WO1996019248A2 - METHOD OF CONTROLLING pH IN THE VICINITY OF BIODEGRADABLE IMPLANTS, AND METHOD OF INCREASING SURFACE POROSITY - Google Patents

METHOD OF CONTROLLING pH IN THE VICINITY OF BIODEGRADABLE IMPLANTS, AND METHOD OF INCREASING SURFACE POROSITY Download PDF

Info

Publication number
WO1996019248A2
WO1996019248A2 PCT/US1995/016321 US9516321W WO9619248A2 WO 1996019248 A2 WO1996019248 A2 WO 1996019248A2 US 9516321 W US9516321 W US 9516321W WO 9619248 A2 WO9619248 A2 WO 9619248A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
alkaline
substance
controlling
biodegradable
Prior art date
Application number
PCT/US1995/016321
Other languages
French (fr)
Other versions
WO1996019248A9 (en
WO1996019248A3 (en
Inventor
C. Mauli Agrawal
Kyriacos A. Athanasiou
Original Assignee
Board Of Regents, The University Of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/361,332 external-priority patent/US5741329A/en
Application filed by Board Of Regents, The University Of Texas System filed Critical Board Of Regents, The University Of Texas System
Priority to AU44241/96A priority Critical patent/AU4424196A/en
Publication of WO1996019248A2 publication Critical patent/WO1996019248A2/en
Publication of WO1996019248A9 publication Critical patent/WO1996019248A9/en
Publication of WO1996019248A3 publication Critical patent/WO1996019248A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/901Method of manufacturing prosthetic device

Definitions

  • the field of the present invention relates to implantable devices.
  • the invention also relates to the field of methods for controlling pH, particularly through the use of implantable devices that regulate the surrounding pH.
  • Methods for preparing an implantable device are also related to the field of the present invention. Additional methods for enhancing the bioco patibility of an implantable device are also disclosed.
  • Biodegradable polymers such as those belonging to the family of polylactic acid (PLA) and polyglycolic acid (PGA) , are widely used for fabricating implantable devices. Such devices are currently used for drug delivery, joint resurfacing (using allograft chondrocytes and synthetic polymer scaffolds) , and fracture fixation in medicine, particularly in the fields of orthopaedics, podiatry and maxillofacial surgery.
  • the degradation of these materials has been studied both in vivo and in vitro . It has been reported that they degrade primarily by hydrolysis of ester bonds. Upon degradation, these materials release acidic by-products, which then enter the tricarboxylic acid cycle and are reduced to carbon dioxide and water.
  • Kampner 7 describes a permanent joint prosthesis having a biodegradable anchor of glycolic acid and polylactic acid polyesters with calcium carbonate and hydroxyapatite.
  • the Fong et al . patent 6 employs sodium hydroxide in microspheres, the sodium hydroxide providing for the regulation of microsphere core material release.
  • the Kampner patent 7 refers to hydroxyapatite in polymeric bone implants, and Allmann et al . * refers to enhancing drug loading efficiency of PLA nanoparticles by using a savoxepine base and modifying the pH of an aqueous base. Basic substances thus have been used to increase drug loading efficiency or to increase the solubility of an active ingredient.
  • compositions and methods of the present invention Many of the problems associated with shifts in pH due to biodegradable polymer breakdown products are in part remedied by the compositions and methods of the present invention.
  • a pH-regulating substance such as an alkaline substance, an acidic substance, or a buffering agent, included with the biodegradable polymer, will hinder shifts in pH that typically occur as the polymer breaks down.
  • a pH-controlling material included with the polymer itself, the life of the device may also be prolonged. This technique will also guard against a variety of pH-related in vivo side effects associated with pH shifts at implantation sites.
  • the implantable devices of the invention having a pH-regulating material may be used as scaffolds for joint resurfacing.
  • primary or passaged cells such as mesenchymal stem cells or chondrocytes
  • Such scaffolds can have the form of nonwoven mesh of PGA fibers 12 to 14 ⁇ m in diameter, with the mesh being 0.1 to 0.2 cm thick, a bulk density of 55-65 mg/cm 3 and a void volume of 92-96%.
  • the resulting scaffold may be used as an implant.
  • Another aspect of the invention provides a method for minimizing tissue damage related to adverse pH changes from the presence of polymer breakdown products. Still another aspect of the invention provides a technique for enhancing implant biocompatibility.
  • a pH-controlling agent such as an alkaline, acidic, or buffering substance
  • a pH-controlling agent such as an alkaline, acidic, or buffering substance
  • Potential changes in pH such as from increases in acidity related to breakdown of polylactic or polyglycolic acid, may thus be offset by the release of an alkaline substance included with the polymer.
  • the invention provides a method for inhibiting sudden pH shifts surrounding a biodegradable polymer implant.
  • one particular embodiment of the method comprises preparing a mixture of a pH-controlling substance and a biodegradable polymer, forming an implantable device with the mixture, and placing the device in contact with an environment that will degrade the biodegradable polymer.
  • an environment that will degrade the biodegradable polymer.
  • One example of such an environment would be that surrounding the implant device after implantation in the tissue of an animal.
  • the pH-regulating effects of the invention may also be realized by placing the device in contact with a culture of cells or in a biological fluid. Because the pH-controlling substance of the device is released as the polymer degrades, shifts in the pH surrounding the polymer will be inhibited, and therefore a relatively constant pH may be achieved. In addition, because an increase in pH surrounding a polymer has been reported to increase polymer mass loss, it is expected that the usable life of devices fashioned and used according to the present invention will be prolonged. These features will thus enhance the scope of application of these and other polymer-based orthopaedic implantable devices, as well as implants employed for the delivery of pharmacologically active substances.
  • the invention provides a method for enhancing surface porosity of an implant comprising removing at least part of an impermeable covering film or "skin" from at least one surface of the implant.
  • the removal of part or all of the covering or "skin” may be accomplished by many different techniques. By way of example, such may be achieved by cutting away the entire skin covering of a device using a metal implement having a sharp edge of a size sufficient to remove the outer layer of the device at once.
  • the term "covering” is defined as an impermeable or semi- permeable skin, membrane, or film that partially or completely impedes the egress and/or ingress of substances. Removal of the "skin” or other covering from at least one surface will thus provide a simple and inexpensive method of enhancing surface porosity.
  • the described polymeric "skin” or layer often forms at the surface of a polymeric cylinder or other device.
  • Alkaline substances, acidic substances and buffering agents constitute particular classes of pH-controlling substances of the invention. Many different alkaline and acidic agents, as well as salts thereof, may be employed in conjunction with the biodegradable polymer.
  • Alkaline agents are preferably non-toxic and suitable for combination with a biodegradable polymer, such as polylactic acid, polyglycolic acid, polycaprolactone, copolymers thereof, or mixtures thereof.
  • alkaline agents that may be used in the practice of the invention include calcium carbonate, sodium bicarbonate, calcium hydroxyapatite, and/or salts of these substances. In addition, any combination of these and other alkaline substances or their salts may be used.
  • the alkaline agent is sodium bicarbonate or salts thereof.
  • Other useful pH- controlling substances include bioactive ceramics such as BioglassTM or PerioglassTM of U.S. Biomaterials, Baltimore, MD, preferably PerioglassTM. Such substances help control pH by releasing ions at their surfaces as they interact with biological fluids.
  • Acidic agents may also be incorporated into a biodegradable polymer in the practice of the present invention. Of course, acidic agents that are non-toxic and amenable to mixture with a biodegradable polymer are preferred.
  • biodegradable polymers that produce relatively acidic breakdown products include polylactic acid and polyglycolic acid.
  • the biodegradable polymer of the claimed method is a copolymer of polylactic acid and polyglycolic acid, such as in a 50%/50% copolymer of polylactic acid and polyglycolic acid.
  • Other biodegradable polymers that yield breakdown products with a relatively acidic character include polycaprolactone.
  • an alkaline or alkaline releasing substance would be included with the polymer.
  • this alkaline substance is sodium bicarbonate, and is included with the polymer in an amount sufficient to achieve alkaline material release commensurate with the rate of acidic polymer degradation product. The result is an effective prevention of wide pH variation in the environment directly surrounding the polymeric device.
  • alkaline agent of choice is sodium bicarbonate
  • an amount of about 1% to about 99% by volume, or in other embodiments of about 5% to about 50% by volume, of the polymer is used.
  • This alkaline substance would be included, for example, in a device comprised of a copolymer of polyglycolic acid and polylactic acid.
  • the alkaline substance is calcium carbonate.
  • This alkaline substance may be included with the polymer in amounts of about 1% to about 30% by volume of polymer. This would provide sufficient release of alkaline substances to offset a rapid decrease in pH in the presence of acidic polymer breakdown products.
  • salts of the selected alkaline substance(s) may be included with the polymer.
  • the alkaline, acidic, or buffering substance is to be included with the polymer in an amount and association suitable to allow the release of the material at a rate sufficient to maintain a relatively physiological pH (about 6.0 to about 8.0 pH) surrounding the implantable device.
  • alkaline substances examples include calcium carbonate, sodium bicarbonate, calcium hydroxyapatite, BioglassTM or PerioglassTM ceramic material, or a mixture thereof, as well as other salts of these particular substances.
  • the alkaline agent of choice is calcium carbonate.
  • the selected biodegradable polymer is a copolymer of 50% glycolic acid and 50% polylactic acid
  • the amount of alkaline calcium carbonate to be included is between about 1% to about 30% by volume of the biodegradable polymer.
  • the alkaline substance is sodium bicarbonate.
  • an acidic substance would be included to maintain a neutral pH.
  • acidic agents include by way of example calcium lactate.
  • This and other non-toxic acidic agents may be employed together with the described pH-controlled implantable device in amounts sufficient to offset changes in pH caused by alkaline polymer breakdown products.
  • pH-controlled implantable device examples include a pharmacologically active agent.
  • agents include anticoagulants, antibiotics, anti- inflammatories, analgesics, hormones, bioengineered cells, and the like.
  • the pH-controlled implantable device comprises the biodegradable polymers polylactic acid, polyglycolic acid, polycaprolactone, copolymers thereof, or mixtures thereof.
  • biodegradable polymers polylactic acid, polyglycolic acid, polycaprolactone, copolymers thereof, or mixtures thereof.
  • copolymers of polylactic acid and polyglycolic acid are most particularly preferred.
  • the implantable devices of the present invention may take a variety of different forms, depending on their intended site of use.
  • the devices may take the form of a bone prothesis, drug delivery device, oral implant (such as implantable tooth replacement) , fracture fixation plate, pin, screw, staple, nail, scaffold for tissue growth and integration, suture, fiber, or Kirshner type biodegradable wires.
  • oral implant such as implantable tooth replacement
  • fracture fixation plate pin, screw, staple, nail, scaffold for tissue growth and integration
  • suture, fiber, or Kirshner type biodegradable wires any other implantable device that may be modified to include a biodegradable polymer having a pH-controlling substance may also be made according to the present invention.
  • the present invention also provides a process whereby an implantable pH-controlling device may be created.
  • the process comprises combining a biodegradable polymer and a pH-controlling substance to form a mixture; and forming a biodegradable implantable pH-controlled device from said mixture.
  • the biodegradable polymer is a copolymer of polylactic acid and polyglycolic acid.
  • the pH-controlling substance of the device may comprise an alkaline substance, an acidic substance or a buffering agent, depending upon the acidic or alkaline nature of the polymeric breakdown products of the particular biodegradable polymer employed.
  • the selected pH-controlling substances are of an alkaline nature, and are included with polymers that render relatively acidic polymeric breakdown products.
  • the most preferred alkaline substance to be employed with this class of polymers is sodium bicarbonate.
  • devices particularly suitable for long-term (e.g., 1-week to 2 years) implant use may be fabricated that include sufficient amounts of the biodegradable polymer and pH-controlling substances for the desired length of pH control in vivo . Such embodiments are particularly advantageous in the construction of long term implants, such as fracture fixation plates, screws, nails, pins and the like.
  • the present invention may also be employed for minimizing these adverse responses at the site of an implant, as well as for enhancing the biocompatibility of a polymer implant as already described. Consequently, healing rate about the implanted device may also be enhanced.
  • the method for enhancing biocompatibility of a biodegradable polymer device comprises including a pH-controlling substance with the biodegradable polymer of the device.
  • the particular amounts of the pH-controlling agent (e.g., alkaline, acidic, or buffering agent) , to be included with the biodegradable polymer will depend upon the particular characteristic rates of degradation, and other properties, of the specific biodegradable polymer used. Breakdown kinetics for biodegradable polymers currently employed are well known to those of ordinary skill in the art, as noted in Gilding et al . (1979) . 12 This reference is specifically incorporated herein by reference for its teachings of polymer production and polymer characteristics.
  • the pH-controlling agent e.g., alkaline, acidic, or buffering agent
  • FIG. 1A and FIG. IB Schematic flow chart of biodegradable PLA-PGA polymer implant without an alkaline (basic) substance (FIG. 1A) and with an alkaline (basic) substance (FIG. IB) .
  • FIG. 3 Loss in molecular weight of implants as a function of time.
  • FIG. 4 Mass loss in wt% between various constructs at 3 weeks, 6 weeks and 9 weeks.
  • FIG. 5 Polymer implants of 50/50 PLA-PGA and 0% ( ⁇ ) , 10%
  • FIG. 6 Scanning electron micrograph (SEM) showing the surface of a 50:50 PLA-PGA porous implant. Although the interior of the implant is porous, the surface is non-porous because of the presence of a "skin" covering the exterior surface of the implant (x30) .
  • FIG. 7 Scanning electron micrograph (SEM) showing the implant of FIG. 6 after having the "skin" removed. A significant increase in porosity is demonstrated in the micrograph. The outer layer of the implant was removed with a circular punch device.
  • the present invention provides both devices and methods of employing said devices for regulating pH. This is accomplished by preparing a mixture of an alkaline, acidic or buffering substance with a biodegradable polymer, and preparing an implantable device with the mixture.
  • the mixture may also include a pharmacologically active agent.
  • the invention also provides methods for preparing such devices, as well as methods of using these devices to enhance the biocompatibility of an implantable device over clinically useful periods of time.
  • the present example describes the incorporation of materials with a basic nature (pH>7.0) in implants fabricated from polymers or copolymers belonging to the family of polylactic and polyglycolic acids. This idea can be implemented in several ways, one of which is described below:
  • a solution of a 50:50 PLA-PGA copolymer was prepared in acetone.
  • methylene chloride or chloroform may be used to prepare the polymer.
  • the polymer was then precipitated in ethanol.
  • the polymer may be precipitated in methanol or other alcohol.
  • the precipitate was extracted and the basic salt (30 percent by volume with respect to polymer) was then rolled/kneaded into the polymer.
  • the polymer was then packed into a mold and dried under heat and vacuum to yield the implant.
  • the PLA and PGA polymers in the implant Upon degradation in vivo or in vitro , the PLA and PGA polymers in the implant will release lactic and glycolic acids. Simultaneously, the basic salt will dissolve in the surrounding media and neutralize the acids in the vicinity of the implants.
  • the pH-controlling material is evenly distributed throughout the device.
  • the present example provides an in vitro study of changes (particularly decreases) in pH surrounding a biodegradable polymer provided by incorporation of salts with a basic nature within the implants.
  • Biodegradable implants were fabricated using a 50:50 PLA-PGA copolymer with inherent viscosity of 0.71 dl/gm and weight average molecular weight of 53 kD. These implants were divided into 4 groups: a control group, and 3 test groups corresponding to 3 basic salts: calcium carbonate (CC) , sodium bicarbonate (SB) , and calcium hydroxyapatite (CH) . Each of these groups were further subdivided into four sets corresponding to test periods of 0, 3, 6, and 9 weeks. For fabrication the polymer was dissolved in acetone and precipitated in ethanol.
  • CC calcium carbonate
  • SB sodium bicarbonate
  • CH calcium hydroxyapatite
  • the reagent quality salts (30% v/v) were added to the gummy polymer and the polymer-salt composite was packed into molds and placed under 25 mTorr vacuum at room temperature for curing.
  • the control specimens did not contain any salts.
  • the mass of each specimen was recorded.
  • each specimen of the 3, 6, and 9 week sets was immersed in 10 ml of distilled water and maintained at 37°C. The pH of the water was monitored every 2 days.
  • the specimens were removed, dried in a vacuum for 72 hours and then analyzed for changes in mass, molecular weight, mechanical properties, and surface morphology.
  • the molecular weight of the polymer was estimated using gel permeation chromatography.
  • the mechanical properties of the specimens were measured under creep conditions using an automated indentation apparatus.
  • the pH of the water of the control specimens remained relatively constant up to 3.5 weeks followed by a rapid decrease until approximately 7 weeks (FIG. 2) .
  • the SB specimens exhibited only a small decrease in pH up to 5.5 weeks. However, between 5.5 and 7 weeks there was a significant decrease in pH followed by a relatively constant value thereafter.
  • the CH specimens displayed a linear decrease in pH up to 9 weeks.
  • the CC specimens exhibited an approximately linear but small decrease in pH over the entire test period.
  • the SB specimens exhibited the maximum mass loss at 3 weeks. However, at 9 weeks the difference between the control and SB specimens was not significant (FIG. 4) . All the sets exhibited virtually a 100% decrease in molecular weight at 9 weeks even though they underwent different degrees of loss at 3 weeks. The control and CH specimens exhibited an increase in stiffness at 3 weeks. However, the stiffness of SB specimens decreased over this same period of time.
  • porous polymeric devices e.g., PLA-PGA
  • PLA-PGA porous polymeric devices
  • a relatively impermeable and non-porous outer covering or "skin” While this "skin" does not destroy the internally porous structure, it creates a problem because it impedes to varying degrees the passage of fluids and other substances into and out of the porous internal structure of the polymer.
  • enhanced surface porosity may be achieved by removing all or a portion of the non- porous "skin.”
  • a new method to increase the surface porosity of porous devices treated or created with polymeric materials has been designed. This is particularly important in the context of the present invention, as the biodegradable polymeric devices will more readily adapt to and control against pH shifts in the environment where surface porosity is maximized. Similarly, increased surface porosity enhances: (a) tissue ingrowth into the implant; (b) polymer degradation; and (c) release of bioactive agents incorporated into the implant.
  • a 50:50 PLA-PGA porous implant was prepared as defined in example 1.
  • the polymer included an alkaline pH-controlling substance, sodium bicarbonate.
  • the implant may or may not include such pH-controlling substances.
  • a "skin" forms at the polymer surface.
  • the mechanical device is a circular punch with a sharp cutting edge. All of the skin of a rod-like polymeric cylinder was effectively removed by slicing the skin away.
  • the mechanical device is used to punch out skinless implants from a slab/sheet of initially prepared material from which the impermeable surface skin has been removed or prevented from forming.
  • the device may be of any shape.
  • the surface porosity of the polymeric implant prepared according to the present invention is dramatically improved by removing the outer layer, or skin, from the polymer implant.
  • the porous outer surface will result in enhanced ingress of fluids into the implant, thus resulting in better release of the buffering agents.
  • body fluids e.g., vascular supplies, marrow, synovial fluid
  • migrating cells e.g. , mesenchymal stem cells, chondrocytes, osteoblasts
  • the release of acidic by-products occurs in significant quantities only after an initial incubation period. It would be preferable to provide a mechanism for the release of an alkaline agent(s) in an amount that would prevent sudden changes in pH that would occur as a consequence, such as through the release of matching amounts of said alkaline agent(s) at the same or similar rates. Such would provide an implantable device having pH control over a clinically useful period of time.
  • the alkaline agents are incorporated in the implant in layers.
  • each layer of alkaline agent is overlaid by a layer of the biodegradable polymer, alternating alkaline agent layer, polymer layer, etc.
  • the alkaline or other pH-controlling substance is released, thus controlling against an overly acidic pH surrounding the implant over an extended period of time.
  • any variety of configurations of the layered polymeric implant may be created using this technique and tailored for the particular application desired.
  • a base amount of a pH-controlling substance may be included in polymeric layers closest the core of an implant, with succeeding layers containing either progressively lower or higher amounts of the pH- controlling substance.

Abstract

The invention discloses pH-controlling devices that comprise a biodegradable polymer and a pH-controlling substance, particularly an alkaline, acidic or buffering agent. By way of example, such alkaline agents include calcium carbonate and sodium bicarbonate. Methods of preparing such devices are also described. Methods for enhancing biocompatibility of an implantable device are also provided, as neutralizing alkaline materials are released at a rate that offsets changes in pH typically observed as polymers degrade to various acidic or alkaline by-products. By way of example, biodegradable polymers include PLA, PGA, polycaprolactone, copolymers thereof, or mixtures thereof. New techniques are also disclosed to increase the surface porosity of porous implants which have a tendency to form relatively impermeable coverings. These techniques entail the use of mechanical means to remove at least part of said covering or to 'punch' out implants from pre-fabricated slabs or sheets, thus increasing the implant's surface porosity and permeability.

Description

METHOD OF CONTROLLING pH IN THE VICINITY OF BIODEGRADABLE IMPLANTS, AND METHOD OF INCREASING SURFACE POROSITY
FIELD OF THE INVENTION
The field of the present invention relates to implantable devices. The invention also relates to the field of methods for controlling pH, particularly through the use of implantable devices that regulate the surrounding pH. Methods for preparing an implantable device are also related to the field of the present invention. Additional methods for enhancing the bioco patibility of an implantable device are also disclosed.
BACKGROUND OF THE INVENTION
Biodegradable polymers, such as those belonging to the family of polylactic acid (PLA) and polyglycolic acid (PGA) , are widely used for fabricating implantable devices. Such devices are currently used for drug delivery, joint resurfacing (using allograft chondrocytes and synthetic polymer scaffolds) , and fracture fixation in medicine, particularly in the fields of orthopaedics, podiatry and maxillofacial surgery. The degradation of these materials has been studied both in vivo and in vitro . It has been reported that they degrade primarily by hydrolysis of ester bonds. Upon degradation, these materials release acidic by-products, which then enter the tricarboxylic acid cycle and are reduced to carbon dioxide and water.
Basic substances, such as calcium carbonate and hydroxyapatite, have been described to some extent in the literature in a variety of applications. For example, Kampner7 describes a permanent joint prosthesis having a biodegradable anchor of glycolic acid and polylactic acid polyesters with calcium carbonate and hydroxyapatite. The Fong et al . patent6 employs sodium hydroxide in microspheres, the sodium hydroxide providing for the regulation of microsphere core material release. The Kampner patent7 refers to hydroxyapatite in polymeric bone implants, and Allmann et al . * refers to enhancing drug loading efficiency of PLA nanoparticles by using a savoxepine base and modifying the pH of an aqueous base. Basic substances thus have been used to increase drug loading efficiency or to increase the solubility of an active ingredient.
Several studies have reported on the effects of pH change during biodegradable polymer breakdown. For example, Younes et al .9 reports a relatively greater polymer mass loss with increasing pH.
Other investigators in the area of biodegradable implantable materials have raised questions about the biocompatibility and toxicity of biodegradable polymer breakdown products13. For example, Bostman et al . } reported aseptic sinus formation with biodegradable implants used to repair fractures in humans. Lowered pH in the vicinity of an implantable device from breakdown of PLA and PGA breakdown has also been suggested to cause adverse effects like inflammation and tissue damage2,3. However, changes in pH that occur in vivo with polymer implant degradation have not been reported to significantly affect physiological levels of blood components. For example, Vasenius et al . u report "normal" results for blood components and acid base balance in vivo with implanted rods of the biodegradable polymers polylactic acid or poly D, L lactic acid.
Solving the problem of controlling pH shifts due to polymer breakdown products would improve the biocompatibility of a variety of implantable devices for both short term and long term use in the medical industry. A method for controlling pH would also be useful in other industries where pH changes from polymer degradation present a problem. SUMMARY OF THE INVENTION
The above and other needs are met in the disclosed devices.
Many of the problems associated with shifts in pH due to biodegradable polymer breakdown products are in part remedied by the compositions and methods of the present invention. The inventors have found that the inclusion of a pH-regulating substance, such as an alkaline substance, an acidic substance, or a buffering agent, included with the biodegradable polymer, will hinder shifts in pH that typically occur as the polymer breaks down. By including a pH-controlling material with the polymer itself, the life of the device may also be prolonged. This technique will also guard against a variety of pH-related in vivo side effects associated with pH shifts at implantation sites. These advantages and others are realized according to the various compositions and methods provided in the present invention.
It is also contemplated that the implantable devices of the invention having a pH-regulating material may be used as scaffolds for joint resurfacing. In this aspect, primary or passaged cells, such as mesenchymal stem cells or chondrocytes, are cultured on discs of biodegradable polymer scaffolds that include a pH-controlling substance. Such scaffolds can have the form of nonwoven mesh of PGA fibers 12 to 14μm in diameter, with the mesh being 0.1 to 0.2 cm thick, a bulk density of 55-65 mg/cm3 and a void volume of 92-96%. The resulting scaffold may be used as an implant. Techniques for preparation and use of polymer scaffolds, which do not contain pH regulating substances of this invention, are described in Freed et al . , "Joint Resurfacing Using Allograft Chondrocytes and Synthetic Biodegradable Polymer Scaffolds," Journal of Bio edical Materials Research , Vol. 28, 891-899 (1994) and Freed et al. , Biodegradable Polymer Scaffolds for Tissue Engineering," Biotechnology, Vol. 12, (July, 1994), incorporated herein by reference. Another aspect of the invention provides a method for minimizing tissue damage related to adverse pH changes from the presence of polymer breakdown products. Still another aspect of the invention provides a technique for enhancing implant biocompatibility. Because a pH-controlling agent, such as an alkaline, acidic, or buffering substance, is included with the polymer, it is released at a rate that is proportional to the rate at which the polymer degrades. Potential changes in pH, such as from increases in acidity related to breakdown of polylactic or polyglycolic acid, may thus be offset by the release of an alkaline substance included with the polymer.
In another aspect, the invention provides a method for inhibiting sudden pH shifts surrounding a biodegradable polymer implant. By way of example, one particular embodiment of the method comprises preparing a mixture of a pH-controlling substance and a biodegradable polymer, forming an implantable device with the mixture, and placing the device in contact with an environment that will degrade the biodegradable polymer. One example of such an environment would be that surrounding the implant device after implantation in the tissue of an animal.
The pH-regulating effects of the invention may also be realized by placing the device in contact with a culture of cells or in a biological fluid. Because the pH-controlling substance of the device is released as the polymer degrades, shifts in the pH surrounding the polymer will be inhibited, and therefore a relatively constant pH may be achieved. In addition, because an increase in pH surrounding a polymer has been reported to increase polymer mass loss, it is expected that the usable life of devices fashioned and used according to the present invention will be prolonged. These features will thus enhance the scope of application of these and other polymer-based orthopaedic implantable devices, as well as implants employed for the delivery of pharmacologically active substances. In a further aspect, the invention provides a method for enhancing surface porosity of an implant comprising removing at least part of an impermeable covering film or "skin" from at least one surface of the implant. The removal of part or all of the covering or "skin" may be accomplished by many different techniques. By way of example, such may be achieved by cutting away the entire skin covering of a device using a metal implement having a sharp edge of a size sufficient to remove the outer layer of the device at once. As used in the description of this method, the term "covering" is defined as an impermeable or semi- permeable skin, membrane, or film that partially or completely impedes the egress and/or ingress of substances. Removal of the "skin" or other covering from at least one surface will thus provide a simple and inexpensive method of enhancing surface porosity. The described polymeric "skin" or layer often forms at the surface of a polymeric cylinder or other device.
Alkaline substances, acidic substances and buffering agents constitute particular classes of pH-controlling substances of the invention. Many different alkaline and acidic agents, as well as salts thereof, may be employed in conjunction with the biodegradable polymer. Alkaline agents are preferably non-toxic and suitable for combination with a biodegradable polymer, such as polylactic acid, polyglycolic acid, polycaprolactone, copolymers thereof, or mixtures thereof. By way of example, alkaline agents that may be used in the practice of the invention include calcium carbonate, sodium bicarbonate, calcium hydroxyapatite, and/or salts of these substances. In addition, any combination of these and other alkaline substances or their salts may be used. In some particular embodiments, the alkaline agent is sodium bicarbonate or salts thereof. Other useful pH- controlling substances include bioactive ceramics such as Bioglass™ or Perioglass™ of U.S. Biomaterials, Baltimore, MD, preferably Perioglass™. Such substances help control pH by releasing ions at their surfaces as they interact with biological fluids. Acidic agents may also be incorporated into a biodegradable polymer in the practice of the present invention. Of course, acidic agents that are non-toxic and amenable to mixture with a biodegradable polymer are preferred.
Where the particular polymer produces breakdown products with an overall acidic nature, alkaline pH-controlling substances would be incorporated into the polymer to provide the pH- regulating effect described herein. By way of example, biodegradable polymers that produce relatively acidic breakdown products include polylactic acid and polyglycolic acid. In particular embodiments, the biodegradable polymer of the claimed method is a copolymer of polylactic acid and polyglycolic acid, such as in a 50%/50% copolymer of polylactic acid and polyglycolic acid. Other biodegradable polymers that yield breakdown products with a relatively acidic character include polycaprolactone.
In these embodiments, an alkaline or alkaline releasing substance would be included with the polymer. In some embodiments, this alkaline substance is sodium bicarbonate, and is included with the polymer in an amount sufficient to achieve alkaline material release commensurate with the rate of acidic polymer degradation product. The result is an effective prevention of wide pH variation in the environment directly surrounding the polymeric device.
Where the alkaline agent of choice is sodium bicarbonate, an amount of about 1% to about 99% by volume, or in other embodiments of about 5% to about 50% by volume, of the polymer is used. This alkaline substance would be included, for example, in a device comprised of a copolymer of polyglycolic acid and polylactic acid.
In other embodiments, the alkaline substance is calcium carbonate. This alkaline substance may be included with the polymer in amounts of about 1% to about 30% by volume of polymer. This would provide sufficient release of alkaline substances to offset a rapid decrease in pH in the presence of acidic polymer breakdown products.
In still other embodiments of the invention, salts of the selected alkaline substance(s) may be included with the polymer.
The alkaline, acidic, or buffering substance is to be included with the polymer in an amount and association suitable to allow the release of the material at a rate sufficient to maintain a relatively physiological pH (about 6.0 to about 8.0 pH) surrounding the implantable device.
Examples of particular alkaline substances that may be included with the devices of the invention include calcium carbonate, sodium bicarbonate, calcium hydroxyapatite, Bioglass™ or Perioglass™ ceramic material, or a mixture thereof, as well as other salts of these particular substances. In one embodiment, the alkaline agent of choice is calcium carbonate. Where the selected biodegradable polymer is a copolymer of 50% glycolic acid and 50% polylactic acid, the amount of alkaline calcium carbonate to be included is between about 1% to about 30% by volume of the biodegradable polymer. In still other embodiments, the alkaline substance is sodium bicarbonate.
Where the implantable device includes a biodegradable polymer that produces relatively alkaline degradation products, an acidic substance would be included to maintain a neutral pH. Such acidic agents include by way of example calcium lactate.
This and other non-toxic acidic agents may be employed together with the described pH-controlled implantable device in amounts sufficient to offset changes in pH caused by alkaline polymer breakdown products.
Other embodiments of the described pH-controlled implantable device include a pharmacologically active agent. By way of example, such agents include anticoagulants, antibiotics, anti- inflammatories, analgesics, hormones, bioengineered cells, and the like.
In a particular embodiment, the pH-controlled implantable device comprises the biodegradable polymers polylactic acid, polyglycolic acid, polycaprolactone, copolymers thereof, or mixtures thereof. Among these, copolymers of polylactic acid and polyglycolic acid are most particularly preferred.
The implantable devices of the present invention may take a variety of different forms, depending on their intended site of use. By way of example, the devices may take the form of a bone prothesis, drug delivery device, oral implant (such as implantable tooth replacement) , fracture fixation plate, pin, screw, staple, nail, scaffold for tissue growth and integration, suture, fiber, or Kirshner type biodegradable wires. However, any other implantable device that may be modified to include a biodegradable polymer having a pH-controlling substance may also be made according to the present invention.
The present invention also provides a process whereby an implantable pH-controlling device may be created. In one embodiment, the process comprises combining a biodegradable polymer and a pH-controlling substance to form a mixture; and forming a biodegradable implantable pH-controlled device from said mixture. In particular aspects, the biodegradable polymer is a copolymer of polylactic acid and polyglycolic acid. The pH-controlling substance of the device may comprise an alkaline substance, an acidic substance or a buffering agent, depending upon the acidic or alkaline nature of the polymeric breakdown products of the particular biodegradable polymer employed.
Preferably, the selected pH-controlling substances are of an alkaline nature, and are included with polymers that render relatively acidic polymeric breakdown products. The most preferred alkaline substance to be employed with this class of polymers is sodium bicarbonate. In still other embodiments, devices particularly suitable for long-term (e.g., 1-week to 2 years) implant use may be fabricated that include sufficient amounts of the biodegradable polymer and pH-controlling substances for the desired length of pH control in vivo . Such embodiments are particularly advantageous in the construction of long term implants, such as fracture fixation plates, screws, nails, pins and the like.
Because decreases in pH surrounding biodegradable polymeric devices, such as those comprised of polyglycolic acid and polylactic acid, have been associated with adverse tissue responses, the present invention may also be employed for minimizing these adverse responses at the site of an implant, as well as for enhancing the biocompatibility of a polymer implant as already described. Consequently, healing rate about the implanted device may also be enhanced. In one particular embodiment, the method for enhancing biocompatibility of a biodegradable polymer device comprises including a pH-controlling substance with the biodegradable polymer of the device.
The particular amounts of the pH-controlling agent (e.g., alkaline, acidic, or buffering agent) , to be included with the biodegradable polymer will depend upon the particular characteristic rates of degradation, and other properties, of the specific biodegradable polymer used. Breakdown kinetics for biodegradable polymers currently employed are well known to those of ordinary skill in the art, as noted in Gilding et al . (1979) .12 This reference is specifically incorporated herein by reference for its teachings of polymer production and polymer characteristics.
This information well known to those of skill in the art, together with the teachings of the present invention, provides sufficient direction to the artisan of ordinary skill regarding the application and use of the present invention with many different polymers. Together with the information provided in the present disclosure, specially tailored polymeric devices may be fabricated that include appropriate amounts of an alkaline substance, acidic substance, or buffering agent, sufficient to achieve a calculated pH-maintaining effect over a desired and therapeutically useful period of time.
These and other aspects of the invention are more fully to be appreciated in light of the detailed description of the preferred embodiments and figures.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1A and FIG. IB - Schematic flow chart of biodegradable PLA-PGA polymer implant without an alkaline (basic) substance (FIG. 1A) and with an alkaline (basic) substance (FIG. IB) .
FIG. 2 - Change of pH as a function of degradation time:o control (no alkaline substance) ; 0 = calcium carbonate (CC) ; O = calcium hydroxyapatite, (HA) ; Δ = Sodium Bicarbonate.
FIG. 3 - Loss in molecular weight of implants as a function of time. Con = control; CC = calcium carbonate; CH = calcium hydroxyapatite; SB = sodium bicarbonate.
FIG. 4 - Mass loss in wt% between various constructs at 3 weeks, 6 weeks and 9 weeks.
FIG. 5 - Polymer implants of 50/50 PLA-PGA and 0% (□) , 10%
(0) , 20% (o) , 30% (Δ) CaC03.
FIG. 6 - Scanning electron micrograph (SEM) showing the surface of a 50:50 PLA-PGA porous implant. Although the interior of the implant is porous, the surface is non-porous because of the presence of a "skin" covering the exterior surface of the implant (x30) .
FIG. 7 - Scanning electron micrograph (SEM) showing the implant of FIG. 6 after having the "skin" removed. A significant increase in porosity is demonstrated in the micrograph. The outer layer of the implant was removed with a circular punch device.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention provides both devices and methods of employing said devices for regulating pH. This is accomplished by preparing a mixture of an alkaline, acidic or buffering substance with a biodegradable polymer, and preparing an implantable device with the mixture. The mixture may also include a pharmacologically active agent.
The invention also provides methods for preparing such devices, as well as methods of using these devices to enhance the biocompatibility of an implantable device over clinically useful periods of time.
These and other aspects of the invention will be illustrated in the following examples. However, these examples are intended to illustrate specific embodiments of the present invention only. Those skilled in this field will recognize that modifications could be made to the disclosed methods and that other applications would remain within the scope of the present invention.
EXAMPLE 1 Fabrication of Polymeric Implants
The present example describes the incorporation of materials with a basic nature (pH>7.0) in implants fabricated from polymers or copolymers belonging to the family of polylactic and polyglycolic acids. This idea can be implemented in several ways, one of which is described below:
A solution of a 50:50 PLA-PGA copolymer was prepared in acetone. Alternatively, methylene chloride or chloroform may be used to prepare the polymer. The polymer was then precipitated in ethanol. Alternatively, the polymer may be precipitated in methanol or other alcohol. The precipitate was extracted and the basic salt (30 percent by volume with respect to polymer) was then rolled/kneaded into the polymer. The polymer was then packed into a mold and dried under heat and vacuum to yield the implant.
Upon degradation in vivo or in vitro , the PLA and PGA polymers in the implant will release lactic and glycolic acids. Simultaneously, the basic salt will dissolve in the surrounding media and neutralize the acids in the vicinity of the implants.
In these implants, the pH-controlling material is evenly distributed throughout the device. Methods for preparing these implants constitute still another aspect of the invention.
EXAMPLE 2 In vitro Regulation of pH
The present example provides an in vitro study of changes (particularly decreases) in pH surrounding a biodegradable polymer provided by incorporation of salts with a basic nature within the implants.
MATERIALS AND METHODS
Biodegradable implants were fabricated using a 50:50 PLA-PGA copolymer with inherent viscosity of 0.71 dl/gm and weight average molecular weight of 53 kD. These implants were divided into 4 groups: a control group, and 3 test groups corresponding to 3 basic salts: calcium carbonate (CC) , sodium bicarbonate (SB) , and calcium hydroxyapatite (CH) . Each of these groups were further subdivided into four sets corresponding to test periods of 0, 3, 6, and 9 weeks. For fabrication the polymer was dissolved in acetone and precipitated in ethanol. Next, the reagent quality salts (30% v/v) were added to the gummy polymer and the polymer-salt composite was packed into molds and placed under 25 mTorr vacuum at room temperature for curing. The control specimens did not contain any salts. Prior to testing, the mass of each specimen was recorded. Next, each specimen of the 3, 6, and 9 week sets was immersed in 10 ml of distilled water and maintained at 37°C. The pH of the water was monitored every 2 days. At the end of each test period, the specimens were removed, dried in a vacuum for 72 hours and then analyzed for changes in mass, molecular weight, mechanical properties, and surface morphology. The molecular weight of the polymer was estimated using gel permeation chromatography. The mechanical properties of the specimens were measured under creep conditions using an automated indentation apparatus.
RESULTS
The pH of the water of the control specimens remained relatively constant up to 3.5 weeks followed by a rapid decrease until approximately 7 weeks (FIG. 2) . The SB specimens exhibited only a small decrease in pH up to 5.5 weeks. However, between 5.5 and 7 weeks there was a significant decrease in pH followed by a relatively constant value thereafter. The CH specimens displayed a linear decrease in pH up to 9 weeks. The CC specimens exhibited an approximately linear but small decrease in pH over the entire test period.
As shown in Table I, the SB specimens exhibited the maximum mass loss at 3 weeks. However, at 9 weeks the difference between the control and SB specimens was not significant (FIG. 4) . All the sets exhibited virtually a 100% decrease in molecular weight at 9 weeks even though they underwent different degrees of loss at 3 weeks. The control and CH specimens exhibited an increase in stiffness at 3 weeks. However, the stiffness of SB specimens decreased over this same period of time.
Based on gross morphology observations, SB specimens exhibited significant swelling compared to control specimens. Significant swelling was also observed in CC specimens. TABLE I: Percent Loss in Mass and Molecular Weight
Week CC CH SB Control
3 2.24±0.6/ 8.28±1.6/ 27.7±4.2/ 4.84±0.13/
7.0.2±4.9 34.9±2.6 58.3±2.4 60.6416.28
6 34.7±9.6/ 78.7±9.2/ 71.7±6.4/ 55.0516.39/
92.1+1.5 99±0.1 95.8±1.1 99.0
9 88.9±10/ 82.5±2.8/ 97.411.9/ 99.510.01/
100 99±0.1 100 99.010.02
%mass loss/%molecular weight loss; meanis.d.
The results demonstrated that all 3 salts investigated in this study were successful in controlling the decrease in pH due to the acidic degradation products of the copolymer. At 9 weeks the CC group exhibited an average pH of 6.3 compared to 3.0 for the control group. Implants containing CC maintained the pH value between 7.4 - 6.3 throughout the degradation process of the PLA-PGA copolymer until complete degradation was achieved. Implants with CH and SB controlled the pH values between 6.9 - 4.3 and 8.2 - 4.5 respectively. Thus, the results of this study show that a decrease in pH in the vicinity of PLA-PGA implants can be effectively controlled by incorporating basic salts. Thus, the deleterious effects of such implants reported by other researchers related to a decrease in pH may be offset using the presently disclosed techniques.
EXAMPLE 3
Process for Enhancing surface Porosity of a Biodegradable pH-controlling Device
It is well known that the fabrication process for preparing porous polymeric devices (e.g., PLA-PGA) often results in the formation of a relatively impermeable and non-porous outer covering or "skin." While this "skin" does not destroy the internally porous structure, it creates a problem because it impedes to varying degrees the passage of fluids and other substances into and out of the porous internal structure of the polymer. Thus, it is desirable to devise a fabrication process that achieves a uniformly porous and permeable implant. According to the presently described technique, enhanced surface porosity may be achieved by removing all or a portion of the non- porous "skin."
A new method to increase the surface porosity of porous devices treated or created with polymeric materials has been designed. This is particularly important in the context of the present invention, as the biodegradable polymeric devices will more readily adapt to and control against pH shifts in the environment where surface porosity is maximized. Similarly, increased surface porosity enhances: (a) tissue ingrowth into the implant; (b) polymer degradation; and (c) release of bioactive agents incorporated into the implant.
In the present example, a 50:50 PLA-PGA porous implant was prepared as defined in example 1. The polymer included an alkaline pH-controlling substance, sodium bicarbonate. In general, the implant may or may not include such pH-controlling substances. In the formation of such devices, a "skin" forms at the polymer surface. Using a mechanical device devised by the inventors, a quick and consistent removal of the skin was achieved. In one embodiment, the mechanical device is a circular punch with a sharp cutting edge. All of the skin of a rod-like polymeric cylinder was effectively removed by slicing the skin away.
In another embodiment, the mechanical device is used to punch out skinless implants from a slab/sheet of initially prepared material from which the impermeable surface skin has been removed or prevented from forming. The device may be of any shape.
As shown in FIG. 6 and FIG. 7, the surface porosity of the polymeric implant prepared according to the present invention is dramatically improved by removing the outer layer, or skin, from the polymer implant. The porous outer surface will result in enhanced ingress of fluids into the implant, thus resulting in better release of the buffering agents.
It is also expected that body fluids (e.g., vascular supplies, marrow, synovial fluid) will be able to enter the implant much more expediently and thus provide the repair sites with migrating cells (e.g. , mesenchymal stem cells, chondrocytes, osteoblasts) or nutrients necessary for tissue ingrowth into the porous implant.
EXAMPLE 4 - Layering Technique - Alkaline Agent Release from a Polymer Coated Implant
In some biodegradable devices, depending on the polymer used for fabrication, the release of acidic by-products occurs in significant quantities only after an initial incubation period. It would be preferable to provide a mechanism for the release of an alkaline agent(s) in an amount that would prevent sudden changes in pH that would occur as a consequence, such as through the release of matching amounts of said alkaline agent(s) at the same or similar rates. Such would provide an implantable device having pH control over a clinically useful period of time.
In order to achieve an appropriate release rate of an alkaline agent, the alkaline agents are incorporated in the implant in layers. For example, each layer of alkaline agent is overlaid by a layer of the biodegradable polymer, alternating alkaline agent layer, polymer layer, etc. As each layer degrades, the alkaline or other pH-controlling substance is released, thus controlling against an overly acidic pH surrounding the implant over an extended period of time.
Any variety of configurations of the layered polymeric implant may be created using this technique and tailored for the particular application desired. For example, a base amount of a pH-controlling substance may be included in polymeric layers closest the core of an implant, with succeeding layers containing either progressively lower or higher amounts of the pH- controlling substance.
Although the present invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the claims.
The references listed below are incorporated herein by reference to the extent they supplement, explain, provide a background for or teach methodology, techniques and/or compositions employed herein.
References
1. Bostman et al . (1987), J. Bone . J. Surgery, 69-B: 615-619.
2. Suganuma, J. and Alexander, H. (1993), J. Appl . Biomaterials , 4: 13-27.
3. Daniels et al . (1992), Proc. Orthop. Res . Soc , pg. 88.
4. Taylor et al . (1994), "Six Bioadsorbaliler Polymers/In Vitro Acute Toxicity of Accumulated Degradated Materials," J. Appl . 'd Bio . Materials, 5:151-157.
5. Tencer et al . (1986), "Bone Ingrowth into Polymer Coated Porous Synthetic Coralline Hydroxyapatite," IEEE /Engineering in Wed. And Biol . Soc , Annual Conference , pp. 1668-1671.
6. Fong, J.W., U.S. Patent 4,479,911, October 30, 1984, "Process for Preparation of Microspheres and Modification of Release Rate of Core Material; Mixing Alkalinity Agent with Polymer-Core-Solvent System."
7. Kampner S.L., U.S. Patent 4,990,161, (1991) "Bone Implant with Resorbable Stem Has Biodegradable Anchor with Exterior Surface to Engage Interior of Bone Canal."
8. Allemann et al . (1993), "In vitro Extended-release Properties of Drug-loaded Poly (DL-lactic acid) Nanoparticles Produced by a Salting-out Procedure," Pharm . Res . , 10:12.
9. Younes et al . (1988), "Biodegradable PELA Block Copolymers: in vitro Degradation and Tissue Reaction," Bio-neter. Artif . Cells Artif . Organs , 16(4): 705-719.
10. Mariette et al . (1993), "Release of the GRF29NH2 Analog of Human GRF44NH2 from a PLA/GA Matrix," J. Control Release , 24 (1- 3): 237-246.
11. Vasenius et al . (1992), "Do Intramedullary Rods of Self- reinforced Poly-L-lactide or Poly-DL/L-lactide Cause Lactic Acid Acidosis in Rabbits?" Clin . Mater . 10(4) :213-218.
12. Gilding and Reed (1979), "Biodegradable polymers for use in surgery-polyglycolic/poly (lactic acid) homo- and copolymers," Polymer, 20:1459-1464.

Claims

WHAT IS CLAIMED IS:
1. A method for preventing changes in pH surrounding an implantable device comprising:
placing a device comprising a pH-controlling substance, and a biodegradable polymer in an environment that degrades the biodegradable polymer; wherein when said polymer produces acidic breakdown products, said pH-controlling substance is an alkaline substance present in an amount sufficient to achieve alkaline material release commensurate with the rate of acidic polymer degradation product.
2. The method of claim 1 wherein the pH-controlling substance is an alkaline substance, acidic substance or a buffering agent.
3. The method of claim 1 wherein the biodegradable polymer is polylactic acid, polyglycolic acid, polycaprolactone, a copolymer thereof, or a mixture thereof.
4. The method of claim 1 wherein the pH-controlling agent is an alkaline substance selected from the group consisting of calcium carbonate in an amount of about 5% to about 30% by volume of the polymer, sodium bicarbonate, calcium hydroxyapatite, salts thereof, bioactive ceramics, and mixtures thereof.
5. The method of claim 1 wherein the biodegradable polymer includes a pharmacologically active agent.
6. The method of claim 1 wherein the biodegradable polymer is a copolymer of polylactic acid and polyglycolic acid.
7. The method of claim 1 wherein the pH-controlling substance is released at a rate sufficient to maintain a pH of between about 6.0 and about 8.0 surrounding the implantable device.
8. A pH-controlled biodegradable device comprising
at least one layer of an alkaline, an acidic or buffering substance or a salt thereof and at least one layer of a biodegradable polymer.
9. A method for enhancing surface porosity of a polymeric implant comprising removing at least part of any impermeable covering from at least one surface of the implant.
10. An implant made by the method of claim 9.
PCT/US1995/016321 1994-12-21 1995-12-15 METHOD OF CONTROLLING pH IN THE VICINITY OF BIODEGRADABLE IMPLANTS, AND METHOD OF INCREASING SURFACE POROSITY WO1996019248A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44241/96A AU4424196A (en) 1994-12-21 1995-12-15 Method of controlling ph in the vicinity of biodegradable implants, and method of increasing surface porosity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/361,332 1994-12-21
US08/361,332 US5741329A (en) 1994-12-21 1994-12-21 Method of controlling the pH in the vicinity of biodegradable implants
US08/457,661 US6065476A (en) 1994-12-21 1995-06-01 Method of enhancing surface porosity of biodegradable implants
US08/457,661 1995-06-01

Publications (3)

Publication Number Publication Date
WO1996019248A2 true WO1996019248A2 (en) 1996-06-27
WO1996019248A9 WO1996019248A9 (en) 1996-09-06
WO1996019248A3 WO1996019248A3 (en) 1996-11-14

Family

ID=27001237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/016321 WO1996019248A2 (en) 1994-12-21 1995-12-15 METHOD OF CONTROLLING pH IN THE VICINITY OF BIODEGRADABLE IMPLANTS, AND METHOD OF INCREASING SURFACE POROSITY

Country Status (3)

Country Link
US (1) US6065476A (en)
AU (1) AU4424196A (en)
WO (1) WO1996019248A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977204A (en) * 1997-04-11 1999-11-02 Osteobiologics, Inc. Biodegradable implant material comprising bioactive ceramic
EP1600178A1 (en) * 2004-05-28 2005-11-30 Cordis Corporation Biodegradable vascular device with buffering agent
EP1600182A1 (en) * 2004-05-28 2005-11-30 Cordis Corporation Biodegradable vascular device with buffering agent
US8394488B2 (en) 2006-10-06 2013-03-12 Cordis Corporation Bioabsorbable device having composite structure for accelerating degradation
US8828419B2 (en) 2006-10-06 2014-09-09 Cordis Corporation Bioabsorbable device having encapsulated additives for accelerating degradation
CN108578787A (en) * 2018-08-07 2018-09-28 宁波宝亭生物科技有限公司 A kind of absorbable bone anchoring device and preparation method thereof
CN115029812A (en) * 2022-06-02 2022-09-09 南通大学 Degradation-controllable polylactic acid fiber and preparation method and application thereof
CN115337466A (en) * 2022-08-23 2022-11-15 苏州健雄职业技术学院 Implant material for regulating acidity and alkalinity of degradation environment and preparation method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933331B2 (en) * 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
US6652967B2 (en) * 2001-08-08 2003-11-25 Nanoproducts Corporation Nano-dispersed powders and methods for their manufacture
US7022522B2 (en) 1998-11-13 2006-04-04 Limin Guan Macroporous polymer scaffold containing calcium phosphate particles
US20060094112A1 (en) * 2001-03-07 2006-05-04 Omotunde Babalola Biological scaffold
AU2002256390B2 (en) * 2001-04-30 2007-08-30 City Of Hope Chimeric immunoreceptor useful in treating human cancers
JP2004535431A (en) * 2001-06-22 2004-11-25 サザン バイオシステムズ, インコーポレイテッド Zero-order long-term release coaxial implant
US6855426B2 (en) * 2001-08-08 2005-02-15 Nanoproducts Corporation Methods for producing composite nanoparticles
US7803393B2 (en) * 2002-03-08 2010-09-28 Board Of Regents, The University Of Texas System Preparing an implant by gas-plasma treatment of a substrate to couple cells
US7708974B2 (en) * 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
EP1711128A4 (en) * 2004-01-16 2008-07-30 Osteobiologics Inc Bone-tendon-bone implant
US20060121087A1 (en) * 2004-12-06 2006-06-08 Williams Michael S Polymeric endoprostheses with modified erosion rates and methods of manufacture
US7942867B2 (en) * 2005-11-09 2011-05-17 The Invention Science Fund I, Llc Remotely controlled substance delivery device
CN101072451A (en) * 2006-05-12 2007-11-14 鸿富锦精密工业(深圳)有限公司 Sound box cover
US20100331998A1 (en) * 2009-06-30 2010-12-30 Ringeisen Timothy A Electrokinetic device for tissue repair
US10016278B2 (en) * 2009-06-30 2018-07-10 Dsm Ip Assets B.V. Biphasic implant device providing joint fluid therapy
US9744123B2 (en) * 2009-06-30 2017-08-29 Kensey Nash Corporation Biphasic implant device providing gradient
CN101781815B (en) * 2010-02-03 2013-05-08 东华大学 Preparation method of porous fiber with controllable degradation rate for tissue engineering scaffold
US20160114077A1 (en) * 2013-05-31 2016-04-28 University Of Massachusetts Medical School Elastomeric and degradable polymer scaffolds and high-mineral content polymer composites, and in vivo applications thereof
RU2016107779A (en) * 2013-08-09 2017-09-12 Кимберли-Кларк Ворлдвайд, Инк. POLYMER MATERIAL FOR THREE-DIMENSIONAL PRINTING
JP7345478B2 (en) * 2018-01-17 2023-09-15 ザ・セカント・グループ・エルエルシー Cell culture media enhanced with pH-adjusting biodegradable polymers and poly(glycerol sebacic acid)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2364644A1 (en) * 1976-09-20 1978-04-14 Inst Nat Sante Rech Med NEW MATERIAL FOR BONE PROSTHESIS AND ITS APPLICATION
US4645503A (en) * 1985-08-27 1987-02-24 Orthomatrix Inc. Moldable bone-implant material
EP0255865A2 (en) * 1986-08-08 1988-02-17 Ube Industries, Ltd. Medical tubes and process for producing the same
EP0349505A2 (en) * 1988-06-27 1990-01-03 Astra Aktiebolag A novel surgical material
EP0450939A2 (en) * 1990-04-05 1991-10-09 Norian Corporation Improvements in hydroxyapatite coatings of substrates
WO1992021302A1 (en) * 1991-06-03 1992-12-10 Lucocer Aktiebolag An implant
EP0564369A1 (en) * 1992-04-03 1993-10-06 Inoteb Material for bone prosthesis containing calcium carbonate particles dispersed in a bioresorbable polymeric matrix

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008303A (en) * 1971-08-30 1977-02-15 American Cyanamid Company Process for extruding green polyglycolic acid sutures and surgical elements
US3911098A (en) * 1974-02-11 1975-10-07 American Cyanamid Co Medicament carrier
US4411280A (en) * 1981-09-11 1983-10-25 Celanese Corporation Ventilated thermoplastic polymer foam filter rods
US4479911A (en) * 1982-01-28 1984-10-30 Sandoz, Inc. Process for preparation of microspheres and modification of release rate of core material
US5286763A (en) * 1983-03-22 1994-02-15 Massachusetts Institute Of Technology Bioerodible polymers for drug delivery in bone
US4722948A (en) * 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
US4990161A (en) * 1984-03-16 1991-02-05 Kampner Stanley L Implant with resorbable stem
US4595713A (en) * 1985-01-22 1986-06-17 Hexcel Corporation Medical putty for tissue augmentation
US4694039A (en) * 1986-03-26 1987-09-15 Dsm Rim Nylon V.O.F. Stabilized lactam polymerization solutions
AU617667B2 (en) * 1986-11-04 1991-12-05 Allergan, Inc. Open-cell, silicone-elastomer medical implant and method for making
US4892544A (en) * 1988-03-07 1990-01-09 Dow Corning Wright Corporation Methods for forming hollow, porous-surfaced elastomeric bodies

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2364644A1 (en) * 1976-09-20 1978-04-14 Inst Nat Sante Rech Med NEW MATERIAL FOR BONE PROSTHESIS AND ITS APPLICATION
US4645503A (en) * 1985-08-27 1987-02-24 Orthomatrix Inc. Moldable bone-implant material
EP0255865A2 (en) * 1986-08-08 1988-02-17 Ube Industries, Ltd. Medical tubes and process for producing the same
EP0349505A2 (en) * 1988-06-27 1990-01-03 Astra Aktiebolag A novel surgical material
EP0450939A2 (en) * 1990-04-05 1991-10-09 Norian Corporation Improvements in hydroxyapatite coatings of substrates
WO1992021302A1 (en) * 1991-06-03 1992-12-10 Lucocer Aktiebolag An implant
EP0564369A1 (en) * 1992-04-03 1993-10-06 Inoteb Material for bone prosthesis containing calcium carbonate particles dispersed in a bioresorbable polymeric matrix

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADVANCES IN BIOMATERIALS, 10. BIOMATERIAL TISSUE INTERFACES., 1992, pages 391-398, XP000570192 ACUNA, V. ET AL: "COMPOSITES OF LACTIC ACID POLYMER AND CALCIUM PHOSPHATE OR CALCIUM CARBONATE AS DEGRADABLE BONE FILLERS" *
BIOMATERIALS, vol. 15, no. 11, September 1994, GB, pages 905-908, XP002003075 U.SAALFELD ET AL.: "SOLUBILITY BEHAVIOUR OF SYNTHETIC HYDROXYAPATITES IN AQUEOUS SOLUTION: INFLUENCE OF AMORPHOUS CONSTITUENTS ON PH VALUE" *
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, INTERNATIONAL EDITION., vol. 99, no. 10, October 1991, JP, pages 917-926, XP000275444 K. DE GROOT: "MEDICAL APPLICATIONS OF CALCIUMPHOSPHATE BIOCERAMICS" *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977204A (en) * 1997-04-11 1999-11-02 Osteobiologics, Inc. Biodegradable implant material comprising bioactive ceramic
US6344496B1 (en) 1997-04-11 2002-02-05 Osteobiologics, Inc. Biodegradable implant material comprising bioactive ceramic
EP1600178A1 (en) * 2004-05-28 2005-11-30 Cordis Corporation Biodegradable vascular device with buffering agent
EP1600182A1 (en) * 2004-05-28 2005-11-30 Cordis Corporation Biodegradable vascular device with buffering agent
JP2005334654A (en) * 2004-05-28 2005-12-08 Cordis Corp Medical implant with encapsulated buffer agent
US7785615B2 (en) 2004-05-28 2010-08-31 Cordis Corporation Biodegradable medical implant with encapsulated buffering agent
US7803182B2 (en) 2004-05-28 2010-09-28 Cordis Corporation Biodegradable vascular device with buffering agent
AU2005201883B2 (en) * 2004-05-28 2010-10-28 Cardinal Health 529, Llc Biodegradable vascular device with buffering agent
AU2005201881B2 (en) * 2004-05-28 2010-11-25 Cardinal Health 529, Llc Biodegradable vascular device with buffering agent
US8394488B2 (en) 2006-10-06 2013-03-12 Cordis Corporation Bioabsorbable device having composite structure for accelerating degradation
US8828419B2 (en) 2006-10-06 2014-09-09 Cordis Corporation Bioabsorbable device having encapsulated additives for accelerating degradation
US8870945B2 (en) 2006-10-06 2014-10-28 Cordis Corporation Bioabsorbable device having composite structure for accelerating degradation
CN108578787A (en) * 2018-08-07 2018-09-28 宁波宝亭生物科技有限公司 A kind of absorbable bone anchoring device and preparation method thereof
CN115029812A (en) * 2022-06-02 2022-09-09 南通大学 Degradation-controllable polylactic acid fiber and preparation method and application thereof
CN115337466A (en) * 2022-08-23 2022-11-15 苏州健雄职业技术学院 Implant material for regulating acidity and alkalinity of degradation environment and preparation method thereof

Also Published As

Publication number Publication date
US6065476A (en) 2000-05-23
WO1996019248A3 (en) 1996-11-14
AU4424196A (en) 1996-07-10

Similar Documents

Publication Publication Date Title
US5741329A (en) Method of controlling the pH in the vicinity of biodegradable implants
US6065476A (en) Method of enhancing surface porosity of biodegradable implants
WO1996019248A9 (en) METHOD OF CONTROLLING pH IN THE VICINITY OF BIODEGRADABLE IMPLANTS, AND METHOD OF INCREASING SURFACE POROSITY
EP0857072B1 (en) Implantable bioresorbable membrane and method for the preparation thereof
Yagmurlu et al. Sulbactam‐cefoperazone polyhydroxybutyrate‐co‐hydroxyvalerate (PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant‐related experimental osteomyelitis
DE60035403T2 (en) BIOLOGICAL MATERIALS
US9364587B2 (en) Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
DE69732721T2 (en) BIODEGRADABLE ARTIFICIAL FILMS
CA2433550A1 (en) Compositions and methods for biomedical applications
US10149923B2 (en) Implants for soft and hard tissue regeneration
KR100564366B1 (en) Nonwoven nanofibrous membranes for guided tissue regeneration and their fabrication method
CA2905816C (en) Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
US10532127B2 (en) Methods to produce perforated collagen coated surgical meshes
JP2000116681A (en) Device for engineering bone equivalent tissue
Chen et al. Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite
Coombes et al. Gel casting of resorbable polymers: 2. In-vitro degradation of bone graft substitutes
Kim et al. Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration
Baino et al. Ceramics for oculo-orbital surgery
KR20190073349A (en) Bone graft material
WO2000050104A1 (en) Biodegradable, porous shaped bodies
EP2968662B1 (en) Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
Ring et al. Analysis of biodegradation of copolymer dermis substitutes in the dorsal skinfold chamber of balb/c mice
DE102004035182B4 (en) Implant material, a process for its preparation and its use
Zeng Application of poly (trimethylene carbonate) and calcium phosphate composite biomaterials in oral and maxillofacial surgery
DE10305810A1 (en) Osteo-inductive bone filling material, comprises matrix containing anabolic steroid to accelerate bone growth and healing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
COP Corrected version of pamphlet

Free format text: PAGES 10,11,15 AND 17,DESCRIPTION,REPLACED BY NEW PAGES BEARING THE SAME NUMBER;PAGES 1/6-6/6,DRAWINGS,REPLACED BY NEW PAGES 1/5-5/5;AFTER RECTIFICATION OF OBVIOUS ERRORS AS AUTHORIZED BY THE INTERNATIONAL SEARCHING AUTHORITY

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 879746

Date of ref document: 19970620

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA