed It can be seen from the Table that sulfonated styrene-ethylene-butylene-styrene block copolymer significantly retards fibrin formation and clotting. The more highly sulfonated copolymer shows greater antithrombogenic activity than the less sulfonated copolymer; both copolymers retard clotting more than the anionic control well or the untreated control surface.
Example 2
The ability ofthe sulfonated styrene-ethylene-butylene-styrene block copolymers of the invention to immobilize molecules of interest was demonstrated in the following in this experiment.
The redox-active molecules shown in Figure 1 A were immobilized in the sulfonated triblock copolymer of styrene-ethylene/butylene-styrene. The copolymers thus formed were examined by cyclic voltammetry to determine whether the added molecules were incoφorated and remained redox-active. In each case, the molecules were shown to be active by cyclic voltammetry.
The compounds shown in Figure IB were also shown to be incoφorated by the sulfonated triblock copolymer of styrene-ethylene/butylene-styrene.
Example 3
Figure 2 depicts a cell which allows for the measurement of ionic conductivity through a membrane including various molecules. The cell 1 includes cathode side 3 and anode side 5, each side having an electrode (10, 10'), e.g., a platinum electrode, and the two sides 3, 5 being separated from each other by a membrane (20) of a material to be tested. The electrodes 10, 10' are connected to a source of electric current (not shown) through leads 14, 14'. Each half 3, 5 ofthe cell 1 is filled with an electrolyte solution (12), and the cell is supported by a clamp (30). The following observations were made with this cell: a) The compound trimethylaminomethylferrocene, which was ion-exchanged into block copolymer film (styrene-ethylene/butylene-styrene, about 50% sulfonated), was released from the polymer when a field of about 1 OV/cm was applied. It was released into the cathode (-) side ofthe cell, as evidenced by the appearance of a yellow color on the cathode side. This result may reflect electrophoretic movement ofthe cationic ferrocene compound toward the cathode, or it might be due to a change in the S-PS phase ofthe polymer, which may expand due to the applied field, facilitating release, b) When the membrane 20 described above contains trimethylaminomethyl-ferrocene, the membrane still allows ions to pass; however, a membrane containing the more hydrophobic dimethylheptylaminomethylferrocene appears to have lower ionic conductivity. This observation suggests that the S-PS lamellae have been lined or modified with hydrophobic molecules, leading to a hydrophobic environment that slows or prevents movement of aqueous salt ions through the membrane, and consequent low conductivity. This suggests that a "modifier cation," as described above, could be useful in controlling the permeability ofthe membrane and hence the rate at which drugs are released through the membrane. Moreover, it suggests that ionic conductivity can be increased by oxidizing ferrocene to the ferrocenium cation, which would increase the hydrophilicity and increase the ionic conductivity. Since this redox process is reversible, membrane permeability to aqueous solutions can be controlled simply by application of appropriate electric potential to the membrane, creating an intelligent membrane which acts as a gate for controlled drug delivery.
Example 4
The ability of endothelial cells to attach, grow, and express a differentiated phenotype was demonstrated in an in vitro system. In this experiment, standard 24-well tissue culture plates were utilized. Enough wells in each plate to provide six replicates of each condition were coated with 150 microliters of solutions ofthe sulfonated copolymer of the invention at each of three different sulfonation levels. After polymer treatment, the wells were rinsed with sterile distilled water for thirty minutes, followed by three rinses with Hank's Balance Salt Solution. Controls consisted of wells of normal culture ware (that is, culture ware that is treated to allow cell adhesion and cell growth, by carboxylation of the surface, thereby rendering the surface anionic) that were coated with the subject sulfonated styrene-ethylene/butylene-styrene copolymer, and, as a negative control, culture dishes obtained from the manufacturer that had not been treated to promote adhesion and growth of cells (untreated controls). Into each of these wells were introduced 100,000 porcine aortic endothelial cells in 1 ml of Ml 99 medium (Sigma Chemical Co., St. Louis, MO) with 10% fetal bovine serum (FBS), leaving at least two wells per condition inoculated just with medium to serve as a blank. Plates were then placed in an incubator at 37°C, with an atmosphere containing 5% CO2, for 48 hours. After the incubation period the medium was removed from each well, spun down in a centrifuge, and frozen separately to use in the phenotype expression assays. 500 ml of medium were added back to each well to allow a cell proliferation assay (CellTiter AQueous, Promega, Inc., Madison, WI) to be performed.
Microscopic examination demonstrated that aortic endothelial cells become attached to surfaces, such as microtiter wells, treated with the subject copolymer, and have the appearance of normal cells. In contrast, untreated control wells do not promote endothelial cell attachment. Figures 3 and 4 are graphs showing the results ofthe cell proliferation assay. As indicated in Figure 3, the proliferation of cells on the sulfonated polymer is related to the degree of sulfonation in the polymer (21%, 57% or 72%; greater sulfonation ofthe polymer increases cell proliferation), and Figure 4 indicates that the proliferation of aortic endothelial cells at the highest percentage sulfonation utilized compares favorably to the commercially-available anionically charged polystyrene culture dish, which is designed to promote cell adhesion and growth (first column: uncharged polystyrene culture dish; second column: commercially-available anionic polystyrene culture dish; third column: 72%) sulfonated styrene-ethylene/butylene-styrene block copolymer-treated culture dish).
Figure 5 shows the results of a phenotypic expression assay on the incubation media ofthe experimental and control conditions described above. The assay utilized was the Biotrak 6-keto-prostaglandin Fla EIA. The compound 6-keto-prostaglandin is normally produced by endothelial cells, but is not produced if the endothelial cells dedifferentiate. As can be seen from Figure 5, the cells seeded on the sulfonated copolymer all continued to express the endothelial phenotype, and did not appear to dedifferentiate (first column: uncharged polystyrene culture dish; second column: commercially-available anionic polystyrene culture dish; third column: 72% sulfonated styrene-ethylene/butylene-styrene block copolymer-treated culture dish).
These experiments illustrate the efficacy ofthe sulfonated copolymers ofthe invention in normal cell growth and adhesion where endothelialization is a desirable feature ofthe material.
Example 5
A piece of Teflon sheet (Xytex, Norton Co.) with 10 micron pore structure was dipped in an approximately 3% (w/w) solution ofthe sulfonated styrene-ethylene-butylene- styrene block copolymer (about 50% sulfonated), shaken to remove liquid droplets, and dried for several hours. The treated material was noticeably different to the touch compared to the untreated Teflon sheet. The wettability ofthe treated sheet was also altered compared to an untreated control: water beaded on the untreated porous Teflon, but wetted (and was absorbed into) the Teflon-sulfonated copolymer hybrid. The hybrid material retains the strength and resilience of porous Teflon, but acquires characteristics ofthe sulfonated polymer (e.g., a non-thrombogenic surface, ability to grow and develop viable and healthy tissues on the surface, and ability to immobilize or deliver biologically important substances). Where infiltration ofthe sulfonated copolymer phase into a second material is slow, as where the second material has small pores, the copolymer can be driven into the porous structure electrophoretically.
The contents of all references and patents cited herein are hereby incoφorated by reference. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the following claims.

Claims

What is claimed is:
1. A nonthrombogenic article for use in contact with blood or blood products, the article comprising at least one surface, said surface comprising an anionic multiblock copolymer.
2. The article of claim 1, wherein the multiblock copolymer is a sulfonated styrene- ethylene/butylene-styrene triblock copolymer.
3. The article of claim 2, wherein said triblock copolymer is at least 20% sulfonated.
4. The article of claim 2, wherein said triblock copolymer is at least 35% sulfonated
5. The article of claim 2, wherein said triblock copolymer entraps a drug.
6. The article of claim 2, wherein said triblock copolymer is grafted to a substrate.
7. The article of claim 2, wherein said article comprises a hybrid material comprising said triblock copolymer and a material selected from the group consisting of Teflon®,
Dacron®, titanium oxide, magnetic particles, and calcium phosphate.
8. The article of claim 2, wherein the article is selected from the group consisting of stents, catheters, cannulae, tubing, vascular grafts, artificial hearts, heart valves, pacemakers, implants, artificial joints, and prostheses.
9. The article of claim 2, wherein the article is an electrical lead.
10. A method of manufacturing a thromboresistant article, the method comprising coating at least one surface of an article with an anionic multiblock copolymer.
11. The method of claim 10, wherein the multiblock copolymer is a sulfonated styrene- ethylene/butylene-styrene triblock copolymer.
12. A method of promoting cell growth, differentiation, or production of normal cell products, comprising contacting cells with an anionic multiblock copolymer, under conditions such that cell growth, differentiation, or production of normal cell products is promoted.
13. The method of claim 12, wherein the multiblock copolymer is a sulfonated styrene- ethylene/butylene-styrene triblock copolymer.
14. The method of claim 13, wherein the cells are selected from the group consisting of epithelial cells and endothelial cells.
15. The method of claim 13, wherein the cells are selected from the group consisting of osteoblasts, odontoblasts, and chondrocytes.
16. A method of administering a therapeutic agent to a subject, the method comprising contacting the subject with an anionic multiblock copolymer, wherein said copolymer entraps said therapeutic agent, such that said therapeutic agent is delivered to said subject.
17. The method of claim 16, wherein the multiblock copolymer is a sulfonated styrene- ethylene/butylene-styrene triblock copolymer.
18. A medical implant which can be modified in situ by application of an electric field, the implant comprising an anionic multiblock copolymer.
19. The method of claim 18, wherein the multiblock copolymer is a sulfonated styrene- ethylene/butylene-styrene triblock copolymer.
PCT/US1996/012311 1995-07-28 1996-07-26 Sulfonated multiblock copolymer and uses therefor WO1997004809A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU66011/96A AU6601196A (en) 1995-07-28 1996-07-26 Sulfonated multiblock copolymer and uses therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US197395P 1995-07-28 1995-07-28
US60/001,973 1995-07-28
US08/661,111 1996-06-10
US08/661,111 US5840387A (en) 1995-07-28 1996-06-10 Sulfonated multiblock copolymer and uses therefor

Publications (1)

Publication Number Publication Date
WO1997004809A1 true WO1997004809A1 (en) 1997-02-13

Family

ID=26669746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/012311 WO1997004809A1 (en) 1995-07-28 1996-07-26 Sulfonated multiblock copolymer and uses therefor

Country Status (3)

Country Link
US (1) US5840387A (en)
AU (1) AU6601196A (en)
WO (1) WO1997004809A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945457A (en) * 1997-10-01 1999-08-31 A.V. Topchiev Institute Of Petrochemical Synthesis, Russian Academy Of Science Process for preparing biologically compatible polymers and their use in medical devices
WO2006083904A2 (en) 2005-02-01 2006-08-10 Boston Scientific Scimed, Inc. Medical devices having porous polymeric regions for controlled drug delivery and regulated biocompatibility
WO2008027107A2 (en) * 2006-08-25 2008-03-06 Boston Scientific Scimed, Inc. Medical devices having polymeric regions with improved adhesion
WO2009006538A2 (en) * 2007-07-02 2009-01-08 University Of Massachusetts Lowell Modified polymers and methods for making and using the same
CN115197899A (en) * 2022-07-20 2022-10-18 淮阴工学院 Preparation method of coating layer capable of regulating differentiation tendency of endothelial progenitor cells

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933331B2 (en) * 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
DE19643555A1 (en) * 1996-10-24 1998-04-30 Univ Dresden Tech Metallic object with a thin multiphase oxide layer and process for its production
BE1011180A6 (en) * 1997-05-27 1999-06-01 Medicorp R & D Benelux Sa Luminal endoprosthesis AUTO EXPANDABLE.
US6656922B2 (en) * 1998-05-28 2003-12-02 Mediplex Corporation, Korea Oral delivery of macromolecules
KR100314496B1 (en) * 1998-05-28 2001-11-22 윤동진 Non-thrombogenic heparin derivatives, process for preparation and use thereof
DE19921088C2 (en) * 1999-04-30 2003-08-07 Magforce Applic Gmbh Stent to keep aisle-like structures open
US6368346B1 (en) 1999-06-03 2002-04-09 American Medical Systems, Inc. Bioresorbable stent
US6306419B1 (en) * 2000-02-23 2001-10-23 Aegis Biosciences, Llc Medical uses of styrene sulfonate polymers
US20020188342A1 (en) * 2001-06-01 2002-12-12 Rykhus Robert L. Short-term bioresorbable stents
WO2003002243A2 (en) 2001-06-27 2003-01-09 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US20030077310A1 (en) 2001-10-22 2003-04-24 Chandrashekhar Pathak Stent coatings containing HMG-CoA reductase inhibitors
AU2003217971A1 (en) * 2002-03-08 2003-09-22 C. Mauli Agrawal Gas-plasma treatment of implants
US7462366B2 (en) 2002-03-29 2008-12-09 Boston Scientific Scimed, Inc. Drug delivery particle
US7842377B2 (en) 2003-08-08 2010-11-30 Boston Scientific Scimed, Inc. Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient
US8012454B2 (en) 2002-08-30 2011-09-06 Boston Scientific Scimed, Inc. Embolization
US6702850B1 (en) * 2002-09-30 2004-03-09 Mediplex Corporation Korea Multi-coated drug-eluting stent for antithrombosis and antirestenosis
US20040142910A1 (en) * 2002-10-21 2004-07-22 Aegis Biosciences Llc Sulfonated styrene copolymers for medical uses
US7883490B2 (en) 2002-10-23 2011-02-08 Boston Scientific Scimed, Inc. Mixing and delivery of therapeutic compositions
US7708974B2 (en) 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
US7976823B2 (en) 2003-08-29 2011-07-12 Boston Scientific Scimed, Inc. Ferromagnetic particles and methods
JP2007506842A (en) 2003-09-23 2007-03-22 デイス−アナリティック コーポレーション NOVEL BLOCK COPOLYMER AND METHOD FOR PRODUCING THE SAME
US7901770B2 (en) 2003-11-04 2011-03-08 Boston Scientific Scimed, Inc. Embolic compositions
US7736671B2 (en) 2004-03-02 2010-06-15 Boston Scientific Scimed, Inc. Embolization
US8173176B2 (en) 2004-03-30 2012-05-08 Boston Scientific Scimed, Inc. Embolization
US7311861B2 (en) 2004-06-01 2007-12-25 Boston Scientific Scimed, Inc. Embolization
WO2006017245A2 (en) * 2004-07-12 2006-02-16 Aegis Biosciences, Llc Sulfonated styrene polymers for medical articles
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US8425550B2 (en) 2004-12-01 2013-04-23 Boston Scientific Scimed, Inc. Embolic coils
US7919110B2 (en) * 2005-01-25 2011-04-05 Boston Scientific Scimed, Inc. Medical device drug release regions containing non-covalently bound polymers
US7858183B2 (en) 2005-03-02 2010-12-28 Boston Scientific Scimed, Inc. Particles
US7727555B2 (en) 2005-03-02 2010-06-01 Boston Scientific Scimed, Inc. Particles
US9125968B2 (en) * 2005-03-30 2015-09-08 Boston Scientific Scimed, Inc. Polymeric/ceramic composite materials for use in medical devices
US7963287B2 (en) 2005-04-28 2011-06-21 Boston Scientific Scimed, Inc. Tissue-treatment methods
US9463426B2 (en) 2005-06-24 2016-10-11 Boston Scientific Scimed, Inc. Methods and systems for coating particles
TWI326691B (en) * 2005-07-22 2010-07-01 Kraton Polymers Res Bv Sulfonated block copolymers, method for making same, and various uses for such block copolymers
WO2007016122A2 (en) * 2005-07-27 2007-02-08 Cook Incorporated Implantable remodelable materials comprising magnetic material
US8663673B2 (en) 2005-07-29 2014-03-04 Surmodics, Inc. Devices, articles, coatings, and methods for controlled active agent release or hemocompatibility
US7778684B2 (en) * 2005-08-08 2010-08-17 Boston Scientific Scimed, Inc. MRI resonator system with stent implant
US20070067882A1 (en) * 2005-09-21 2007-03-22 Liliana Atanasoska Internal medical devices having polyelectrolyte-containing extruded regions
US8008395B2 (en) * 2005-09-27 2011-08-30 Boston Scientific Scimed, Inc. Organic-inorganic hybrid particle material and polymer compositions containing same
US8007509B2 (en) 2005-10-12 2011-08-30 Boston Scientific Scimed, Inc. Coil assemblies, components and methods
US20070110786A1 (en) * 2005-11-15 2007-05-17 Boston Scientific Scimed, Inc. Medical articles having enhanced therapeutic agent binding
US8152839B2 (en) 2005-12-19 2012-04-10 Boston Scientific Scimed, Inc. Embolic coils
US8101197B2 (en) 2005-12-19 2012-01-24 Stryker Corporation Forming coils
US7947368B2 (en) 2005-12-21 2011-05-24 Boston Scientific Scimed, Inc. Block copolymer particles
US8834912B2 (en) * 2005-12-30 2014-09-16 Boston Scientific Scimed, Inc. Medical devices having multiple charged layers
US20070154466A1 (en) * 2005-12-30 2007-07-05 Jan Weber Internal medical devices containing peroxide-converting catalysts
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US20070239256A1 (en) * 2006-03-22 2007-10-11 Jan Weber Medical devices having electrical circuits with multilayer regions
US7737060B2 (en) * 2006-03-31 2010-06-15 Boston Scientific Scimed, Inc. Medical devices containing multi-component fibers
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
EP2054537A2 (en) 2006-08-02 2009-05-06 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US20080050415A1 (en) * 2006-08-25 2008-02-28 Boston Scientic Scimed, Inc. Polymeric/ceramic composite materials for use in medical devices
JP2010503494A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Biodegradable endoprosthesis and method for producing the same
EP2081616B1 (en) 2006-09-15 2017-11-01 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
EP2210625B8 (en) 2006-09-15 2012-02-29 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
CA2663220A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8470071B2 (en) * 2006-09-25 2013-06-25 Dais Analytic Corporation Enhanced HVAC system and method
US8414927B2 (en) 2006-11-03 2013-04-09 Boston Scientific Scimed, Inc. Cross-linked polymer particles
DE602007012891D1 (en) * 2006-12-04 2011-04-14 Cook William Europ METHOD FOR INSERTING A MEDICAL DEVICE IN A RELEASE SYSTEM
ES2506144T3 (en) 2006-12-28 2014-10-13 Boston Scientific Limited Bioerodible endoprosthesis and their manufacturing procedure
US8500960B2 (en) * 2007-01-20 2013-08-06 Dais Analytic Corporation Multi-phase selective mass transfer through a membrane
US20100273901A1 (en) * 2007-05-09 2010-10-28 Aegis Biosciences Llc Molecule sulfonation process
WO2009002984A2 (en) * 2007-06-26 2008-12-31 Aegis Biosciences Llp Stable and compatible polymer blends
WO2009035771A1 (en) * 2007-09-12 2009-03-19 Boston Scientific Limited Embolization particles
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US9107828B2 (en) * 2007-10-05 2015-08-18 Boston Scientific Scimed, Inc. Multi-component particles for injection and processes for forming the same
WO2009086076A2 (en) * 2007-12-28 2009-07-09 Boston Scientific Scimed, Inc. Particles for injection and processes for forming the same
WO2009086098A1 (en) * 2007-12-28 2009-07-09 Boston Scientific Scimed, Inc. Porous microparticles for injection and processes for forming the same
US20100021538A1 (en) * 2008-02-29 2010-01-28 Youngro Byun Pharmaceutical compositions containing heparin derivatives
EP2420213B1 (en) * 2008-04-23 2014-01-15 Cook Medical Technologies LLC Method of loading a medical device into a delivery system
US8012539B2 (en) 2008-05-09 2011-09-06 Kraton Polymers U.S. Llc Method for making sulfonated block copolymers, method for making membranes from such block copolymers and membrane structures
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8986728B2 (en) 2008-05-30 2015-03-24 Abbott Cardiovascular Systems Inc. Soluble implantable device comprising polyelectrolyte with hydrophobic counterions
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
WO2009158325A2 (en) * 2008-06-25 2009-12-30 Boston Scientific Scimed, Inc. Medical devices having surface coatings
US20090324685A1 (en) * 2008-06-26 2009-12-31 Boston Scientific Scimed, Inc. Medical device coatings containing charged materials
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
EP2349371B1 (en) * 2008-10-07 2013-12-04 Boston Scientific Scimed, Inc. Medical devices for delivery of therapeutic agents to body lumens
EP2403546A2 (en) 2009-03-02 2012-01-11 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8445631B2 (en) * 2009-10-13 2013-05-21 Kraton Polymers U.S. Llc Metal-neutralized sulfonated block copolymers, process for making them and their use
US8263713B2 (en) * 2009-10-13 2012-09-11 Kraton Polymers U.S. Llc Amine neutralized sulfonated block copolymers and method for making same
US9393557B2 (en) * 2010-01-09 2016-07-19 Dais Analytic Corporation Anionic exchange electrolyte polymer membranes
US9013155B2 (en) 2010-01-09 2015-04-21 Dais Analytic Corporation Energy storage devices including a solid multilayer electrolyte
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
CN102274550B (en) * 2010-06-13 2014-11-26 上海微创医疗器械(集团)有限公司 Interventional medical device
US9429366B2 (en) * 2010-09-29 2016-08-30 Kraton Polymers U.S. Llc Energy recovery ventilation sulfonated block copolymer laminate membrane
US9394414B2 (en) 2010-09-29 2016-07-19 Kraton Polymers U.S. Llc Elastic, moisture-vapor permeable films, their preparation and their use
CN103201298B (en) 2010-10-18 2015-06-24 科腾聚合物美国有限责任公司 Method for producing a sulfonated block copolymer composition
US9861941B2 (en) 2011-07-12 2018-01-09 Kraton Polymers U.S. Llc Modified sulfonated block copolymers and the preparation thereof
US20130108880A1 (en) * 2011-10-31 2013-05-02 Kraton Polymers U.S. Llc Sulfonated block copolymer laminates with polar or active metal substrates
US11021559B2 (en) 2011-10-31 2021-06-01 Kraton Polymers Llc Sulfonated block copolymer laminates with polar or active metal substrates
US9293269B2 (en) 2012-02-08 2016-03-22 Dais Analytic Corporation Ultracapacitor tolerating electric field of sufficient strength
WO2014144106A1 (en) * 2013-03-15 2014-09-18 Biotectix Llc Implantable electrode comprising a conductive polymeric coating
US10335406B2 (en) 2015-10-01 2019-07-02 Elysium Therapeutics, Inc. Opioid compositions resistant to overdose and abuse
US9808452B2 (en) 2015-10-01 2017-11-07 Elysium Therapeutics, Inc. Polysubunit opioid prodrugs resistant to overdose and abuse
EP3595663A4 (en) 2017-03-17 2021-01-13 Elysium Therapeutics, Inc. Polysubunit opioid prodrugs resistant to overdose and abuse
WO2023060027A1 (en) * 2021-10-07 2023-04-13 Matregenix, Inc. Electrospun nanofibrous polymer membrane for use in air filtration applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239010A (en) * 1988-05-24 1993-08-24 Shell Oil Company Sulfonated block copolymers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925280A (en) * 1972-02-25 1975-12-09 Exxon Research Engineering Co Fabrication multiphase plastics from liquid suspension
JPS58203766A (en) * 1982-05-24 1983-11-28 東ソー株式会社 Blood anti-coagulant material comprising amphoteric ion exchanger
US5407715A (en) * 1990-11-28 1995-04-18 Tactyl Technologies, Inc. Elastomeric triblock copolymer compositions and articles made therewith
JPH04210640A (en) * 1990-11-30 1992-07-31 Toray Ind Inc Anticoagulant
JPH04208165A (en) * 1990-11-30 1992-07-29 Toray Ind Inc Anti-blood-coagulating material and manufacture thereof
JPH04346922A (en) * 1991-05-24 1992-12-02 Doujin Iyaku Kako Kk Poultice
FR2678513B1 (en) * 1991-07-03 1995-06-30 Laboratoires Hygiene Dietetique HEALING DRESSING.
US5468574A (en) * 1994-05-23 1995-11-21 Dais Corporation Fuel cell incorporating novel ion-conducting membrane
JP3543420B2 (en) * 1994-05-26 2004-07-14 Jsr株式会社 Blood collection container

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239010A (en) * 1988-05-24 1993-08-24 Shell Oil Company Sulfonated block copolymers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945457A (en) * 1997-10-01 1999-08-31 A.V. Topchiev Institute Of Petrochemical Synthesis, Russian Academy Of Science Process for preparing biologically compatible polymers and their use in medical devices
WO2006083904A2 (en) 2005-02-01 2006-08-10 Boston Scientific Scimed, Inc. Medical devices having porous polymeric regions for controlled drug delivery and regulated biocompatibility
WO2006083904A3 (en) * 2005-02-01 2007-04-05 Boston Scient Scimed Inc Medical devices having porous polymeric regions for controlled drug delivery and regulated biocompatibility
US8535702B2 (en) 2005-02-01 2013-09-17 Boston Scientific Scimed, Inc. Medical devices having porous polymeric regions for controlled drug delivery and regulated biocompatibility
WO2008027107A2 (en) * 2006-08-25 2008-03-06 Boston Scientific Scimed, Inc. Medical devices having polymeric regions with improved adhesion
WO2008027107A3 (en) * 2006-08-25 2008-12-31 Boston Scient Scimed Inc Medical devices having polymeric regions with improved adhesion
JP2010501248A (en) * 2006-08-25 2010-01-21 ボストン サイエンティフィック リミテッド Medical device having a region of polymer with improved adhesion
US8092821B2 (en) 2006-08-25 2012-01-10 Boston Scientific Scimed, Inc. Medical devices having polymeric regions with improved adhesion
WO2009006538A2 (en) * 2007-07-02 2009-01-08 University Of Massachusetts Lowell Modified polymers and methods for making and using the same
WO2009006538A3 (en) * 2007-07-02 2009-06-04 Univ Massachusetts Lowell Modified polymers and methods for making and using the same
CN115197899A (en) * 2022-07-20 2022-10-18 淮阴工学院 Preparation method of coating layer capable of regulating differentiation tendency of endothelial progenitor cells
CN115197899B (en) * 2022-07-20 2023-06-30 淮阴工学院 Preparation method of coating capable of regulating differentiation trend of endothelial progenitor cells

Also Published As

Publication number Publication date
US5840387A (en) 1998-11-24
AU6601196A (en) 1997-02-26

Similar Documents

Publication Publication Date Title
US5840387A (en) Sulfonated multiblock copolymer and uses therefor
US4879135A (en) Drug bonded prosthesis and process for producing same
US4836884A (en) Implantable materials
Ratner et al. Synthetic hydrogels for biomedical applications
Gentile et al. Layer-by-layer assembly for biomedical applications in the last decade
US6387379B1 (en) Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
CA2354060C (en) Apparatus and method for control of tissue/implant interactions
Baroli Hydrogels for tissue engineering and delivery of tissue-inducing substances
Ai et al. Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles
Iwasaki et al. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces
Zhong et al. Stabilizing electrode-host interfaces: a tissue engineering approach.
JP3504389B2 (en) Tubular graft impregnated with collagen sealant containing heparin
CA2240721C (en) Implantable acrylamide copolymer hydrogel for therapeutic uses
US5098977A (en) Methods and compositions for providing articles having improved biocompatability characteristics
EP1306096A2 (en) Valved prosthesis with porous substrate
WO2006113407A2 (en) Hydrogel bioscaffoldings and biomedical device coatings
Wan Kim et al. Design of nonthrombogenic polymer surfaces for blood-contacting medical devices
Sipehia et al. Enhanced attachment and growth of human endothelial cells derived from umbilical veins on ammonia plasma modified surfaces of PTFE and ePTFE synthetic vascular graft biomaterials
US20140272232A1 (en) Antithrombic coatings and uses thereof
Kyzioł et al. Surface functionalization of biomaterials
Allan Closer to nature: new biomaterials and tissue engineering in ophthalmology
US5098960A (en) Methods and compositions for providing articles having improved biocompatibility characteristics
Lee et al. Biointerface coatings with structural and biochemical properties modifications of biomaterials
RU2702239C1 (en) Technology of producing functionally active biodegradable small-diameter vascular prostheses with drug coating
US5017670A (en) Methods and compositions for providing articles having improved biocompatibility characteristics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase