WO1997000463A1 - Dispositif d'affichage a cristaux liquides, son procede de fabrication, et appareil electronique - Google Patents

Dispositif d'affichage a cristaux liquides, son procede de fabrication, et appareil electronique Download PDF

Info

Publication number
WO1997000463A1
WO1997000463A1 PCT/JP1996/001652 JP9601652W WO9700463A1 WO 1997000463 A1 WO1997000463 A1 WO 1997000463A1 JP 9601652 W JP9601652 W JP 9601652W WO 9700463 A1 WO9700463 A1 WO 9700463A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
crystal display
insulating film
control
Prior art date
Application number
PCT/JP1996/001652
Other languages
English (en)
French (fr)
Inventor
Takashi Satou
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to KR1019960706927A priority Critical patent/KR100261934B1/ko
Priority to JP53019896A priority patent/JP3477715B2/ja
Priority to US08/793,089 priority patent/US6078367A/en
Publication of WO1997000463A1 publication Critical patent/WO1997000463A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy

Definitions

  • the present invention relates to a liquid crystal display device in which a pixel electrode is divided into a plurality, a method for manufacturing the same, and an electronic device.
  • a liquid crystal panel needs a storage capacitor (retention capacitance) to hold the electric charge stored in the pixel electrode, and how to combine this storage capacitor formation technology with the method (2) above. Is also a major technical challenge.
  • the present invention has been made to solve the above-mentioned technical problems, and an object of the present invention is to provide a liquid crystal display element capable of improving a viewing angle characteristic of a liquid crystal panel by a simple process, a method of manufacturing the same, and an electronic device. To provide equipment.
  • the present invention provides a liquid crystal display element including at least a thin film transistor and a pixel electrode connected to the thin film transistor and driving a liquid crystal layer sealed between the thin film transistor and a counter electrode.
  • the L-th (L is an integer) control capacitor electrode
  • the (M—1) -th (M is an integer, 1 ⁇ M ⁇ N) sub-pixel electrode
  • the K-th ( K is an integer, and a (1 — 1) (I is an integer of 2 or more) control capacitance formed by a 1 ⁇ K ⁇ L) control capacitance electrode;
  • the present invention also provides a method for manufacturing a liquid crystal display element including at least a thin film transistor and a pixel electrode connected to the thin film transistor and driving a liquid crystal layer sealed between the thin film transistor and a counter electrode.
  • N is an integer of 2 or more subpixel electrodes obtained by dividing the pixel electrode, wherein the steps (A) to ( C), through the protective insulating film, the (M-1) (M is an integer, 1 and M ⁇ N) sub-pixels.
  • the K-th (K is an integer, 1 ⁇ K ⁇ L) and a (1-1) (I is an integer of 2 or more) control capacitor formed by the control capacitor electrode, and the M-th sub-pixel electrode through the protective insulating film.
  • a K-th control capacitance electrode to form an I-th control capacitance.
  • the (1-1) -th and I-th control capacitors are formed between the (M- 1) -th and M-th sub-pixel electrodes and the K-th control capacitor electrode.
  • the viewing angle characteristics of the liquid crystal layer in the area of the (M-1) th and Mth sub-pixel electrodes can be made different.
  • the (I-1) -th and I-th control capacitors are formed using the protective insulating film as a dielectric.
  • the thickness of the protective insulating film can be made smaller than when the gate insulating film is made of a dielectric material. As a result, the capacitance per unit area can be increased, and the control capacitor electrode can be reduced in area. As a result, the aperture ratio can be improved.
  • the first to L-th control capacitor electrodes are formed of the same material as the source electrode, and the first to L-th control capacitor electrodes are formed by the same process as the source electrode. It is desirable to form. As a result, it is not necessary to add a new process for forming the control capacitor electrode, and the manufacturing cost can be reduced and the reliability can be improved.
  • the thickness of the protective insulating film is preferably smaller than that of the gate insulating film provided above the gate electrode of the thin film transistor.
  • the thickness of the protective insulating film is Is preferably formed thinner than a gate insulating film formed above a gate electrode of the thin film transistor.
  • the first to L-th control capacitance electrodes may be a part of a black matrix serving as a light shielding layer.
  • the control capacitor electrode is formed of a light-shielding material, it can be used as a black matrix to improve the contrast and the like.
  • the K-th control capacitor electrode may be formed at a distance from an electrode formed on one layer. By doing so, the aperture ratio and the like can be further improved, and the occurrence of manufacturing defects due to the attachment of dust and the like can be prevented.
  • the first to N-th sub-pixel electrodes may include first to J-th (where J is an integer) storage capacitors formed by a given storage capacitor electrode and a given storage capacitor electrode.
  • J is an integer
  • the storage capacitor may be formed for two or more sub-pixel electrodes. With this configuration, a storage capacitor corresponding to each of the two or more sub-pixel electrodes can be formed, and the applied voltage holding characteristics of these sub-pixel electrodes on which the storage capacitors are formed can be improved. In this case, it is preferable that the storage capacitor electrode is a scanning line connected to an adjacent thin film transistor in order to improve display characteristics and the like.
  • At least one of the (1-1) th control capacitors is connected to a (M ⁇ 1) th sub-capacitor via a gate insulating film provided above a gate electrode of the thin film transistor.
  • the control capacitor electrode provided below the gate insulating film can be formed in different layers. As a result, it is possible to reduce the occurrence of manufacturing defects due to adhesion of dust and the like.
  • an electronic apparatus includes a liquid crystal device having any one of the above liquid crystal display elements.
  • a liquid crystal device having any one of the above liquid crystal display elements.
  • FIG. 1 is a diagram showing a planar configuration of the first embodiment.
  • FIG. 2 is a diagram showing a cross section taken along a line AB in FIG.
  • FIG. 3 is an equivalent circuit diagram of the first embodiment.
  • FIG. 4 is an example of a cross-sectional view of a background example.
  • 5A to 5E are process cross-sectional views for explaining the manufacturing process of the first embodiment.
  • 6A to 6B are diagrams for explaining an example in the case of forming a black matrix.
  • FIG. 7 is a diagram for explaining the arrangement of control capacitor electrodes.
  • FIG. 8 is a diagram showing a planar configuration of the second embodiment.
  • FIG. 9 is a diagram showing a cross section taken along a line AB in FIG.
  • FIG. 10 is an equivalent circuit diagram of the second embodiment.
  • FIG. 11 is a diagram showing a planar configuration of the third embodiment.
  • FIG. 12 is a view showing a cross section taken along a line AB of FIG.
  • FIG. 13 is an equivalent circuit diagram of the third embodiment.
  • FIG. 14 is a diagram showing a combination of the second embodiment and the third embodiment.
  • FIG. 15 is a diagram showing an example in which a storage capacitor is formed in both the first and second sub-pixel electrodes.
  • FIG. 16 is an equivalent circuit diagram of FIG.
  • FIG. 17 is a diagram showing an example in which a storage capacitor is formed only in the first sub-pixel electrode.
  • FIG. 18 is an equivalent circuit diagram of FIG.
  • FIG. 19 is a diagram showing a planar configuration of the fourth embodiment.
  • FIG. 20 is a diagram showing a cross section taken along a line AB in FIG.
  • FIG. 23 is a diagram illustrating an example of a mobile phone as one of the electronic devices.
  • FIG. 24 is a diagram illustrating an example of the entire configuration of a control circuit of a liquid crystal device built in an electronic device.
  • FIGS. 26A to 26C are diagrams illustrating an example of a liquid crystal projector which is one of the electronic devices.
  • a first control capacitor electrode 20 is provided below a protective insulating film 60 serving as a protective film for the source electrode 53 and the like.
  • the first control capacitor electrode 20 is formed of the same material as the source electrode 53. Therefore, it is necessary to add a new process for forming the first control capacitor electrode 20. As a result, the production process can be prevented from becoming complicated. The production cost can be reduced.
  • the first control capacitor electrode 20 can be formed of a material different from that of the source electrode 53.
  • a control capacitor (control capacitance) C1 is formed using the protective insulating film 60 as a dielectric, the first sub-pixel electrode 10 as a ground electrode, and the first control capacitor electrode 20 as a lower electrode.
  • a control capacitor C2 is formed by the protective insulating film 60, the second sub-pixel electrode 12, and the first control capacitor electrode 20.
  • the liquid crystal capacitor CLC1 having the liquid crystal layer 76 as a dielectric is formed by the first subpixel electrode 10 and the counter electrode 66, and the liquid crystal capacitor CL is formed by the second subpixel electrode 12 and the counter electrode 66.
  • C 2 is formed.
  • control capacitors C1 and C2 are formed using the protective insulating film 60 as a dielectric.
  • the control capacitor C2 is formed using the gate insulating film 249 as a dielectric. If a pinhole or the like occurs in the gate insulating film 249, a pixel defect or the like occurs, and therefore the gate insulating film 249 usually needs to be thick. As the film thickness increases, the capacitance per unit area decreases, so that it is necessary to increase the area of the control capacitor electrode 221 (the overlapping area with the second sub-pixel electrode 212), which deteriorates the aperture ratio and the like. I do.
  • the protective insulating film 60 is used as a dielectric.
  • This protective insulating film 60 has a thickness smaller than that of the insulating film.
  • the thicknesses of the gate insulating film 49, the intrinsic silicon film 70, and the n-type silicon film 71 are, for example, about 300,000 angstroms, about 300,000 angstroms, and about 500 angstroms, respectively.
  • the gate insulating film 49 may be provided with a silicon oxide film Siox having a thickness of, for example, about 1000 angstrom below the silicon nitride film SiNX.
  • a source electrode 53, a drain electrode 55, and a first control capacitor electrode 20 of, for example, Cr and having a thickness of about 130 angstroms are formed by sputtering and photoetching. Separate 72 and 73 and perform source and drain separation (Fig. 5C). As described above, in the present embodiment, the source electrode 53 and the like and the first control capacitor electrode 20 are formed of the same material. Therefore, it is not necessary to add a new manufacturing process for generating the control capacitor, and the cost can be reduced. Note that a method of providing an etch stopper (ES) in the source / drain separation region may be employed.
  • a protective insulating film 60 serving as a protective film for the source electrode 53 and the like is formed (FIG. 5D).
  • first and second sub-pixel electrodes 10 and 12 having a thickness of about 500 angstroms made of, for example, ITO (indium oxide film) are formed by sputtering and photoetching. ( Figure 5E). Thereafter, as shown in FIG. 2, an alignment film 60 is formed. Then, the TFT side substrate thus formed and the glass substrate
  • a liquid crystal layer 76 is sealed with a counter substrate composed of 69, a counter electrode 66, an alignment film 64, and the like to complete a liquid crystal panel.
  • the control capacitor electrode 20 can be a part of the black matrix to be the light shielding layer.
  • black matrixes 17 and 18 provided on a counter substrate and a control capacitor electrode 20 made of Cr or the like prevent light leakage and improve contrast.
  • the capacity of the control capacitor per unit area can be increased as described above, the overlap between the first and second subpixel electrodes 10 and 12 and the control capacitor electrode 20 is increased. Can be reduced. Therefore, also in this case, according to the present embodiment, the aperture ratio and the like can be improved.
  • the black matrix 19 may be provided so as to completely cover the control capacitor electrode 20, or the black matrix may be provided on the TFT side substrate.
  • the capacity of the control capacitor per unit area can be increased, and the area of the first control capacitor electrode 20 can be reduced. Therefore, as shown in FIG. 7, the first control capacitor electrode 20 having a small area is provided so as to partially cover the gap region between the first and second sub-pixel electrodes 10 and 12. It is also possible. With this configuration, the distance shown in C of FIG. 7, that is, the distance between the first control capacitor electrode 20 and the signal line 52 can be increased. In the present embodiment, the first control capacitor 20 and the signal line 52 are formed of the same material in the same layer. Therefore, if the distance C can be made sufficiently large, the occurrence of manufacturing defects due to the attachment of dust etc. will be reduced. it can.
  • the distance C can be increased, and manufacturing defects due to adhesion of dust and the like can be reduced.
  • the above-described manufacturing defect is reduced by sufficiently increasing the distance D in FIG. it can.
  • the difference from the first embodiment is that a second control capacitor electrode 22 and a third subpixel electrode 14 are provided, and control capacitors C3 and C4 are formed.
  • the equivalent circuit of the second embodiment is as shown in FIG.
  • the voltage of the terminal E is VE
  • this VE, the voltage VF of the terminal F, and the voltage VG of the terminal G can be made different, whereby the liquid crystal layer in the region of CLC 1, CLC 2, and CLC 3 can be changed.
  • the light transmittance can be varied, and the viewing angle characteristics of these liquid crystal layers can be varied. Then, by interpolating these different viewing angle characteristics with each other, the viewing angle characteristics of one pixel (or the entire liquid crystal panel) can be further improved as compared with the first embodiment.
  • FIG. 8 shows an example in which the pixel electrode is divided into three, but it is also possible to divide the pixel electrode into four or more. That is, according to the present embodiment, the pixel electrode is divided into the first to Nth (N is an integer of 2 or more) subpixel electrodes, and the first to Lth (L is an integer) control capacitor electrodes are provided. be able to.
  • the area of the control capacitor electrode can be reduced, even if the pixel electrode is divided into a large number in this way, the aperture ratio and the like do not deteriorate much as compared with the related art. Therefore, according to the present embodiment, it is possible to further improve the viewing angle characteristics by dividing the pixel electrode into many without significantly deteriorating the aperture ratio or the like.
  • the first and second control capacitor electrodes 20 and 22 are part of a black matrix as shown in FIGS. 6A and 6B.
  • the second control capacitor electrodes 20, 22 and the like can have a pattern shape as shown in FIG. 3.
  • FIG. 11 is a diagram illustrating a planar configuration of a liquid crystal display element according to a third embodiment
  • FIG. 12 is a diagram illustrating a cross section taken along line AB of FIG.
  • the storage capacitor CS is formed between the scanning line 40 connected to the adjacent TFT 46 and the second sub-pixel electrode 12.
  • the scanning line 40 overlapping the second sub-pixel electrode 12 be the scanning line selected immediately before. That is, taking FIG. 11 as an example, the selection voltages are applied in the order of the scanning lines 40 and 50. In this way, it is possible to prevent a voltage change of the sub-pixel electrode 12 or the like due to the application of the selection voltage to the scanning line 40, and to improve the display characteristics.
  • the storage capacitor electrode that is made to be sub-pixel electrode is not limited to the scanning line.
  • a storage capacitor line may be separately formed and overlapped with this storage capacitor line.
  • the third sub-pixel electrode 14 and the scanning line 40 are overlapped.
  • a storage capacitor is formed.
  • the pattern is formed, for example, as shown in FIG.
  • the storage capacitors CS 1 and CS 2 can be formed as shown in the equivalent circuit of FIG. 16, and the holding characteristics of not only CLC 2 but also the voltage applied to CLC 1 can be improved.
  • the pixel electrode is divided into three or more, storage capacitors corresponding to the respective sub-pixel electrodes can be formed in the same manner as in FIG.
  • FIG. 17 only the first sub-pixel electrode 10 is overlapped with, for example, the scanning line 40 (or the storage capacitor line), and a storage capacitor is formed only on the first sub-pixel electrode 10. May be.
  • the storage capacitor CS 1 can be formed as shown in the equivalent circuit of FIG. 18, and the retention characteristics of the voltage applied to the CLC 1 can be particularly improved.
  • the first sub-pixel electrode 10 is directly coupled to the source electrode of the TFT, and providing a storage capacitor to the first sub-pixel electrode 10 has a great effect on improving display characteristics.
  • the first to J-th (where J is an integer) storage capacitors can be formed by at least one of the first to N-th sub-pixel electrodes and a given storage capacitor electrode.
  • FIG. 19 is a diagram showing a planar configuration of the liquid crystal display element according to the fourth embodiment.
  • FIG. 20 is a diagram showing a cross section taken along a line AB in FIG.
  • the first control capacitor electrode 21 is provided below the gate insulating film 49. That is, the gate insulating film 4
  • Control capacitors C1 and C2 are formed by using the dielectric material 9 and the like, the first and second subpixel electrodes 10 and 12 as upper electrodes, and the first control capacitor electrode 21 as lower electrodes. . Note that the first control capacitor electrode 21 can be formed in the same process as the scanning line 50.
  • the first control capacitor electrode 21 and the second control capacitor electrode 22 can be formed in different layers. For this reason, it is possible to reduce the occurrence of manufacturing defects due to the attachment of dust and the like. Also, the thickness of the dielectric of the control capacitors C1 and C2 and the thickness of the dielectric of C3 and C4 can be made different. That is, it is possible to make the control capacitors different in capacitance while making the overlapping area of the sub-pixel electrode and the control capacitor electrode the same.
  • a control capacitor is formed using the gate insulating film or the like as a dielectric, and if the control capacitor needs to be increased, the protective insulating film is used as a dielectric.
  • a control capacitor can be formed.
  • control capacitors using a gate insulating film or the like as a dielectric are C1 and C2, but C3 and C4 may be control capacitors using a gate insulating film or the like as a dielectric. That is, in this embodiment, at least one of the plurality of sets of control capacitors C2K-1 and C2K (K is an integer) may be a control capacitor having a gate insulating film or the like as a dielectric. 5.
  • the fifth embodiment is an embodiment relating to an electronic apparatus including a liquid crystal device having the liquid crystal display element described in the first to fourth embodiments.
  • the microcomputer is built in the remote controller 9100 of the air conditioner.
  • the controller 9100 controls the air conditioner 9000, and the operation state of the air conditioner and the like are displayed on a liquid crystal device (liquid crystal panel) 9200 capable of displaying various images.
  • This calculator 9300 has an input key 910 and a liquid crystal device 9400 ⁇
  • the microcombination is built into the mobile phone 9500.
  • This mobile phone 9500 has an input key 9420 and a liquid crystal device 9600.
  • FIG. 24 shows an outline of the overall configuration of a control circuit of a liquid crystal device built in such an electronic device.
  • the microcomputer 9720 in Fig. 24 is built into the controller of the air conditioner shown in Fig. 21, but can also be applied to the electronic devices shown in Fig. 22 and Fig. 23.
  • the microcombiner 9720 shown in Figure 24 includes a CPU 101, a constant voltage circuit 102, an oscillator circuit 106, a frequency divider 110, a timer 111, an input circuit 9640, an output circuit 9690, a ROM9670, and a RAM. 9680, LCD panel drive circuit 9700, infrared output controller 9710, etc.
  • the input circuit 9640 and the output circuit 9690 are, for example, communication interface circuits with the input keys 9410 and the like.
  • the liquid crystal panel drive circuit 9700 is a circuit that drives the liquid device 9200 and the like to perform clock display and various status displays.
  • the infrared output controller 9710 receives an infrared light emitting diode via the switching transistor Q100! This is the circuit that drives 1 on / off.
  • the liquid crystal device having the liquid crystal display element described in Examples 1 to 4 is applied to a personal digital information device (Personal Digit 1 Assistance) 1000 which is one of the electronic devices as shown in FIG. Can also be used.
  • Personal digital information device Personal Digit 1 Assistance
  • the information device 1000 has an IC card 1100, a simultaneous interpretation system 1200, a handwriting screen 1300, a video conference system 1400a, 1400b, a map information system 1500, and a liquid crystal display screen 1660. Further, the information device 1000 includes, in the input / output interface unit 1600, a video camera 1610, a speaker 1620, a microphone 1630, an input pen 1640, and an earphone 1650.
  • the structure of the thin film transistor is not limited to that described in the above embodiment, but may be any reverse suga structure, or positive suga structure, or poly '(polycrystalline) in an amorphous silicon transistor.
  • Various types of silicon film transistor such as a breaker type and a positive electrode type structure, can be adopted.
  • the manufacturing process of the liquid crystal display element is not limited to the one described in the above embodiment, and various methods such as using anodic oxidation can be adopted.
  • a configuration in which a color filter, a black matrix, and the like are formed on the TFT-side substrate is also included in the scope of the present invention.
  • the present invention it is possible to simplify the manufacturing process while improving the viewing angle characteristics, In addition, it is possible to improve the enrollment rate and the like. As a result, a high-performance, low-cost liquid crystal display device can be provided. In addition, it is possible to prevent the occurrence of manufacturing defects due to the attachment of dust and the like, and to improve the reliability and the yield. Also, a reduction in the holding voltage of the sub-pixel electrode can be prevented, and display characteristics can be improved.

Description

明 細 書 液晶表示素子、 その製造方法及び電子機器
[技術分野]
本発明は、 画素電極が複数に分割された液晶表示素子、 その製造方法及び電子 機器に関する。
[背景技術]
例えばフラット ·パネルディスプレイ 1 9 9 4 「大型への飛躍に必須の広視野 角技術 T F Tの量産パネルに適用始まる」 ( 1 9 9 3年 1 2月 1 0日、 曰絰 B P 社出版、 P 1 6 6 ) に記載されているように、 液晶パネルの広視野角技術として 種々の手法が試みられている。 代表的なものとしては ( 1 ) ラビング処理等のェ 夫により液晶配向を制御する手法、 (2 ) 制御コンデンサを用いて液晶分子に印 加する電圧を制御する等の手法が知られている。
上記 ( 1 ) の手法は、 同一方向にそろっている液晶分子の向きを全方向に均等 化しようとするものである。 しかしながらこの手法には、 工程が複雑になる '再 現性が良くない等の種々の問題がある。
—方、 上記 (2 ) の手法としては、 例えば特開平 4一 3 4 8 3 2 3、 特開平 5 - 1 0 7 5 5 6 . 特開平 3— 1 2 2 6 2 1等の背景技術が知られている。 しかし ながらこれらの背景技術には、 制御コンデンサ (制御容量) 、 付加コンデンサを 形成するために、 特別な電極形成工程、 誘電体膜 (絶緣層) 形成工程等を付加す る必要があり、 工程が長くなる等の問題があった。
同様に上記 (2 ) の手法として、 例えば特開平 6— 1 0 2 5 3 7、 特開平 5— 3 4 1 3 1 8、 特開平 6— 9 5 1 4 4、 特開平 5— 2 8 9 1 0 8等の背景技術が 知られている。 これらの背景技術では、 ゲート絶緣膜、 遮光層上の誘電体膜等を 用いて制御コンデンサを形成しており、 これらのゲート絶縁膜... 誘電体膜にビン ホールが生じると画素欠陥、 線欠陥等をひきおこす。 このためこれらの膜厚を厚 くする必要があり、 この結果、 制御コンデンサの単位面積当たりの容量が小さく なる。 単位面積当たりの容量が小さいと、 必要とされる容量を得るためには、 制 御コンデンサの形成面積を大きくする必要があり、 これにより液晶パネルの閧ロ 率 (光透過特性) 等が悪化する。 また制御コンデンサの形成面積が大きいと、 欠 陥等も生じやすくなる。
更に、 液晶パネルにおいては、 画素電極に蓄えられる電荷を保持するための保 持コンデンサ (保持容量) が必要であり、 上記 (2 ) の手法に如何にしてこの保 持コンデンサ形成技術を組み合わせるかについても大きな技術的課題となる。 本発明は以上述べた技術的課題を解決するためになされたものであり、 その目 的とするところは、 簡易なプロセスで液晶パネルの視角特性等を改善できる液晶 表示素子、 その製造方法及び電子機器を提供することにある。
[発明の開示]
上記課題を解決するために本発明は、 薄膜トランジスタと、 該薄膜トランジス 夕に接続され、 対向電極との間に封入される液晶層を駆動する画素電極とを少な くとも含む液晶表示素子であって、 前記画素電極を分割した第 1〜第 N ( Nは 2 以上の整数) の副画素電極と、 前記簿膜トランジスタのソース電極を保護するた めの保護絶縁膜の下方に設けられる第 1〜第 L ( Lは整数) の制御容量電極と、 前記保護絶縁膜を介して、 第 (M— 1 ) ( Mは整数であり、 1く M≤N ) の副画 素電極と、 第 K ( Kは整数であり、 1≤K≤L ) の制御容量電極とにより形成さ れる第 ( 1 — 1 ) ( Iは 2以上の整数) の制御容量と、 前記保護絶縁膜を介して、 第 Mの副画素電極と、 第 Kの制御容量電極とにより形成される第 Iの制御容量と を含むことを特徴とする。
また本発明は、 薄膜トランジスタと、 該簿膜トランジスタに接続され、 対向電 極との間に封入される液晶層を駆動する画素電極とを少なくとも含む液晶表示素 子の製造方法であって、 (A ) 第 1〜第 L ( Lは整数) の制御容量電極を形成す る工程と、 (B ) 該第 1〜第 Lの制御容量電極の上方に、 前記薄膜トランジスタ のソース電極を保護するための保護絶縁膜を形成する工程と、 (C ) 前記画素電 極を分割した第 1〜第 N ( Nは 2以上の整数) の副画素電極を形成する工程とを 含み、 前記工程 (A ) 〜 ( C ) により、 前記保護絶縁膜を介して、 第 (M— 1 ) ( Mは整数であり、 1く M≤N ) の副画素電.,亟と、 第 K ( Kは整数であり、 1≤ K≤L ) の制御容量電極とにより形成される第 (1— 1 ) ( Iは 2以上の整数) の制御容量を形成すると共に、 前記保護絶縁膜を介して、 第 Mの副画素電極と、 第 Kの制御容量電極とにより形成される第 Iの制御容量を形成することを特徴と する。
本発明によれば、 第 (M— 1 ) 、 第 Mの副画素電極と、 第 Kの制御容量電極と の間に、 第 (1— 1 ) 、 第 Iの制御容量が形成される。 これにより第 (M— 1 ) の副画素電極に印加される電圧と、 第 Mの副画素電極に印加される電圧とを異な るものとすることができる。 これにより、 第 (M— 1 ) 、 第 Mの副画素電極の領 域にある液晶層の視角特性を異ならせることができる。 この結果、 これらの異な る視角特性が互いに補間し合うことで、 1画素全体の視角特性を向上できる。 ま た本発明では、 保護絶縁膜を誘電体として第 (I一 1 ) 、 第 Iの制御容量が形成 される。 そしてゲート絶縁膜を誘電体とする場合に比較して、 保護絶縁膜を誘電 体とする場合にはこの保護絶縁膜の膜厚を薄くできる。 この結果、 単位面積当た りの容量を大きくすることができ、 制御容量電極を小面積化できる。 この結果、 開口率の向上等を図ることが可能となる。
この場合、 前記第 1〜第 Lの制御容量電極を、 前記ソース電極と同一材料によ り形成することが望ましく、 また前記第 1〜第 Lの制御容量電極を、 前記ソース 電極と同一工程により形成することが望ましい。 これにより制御容量電極形成の ための新たな工程を付加する必要が無くな'り、 製造コストの軽減、 信頼性の向上 等を図れる。
また前記保護絶縁膜の膜厚は、 前記簿膜トランジスタのゲート電極の上方に設 けられたゲート絶縁膜よりも簿いことが望ましく、 前記工程 (B ) において、 前 記保護絶縁膜の膜厚を、 前記簿膜トランジスタのゲート電極の上方に形成される ゲート絶縁膜よりも薄く形成することが望ましい。 これにより制御容量電極を小 面積化でき、 開口率の向上等を図れる。
また、 本発明では、 前記第 1〜第 Lの制御容量電極を、 遮光層となるブラック マトリクスの一部としてもよい。 制御容量電極が遮光性の材料より形成される場 合には、 これをブラックマトリクスとして用いることにより、 コントラストの向 上等を図ることができる。 また、 本発明では、 前記第 (M— 1 ) の副画素電極と前記第 Mの副画素電極と の間の隙間領域の一部を覆うように、 且つ、 前記第 Kの制御容量電極と同一層に 形成される電極との距離を離して前記第 Kの制御容量電極を形成してもよい。 こ のようにすれば、 開口率等の更なる向上を図れると共に、 ゴミの付着等を原因と する製造不良の発生等を防止できる。
また、 前記第 1〜第 Nの副画素電極の少なくとも 1つと、 所与の保持容量電極 とにより形成される第 1〜第 J ( Jは整数) の保持容量を含むようにしてもよい このように保持容量を形成することで、 薄膜トランジスタのオフ時のリーク電流 等に起因する電圧低下の問題を解決できる。
この場合、 前記薄膜トランジス夕のソース電極に接続される前記第 1の副画素 電極と、 所与の保持容量電極とにより形成される前記第 1の保持容量のみを含む ようにようにしてもよい。 薄膜トランジスタに直接接続される第 1の副画素電極 に保持容量を形成することが、 表示特性の向上に特に効果が大きいからである。 またこの場合、 2以上の副画素電極に対して前記保持容量を形成してもよい。 このようにすれば、 2以上の副画素電極の各々に対応した保持容量を形成でき、 保持容量が形成されたこれらの副画素電極の印加電圧保持特性を向上できる。 なお、 この場合、 表示特性の向上等のため、 前記保持容量電極が、 隣接する薄 膜トランジスタに接続される走査線であることが望ましい。
また、 本発明では、 前記第 ( 1— 1 ) の制御容量の少なくとも 1つを、 前記薄 膜トランジスタのゲート電極の上方に設けられたゲート絶縁膜を介して、 第 (M — 1 ) の副画素電極と、 前記ゲート絶縁膜の下方に設けられた制御容量電極によ り形成し、 前記第 Iの制御容量の少なくとも 1つを、 前記ゲート絶縁膜を介して、 第 Mの副画素電極と、 前記ゲ一ト絶縁膜の下方に設けられた前記制御容量電極と により形成してもよい。 これにより保護絶縁膜の下方に設けられた制御容量電極 と、 ゲート絶縁膜の下方に設けられた制御容量電極とを異なった層に形成できる。 これによりゴミの付着等を原因とした製造不良の発生を低減できる。
また本発明に係る電子機器は、 上記のいずれかの液晶表示素子を有する液晶装 置を含むことを特徴とする。 このようにすることで、 リモートコントローラ、 電 卓、 携帯電話、 携帯型情報機器、 プロジェクタ、 パーソナルコンビユー夕等の電 子機器に使用する液晶装置の、 開口率の向上、 視覚特性の向上、 低コスト化等を 図ることが可能となる。
[図面の簡単な説明]
第 1図は、 第 1の実施例の平面的構成を示す図である。
第 2図は、 第 1図の A— B断面を示す図である。
第 3図は、 第 1の実施例の等価回路図である。
第 4図は、 背景例の断面図の一例である。
第 5 A図〜第 5 E図は、 第 1の実施例の製造プロセスを説明するための工程断 面図である。
第 6 A図〜第 6 B図はブラックマトリクスを形成する場合の例について説明す るための図である。
第 7図は、 制御コンデンサ電極の配置について説明するための図である。
第 8図は、 第 2の実施例の平面的構成を示す図である。
第 9図は、 第 8図の A— B断面を示す図である。
第 1 0図は、 第 2の実施例の等価回路図である。
第 1 1図は、 第 3の実施例の平面的構成を示す図である。
第 1 2図は、 第 1 1図の A— B断面を示す図である。
第 1 3図は、 第 3の実施例の等価回路図である。
第 1 4図は、 第 2の実施例と第 3の実施例の組み合わせを示すための図である。 第 1 5図は、 第 1、 第 2の副画素電極の両方に保持容量を形成する場合の例を 示す図である。
第 1 6図は、 第 1 5図の等価回路図である。
第 1 7図は、 第 1の副画素電極のみに保持容量を形成する場合の例を示す図で め 。
第 1 8図は、 第 1 7図の等価回路図である。
第 1 9図は、 第 4の実施例の平面的構成を示す図である。
第 2 0図は、 第 1 9図の A— B断面を示す図である。
第 2 1図は、 電子機器の 1つであるリモートコントローラの一例を示す図であ る。
第 2 2図は、 電子機器の 1つで る電卓の一例を示す図である。
第 2 3図は、 電子機器の 1つである携帯電話機の一例を示す図である。
第 2 4図は、 電子機器に内蔵される液晶装置の制御回路の全体構成例を示す図 である。
第 2 5図は、 電子機器の 1つである個人用携帯型情報機器の一例を示す図であ
-0 o
第 2 6 A図〜第 2 6 C図は、 電子機器の 1つである液晶プロジェクタの一例を 示す図である。
[発明を実施するための最良の形態]
以下本発明の実施例について図面を用いて詳しく説明する。
1 . 第 1の実施例
図 1は、 第 1の実施例に係る液晶表示素子の平面的構成を示す図であり、 図 2 は、 図 1の A— B断面を示す図である。
図 1、 図 2に示すように、 この液晶表示素子は、 薄膜トランジスタ (以下、 T
F Tと呼ぶ) 5 6と、 第 1、 第 2の副画素電極 1 0、 1 2に分割された画素電極 とを含み、 この画素電極により、 対向電極 6-6との間に封入される液晶層 7 6を 駆動する。 T F T 5 6は、 ゲート電極 5 1、 ソース電極 5 3、 ドレイン電極 5 5、 真性シリコン膜 7 0、 n型シリコン膜 (ォーミック層) 7 2、 7 3を含む。 第 1 の副画素電極 1 0は、 コンタクト 5 4を介してソース電極 5 3に接続され、 ゲー ト鼋極 5 1、 ドレイン電極 5 5は、 各々、 走査線 5 0、 信号線 5 2に接続される。 複数のこれらの走査線 5 0、 信号線 5 2をマトリクス状に交差して配置すると共 に、 交差位置に T F Tを配置することで、 液晶パネル (液晶装置) が構成される。 図 2に示すように、 ソース電極 5 3等の保護膜となる保護絶縁膜 6 0の下方に は第 1の制御コンデンサ電極 2 0が設けられている。 本実施例では、 この第 1の 制御コンデンサ電極 2 0を、 ソース電極 5 3と同一材料により形成している。 従 つて第 1の制御コンデンサ電極 2 0の形成のための新たな工程を付加する必要が 無く、 この結果、 製造工程の煩 化の防止 ·製造コストの低減を図れる。 但し、 第 1の制御コンデンサ電極 20を、 ソース電極 53と異なる材料により形成する ことも可能である。
保護絶縁膜 60を誘電体とし、 第 1の副画素電極 10を土側電極、 第 1の制御 コンデンサ電極 20を下側電極として、 制御コンデン-サ .( 御容量) C 1が形成 される。 同様に、 保護絶縁膜 60と、 第 2の副画素電極 12と、 第 1の制御コン デンサ電極 20とにより制御コンデンサ C 2が形成される。 一方、 第 1の副画素 電極 10と、 対向電極 66とにより、 液晶層 76を誘電体とした液晶コンデンサ CLC1が形成され、 第 2の副画素電極 12と、 対向電極 66とにより液晶コン デンサ CL C 2が形成される。
図 3に、 本実施例の等価回路図を示す。 T FT 56のソース電極である端子 Ε には液晶コンデンサ CLC 1が接続される。 更に端子 Eには、 制御コンデンサ C 1、 C 2及び液晶コンデンサ CLC 2が直列接続される。 走査線 50が選択され TFT 56がオンした場合の端子 Eの電圧を VEとした場合、 CLC 1にはこの V Eがそのまま印加される。 一方、 端子 Fの電圧は、 C l、 C2、 CLC2により容 量分割されるため、 CLC2には VF = VEx (C 1 + C2) / (C 1+C2 + C LC 2) の電圧が印加される。 このように C L C 1に印加される電圧 VEと、 CL C 2に印加される VFとを異ならすことで、 CLC 1、 CLC2の領域にある液晶 層の光透過率を異ならすことが可能となる。.これによりこれらの液晶層の視角特 性を異ならせることができ、 これらの異なる視角特性が互いに補間し合うことで、 1画素全体 (あるいは液晶パネル全体) の視角特性を向上できる。
本実施例の特徴は、 保護絶縁膜 60を誘電体として制御コンデンサ C 1、 C2 を形成した点にある。 これに対して、 例えば特開平 6— 102537等では、 図 4に示すように、 ゲ一ト絶縁膜 249を誘電体として制御コンデンサ C 2を形成 している。 ゲート絶縁膜 249にピンホール等が生じると画素欠陥等が生じるた め、 ゲート絶縁膜 249は通常厚くする必要がある。 膜厚が厚くなると、 単位面 積当たりの容量が小さくなるため、 制御コンデンサ電極 221の面積 (第 2副画 素電極 212との重なり面積) を大きくする必要が生じ、 これにより開口率等が 悪化する。 これに対し、 本実施例では保護絶縁膜 60を誘電体として使用してお り、 この保護絶縁膜 6 0はゲー):絶縁膜よりも膜厚を薄くできる。 従って、 単位 面積当たりの容量を大きくでき、 制御コンデンサ電極 2 0の面積を小さくできる c これにより開口率 (光透過特性) 等を向上できる。
なお保護絶縁膜は、 ゲート絶縁膜よりも膜厚を簿くできる理由は以下の通りで ある。 即ちゲート電極とシリコン層とのショートを防ぐためには、 ゲート絶縁膜 にビンホールが存在してはならない。 このため、 これを防止するために、 ゲート 絶縁膜を厚くする、 あるいはゲート絶縁膜を 2層構造にする必要があり、 いずれ にしてもゲート絶縁膜は厚くなる。 一方、 保護絶縁膜は、 液晶層からの水分等の 進入を防ぐ等のために形成されており、 通常はゲート絶縁膜よりも薄くてよい。 次に、 図 5 A〜図 5 Eに示す工程断面図を用いて本実施例の液晶表示素子の製 造プロセスの一例について説明する。 まずガラス基板 (無アルカリ基板) 6 8上 に、 スパヅ夕リング及びフォトエッチングにより、 例えば 1 3 0 0オングス トロ ーム程度の厚さの C r (クロム) 等から成るゲート電極 5 1を形成する (図 5 A) 。 次に、 例えばプラズマ C V D法により、 シリコン窒化膜 S iNX等から成るゲ一 ト絶縁膜 4 9、 真性シリコン膜 7 0、 n型シリコン膜 (ォ一ミック層) 7 1を連 続的に生成し、 フォトエッチングによりアイランド化する (図 5 B ) 。 この場合、 ゲート絶縁膜 4 9、 真性シリコン膜 7 0、 n型シリコン膜 7 1の厚さは、 各々、 例えば 3 0 0 0オングストローム、 3 0 0 0オングストローム、 5 0 0オングス トローム程度となる。 またゲート絶縁膜 4 9は、 シリコン窒化膜 S i NXの下に例 えば 1 0 0 0オングス トローム程度の厚さのシリコン酸化膜 S i Oxを設ける構成 としてもよい。
次に、 例えば C r等から成る 1 3 0 0オングストローム程度のソース電極 5 3、 ドレイン電極 5 5、 第 1の制御コンデンサ電極 2 0を、 スパッタリング及びフォ トエッチングで形成し、 更に n型シリコン膜 7 2、 7 3を分離しソース ' ドレイ ン分離を行う (図 5 C ) 。 このように本実施例では、 ソース電極 5 3等と、 第 1 の制御コンデンサ電極 2 0とを同一材料で形成している。 従って制御コンデンサ を生成するための新たな製造工程を追加する必要がなく、 低コスト化が図れる。 なおソース ' ドレインの分離領域にエッチス トッパー (E S ) を設ける手法を採 用してもよい。 次にソース電極 5 3等の保護膜となる保護絶縁膜 6 0を形成する (図 5 D ) 。 この保護絶縁膜 6 0は、 例えば 2 0 0 0オングストローム程度のシリコン窒化膜 S iNX等で形成される。 このように保護絶縁膜 6 0の膜厚は、 ゲート絶縁膜 4 9 よりも薄くできるため、 制御コンデンサ C l、 C 2 (図 2参照) の単位面積当た りの容量を大きくでき、 これにより開口率等の向上が図れる。 次に、 コンタクト
5 4を開口し、 例えば I T O (酸化ィンジゥ厶膜) 等から成る 5 0 0オングスト ローム程度の厚さの第 1、 第 2の副画素電極 1 0、 1 2を、 スパッタリング及び フォトエッチングにより形成する (図 5 E ) 。 その後、 図 2に示すように、 配向 膜 6 0を形成する。 そして、 このように形成された T F T側基板と、 ガラス基板
6 9、 対向電極 6 6、 配向膜 6 4等から成る対向基板とで、 液晶層 7 6を封入し、 液晶パネルを完成する。
本実施例によれば、 制御コンデンサ電極 2 0を、 遮光層となるブラックマトリ クスの一部とすることができる。 図 6 Aでは、 例えば対向基板に設けられたブラ ヅクマトリクス 1 7、 1 8と、 C r等から成る制御コンデンサ電極 2 0とにより、 光漏れを防止し、 コントラストの向上を図っている。 本実施例によれば、 上記し たように単位面積当たりの制御コンデンサの容量を大きくできるため、 第 1、 第 2の副画素電極 1 0、 1 2と制御コンデンサ電極 2 0との間のォーパラップを小 さくできる。 従ってこの場合においても、 本実施例によれば開口率等の向上が図 れる。 なお、 図 6 Bに示すように、 制御コンデンサ電極 2 0を完全に覆うように ブラックマトリクス 1 9を設けてもよいし、 ブラックマトリクスを T F T側基板 に設ける構成としても構わない。
また本実施例によれば、 単位面積当たりの制御コンデンサの容量を大きくでき、 第 1の制御コンデンサ電極 2 0の面積を小さくできる。 このため、 図 7に示すよ うに、 第 1、 第 2の副画素電極 1 0、 1 2間の隙間領域の一部を覆うように、 小 さい面積の第 1の制御コンデンサ電極 2 0を設けることも可能となる。 そしてこ のように構成すると、 図 7の Cに示す距離、 即ち第 1の制御コンデンサ電極 2 0 と信号線 5 2との間の距雜を離すことができる。 第 1の制御コンデンサ 2 0と信 号線 5 2とは、 本実施例においては同一材料で同一層に形成されている。 従って、 距離 Cを十分大きくできれば、 ゴミの付着等を原因とした製造不良の発生を低減 できる。 即ち本実施例によれば、,第 1の制御コンデンサ電極 2 0の面積を小さく できるため、 距離 Cを大きくでき、 ゴミ等の付着を原因とする製造不良を低減で きる。 なお、 図 4に示すように、 第 1の制御コンデンサ電極が走査線と同一材料 で同一層に形成される場合には、 図 7の距離 Dを十分大きくすることで、 上記製 造不良を低減できる。
2 . 第 2の実施例
図 8は、 第 2の実施例に係る液晶表示素子の平面的構成を示す図であり、 図 9 は、 図 8の A— B断面を示す図である。
第 1の実施例と異なるのは、 第 2の制御コンデンサ電極 2 2、 第 3の副画素電 極 1 4が設けられ、 制御コンデンサ C 3、 C 4が形成される点である。 これによ り第 2の実施例の等価回路は図 1 0に示すようになる。 端子 Eの電圧は VEとする と、 この VEと、 端子 Fの電圧 VFと、 端子 Gの電圧 VGとを異ならせることできる, これにより C L C 1、 C L C 2、 C L C 3の領域にある液晶層の光透過率を異な らすことができ、 これらの液晶層の視角特性を異ならせることができる。 そして、 これらの異なる視角特性が互いに補間し合うことで、 1画素全体 (あるいは液晶 パネル全体) の視角特性を、 第 1の実施例に比べて更に向上できる。
ここで図 8には、 画素電極を 3分割する場合の例が示されるが、 4分割以上す ることも可能である。 即ち、 本実施例によれば、'画素電極を第 1〜第 N ( Nは 2 以上の整数) の副画素電極に分割し、 第 1〜第 L ( Lは整数) の制御コンデンサ 電極を設けることができる。
特に、 本実施例では、 制御コンデンサ電極の面積を小さくできるため、 このよ うに画素電極を多数に分割しても開口率等が、 従来に比べてそれほど悪化しない。 従って本実施例によれば、 開口率等をそれほど悪化させずに、 画素電極を多数に 分割することで更なる視角特性の向上を図ることが可能となる。
なお第 2の実施例においても、 当然に、 第 1、 第 2の制御コンデンサ電極 2 0、 2 2を、 図 6 A、 図 6 Bに示すようにブラックマトリクスの一部としたり、 また 第 1、 第 2の制御コンデンサ電極 2 0、 2 2等を図 7に示すようなパターン形状 とすることができる。 3 . 第 3の実施例
図 1 1は、 第 3の実施例に係る液晶表示素子の平面的構成を示す図であり、 図 1 2は、 図 1 1の A— B断面を示す図である。
第 1の実施例と異なるのは、 隣の T F T 4 6に接続される走査線 4 0と、 第 2 の副画素電極 1 2との間に保持容量 C Sが形成されている点である。 保持容量 C Sを形成することで、 図 1 3の等価回路図から明らかなように、 T F T 5 6のォ フ時のリーク電流に起因する電圧低下の問題を解決できる。 この場合、 第 2の副 画素電極 1 2をオーバーラップさせる走査線 4 0は、 1つ手前に選択される走査 線であることが望ましい。 即ち、 図 1 1を例にとれば、 走査線 4 0、 5 0の順で 選択電圧が印加される。 このようにすれば走査線 4 0への選択電圧印加に起因す る副画素電極 1 2等の電圧変動を防止でき、 表示特性を向上できる。 もちろん、 副画素電極にォ一パラッブさせる保持容量電極は走査線に限られるものではなく、 例えば保持容量線を別に形成し、 この保持容量線にオーバラッブさせても構わな い。
第 2の実施例のように、 画素電極を更に多数に分割する場合には、 例えば図 1 4に示すようにして、 第 3の副画素電極 1 4と走査線 4 0とをオーバーラップさ せ、 保持容量を形成する。
また第 1、 第 2の副画素電極 1 0の両方に保持容量を形成する場合には、 例え ば図 1 5に示すようなパターン形状にする。 これにより、 図 1 6の等価回路に示 すように保持容量 C S 1、 C S 2を形成でき、 C L C 2のみならず C L C 1に印 加される電圧の保持特性も向上できる。 画素電極を 3分割以上する場合にも、 図 1 5と同様にして、 それそれの副画素電極に対応した保持容量を形成できる。 また図 1 7に示すように、 第 1の副画素電極 1 0のみを例えば走査線 4 0 (あ るいは保持容量線) にオーバラップさせ、 第 1副画素電極 1 0にのみ保持容量を 形成してもよい。 これにより図 1 8の等価回路に示すように保持容量 C S 1を形 成でき、 C L C 1に印加される電圧の保持特性を特に向上できる。 第 1の副画素 電極 1 0は、 T F Tのソース電極に直接結合されており、 この第 1の副画素電極 1 0に保持容量を設けることが、 表示特性の向上に対して効果が大きい。 このように本実施例によれば、 第 1〜第 Nの副画素電極の少なくとも 1つと、 所与の保持容量電極とにより、 第 1〜第 J ( Jは整数) の保持容量を形成できる < そして 2以上の副画素電極と保持容量電極との間で保持容量を形成すれば、 上記 のように保持容量が形成された全ての副画素電極の印加電圧保持特性を向上でき る。
4 . 第 4の実施例
図 1 9は、 第 4の実施例に係る液晶表示素子の平面的構成を示す図であり、 図
2 0は、 図 1 9の A— B断面を示す図である。
第 4の実施例では、 第 2の実施例 (図 9参照) と異なり、 第 1の制御コンデン サ鼋極 2 1がゲート絶縁膜 4 9の下方に設けられている。 即ち、 ゲート絶縁膜 4
9等を誘電体とし、 第 1、 第 2の副画素電極 1 0、 1 2を上側電極、 第 1の制御 コンデンサ電極 2 1を下側電極として、 制御コンデンサ C l、 C 2が形成される。 なお第 1の制御コンデンサ電極 2 1は走査線 5 0と同一の工程で形成できる。
本実施例によれば、 第 1の制御コンデンサ電極 2 1と第 2の制御コンデンサ電 極 2 2とを異なった層に形成できる。 このため、 ゴミの付着等を原因とした製造 不良の発生を低減できる。 また制御コンデンサ C l、 C 2の誘電体の厚さと、 C 3、 C 4の誘電体の厚さとを異なったものにできる。 即ち副画素電極と制御コン デンサ電極のォ一バラップ面積を同じにしながら、 制御コンデンサの容量を異な つたものにできる。 これにより例えば制御コンデンサの容量を小さくして構わな いものはゲート絶縁膜等を誘電体として制御コンデンサを形成し、 制御コンデン ザの容量を大きくする必要があるものは保護絶縁膜を誘電体として制御コンデン サを形成できる。
なお図 2 0ではゲート絶縁膜等を誘電体とする制御コンデンサは C 1、 C 2と なっているが、 C 3、 C 4をゲート絶縁膜等を誘電体とする制御コンデンサとし てもよい。 即ち、 本実施例では、 複数ある制御コンデンサの組 C2K-1、 C2K ( K は整数) の少なくとも 1つが、 ゲート絶縁膜等を誘電体とする制御コンデンサで あればよい。 5. 第 5の実施例
第 5の実施例は、 実施例 1〜4で説明した液晶表示素子を有する液晶装置を含 む電子機器に関する実施例である。
各種の電子機器について、 図 21〜図 26 Cを用いて説明する。
図 21では、 マイクロコンビュ一夕が、 エアコンのリモートコントローラ 9 1 00に内蔵されている。 このコントローラ 9 100は、 ェアコン 9000を制御 するもので、 種々の画像を映し出すことができる液晶装置 (液晶パネル) 920 0に、 エアコンの動作状態等が表示される。
図 22では、 上述したマイクロコンビユー夕が、 電卓 9300に内蔵されてい る。 この電卓 9300は、 入力キー 9 10および液晶装置 9400を有してい る ο
図 23では、 マイクロコンビユー夕は、 携帯電話機 9500に内蔵されている。 この携帯電話機 9500は、 入力キー 9420および液晶装置 9600を有して いる。
上述の電子機器は、 例えば、 電池 (太陽電池を含む) を用いた携帯用の電子機 器である。 このような電子機器に内蔵されている液晶装置の制御回路の全体構成 の概要を図 24に示す。
図 24のマイクロコンビユー夕 9720は、 図 2 1に示されるエアコンのコン トローラに内蔵されるものであるが、 図 22、 図 23等の電子機器にも適用でき るものである。
図 24に示されるマイクロコンビユー夕 9720は、 CPU 10 1, 定電圧回 路 102 , 発振回路 106 , 分周回路 1 10 , タイマー 1 1 1 , 入力回路 9 64 0, 出力回路 9690, ROM9670 , RAM 9680 , 液晶パネル駆動回路 9700, 赤外線出力コントローラ 97 10等を含む。
入力回路 9640や出力回路 9690は、 例えば、 入力キー 94 10等との間 の通信インタフェース回路である。 また、 液晶パネル駆動回路 9700は、 液 装置 9200等を駆動して時計表示や各種の状態表示を行わせる回路である。 ま た、 赤外線出力コントローラ 97 1 0は、 スイッチングトランジスタ Q 1 00を 介して、 赤外発光ダイォ一ド!) 1をオン/オフ駆動する回路である。 また実施例 1〜4で説明した液晶表示素子を有する液晶装置は、 図 25に示す ような、 電子機器の 1つである個人用携帯型情報機器 (Personal D i g i t a 1 As s i s t an c e) 1000にも使用可能である。
この情報機器 1000は、 I C力一ド 1100、 同時通訳システム 1200、 手書用スクリーン 1300、 テレビ会議システム 1400 a, 1400 b, 地図 情報システム 1500、 液晶表示画面 1660を有する。 さらに、 情報機器 10 00は、 入出力ィンタフエースユニット 1600において、 ビデオカメラ 161 0 , スピーカ 1620, マイクロホン 1630, 入力用ペン 1640, イヤホン 1650を有する。
また実施例 1〜4で説明した液晶表示素子を有する液晶装置は、 図 26 A〜図 26 Cに示すような、 電子機器の 1つである液晶プロジェクタ 1010にも適用 可能である。 図 26 Aには、 投射口 1012から、 任意の表示エリア、 例えばス クリーン 1016上に所与の画像を投射している様子が示されている。 リモート コントローラ 1020の先端には赤外線発光部 1036が設けられ、 操作信号を 液晶プロジェクタ 1010に向け送信する。 図 26B、 図 26 Cに示すように、 前面及び背面には、 赤外線受光部 1014a、 1014 bが設けられているため、 操作者は前方、 後方のどちらからでも液晶プロジェクタ 1010を遠隔操作でき なお、 本発明は上記実施例 1〜5に限定されるものではなく、 本発明の要旨の 範囲内で種々の変形実施が可能である。
例えば薄膜トランジスタの構造は上記実施例で説明したものに限らず、 ァモル ファス (非晶質) シリコン簿膜トランジスタにおける全ての逆スガ夕構造、 ある いは正スガ夕型構造、 ポリ' (多結晶) シリコン簿膜トランジスタにおけるブレー ナ型、 正スガ夕型の構造等、 種々のものを採用できる。
また液晶表示素子の製造プロセスも上記実施例で説明したものに限らず、 陽極 酸化を用いる等の種々の手法を採用できる。
またカラ一フィルター、 ブラックマトリクス等を T FT側基板に形成する構成 も本発明の範囲に含まれる。
本発明によれば、 視角特性の向上を図りながらも、 製造プロセスを簡易にでき、 また閧ロ率等の向上を図ることが,可能となる。 これにより、 高性能で低コス トの 液晶表示素子を提供できる。 またゴミの付着等を原因とする製造不良の発生等を 防止でき、 信頼性 ·歩留まりの向上等を図ることができる。 また副画素電極の保 持電圧の低下を防止でき、 表示特性の向上が図れる。

Claims

請, 求 の 範 囲
(1) 薄膜トランジスタと、 該薄膜トランジスタに接続され、 対向電極との間に 封入される液晶層を駆動する画素電極とを少なくとも含む液晶表示素子であって、 前記画素電極を分割した第 1〜第 N (Nは 2以上の整数) の副画素電極と、 前記薄膜トランジスタのソース電極を保護するための保護絶縁膜の下方に設け られる第 1〜第 L (Lは整数) の制御容量電極と、
前記保護絶縁膜を介して、 第 (M— 1) (Mは整数であり、 1<M≤N) の副 画素電極と、 第 K (Kは整数であり、 1≤K≤L) の制御容量電極とにより形成 される第 (I一 1) (Iは 2以上の整数) の制御容量と、
前記保護絶縁膜を介して、 第 Mの副画素電極と、 第 Kの制御容量電極とにより 形成される第 Iの制御容量とを含むことを特徴とする液晶表示素子。
(2) 請求項 1において、
前記第 1〜第 Lの制御容量電極が、 前記ソ一ス電極と同一材料により形成され ていることを特徴とする液晶表示素子。
(3) 請求項 1において、
前記保護絶縁膜の膜厚が、 前記薄膜トランジスタのゲート電極の上方に設けら れたゲート絶縁膜よりも薄いことを特徴とする液晶表示素子。
(4) 請求項 1において、
前記第 1〜第 Lの制御容量電極が、 遮光層となるブラックマトリクスの一部と なることを特徴とする液晶表示素子。
( 5 ) 請求項 1において、
前記第 (M— 1) の副画素電極と前記第 Mの副画素電極との間の隙間領域の一 部を覆うように、 且つ、 前記第 Kの制御容量電極と同一層に形成される電極との 距離を離して前記第 Kの制御容量電極が形成されていることを特徴とする液晶表 示素子。
(6) 請求項 1において、
前記第 1〜第 Nの副画素電極の少なくとも 1つと、 所与の保持容量電極とによ り形成される第 1〜第 J (Jは整数) の保持容量を含むことを特徴とする液晶表 示素子。
(7)請求項 6において、
前記薄膜トランジスタのソース電極に接続される前記第 1の副画素電極と、 所 与の保持容量電極とにより形成される前記第 1の保持容量のみを含むことを特徴 とする液晶表示素子。
(8) 請求項 6において、
2以上の副画素電極に対して前記保持容量が形成されていることを特徴とする 液晶表示素子。
(9) 請求項 6において、
前記保持容量電極が、 隣接する簿膜トランジスタに接続される走査線であるこ とを特徴とする液晶表示素子。
(10) 請求項 1において、
前記第 (エー 1 ) の制御容量の少なくとも 1つが、
前記薄膜トランジスタのゲート電極の上方に設けられたゲート絶縁膜を介して、 第 (M— 1) の副画素電極と、 前記ゲート絶縁膜の下方に設けられた制御容量電 極とにより形成され、
前記第 Iの制御容量の少なくとも 1つが、
前記ゲート絶縁膜を介して、 第 Mの副画素電極と、 前記ゲート絶縁膜の下方に 設けられた前記制御容量電極とにより形成ざれることを特徴とする液晶表示素子。
(1 1) 請求項 1乃至 10のいずれかの液晶表示素子を有する液晶装置を含むこ とを特徴とする電子機器。
(12) 簿膜トランジスタと、 該簿膜トランジスタに接続され、 対向電極との間 に封入される液晶層を駆動する画素電極とを少なくとも含む液晶表示素子の製造 方法であって、
(A) 第 1〜第 L (Lは整数) の制御容量電極を形成する工程と、
(B) 該第 1〜第 Lの制御容量電極の上方に、 前記薄膜トランジスタのソース電 極を保護するための保護絶縁膜を形成する工程と、
(C) 前記画素電極を分割した第 1〜第 N (Nは 2以上の整数) の副画素電極を 形成する工程とを含み、
前記工程 (A) 〜 (C) により、 97/00463
18
前記保護絶縁膜を介して、 第 (M— 1) (Mは整数であり、 1く M≤N) の副 画素電極と、 第 K (Kは整数であり、 1≤K≤L) の制御容量電極とにより形成 される第 (I一 1) (Iは 2以上の整数) の制御容量を形成すると共に、
前記保護絶縁膜を介して、 第 Mの副画素電極と、 第 Kの制御容量電極とにより 形成される第 Iの制御容量を形成することを特徴とする液晶表示素子の製造方法。
(13) 請求項 12において、
前記第 1〜第 Lの制御容量電極を、 前記ソース電極と同一工程により形成する ことを特徴とする液晶表示素子の製造方法。
(14) 請求項 12において、
前記工程 (B) において、 前記保護絶縁膜の膜厚を、 前記薄膜トランジスタの ゲート電極の上方に形成されるゲート絶縁膜よりも薄く形成することを特徴とす る液晶表示素子の製造方法。
PCT/JP1996/001652 1995-06-16 1996-06-17 Dispositif d'affichage a cristaux liquides, son procede de fabrication, et appareil electronique WO1997000463A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019960706927A KR100261934B1 (ko) 1995-06-16 1996-06-17 액정표시소자, 그것의 제조방법 및 전자기기
JP53019896A JP3477715B2 (ja) 1995-06-16 1996-06-17 液晶表示素子、その製造方法及び電子機器
US08/793,089 US6078367A (en) 1995-06-16 1996-06-17 Liquid crystal display with sub-pixel electrodes, and control capacitor electrodes forming control capacitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/174200 1995-06-16
JP17420095 1995-06-16

Publications (1)

Publication Number Publication Date
WO1997000463A1 true WO1997000463A1 (fr) 1997-01-03

Family

ID=15974481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001652 WO1997000463A1 (fr) 1995-06-16 1996-06-17 Dispositif d'affichage a cristaux liquides, son procede de fabrication, et appareil electronique

Country Status (4)

Country Link
US (1) US6078367A (ja)
JP (1) JP3477715B2 (ja)
KR (1) KR100261934B1 (ja)
WO (1) WO1997000463A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269509A (ja) * 1996-03-29 1997-10-14 Seiko Epson Corp 液晶表示素子及びその製造方法
JP2006201775A (ja) * 2005-01-17 2006-08-03 Samsung Electronics Co Ltd 薄膜トランジスタ表示板とこれを含む液晶表示装置及びその製造方法
KR100580387B1 (ko) * 1998-09-24 2007-03-02 삼성전자주식회사 액정 표시 장치
WO2007108181A1 (ja) 2006-03-15 2007-09-27 Sharp Kabushiki Kaisha アクティブマトリクス基板、表示装置、テレビジョン受像機
JP2009244884A (ja) * 2002-06-06 2009-10-22 Sharp Corp 液晶表示装置
JP2011118432A (ja) * 1999-06-25 2011-06-16 Nec Corp マルチドメイン液晶表示装置
KR20210093209A (ko) * 2013-07-10 2021-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624856B2 (en) * 2000-07-07 2003-09-23 Casio Computer Co., Ltd. Liquid crystal display device having thin film transistors for reducing leak current
FR2826766B1 (fr) * 2001-06-29 2003-10-31 Thales Avionics Lcd Matrice active de transistors en couches minces ou tft pour capteur optique ou ecran de visualisation
KR100870005B1 (ko) * 2002-03-07 2008-11-21 삼성전자주식회사 액정 표시 장치
TW544942B (en) * 2002-09-30 2003-08-01 Hannstar Display Corp Thin film transistor array substrate
JP3767607B2 (ja) * 2003-05-02 2006-04-19 セイコーエプソン株式会社 電気光学装置及び電子機器
KR101189267B1 (ko) * 2004-12-03 2012-10-09 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 액정 표시 장치
KR20060028536A (ko) * 2004-09-24 2006-03-30 삼성전자주식회사 색필터 표시판 및 그를 포함하는 액정 표시 장치
TWI401640B (zh) * 2004-11-12 2013-07-11 Samsung Display Co Ltd 顯示裝置及其驅動方法
JP4829501B2 (ja) * 2005-01-06 2011-12-07 シャープ株式会社 液晶表示装置
US7936407B2 (en) 2005-02-24 2011-05-03 Samsung Electronics Co., Ltd. Array substrate, method of manufacturing the same, display panel having the same, and liquid crystal display apparatus having the same
JP4440150B2 (ja) * 2005-03-16 2010-03-24 シャープ株式会社 液晶表示装置及びその製造方法
US20060250533A1 (en) * 2005-05-03 2006-11-09 Po-Sheng Shih Pixel structure with improved viewing angle
JP4689352B2 (ja) * 2005-05-30 2011-05-25 シャープ株式会社 表示装置用基板及びそれを備えた液晶表示装置
JP3892882B2 (ja) * 2005-06-13 2007-03-14 三菱電機株式会社 半透過型液晶表示装置
TW200702853A (en) * 2005-07-07 2007-01-16 Au Optronics Corp Liquid crystal display devices
US7907246B2 (en) 2005-09-15 2011-03-15 Sharp Kabushiki Kaisha Display panel comprising at least one scribe mark formed of thinnest conductive member
JP2007183629A (ja) * 2005-12-29 2007-07-19 Samsung Electronics Co Ltd 薄膜トランジスタ表示基板及びその製造方法
KR100853228B1 (ko) 2008-04-23 2008-08-20 삼성전자주식회사 박막 트랜지스터 기판
KR101544847B1 (ko) * 2008-07-03 2015-08-18 삼성디스플레이 주식회사 액정 표시 장치
KR101499241B1 (ko) * 2008-07-04 2015-03-05 삼성디스플레이 주식회사 액정 표시 장치
KR101778009B1 (ko) * 2010-08-19 2017-09-27 삼성디스플레이 주식회사 표시 기판 및 그 제조 방법
US20150138169A1 (en) * 2013-11-21 2015-05-21 Shenzhen China Star Optoelectronics Technology Co. Ltd. Display panel, pixel structure therein and driving method thereof
KR20200048694A (ko) * 2018-10-30 2020-05-08 엘지디스플레이 주식회사 전계 발광 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142570A (ja) * 1991-11-20 1993-06-11 Sharp Corp アクテイブマトリクス基板
JPH05289108A (ja) * 1992-04-15 1993-11-05 Fujitsu Ltd 液晶表示装置及びその製造方法
JPH0695144A (ja) * 1992-09-10 1994-04-08 Hosiden Corp 液晶表示素子
JPH06148681A (ja) * 1992-11-10 1994-05-27 Sanyo Electric Co Ltd 液晶表示装置
JPH0728091A (ja) * 1993-07-14 1995-01-31 Nec Corp 液晶表示装置
JPH07325322A (ja) * 1994-05-31 1995-12-12 Matsushita Electric Ind Co Ltd 薄膜トランジスタ液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725420A (en) * 1970-09-28 1973-04-03 Warner Lambert Co Pyridyl-{62 -hydroxysulfoxides and sulfones and derivatives
US5191452A (en) * 1989-09-20 1993-03-02 Honeywell Inc. Active matrix liquid crystal display fabrication for grayscale
US5245450A (en) * 1990-07-23 1993-09-14 Hosiden Corporation Liquid crystal display device with control capacitors for gray-scale
US5126865A (en) * 1990-12-31 1992-06-30 Honeywell Inc. Liquid crystal display with sub-pixels
JP2764770B2 (ja) * 1991-07-12 1998-06-11 ホシデン・フィリップス・ディスプレイ株式会社 液晶表示素子
JPH05107556A (ja) * 1991-10-14 1993-04-30 Hosiden Corp 液晶表示素子画素
JPH06102537A (ja) * 1992-09-22 1994-04-15 Toshiba Corp アクティブマトリクス型液晶表示素子
KR0169386B1 (ko) * 1995-05-31 1999-03-20 김광호 액정 표시 장치 및 이에 사용되는 박막 트랜지스터 기판

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142570A (ja) * 1991-11-20 1993-06-11 Sharp Corp アクテイブマトリクス基板
JPH05289108A (ja) * 1992-04-15 1993-11-05 Fujitsu Ltd 液晶表示装置及びその製造方法
JPH0695144A (ja) * 1992-09-10 1994-04-08 Hosiden Corp 液晶表示素子
JPH06148681A (ja) * 1992-11-10 1994-05-27 Sanyo Electric Co Ltd 液晶表示装置
JPH0728091A (ja) * 1993-07-14 1995-01-31 Nec Corp 液晶表示装置
JPH07325322A (ja) * 1994-05-31 1995-12-12 Matsushita Electric Ind Co Ltd 薄膜トランジスタ液晶表示装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269509A (ja) * 1996-03-29 1997-10-14 Seiko Epson Corp 液晶表示素子及びその製造方法
KR100580387B1 (ko) * 1998-09-24 2007-03-02 삼성전자주식회사 액정 표시 장치
JP2011118432A (ja) * 1999-06-25 2011-06-16 Nec Corp マルチドメイン液晶表示装置
JP2009244884A (ja) * 2002-06-06 2009-10-22 Sharp Corp 液晶表示装置
JP2006201775A (ja) * 2005-01-17 2006-08-03 Samsung Electronics Co Ltd 薄膜トランジスタ表示板とこれを含む液晶表示装置及びその製造方法
US8164586B2 (en) 2005-01-17 2012-04-24 Samsung Electronics Co., Ltd. Thin film transistor array panel and liquid crystal display including the panel
WO2007108181A1 (ja) 2006-03-15 2007-09-27 Sharp Kabushiki Kaisha アクティブマトリクス基板、表示装置、テレビジョン受像機
EP2037319A2 (en) 2006-03-15 2009-03-18 Sharp Kabushiki Kaisha Active matrix substrate, display device and television receiver
DE112006003807T5 (de) 2006-03-15 2009-03-12 Sharp Kabushiki Kaisha Aktivmatrixsubstrat, Display und Fernsehempfänger
JP2008287266A (ja) * 2006-03-15 2008-11-27 Sharp Corp アクティブマトリクス基板、表示装置、テレビジョン受像機
KR20210093209A (ko) * 2013-07-10 2021-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102428371B1 (ko) 2013-07-10 2022-08-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20220110698A (ko) * 2013-07-10 2022-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102609180B1 (ko) 2013-07-10 2023-12-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치

Also Published As

Publication number Publication date
JP3477715B2 (ja) 2003-12-10
US6078367A (en) 2000-06-20
KR100261934B1 (ko) 2000-07-15
KR970703545A (ko) 1997-07-03

Similar Documents

Publication Publication Date Title
JP3477715B2 (ja) 液晶表示素子、その製造方法及び電子機器
US6791633B2 (en) Liquid crystal display and manufacturing method of same
US7692729B2 (en) Liquid crystal display including sensing unit
CN100510860C (zh) 具有可调视角的面内切换模式液晶显示器件及其制造方法
CN108761941B (zh) Coa型液晶显示面板结构及coa型液晶显示面板的制作方法
US20090128757A1 (en) Liquid crystal device and electronic apparatus
KR20070058971A (ko) 액정표시장치
CN100541280C (zh) 液晶显示装置及电子设备
US6900864B2 (en) Transflective electro-optical device and electronic apparatus
EP1672414A1 (en) Thin film transistor array panel and liquid crystal display including the panel
US8736781B2 (en) Liquid crystal display device and method of driving the same
CN101008750A (zh) 液晶装置和电子设备
KR20050105113A (ko) 반도체장치 제작방법
JP2003167270A (ja) 反射型液晶表示装置及びその製造方法
CN106483728A (zh) 像素结构、阵列基板和显示装置
JP3240620B2 (ja) 表示装置、電子機器及び表示装置の製造方法
US5327268A (en) Reflective type liquid crystal display with reversely staggered TFT structures
US8436798B2 (en) Method for driving electro-optic device, electro-optic device, and electronic apparatus
CN112965307A (zh) 双面反射显示面板
US7609341B2 (en) Common electrode panel, manufacturing method thereof, and liquid crystal display including the panel
US6432734B1 (en) Method of manufacturing a display unit of a flat display panel having a wide viewing angle
US20050213024A1 (en) Transmissive type liquid crystal display
US7697082B2 (en) Array substrate for liquid crystal panel and liquid crystal panel and manufacturing method thereof
US6946333B2 (en) Active matrix pixel device construction method
US20020151097A1 (en) Flat panel display and method for forming the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1019960706927

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

WWE Wipo information: entry into national phase

Ref document number: 08793089

Country of ref document: US