WO1996024859A1 - Messverfahren und sensor zur on-line in-vivo bestimmung der gewebeäquivalenten dosis bei der strahlentherapie - Google Patents

Messverfahren und sensor zur on-line in-vivo bestimmung der gewebeäquivalenten dosis bei der strahlentherapie Download PDF

Info

Publication number
WO1996024859A1
WO1996024859A1 PCT/DE1996/000174 DE9600174W WO9624859A1 WO 1996024859 A1 WO1996024859 A1 WO 1996024859A1 DE 9600174 W DE9600174 W DE 9600174W WO 9624859 A1 WO9624859 A1 WO 9624859A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensors
tissue
dose
radiation
sensor
Prior art date
Application number
PCT/DE1996/000174
Other languages
English (en)
French (fr)
Inventor
Friedrich-Wolfgang HÄSING
Harald BÜKER
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to AT96901236T priority Critical patent/ATE200584T1/de
Priority to JP8523893A priority patent/JPH10513559A/ja
Priority to DE59606771T priority patent/DE59606771D1/de
Priority to EP96901236A priority patent/EP0808464B1/de
Priority to US08/894,568 priority patent/US5938605A/en
Publication of WO1996024859A1 publication Critical patent/WO1996024859A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/38Exposure time
    • H05G1/42Exposure time using arrangements for switching when a predetermined dose of radiation has been applied, e.g. in which the switching instant is determined by measuring the electrical energy supplied to the tube
    • H05G1/44Exposure time using arrangements for switching when a predetermined dose of radiation has been applied, e.g. in which the switching instant is determined by measuring the electrical energy supplied to the tube in which the switching instant is determined by measuring the amount of radiation directly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres

Definitions

  • the invention relates to a method for in vivo and on-line determination of the tissue-equivalent dose in radiation therapy and to an apparatus for performing the method.
  • thermoluminescent dosimeters It is known to perform an approximately tissue equivalent in vivo measurement of a dose using miniaturized thermoluminescent dosemeters in some applications.
  • the limitation to certain applications is disadvantageous.
  • the measurement result is only available after an extensive evaluation of the thermoluminescent dosimeter at the earliest one hour after the end of the irradiation.
  • sensors are used whose material either have an effective atomic number that differs significantly from the tissue or have a low sensitivity to detection.
  • a disadvantage is that an accurate measurement, especially at a photon radiation, is not possible, as the material of the sensor always v deviates on the tissue, and the absorbed dose is material dependent. In principle, no statement about the tissue depth is possible. Furthermore, it is disadvantageous to be limited in the choice of materials
  • the object is achieved by a method having the features of claim 1
  • the method according to claim 1 can be carried out as follows. First, the radiation dose is measured at one location by at least two sensors. The sensors are to be selected such that the radiation dose changes proportionally to the measurement signal within the measurement range. A proportionality between the measurement signal and the radiation dose achieved by a compensation calculation is sufficient
  • At least two measurement signals Sj and S; of the sensors ⁇ and i used must show a different energy dependency of the sensitivity to rewetting for ionizing radiation. Such a different dependency is given for optical sensors with different effective atomic numbers Z e f.
  • the different display can also be caused by different shielding of the sensors
  • a signal Sj or Sj can have been determined by means of one sensor i or j or, for example, as an average of several measurement signals from several sensors used, which show the same dependence on the detection sensitivity for ionizing radiation. It is crucial that a value that is independent of the dose is used in the further evaluation.
  • quotients such as (Sj - S;) / (Sj + Sj) or their reciprocal values can therefore be continued.
  • the effective tissue depths d g to 5 belonging to the calculated quotients Qjj are to be determined. This is done using calibration tables or calibration curves. The data required for
  • the material of the sensor does not have to be matched to the tissue and can therefore be chosen freely.
  • the dose equivalent to tissue is determined very precisely.
  • the effective tissue depth provides a measure of the depth in the tissue at which the measurement was made.
  • the method according to the jerk-related method claim represents an advantageous embodiment. If a signal S] or S2 is measured twice by two identical sensors, instead of a single value, a corresponding averaging from these two signals can be used for the further calculation
  • a measuring device for determining a tissue-equivalent radiation dose according to the method has at least two sensors which show a different energy dependence of the detection sensitivity for ionizing radiation.
  • a sensor is to be understood as any component that changes one of its physical, chemical or technical properties when irradiated and this change is suitable as a measure of the radiation dose caused by the radiation.
  • the change is suitable if the radiation dose is accompanied by a continuous change in the physical, chemical or technical properties.
  • micro or fiber optic sensors e.g. B. known from DE 3929294 AI or DE 32 34 900 AI.
  • a micro-optical sensor is a sensor with a diameter smaller than 1 mm.
  • DE 3929294 A1 An example of such a change is the change in an optical property, such as induced damping, scintillation or fluorescence, known from DE 3929294 A1.
  • DE 3929294 AI sensors are connected to measurement and evaluation electronics via fiber-optic, radiation-resistant transmission lines or fibers. The measurement signals are displayed by the electronics. If the sensors consist of micromechanical components, each individual sensor can be arranged in one lumen of a multi-lumen catheter.
  • Two sensors show a different energy dependence of the detection sensitivity for ionizing radiation if the measurement signals differ to change. This change can be caused by the design, for example by a different effective atomic number in optical sensors or due to different shielding of the sensors.
  • the measuring device is constructed rotationally symmetrically with respect to its sensors and consists of at least three sensors, at least two of which show the same energy dependence of the detection sensitivity for ionizing radiation
  • the sensors are identical in construction, e.g. optical sensors with the same effective atomic number, the sensors show the same energy dependency of the sensitivity to detection. along which the sensors z. B. be inserted into a tissue Due to the rotationally symmetrical structure, the device is insensitive to rotation about this central axis
  • Fig. 1 planar carrier element for coupling several fiber-optic radiation-sensitive sensors
  • Fig. 2 Metal capillary as a carrier element for coupling fiber-optic radiation-sensitive sensors
  • Fig. 3 Structure with a scintillating and a fiber-optic sensor measuring radiation-induced vaporization.
  • Fig. 4 Three radiation-sensitive sensors in a multi-lumen catheter
  • Fig. 6 effective tissue depth depending on the ratio of the signals of two sensors with different effective atomic number
  • Fig. 7 Dependence of the calibration factors of two sensors with different effective atomic numbers on the effective tissue depth
  • Fig. 8 dose measurements as a function of tissue depth
  • FIG. 1 shows a rotationally symmetrical structure with three radiation-sensitive sensor fibers 1, 2 and 3.
  • the middle sensor fiber 2 consists of a PbO fiber with 60% by weight lead oxide. This is coupled to a radiation-insensitive twin fiber 4, consisting of two quartz fibers (hard clad fibers with a high numerical aperture) in a common sheath 5.
  • the sensor fibers 1 and 3 are Ge-P doped gradient index fibers (germanium approximately 26% by weight, phosphorus approximately 4% by weight), which are commercially available, radiation-hard Message fibers 6 and 7 (eg AT&T wheel Hard 3A) are spliced on.
  • the sensor fibers 1, 2 and 3 are embedded in the planar substrate 8 in a rotationally symmetrical manner with respect to the longitudinal axis of the middle fiber 2.
  • the substrate 8 consists of metal, glass or silicon. Overall, the planar structure is approximately 0.9 mm wide
  • the twin fiber is used as a transmission fiber in order to avoid disturbing Fresnel reflections when reading out the radiation-induced light monitoring.
  • the rotationally symmetrical arrangement of the sensors causes the measuring device to be insensitive to rotation about the longitudinal axis of the middle sensor 2 in the radiation field.
  • the use of two germanium-phosphor sensors also improves the signal-to-noise ratio of the measurement signal when reading out the germanium-phosphor sensors 1 and 3
  • the sensor fibers 1, 2 and 3 are irradiated, the light attenuation in the sensor fibers increases with increasing dose. The attenuation is therefore a measure of the radiation dose.
  • the dependency between damping and dose in the PbO fiber differs from the dependency in the Ge-P-doped fibers 1 and 3 due to different effective atomic numbers
  • the ends of the sensors are mirrored, opposite the ends to which the
  • Transmission fibers 4, 6 and 7 are coupled.
  • the mirroring is used for light reflection. Starting from the measuring and evaluation electronics, light reaches the sensors via the transmission fibers 4, 6 and 7. The light is reflected at the mirrored ends and is thus directed back to the electronics. The direction of travel of the light is illustrated in FIG. 1 by the six parallel arrows (in front of the transmission line).
  • the electronics register the change in the attenuation and display this change as a measure of the dose
  • Fig. 2 shows in principle the structure from Fig. 1. The only difference is the embedding in the VA capillary 9 instead of the planar substrate from Fig. 1. The twin fiber is fixed by means of epoxy adhesive 10
  • the structure shown in cross section in FIG. 3 consists of a scintillating NaI crystal 11 as the first sensor and a PbO fiber 12 as the second sensor.
  • the NaI crystal 11 also serves as a carrier element for the PbO fiber, which is also from the VA -Capillary 13 is encased.
  • To increase the light output of the scintillating element its end faces are mirrored and its inner and outer surface 14 with a light-scattering material of low absorption, for. B. barium sulfate or titanium dioxide coated.
  • the decoupling of light from the scintillating sensor 11 takes place through one or more windows 15, in front of which Optical fibers are fixed.
  • the PbO sensor is in turn connected by means of a twin fiber.
  • FIGS. 1 and 2 show a structure analogous to FIGS. 1 and 2. This time, however, a three-lumen catheter tube 16, shown in cross section, is used to position the sensors 1, 2 and 3.
  • the PbO fiber 2 is covered by a steel capillary 17.
  • the steel capillary 17 is used to couple a twin fiber
  • FIG. 5 a, b a further exemplary embodiment with three sensor fibers 1, 2 and 3 analogous to FIGS. 1, 2 or 3 in longitudinal (FIG. 5 a) and cross section (FIG. 5 b) is shown.
  • the Ge-P-doped gradient index fibers 1 and 3 are spliced at positions 18 and 19 onto radiation-hard transmission fibers 6 and 7 and are protected by the biocompatible potting compound 20.
  • the PbO fiber 2 is first surrounded by a jacket 21 and then by a metal capillary 22.
  • the AI mirror 23 is used for light reflection.
  • the method according to claim 1 can be carried out with all the sensors shown.
  • the measurement results shown in FIGS. 6, 7 and 8 were achieved with a structure according to FIGS. 5 a, b.
  • the tissue-equivalent dose was determined in accordance with the description of the method.
  • FIG. 6 shows the effective tissue depth dg as a function of the quotient Q ] 2 of the two dose displays S ⁇ and S2 when the double sensor has been calibrated in the dose maximum of the depth dose distribution.
  • One signal S] represents the mean value of the two signals originating from the Ge-P sensors 1 and 3.
  • the calibration point is located at the intersection 24 of the dotted lines.
  • Detection sensitivity for ionizing radiation as illustrated by the measuring points 27 which differ from one another compared to the measuring points 28.
  • the squares 29 represent the result determined in accordance with the method.
  • a comparison of the determined values 29 with the dose display of an ionization chamber shown by the solid line 30 shows that the method delivers an almost tissue-equivalent result and is in particular more precise than the result measured by the PbO sensor.

Abstract

Die Erfindung bezieht sich auf ein Verfahren und eine Meßeinrichtung zur Bestimmung der gewebeäquivalenten Dosis bei der Strahlentherapie. Zunächst wird die Strahlendosis verfahrensgemäß an einem Ort durch zumindest zwei Sensoren i und j gemessen. Die Sensoren sind dabei so gewählt, daß die zugehörigen Meßsignale Si und Sj eine voneinander abweichende Energieabhängigkeit der Nachweisempfindlichkeit für ionisierende Strahlung zeigen. Es wird hieraus ein dosisunabhängiger Quotient Qij = Si / Sj gebildet. Aus diesem dosisunabhängigen Wert wird dann die gewebeäquivalente Dosis D berechnet. Vorteile des Verfahrens sind: Das Material des Sensors muß nicht auf das Gewebe abgestimmt sein und kann daher frei gewählt werden. Die gewebeäquivalente Dosis wird sehr genau ermittelt. Die Meßeinrichtung weist drei parallel sowie äquidistant in einer Ebene angeordnete faseroptische Sensoren auf. Die äußeren Sensoren sind identisch. Sie unterscheiden sich vom mittleren durch eine abweichende Energieabhängigkeit der Nachweisempfindlichkeit für ionisierende Strahlung.

Description

B e s c h r e i b u n g
Meßverfahren und Sensor zur on-line in-vivo Bestimmung der gewebeäquivalenten Dosis bei der Strahlentherapie
Die Erfindung bezieht sich auf ein Verfahren zur in- vivo und on line-Bestimmung der gewebeäquivalenten Dosis bei der Strahlentherapie sowie auf eine Vorrichtung zur Durchführung des Verfahrens.
Es ist bekannt, eine annähernd gewebeäquivalente in-vivo-Messung einer Dosis mit miniaturisierten Thermolumineszenz-Dosimetem in einigen Anwendungsfallen durchzuführen. Nachteilig ist jedoch die Beschränkung auf bestimmte Anwendungsfalle. Ferner steht das Meßergebnis erst nach aufwendiger Auswertung des Thermolumineszenez-Dosimeters frühestens eine Stunde nach Beendigung der Bestrahlung zur Verfugung.
Des weiteren gibt es zahlreiche Vorschläge und Versuche, die Dosis faseroptisch oder mit Halbleiterdosimetem in- vivo und on-line zu messen. (US 5,014,708 von Mai 1991; H. Büker et al., Fiber-Optic Radiation Dosimetrie for Medical Application, SPIE, Vol 1201, Optical Fibers in Medicine V, S. 19-429(1990); H. Büker et al., Physical Properties and Concepts for Applications of Attenuation-based Fiber-Optic Dosimeters for Medical Instrumentation, SPIE,
Vol 1648, Fiber Optic Medical and Fluorescent Sensors and Applications, S. 63-70(1992)).
Gemäß den Vorschlägen und Versuchen werden Sensoren eingesetzt, deren Material entweder eine vom Gewebe erheblich abweichende effektive Ordnungszahl aufweisen oder eine geringe Nachweisempfindlichkeit besitzen. Nachteilig ist jedoch, daß eine genaue Messung, insbesondere bei einer Photonenstrahlung, nicht möglich ist, da das Material des Sensors stets von dem des Gewebes abweicht und die absorbierte Dosis materialabhängig ist. Ferner ist prinzipiell keine Aussage über die Gewebetiefe möglich. Des weiteren ist nachteilig, in der Materialwahl beschränkt zu sein
Es ist Aufgabe der Erfindung, die angeführten Nachteile durch Schaffung eines Meßverfahrens sowie einer Vorrichtung zur Durchführung des Verfahrens zur on-line und in-vivo- Bestimmung der gewebeäquivalenten Dosis bei der Strahlentherapie zu überwinden. Die Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelost
Im einzelnen kann das Verfahren nach Anspruch 1 wie folgt durchgeführt werden- Zunächst wird die Strahlendosis an einem Ort durch zumindest zwei Sensoren gemessen wird Die Sensoren sind so zu wählen, daß sich innerhalb des Meßbereiches die Strahlendosis proportional zum Meßsignal ändert. Ausreichend ist dabei eine durch eine Ausgleichsrechnung erzielte Proportionalitat zwischen Meßsignal und Strahlendosis
Mindestens zwei Meßsignale Sj und S; der eingesetzten Sensoren ι und i müssen eine voneinander abweichende Energieabhangigkeit der Nachwetsempfindlichkeit für ionisierende Strahlung zeigen. Eine solche unterschiedliche Abhängigkeit ist bei optischen Sensoren mit unterschiedlichen effektiven Ordnungszahlen Ze f gegeben. Die unterschiedliche Anzeige kann jedoch auch durch eine unterschiedliche Abschirmung der Sensoren bewirkt sein
Es wird zumindest ein Quotienten Qjj = SJ / SJ zweier gemessener Signale Sj und Sj dieser
Sensoren i und j gebildet. Ein Signal Sj bzw. Sj kann mittels je einem Sensor i bzw. j oder aber beispielsweise als Mittelwert mehrerer Meßsignale von mehreren eingesetzten Sensoren, die die gleiche Abhängigkeit von der Nachweisempfindlichkeit für ionisierende Strahlung zeigen, ermittelt worden sein. Entscheidend ist, daß ein von der Dosis unabhängiger Wert bei der o weiteren Auswertung verwendet wird. Alternativ zur einfachen Quotientenbildung kann daher auch mit Quotienten wie (Sj - S;)/(Sj + Sj) oder deren Kehrwerten fortgesetzt werden Im folgenden wird die einfache Quotientenbildung QJ; herangezogen
Ferner sind die zu den berechneten Quotienten Qjj gehörigen effektiven Gewebetiefen dg zu 5 ermitteln. Dies geschieht anhand von Eichtabellen oder Eichkurven. Die benötigten Daten zur
Erstellung dieser Tabellen bzw. Kurven sind durch Eichmessuπgen einer Dosisverteilung in Abhängigkeit von der geometrischen Tiefe dg in einem Phantom, also z. B in einem Wasserbad oder einem PMMA-Phantom zu ermitteln. Diese geometrische Tiefe dg wird als effektive Gewebetiefe bezeichnet, da die geometrischen Tiefe während der Messung o grundsätzlich von der Tiefe während der Eichmessung abweicht
Aus den ermittelten effektiven Gewebetiefen dg sind die von d„ abhangigen Kalibrierfaktoren Kj(dg) und Kj(dg) der Sensoren Sj und Sj zu bestimmen. Die Kalibrierfaktoren können experimentell im Phantom gegen eine Ionisationskammer gemäß Sj(dg) = Kj(dg)* D 5 tiefenabhangig bestimmt werden.
Figure imgf000005_0001
berechnet, wobei N die Anzahl der Kalibrierfakt oreπ darstellt.
Vorteile des Verfahrens sind: Das Material des Sensors muß nicht auf das Gewebe abgestimmt sein und kann daher frei gewählt werden. Die gewebeäquivalente Dosis wird sehr genau ermittelt. Außerdem steht mit der effektiven Gewebetiefe ein Maß für Tiefe im Gewebe, in der gemessen worden ist, zur Verfügung.
Das Verfahren gemäß ruckbezogenem Verfahrensanspruch stellt eine vorteilhafte Ausführungsform dar. Wird ein Signal S] bzw S2 zweimal durch zwei gleiche Sensoren gemessen, so kann auch anstelle eines Einzelwertes eine entsprechende Mittelwertbildung aus diesen beiden Signalen für die weitere Berechnung herangezogen werden
Eine Meßeinrichtung zur verfahrensgemäßen Bestimmung einer gewebe quivalenten Strahlendosis weist mindestens zwei Sensoren auf, die eine voneinander abweichende Energieabhängigkeit der Nachweisempfindlichkeit für ionisierende Strahlung zeigen.
Unter einem Sensor ist jedes Bauteil zu verstehen, welches einer seiner physikalischen, chemischen oder technischen Eigenschaften bei Bestrahlung ändert und diese Änderung als Maß für die durch die Strahlung bewirkte Strahlendosis geeignet ist. Die Änderung ist geeignet, wenn mit zunehmender Strahlendosis eine kontinuierliche Änderung der physikalischen, chemischen oder technischen Eigenschaft einhergeht.
Beispiele für derartige Bauteile sind mikro- oder faseroptische Sensoren, z. B. bekannt aus DE 3929294 AI oder DE 32 34 900 AI . Unter mikrooptischem Sensor ist ein Sensor mit einem Durchmesser kleiner als l mm zu verstehen.
Beispiel für eine derartige Änderung ist die Änderung einer optischen Eigenschaft, wie induzierte Dämpfung, Szintillation oder Fluoreszenz, bekannt aus DE 3929294 AI. Gemäß DE 3929294 AI werden Sensoren über faseroptische, strahlungsresistente Übertragungsleitungen bzw. -fasern mit einer Meß- und Auswerteelektronik verbunden. Die Meßsignale werden durch die Elektronik angezeigt. Bestehen die Sensoren aus mikromechanischen Bauelementen, so kann jeder einzelne Sensor in je einem Lumen eines mehrlumigen Katheters angeordnet sein.
Zwei Sensoren zeigen eine voneinander abweichende Energieabhängigkeit der Nachweisempfindlichkeit für ionisierende Strahlung, wenn sich die Meßsignale unterschiedlich andern. Diese Änderung kann durch die Bauart bedingt sein, z B durch eine unterschiedliche effektive Ordnungszahl bei optischen Sensoren oder aber infolge von unterschiedlichen Abschirmungen der Sensoren.
Bei einer vorteilhaften Ausführungsform ist die Meßeinrichtung rotationssymmetrisch bezuglich ihrer Sensoren aufgebaut und besteht aus mindestens drei Sensoren, von denen mindestens zwei die gleiche Energieabhangigkeit der Nachweisempfindlichkeit für ionisierende Strahlung zeigen
Sind zwei Sensoren baugleich, z B optische Sensoren mit gleicher effektiver Ordnungszahl, so zeigen die Sensoren eine gleiche Energieabhangigkeit der Nachweisempfmdlichkeit Unterschiede von Meßsignalen, die im Rahmen von Meßungenauigkeiten liegen oder die produktionsbedingt sind, sind unerheblich Die Rotationssymmetrie bezieht sich auf die Mittelachse des Aufbaus, entlang der die Sensoren z. B. in ein Gewebe eingeführt werden Aufgrund des rotationssymmetrischen Autbaus ist die Einrichtung unempfindlich gegenüber einer Rotation um diese Mittelachse
Es zeigen
Fig. 1 : planares Trägerelement zur Ankopplung mehrerer faseroptischer strahlungsempfindlicher Sensoren
Fig. 2: Metallkapillare als Trägerelement zur Ankopplung von faseroptischen strahlungsempfindlichen Sensoren
Fig. 3: Aufbau mit einem szintillierendem und einem die strahlungsinduzierte Dampfung messenden faseroptischen Sensor Fig 4: drei strahlungsempfindliche Sensoren in einem mehrlumigen Katheter
Fig. 5 a, b: Längs- und Querschnitt eines Aufbaus mit drei strahlungsempfindlichen Sensoren
Fig. 6: effektive Gewebetiefe in Abhängigkeit von dem Verhältnis der Signale zweier Sensoren mit unterschiedlicher effektiver Ordnungszahl
Fig. 7: Abhängigkeit der Kalibrierfaktoren zweier Sensoren mit unterschiedlicher effektiver Ordnungszahl von der effektiven Gewebetiefe
Fig. 8: Dosismessungen in Abhängigkeit von der Gewebetiefe
Figur 1 zeigt einen rotationssymmetrischen Aufbau mit drei strahlungsempfindlichen Sensorfasem 1, 2 und 3. Die mittlere Sensorfaser 2 besteht aus einer PbO-Faser mit 60 Gew% Bleioxyd. Diese ist an eine strahlungsunempfindliche Zwillingsfaser 4, bestehend aus zwei Quarzfasern (Hard - Clad - Fasem mit hoher numerischer Appertur) in einer gemeinsamen Ummantelung 5, gekoppelt.
Die Sensorfasern 1 und 3 sind Ge-P dotierte Gradienten-Index-Fasem (Germanium ungefähr 26 Gew%, Phosphor ungefähr 4 Gew%), die an den handelsüblichen, strahlungsharten Nachrichtenfasern 6 und 7 (z B AT&T-Rad Hard 3A) angespleißt sind Die Sensorfasern 1, 2 und 3 sind im planaren Substrat 8 rotationssymmetrisch zur Langsachse der mittleren Faser 2 eingebettet. Das Substrat 8 besteht aus Metall, Glas oder Silizium Insgesamt ist der planare Aufbau ungefähr 0,9 mm breit
Die Zwillingsfaser wird als Ubertragungsfaser eingesetzt, um störende Fresnel-Reflexionen beim Auslesen der strahlungsinduzierten Lichtschwachung zu vermeiden Die rotationssymmetrische Anordnung der Sensoren bewirkt eine Unempfindliclikeit der Meßeinrichtung gegenüber einer Rotation um die Langsachse des mittleren Sensors 2 im Strahlungsfeld. Die Verwendung zweier Germanium-Phosphor-Sensoren verbessert zudem das Signal-Rauschverhaltnis des Meßsignals beim Auslesen der Germanium-Phosphor-Sensoren 1 und 3
Werden die Sensorfasern 1,2 und 3 bestrahlt, so nimmt die Lichtdampfung in den Sensorfasern mit zunehmender Dosis zu. Die Dämpfung ist folglich ein Maß für die Strahlendosis. Die Abhängigkeit zwischen Dämpfung und Dosis bei der PbO-Faser unterscheidet sich von der Abhängigkeit bei den Ge-P-dotierten Fasern 1 und 3 aufgrund unterschiedlicher effektiver Ordnungszahlen
Die Enden der Sensoren sind verspiegelt, die den Enden gegenüberliegen, an die die
Übertragungsfasern 4, 6 und 7 gekoppelt sind. Die Verspiegelung dient der Lichtreflexion Von der Meß- und Auswerteelektronik ausgehend gelangt Licht über die Übertragungsfasern 4, 6 und 7 in die Sensoren. Das Licht wird an den verspiegelten Enden reflektiert und wird so zurück zur Elektronik gelenkt. Die Laufrichtung des Lichtes wird in der Fig 1 durch die sechs, parallel verlaufenden Pfeile (vor den Übertragungsleitem) verdeutlicht Die Elektronik registriert die Änderung der Dampfung und zeigt diese Änderung als Maß für die Dosis an
Fig. 2 zeigt im Prinzip den Aufbau aus Fig. 1. Einziger Unterschied ist die Einbettung in die VA-Kapillare 9 anstelle des planaren Substrats aus Fig.1. Die Zwillingsfaser ist mittels Epoxy- Kleber 10 fixiert
Der in Fig. 3 im Querschnitt gezeigte Aufbau besteht aus einem szintillierenden NaI-Kristall 11 als ersten Sensor und einer PbO-Faser 12 als zweiten Sensor Der NaI-Kristall 1 1 dient gleichzeitig als Tragerelement für die PbO-Faser, die zudem von der VA-Kapillare 13 umhüllt wird. Zur Erhöhung der Lichtausbeute des szintillierenden Elementes sind seine Endflächen verspiegelt und seine innere und äußere Mantelfläche 14 mit einem lichtstreuenden Material geringer Absorption, z. B. Bariumsulfat oder Titandioxyd, beschichtet. Die Lichtauskopplung aus dem szintillierendem Sensor 11 erfolgt durch ein oder mehrere Fenster 15, vor denen Lichtwellenleiter fixiert sind. Die Ankopplung des PbO-Sensors erfolgt wiederum mittels einer Zwillingsfaser.
In Fig. 4 wird ein Aufbau analog Fig. 1 und 2 dargestellt. Diesmal wird jedoch ein dreilumiger, im Querschnitt dargestellter Katheterschlauch 16 zur Positionierung der Sensoren 1 ,2 und 3 eingesetzt. Die PbO-Faser 2 ist von einer Stahlkapillare 17 umhüllt. Die Stahlkapillare 17 dient der Ankopplung einer Zwillingsfaser
In Fig. 5 a, b ist ein weiteres Ausführungsbeispiel mit drei Sensorfasern 1 , 2 und 3 analog Fig. 1, 2 oder 3 im Längs- (Fig. 5a) und Querschnitt (Fig. 5 b) dargestellt. Die Ge-P-dotieπen Gradientenindexfasern 1 und 3 sind an den Stellen 18 und 19 an strahlungsharte Übertragungsfasern 6 und 7 angespleißt und werden durch die biokompatible Vergußmasse 20 geschützt. Die PbO-Faser 2 ist zunächst von einer Ummantelung 21 und dann von einer Metallkapillare 22 umgeben. Der AI-Spiegel 23 dient wie erläutert der Lichtreflexion.
Mit allen dargestellten Sensoren kann das Verfahren gemäß Anspruch 1 durchgeführt werden. Die in Fig. 6, 7 und 8 dargestellten Meßergebnisse wurden mit einem Aufbau gemäß Fig. 5 a, b erzielt. Die gewebeäquivalente Dosis wurde dabei gemäß der Beschreibung des Verfahrens ermittelt.
Fig. 6 zeigt die effektive Gewebetiefe dg in Abhängigkeit von dem Quotienten Q]2 der beiden Dosisanzeigen S\ und S2, wenn der Doppelsensor im Dosismaximum der Tiefendosisverteilung kalibriert wurde. Das eine Signal S] stellt den Mittelwert der beiden von den Ge-P-Sensoren 1 und 3 stammenden Signale dar. Der Kalibrierungspunkt befindet sich im Schnittpunkt 24 der punktierten Linien.
In Fig. 7 ist die Abhängigkeit der Kalibrierfaktoren Kj(dg) der Sensorelemente 1 und 2 mit unterschiedlicher effektiver Ordnungszahl von der effektiven Gewebetiefe dg dargestellt (i= 1 , 2). Kurve 25 ist mit dem Sensor 1 und Kurve 26 mit dem Sensor 2 aufgenommen worden
Fig. 8 zeigt Tiefendosismessungen mit dem Ge-P-Sensor 1 (kreisförmige Punkte 27) sowie dem PbO-Sensor 2 (Kreise 28) bei Bestrahlungen mit einer Co60-Strahlenquelle. Aufgetragen ist die Dosis D (Skt = Skalenteile) gegen die geometrische Gewebetiefe G (mm = Millimeter) Die senkrecht punktierte Linie kennzeichnet die Tiefe, in der kalibriert wurde. Ge-P-Sensoren und PbO-Sensoren zeigen eine voneinander abweichende Energieabhängigkeit der
Nachweisempfindlichkeit für ionisierende Strahlung, wie die voneinander abweichenden Meßpunkte 27 verglichen mit den Meßpunkten 28 verdeutlichen. Die Quadrate 29 stellen das verfahrensgemäß ermittelte Ergebnis dar. Ein Vergleich der ermittelten Werte 29 mit der , mittels durchgezogener Linie 30 dargestellten Dosisanzeige einer Ionisationskammer zeigt, daß das Verfahren ein nahezu gewebeäquivalentes Ergebnis liefert und insbesondere genauer als das durch den PbO-Sensor gemessene Resultat ist.

Claims

Patentansprüche
1 Verfahren zur in-vivo und on-line Bestimmung der gewebeaquivalenten Dosis bei der
Strahlentherapie, dadurch gekennzeichnet, daß eine Strahlung durch zumindest zwei Sensoren (1,2), welche eine voneinander abweichende Energieabhangigkeit der Nachweisempfindlichkeit (27, 28) für ionisierende Strahlung zeigen, gemessen wird, zumindest ein Quotient (S] geteilt durch S?) aus den durch die zwei Sensoren (1.2) ermittelten Meßsignalen S] und S? gebildet wird und unter Verwendung des bzw der
Quotienten die gewebeaquivalente Dosis ermittelt wird
2. Verfahren nach vorhergehendem Verfahrensanspruch, dadurch gekennzeichnet, daß die Dosis gleichzeitig durch mindestens zwei mikro- bzw. faseroptische, an demselben Ort im Gewebe liegende Sensoren (1,2), die eine unterschiedliche effektive Ordnungszahl haben, deren optische Eigenschaften durch ionisierende Strahlung verändert werden und die faseroptisch ausgelesen werden, gemessen wird, aus den durch die Sensoren (1,2) gemessenen Signalen (Sj, S2) der Quotient Q12 =
S]/S2 gebildet wird, die zum Quotienten gehörige effektive Gewebetiefe (d„) anhand einer Eichkurve bestimmt wird, die von der effektiven Gewebetiefe d abhangigen Kalibrierfaktoren K] (dg) und K2(d„) experimentell ermittelt werden und hieraus die gewebeaquivalente Dosis D gemäß
Figure imgf000010_0001
berechnet wird.
3. Meßvorrichtung zur Bestimmung einer Strahlendosis mittels Sensoren, deren Meßsignale sich in Abhän¬ gigkeit von der Strahlendosis ändern, mit drei parallel in einer Ebene angeordneten, fa- seroptischen Sensoren, wobei die äußeren Sensoren die gleiche Energieab¬ hängigkeit und der mittlere Sensor eine hiervon abweichende Energieabhängigkeit der Nachweisemp¬ findlichkeit für ionisierende Strahlung zeigen und die äußeren Sensoren in identischer Entfernung zum mittleren Sensor angeordnet sind.
PCT/DE1996/000174 1995-02-06 1996-02-01 Messverfahren und sensor zur on-line in-vivo bestimmung der gewebeäquivalenten dosis bei der strahlentherapie WO1996024859A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT96901236T ATE200584T1 (de) 1995-02-06 1996-02-01 Messverfahren und sensor zur on-line in-vivo bestimmung der gewebeäquivalenten dosis bei der strahlentherapie
JP8523893A JPH10513559A (ja) 1995-02-06 1996-02-01 放射線療法で組織に等価な線量を生きた状態でオンライン測定する測定方法とそのセンサ
DE59606771T DE59606771D1 (de) 1995-02-06 1996-02-01 Messverfahren und sensor zur on-line in-vivo bestimmung der gewebeäquivalenten dosis bei der strahlentherapie
EP96901236A EP0808464B1 (de) 1995-02-06 1996-02-01 Messverfahren und sensor zur on-line in-vivo bestimmung der gewebeäquivalenten dosis bei der strahlentherapie
US08/894,568 US5938605A (en) 1995-02-06 1996-02-01 Measuring process and sensor for on-line in-vivo determination of the tissue-equivalent dose in radiotherapy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19503647.6 1995-02-06
DE19503647A DE19503647C2 (de) 1995-02-06 1995-02-06 Meßvorrichtung zur in-vivo und on-line-Bestimmung der gewebeäquivalenten Dosis bei der Strahlentherapie

Publications (1)

Publication Number Publication Date
WO1996024859A1 true WO1996024859A1 (de) 1996-08-15

Family

ID=7753167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000174 WO1996024859A1 (de) 1995-02-06 1996-02-01 Messverfahren und sensor zur on-line in-vivo bestimmung der gewebeäquivalenten dosis bei der strahlentherapie

Country Status (6)

Country Link
US (1) US5938605A (de)
EP (1) EP0808464B1 (de)
JP (1) JPH10513559A (de)
AT (1) ATE200584T1 (de)
DE (2) DE19503647C2 (de)
WO (1) WO1996024859A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19528096C2 (de) * 1995-08-01 1999-01-07 Forschungszentrum Juelich Gmbh Verfahren und Vorrichtung zur Messung der Eindringtiefe einer Strahlung
DE19545060C1 (de) * 1995-12-02 1997-04-03 Forschungszentrum Juelich Gmbh Sensor zur Messung einer gewebeäquivalenten Strahlendosis
SE9600360L (sv) * 1996-02-01 1997-03-10 Goeran Wickman Anordning vid mätning av absorberad dos i ett joniserande strålfält samt känsligt medium i en jonisationskammare
JPH10213663A (ja) * 1997-01-29 1998-08-11 Mitsubishi Electric Corp 局所線量計
DE19857502A1 (de) * 1998-12-14 2000-06-15 Forschungszentrum Juelich Gmbh Erhöhung der Strahlungsempfindlichkeit einer Glasfaser
DE19860524A1 (de) * 1998-12-29 2000-07-13 Deutsches Krebsforsch Vorrichtung und Verfahren zur Überprüfung dynamisch erzeugter räumlicher Dosisverteilungen
US7204796B1 (en) 2000-02-02 2007-04-17 Northern Digital Inc. Device for determining the position of body parts and use of the same
US7373197B2 (en) * 2000-03-03 2008-05-13 Intramedical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
SE522162C2 (sv) * 2002-05-06 2004-01-20 Goergen Nilsson Metod att utföra in vivo-dosimetri vid IMRT-behandling
EP1493389A1 (de) * 2003-07-01 2005-01-05 Siemens Aktiengesellschaft Verfahren und Einrichtung zum Erzeugen eines Röntgenbildes aus der Fokusregion eines Lithotripters
US7399977B2 (en) * 2004-07-23 2008-07-15 University Health Network Apparatus and method for determining radiation dose
CA2803827C (en) 2010-07-07 2014-04-08 University Health Network Fiber optic radiochromic dosimeter probe and method to make the same
WO2016049585A1 (en) * 2014-09-26 2016-03-31 Battelle Memorial Institute Image quality test article set

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0103835A2 (de) * 1982-09-21 1984-03-28 Siemens Aktiengesellschaft Faseroptischer Sensor
EP0416493A2 (de) * 1989-09-04 1991-03-13 Forschungszentrum Jülich Gmbh Verfahren, Sensor und Messeinrichtung zur Messung der Dosis von Kernstrahlung
US5014708A (en) * 1988-09-14 1991-05-14 Olympus Optical Co. Radioactive ray detecting therapeutic apparatus
EP0608101A2 (de) * 1993-01-18 1994-07-27 Hamamatsu Photonics K.K. Szintillationszähler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008546A (en) * 1990-06-18 1991-04-16 The Regents Of The University Of California Intraoperative beta probe and method of using the same
EP0993119A1 (de) * 1998-10-09 2000-04-12 Mitsubishi Semiconductor Europe GmbH Multiplexer-Schaltung und Analog-Digital-Wandler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0103835A2 (de) * 1982-09-21 1984-03-28 Siemens Aktiengesellschaft Faseroptischer Sensor
US5014708A (en) * 1988-09-14 1991-05-14 Olympus Optical Co. Radioactive ray detecting therapeutic apparatus
EP0416493A2 (de) * 1989-09-04 1991-03-13 Forschungszentrum Jülich Gmbh Verfahren, Sensor und Messeinrichtung zur Messung der Dosis von Kernstrahlung
EP0608101A2 (de) * 1993-01-18 1994-07-27 Hamamatsu Photonics K.K. Szintillationszähler

Also Published As

Publication number Publication date
JPH10513559A (ja) 1998-12-22
DE19503647C2 (de) 1999-12-16
US5938605A (en) 1999-08-17
DE19503647A1 (de) 1996-08-08
ATE200584T1 (de) 2001-04-15
EP0808464B1 (de) 2001-04-11
DE59606771D1 (de) 2001-05-17
EP0808464A1 (de) 1997-11-26

Similar Documents

Publication Publication Date Title
EP0808464B1 (de) Messverfahren und sensor zur on-line in-vivo bestimmung der gewebeäquivalenten dosis bei der strahlentherapie
EP0340577B1 (de) Verfahren und Vorrichtung zur Bestimmung der Brechzahl n einer Substanz
DE69837429T2 (de) Unterteilter szintillationsdetektor zur feststellung der koordinaten von photoneninteraktionen
DE3031249A1 (de) Verfahren und vorrichtung zum entdecken von karies.
DE4214369A1 (de) Verfahren und vorrichtung zum bestimmen der knochenmineraldichte und der knochenstaerke
DE2819590A1 (de) Vorrichtung zur messung der in einem festen koerper vorliegenden spannung
EP0379941B1 (de) Fluoreszenz-Material
DE3335512C2 (de)
EP3158296B1 (de) Faseroptischer sensor sowie verfahren zu dessen herstellung und verwendung
DE19925689A1 (de) Strahlungsdetektor, Strahlungsmeßsystem und Strahlungsmeßverfahren
EP0416493A2 (de) Verfahren, Sensor und Messeinrichtung zur Messung der Dosis von Kernstrahlung
EP2963451A1 (de) Dosismessgerät zur messung der augenlinsendosis
EP3154431A1 (de) Verfahren zur bestimmung von ursprungsorten von strahlungssignalen in einem messbereich und messgerät zur simultanen erfassung von strahlungsereignissen zerfallender radionuklide in dem messbereich
DE3110943C2 (de)
DE3045085C2 (de) Temperatursensor
EP0842442B1 (de) Verfahren und vorrichtung zur messung der strahlungstiefe einer strahlung
EP0864106A2 (de) Sensor zur messung einer gewebeäquivalenten strahlendosis
WO1997021112A9 (de) Sensor zur messung einer gewebeäquivalenten strahlendosis
DD227044B1 (de) Vorrichtung zur erfassung des stoffwechselzustandes von lebenden organen
DE19631423B4 (de) Verfahren zum ortsaufgelösten Substanznachweis
DE102022104550B3 (de) Messgerät und Verfahren zur Bruchstellenbestimmung innerhalb eines Szintillators
DE19636042A1 (de) Optisches Verfahren zur zerstörungsfreien Bestimmung der Tiefenausdehnung von oberflächennah lokalisierten Verteilungen fluoreszierender Stoffe in lichtstreuenden Medien
DE4038883C2 (de) Physikalische Meßapparatur zur Absolutbestimmung der Materialkonstante Brechungsindex
DE10135092A1 (de) Messvorrichtung zur Dosismessung hochenergetischer Teilchenstrahlung
DE10130612A1 (de) Dosimeter mit integrierter Dosisleistungsmessung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 523893

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996901236

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08894568

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996901236

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996901236

Country of ref document: EP