WO1995029130A1 - Oxygen enriched liquids, method and apparatus for making, and applications thereof - Google Patents

Oxygen enriched liquids, method and apparatus for making, and applications thereof Download PDF

Info

Publication number
WO1995029130A1
WO1995029130A1 PCT/US1995/003889 US9503889W WO9529130A1 WO 1995029130 A1 WO1995029130 A1 WO 1995029130A1 US 9503889 W US9503889 W US 9503889W WO 9529130 A1 WO9529130 A1 WO 9529130A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
liquid
water
vessel
enriching
Prior art date
Application number
PCT/US1995/003889
Other languages
French (fr)
Inventor
Mária ZOLTAI
László BERZENSYL
Frank Abramoff
Original Assignee
Life International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Life International filed Critical Life International
Priority to US08/411,708 priority Critical patent/US5814222A/en
Priority to CA 2147659 priority patent/CA2147659C/en
Priority to AU22320/95A priority patent/AU2232095A/en
Publication of WO1995029130A1 publication Critical patent/WO1995029130A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/26Activated sludge processes using pure oxygen or oxygen-rich gas
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/54Mixing with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2322Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles using columns, e.g. multi-staged columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23762Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • B01F2101/14Mixing of ingredients for non-alcoholic beverages; Dissolving sugar in water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to oxygen enriched liquids, method and
  • That patent describes a process for enriching water with oxygen, wherein the liquid is saturated with oxygen at a temperature between
  • Another object of the present invention is to provide improved aerobic and therapeutic processes employing water highly enriched with oxygen in accor ⁇ dance with the present invention.
  • Yet another object of the present invention is to contribute characteristics to highly oxygen enriched water, which make it attractive as a beverage.
  • the present invention provides a process for enriching water with oxygen, which comprises introducing water into a sealed enriching vessel, subdividing the water in the vessel, subjecting the interior of the vessel to an oxygen
  • water refers to any still, or effervescent liquid intended to be enriched with oxygen. Any refer ⁇ ence throughout the specification and the claims to "subdividing" water introduced into the oxygen enriching vessel, means the breaking up flowing water into discrete parts and spreading out flowing water over contact areas within the vessel. In the proces of the present invention the water is suit- ably subdivided at least in part or its entirety by the oxygen employed in the
  • the oxygen enrichment of water does not impart any taste to the resulting liquid and the added oxygen also tends to reduce the tartness of any carbon-
  • the present invention also involves apparatus for enriching water with oxygen, the apparatus having an oxygen enrichment vessel, a plurality of horizontal trays within the vessel in a vertically spaced apart relationship,
  • each of the trays having a substantially central opening and outer rim spaced
  • a liquid supply tube ranging into the interior of the vessel through the central opening, a liquid discharge device in the supply tube for discharging liquid onto a tray, an oxygen supply source for introduction of oxygen into the interior of the vessel at a pressure of a least about 20 psi, and an outlet for the removal the oxygenated liquid from the vessel.
  • the present invention also involves liquids enriched with oxygen in accor ⁇ dance with the present invention and processes for using oxygen enriched liquids prepared in accordance with the preparatory process of the present invention and prepared by the use of the apparatus of the invention. These processes of use involve both aerobic processes and other processes such as therapeutic processes advantageously employing oxygen containing liquids. As used throughout the specification and the claims, reference to an "aerobic"
  • process generally includes all chemical and microbiological processes in which a chemical or microbiological process is carried out or is promoted in a liquid medium in the presence of oxygen.
  • therapeutic processes involve the oxygenation of the body or its parts by treatment with an agent in a liquid vehicle containing dissolved oxygen.
  • Suitably aerobic processes in which water oxygenated in accordance with the present invention can be employed include for example processes in which heretofore water has been aerated such as by bubbling air thereinto, and also in situ or ex situ bioremediation of contaminated (e.g. with petroleum prod ⁇
  • the use of highly oxygenated water in accordance with the present invention in such aerobic processes is expected to be about 5 times more efficient to obtain a like extent of energy efficiency improvement.
  • the infusion of water with 40-50 mg/£ of oxygen allowd a more efficient and more rapid aerobic treatment, compared to 7-9 mg/£ for the normal oxygen content of water, and just slightly more when a conventional bubbling aerator is used with 20% oxygen containing air.
  • Suitable therapeutic processes in which liquids made in accordance with the present invention can be advanteously employed include, for example increas- ing the oxygen content of blood and tissues; oxygenation of wounds to
  • the water treated in accordance with the present invention can also be made effervescent by the addition of a gas such as carbon dioxide. If the carbon dioxide is added after the dissolution of the oxygen in the water,
  • the effervescent liquid can be further enriched with oxygen to a
  • the oxygen is mixed with the water outside of the enrichment vessel, such as in a venturi injector.
  • a venturi injector e.g. a sonic injector
  • the beverage concentrate is diluted to a maximum solid contents of 50% by weight, and the diluted concentrate is then enriched with oxygen. Subsequentially the oxygenated pre-diluted
  • FIG. 1 is a longitudinal cross-sectional view of the apparatus of the present invention, being in part in elevation;
  • Fig. 2 is a longitudinal cross-sectional view of another oxygen enriching apparatus
  • Fig. 3 is a schematic arrangement of a production line for enriching a liquid with oxygen
  • Fig. 4 is a similar production line, further illustrating enriching by carbon dioxide
  • Fig. 5 is a cross sectional view of a different type of oxygen enrichment vessel of in accordance the present invention.
  • Fig. 6 is an elevational view of a mixing venturi.
  • an enriching vessel 1 has an enclosed
  • Annular trays 4 are concentrically arranged around the supply tube 2 through several levels one above the another.
  • the liquid can suitably run down in various ways through or around the plates to be collected at the bottom of the vessel 1.
  • An overpressure relief valve 5 is provided to relieve the interior of the vessel 1 from any undesired overpressure, and a pressure gauge 6 provides a readout of the pressure prevailing within the vessel 1.
  • Water is supplied through an inlet 7 and an air chamber 8 is provided to remove any entrapped gases from the introduced liquid.
  • An oxygen inlet 9 with pressure reducing valve is
  • a check valve 9a is inserted in the water line before the oxygen inlet to avoid any back pressure from escaping through the water inlet 7.
  • a water pump 10 in the liquid supply line has its outlet connected through a safety valve 11 to the water supply tube 2, and an electronic liquid level control unit 12 for maintaining a constant liquid level within the enriching vessel 1.
  • the water pump 10 can be located before the oxygen input (not shown) to avoid the possibility of a vapor lock in some installations.
  • the oxygen enriched water can be removed through a water outlet 13 at the bottom of the vessel 1, either through an enriched water outlet valve 14, or through a valve 14a which suitably leads to a collecting tank for the
  • a switch 15 is provided on the exterior of the enriching vessel 1 for deactivating the liquid pump 10 and the electronic liquid level control unit 12.
  • the liquid introduced into the enriching vessel through the supply tube 2 can be water or other liquid to be enriched with oxygen including water mixed with a beverage concentrate.
  • each tray 4 for discharging liquid onto the trays. If the trays themselves do
  • the topmost tray 4 can be the smallest one, and as water cascades downwardly from it, it can fall on lower trays which are each larger than a tray above.
  • the subdivided water exiting through the spray head 3 is also exposed to the oxygen atmosphere within the enriching vessel.
  • a flow meter can be provided in conjunction with the oxygen inlet 9 to permit monitoring of the oxygen flow.
  • the apparatus is adapted to prepare enrich oxygen-enriched liquids in a continuous operation. This can be monitored by the continuous inflow of the oxygen and the liquid.
  • oxygen can be continuously generated through a molecu ⁇ lar sieve type separator which recovers essentially pure oxygen from air by using a porous ceramic material.
  • a suitable oxygen generator of this type is
  • the concentration of the oxygen dissolved in the water can be suitably measured by the Clark-type polarographic electrode
  • a particularly preferred oxygen enriching apparatus of the present invention will be licensed by the applicant Life International, under their Model No.
  • the oxygen pressure in the vessel is suitably between about
  • Water from a central supply is normally available between about 10 and
  • the pressure of the water is suitably boosted by a water pump to about 70 psi to achieve good oxygen admixing
  • the pressure within the tank is a composite of about 50 psi generated by the composite of the 70 psi water and the 45 psi oxygen.
  • Fig. 1 The apparatus of Fig. 1 can also be used for the preparation in several
  • a beverage concentrate such as a syrup is mixed with an oxygen enriched water to contain about 5% to about 15% wt. solids.
  • the oxygen enrichment of the pre-mix syrup concentrate can be achieved in the apparatus of Fig. 1, or a simpler apparatus, such as is shown in Fig. 2 can be employed.
  • the apparatus of Fig. 2 includes a cylindrical container 20 and a liquid supply tube 21 extending horizontally through the upper part of the container
  • a plurality of horizontal guiding plates 22 is arranged in the interior of the cylindrical container 20.
  • Each plate 22 has one or more orifices or down ⁇ ward projecting studs 23. These orifices are suitably arranged in concentric circles in the plates or trays. In the drawing an arrangement of the orifices is
  • a porous disk 24 is disposed below the lowermost guiding plate 22 and the gas inlet tube 25 is located below the disk 24.
  • the disk 24 does not extend throughout the entire interior of the cylindrical container 20, so that the oxygen enriched water flowing from above can collect in the bottom of the container 20 (not
  • the apparatus shown in Fig. 1 can also be used for the oxygen enrichment of wastewater.
  • the wastewater to be so treated is screened prior to the introduction into the apparatus to remove larger solid waste particles from it.
  • the apparatus according to the present invention for such treatment of wastewater does not require a pressurized oxygenated water collector at the bottom of the vessel, because the oxygen enriched wastewater can be led away under ambient pressure.
  • Water to be enriched in the pre-enriching apparatus of Fig. 2 is introduced into the enriching container 25 through liquid supply tube 21 suitably at not more than twice the atmospheric pressure.
  • the liquid flows downward from the supply tube 21 and through the orifices 23 in the guiding plates 22, in countercurrent with the oxygen introduced through the gas inlet tube 25
  • the porous disk 24 merely serves for a substantially uniform distribution of the gas input throughout the interior of the container. A sufficiently intensive contact is established between the downward flowing liquid and the rising gas, for the absorption of the latter through the large phase boundary. Oxygen concentrations of typically from about 10 to about 20 mg £ can be obtained in the pre-enricher device of Fig.
  • the starting water is fed to a water inlet 30 after optional purification and filtration.
  • the water is also disinfected, such as by an ozonizer.
  • Air is removed from the water in a deaeration apparatus 31 for removing dissolved gases, mainly nitrogen.
  • the deaerated liquid is passed through a supply pump 32 to an optional cooler 33 which suitably chills the water to a temperature of from about 8 to about
  • the water passes from the cooler to the first stage oxygen enriching device
  • the liquid oxygenated in the container 20 is passed to a storage container 34 where the preliminary oxygenated
  • the storage container is loaded with a beverage syrup concentrate having a solids content of about 11% wt. and the oxygen enriched liquid from the enriching container 20 is introduced into the
  • the oxygenated liquid is fed from the storage container 34 to a final oxygen enriching apparatus 35 which is suitably of the type shown in greater detail in Fig. 1. After leaving the oxygen enrichment stage 35, the liquid is either stored under oxygen pressure or forwarded to
  • the pre-oxygenating container 20 and the storage container 34 can be omitted
  • Fig. 4 shows a production line for an effervescent, oxygen enriched bever ⁇
  • the liquid input into the apparatus at the left side of Fig. 4 is identical to the parts of the apparatus shown in Fig. 3 prior to the oxygen enriching apparatus 35. Accordingly, the liquid can be fed directly with or without prior chilling and with or without prior flavoring and pre-oxygenation at the arrow-indicated input of the system shown in Fig. 4.
  • the output of the oxygen enriching apparatus 35 shown in Fig. 4 is intro ⁇ pokerd in a C0 2 saturating device that is known per se. Such known appara ⁇
  • tus usually includes a vacuum operated gas removing unit as a first stage which, however, is not necessary in the apparatus of the present invention since the already absorbed oxygen should not be removed by vacuum from the water, and because the absorbed gases from the initially input water were
  • a C0 2 saturating apparatus 40 is connected to a C0 2 tank 41 and the output 42 of the apparatus 40 is introduced into an oxygenating saturator 43.
  • the oxygen saturator 43 can be suitably be of the same design as the oxygen enriching apparatus shown in
  • the effervescence-contributing carbon dioxide also has a disinfectant effect which permits the omission of any preservatives, and the absorbed C0 2 also contributes a preferred appearance and flavor of effervescence.
  • Fig. 5 shows an alternative embodiment of an oxygen enriching vessel 45
  • Fig. 6 shows a mixing venturi having an oxygen input 49, a water input 49a,
  • the oxygen decreases gradually at a relatively slow rate.
  • the oxygenated liquid is stored in a sealed bottle under an overpressure, the retention of the substantially high oxygen content of 50 mg £ can be maintained over several years.
  • the excess dissolved oxygen content is released over a period of about 24 hours and levels off at a concentration which is still considerably above the oxygen
  • sterile conditions can be employed in the oxygenation of a sterile saline

Abstract

A process for enriching a liquid with oxygen by introducing the liquid into an oxygen enriching vessel (1), subdividing the liquid, subjecting the interior of the vessel (1) to an oxygen pressure of at least about 20 psi, conducting the introduced water in a substantially flowing contact with the oxygen, and recovering the water under oxygen pressure when it is to be bottled. The process is carried out in oxygen enriching apparatus having an oxygen enriching vessel (1), a number of horizontal trays (4), vertically spaced apart from each other and having a central opening, a liquid supply tube (2) arranged into the interior of the enriching vessel (1) through the central openings, means (3) for discharging liquid from the tube (2) onto a tray (4), an oxygen supply source (9) for providing the oxygen to the vessel, and a liquid outlet (13) for the removal of the oxygenated liquid. The liquids oxygenated by the invention are used in various aerobic and therapeutic processes.

Description

OXYGEN ENRICHED LIQUIDS, METHOD AND APPARATUS FOR MAKIN
AND APPLICATIONS THEREOF
Field of the invention
The present invention relates to oxygen enriched liquids, method and
apparatus for making, and to methods for their use.
Background of the invention It is known to impregnate at super-atmospheric pressure a still (i.e. substan¬ tially gas-free) liquid with a gas from an external source. This type of impregnation is usually employed in the prior art to make the liquid efferves¬ cent. As described in U.S. patent No. 2,927,028, "such artificial impregnation of a liquid with a gas has hitherto been carried out by bubbling the gas through the liquid, or by spraying the liquid into the gas, or by otherwise violently agitating the liquid in the presence of the gas, so as to increase as much as possible the area of surface contact between the liquid and the gas
and hasten the entry of the gas into the liquid, the treatment being continued until the pressure of the gas in the liquid is substantially equalled to the applied pressure. The impregnation of the liquid with gas is usually carried
out in large vessels and the impregnated liquid is subsequentially transferred to the bottles or other containers in which it is to be marketed, a counter
pressure of gas being maintained in these vessels while they are being filled,
in order to prevent so far as possible the escape of gas from the liquid." Such a method has not been found to be successful to produce oxygen enriched liquids to achieve either a high level of dissolved oxygen, or to retain the dissolved oxygen in the liquid for an appreciable length of time.
Our U.S. Patent No. 5,006,352 did provide a process for overcoming some
of these drawbacks of the prior art as it applies to the incorporation of oxygen in water. That patent describes a process for enriching water with oxygen, wherein the liquid is saturated with oxygen at a temperature between
0°C and 5°C under pressure, and then bottling and sealing the bottle contain¬ ing the enriched water. The presence of oxygen does not affect the taste of the water and its consumption has a favorable effect on well being and physical performance. A drawback of this process is that it requires the use of low temperatures, achieves a still relatively low level of dissolution of
oxygen in the water, and results in a relatively fast loss of the oxygen enrich¬ ment when the enriched water is exposed to ambient pressure.
U.S. Patent No. 4,027,045 discloses another process for preparing an
oxygenated cocktail. None of the known oxygenation processes have proved successful for a producing sufficiently high oxygen loading of the liquid. Suggestions were made in the prior art for increasing oxygen available for
various aerobic and therapeutic processes by the use of oxygen enriched water and other liquids. However, the lack of ways to obtain a sufficiently high degree of oxygen enrichment of water did not enable any effective follow-up on such suggestions.
Description of the invention
It is an object of the present invention to enable the production of oxygen enriched water at from cooled up to ambient temperatures with higher con¬ centration of dissolved oxygen than has been possible in the prior art, and to provide for the improved utilization of such highly oxygenated water.
Another object of the present invention is to provide improved aerobic and therapeutic processes employing water highly enriched with oxygen in accor¬ dance with the present invention.
Yet another object of the present invention is to contribute characteristics to highly oxygen enriched water, which make it attractive as a beverage. The present invention provides a process for enriching water with oxygen, which comprises introducing water into a sealed enriching vessel, subdividing the water in the vessel, subjecting the interior of the vessel to an oxygen
pressure of at least about 20 pounds per square inch (psi), suitably between about 35 and about 50 psi, conducting the subdivided water in a substantially flowing contact with the oxygen, and recovering the water under oxygen pressure. The process of the present invention enables the dissolution as much as 50 mg/£ or more oxygen in water.
As used throughout the specification and the claims, "water" refers to any still, or effervescent liquid intended to be enriched with oxygen. Any refer¬ ence throughout the specification and the claims to "subdividing" water introduced into the oxygen enriching vessel, means the breaking up flowing water into discrete parts and spreading out flowing water over contact areas within the vessel. In the proces of the present invention the water is suit- ably subdivided at least in part or its entirety by the oxygen employed in the
process.
The oxygen enrichment of water does not impart any taste to the resulting liquid and the added oxygen also tends to reduce the tartness of any carbon-
ation. The present invention also involves apparatus for enriching water with oxygen, the apparatus having an oxygen enrichment vessel, a plurality of horizontal trays within the vessel in a vertically spaced apart relationship,
each of the trays having a substantially central opening and outer rim spaced
from the interior surface of the vessel, a liquid supply tube ranging into the interior of the vessel through the central opening, a liquid discharge device in the supply tube for discharging liquid onto a tray, an oxygen supply source for introduction of oxygen into the interior of the vessel at a pressure of a least about 20 psi, and an outlet for the removal the oxygenated liquid from the vessel.
The present invention also involves liquids enriched with oxygen in accor¬ dance with the present invention and processes for using oxygen enriched liquids prepared in accordance with the preparatory process of the present invention and prepared by the use of the apparatus of the invention. These processes of use involve both aerobic processes and other processes such as therapeutic processes advantageously employing oxygen containing liquids. As used throughout the specification and the claims, reference to an "aerobic"
process generally includes all chemical and microbiological processes in which a chemical or microbiological process is carried out or is promoted in a liquid medium in the presence of oxygen. As used throughout the specification and the claims "therapeutic" processes involve the oxygenation of the body or its parts by treatment with an agent in a liquid vehicle containing dissolved oxygen.
Suitably aerobic processes in which water oxygenated in accordance with the present invention can be employed include for example processes in which heretofore water has been aerated such as by bubbling air thereinto, and also in situ or ex situ bioremediation of contaminated (e.g. with petroleum prod¬
ucts) surface and ground waters; wastewater, sludge, and animal waste treat¬ ment, both by fixed film and by suspended growth methods; rehabilitation of atrophying lakes; biochemical oxygen demand (BOD) measurement tech- niques; fresh water aquaculture (e.g. fish farming); odor suppression barriers for anaerobic processes; and insolubilization of dissolved contaminants (e.g. Fe. Mn ions) for removal by filtration or sedimentation.
In view of the particularly good oxygen retention of liquids oxygenated by the present invention kept in containers, a particularly advantageous new
aerobic use of those liquids was discovered. In accordance with a further feature of the present invention such oxygenated liquids can be advantageous¬ ly employed as the fermentation liquor of all kinds of fermentation processes.
Microorganisms such a bacteria consume massive quantities of oxygen in the
process of a assimilating or breaking down waste. The rate at which oxygen can be introduced into the biomass, is a substantial limiting factor on how
quickly a breakdown by oxygenation can be achieved. The problem with the known process technologies is that oxygen introduction by aeration is highly inefficient because air contains only 21% percent oxygen and thus 79% percent of the energy used by aerators is wasted in pumping useless nitrogen.
Therefore, the use of highly oxygenated water in accordance with the present invention in such aerobic processes is expected to be about 5 times more efficient to obtain a like extent of energy efficiency improvement. Thus the infusion of water with 40-50 mg/£ of oxygen allowd a more efficient and more rapid aerobic treatment, compared to 7-9 mg/£ for the normal oxygen content of water, and just slightly more when a conventional bubbling aerator is used with 20% oxygen containing air.
Suitable therapeutic processes in which liquids made in accordance with the present invention can be advanteously employed include, for example increas- ing the oxygen content of blood and tissues; oxygenation of wounds to
increase the rate of healing and to reduce infections; oxygenated organ transplant storage media; tumor oxygenation for radiation therapy and
chemotherapy; lung bypass by oxygenated liquids in case of pulmonary deficiencies; carbon monoxide poisoning; mouthwashes, dentrifices; topical, including cosmetic, treatment media; contact lens treating solutions; and cell
level therapeutic applications. Eight test subjects of various ages and of differing sex, had their blood
oxygen contents and their pulse rates determined. Each subject drank between Vi and 3/ liters of water of the present invention prepared in accordance with the present invention. Evidence of a pulmonary function bypass was observed after a short period incubation by an average blood oxygen increase of about 30%, and the effect of a concomitant cardiac relief was observed by an average of about 10% pulse rate reduction.
In view of the particularly good oxygen retention of liquids oxygenated by the present invention kept in containers, a particularly advantageous new therapeutic product of those liquids was discovered. In accordance with a further feature of the present invention such oxygenated liquids can be employed as solvents for physiological saline isotonic solutions.
If desired, the water treated in accordance with the present invention can also be made effervescent by the addition of a gas such as carbon dioxide. If the carbon dioxide is added after the dissolution of the oxygen in the water,
then it will displace a portion of the dissolved oxygen. It has been found, however, that the effervescent liquid can be further enriched with oxygen to a
substantial degree after the addition of the carbon dioxide. Even more oxygen can be dissolved in the water, if the water being enriched with the oxygen is chilled at the time of the oxygen enrichment. However, some of the chilling or the entire lack of chilling can be substituted by the employ¬ ment of higher oxygen pressures such as around 50 psi or higher.
Suitably the oxygen is mixed with the water outside of the enrichment vessel, such as in a venturi injector. This leads to a substantial subdivision of the water and an intimate mixing with the injected oxygen even prior to the more complete dissolution of the oxygen in the water within the enrichment vessel.
According to a special application of the process of the invention when a non-alcoholic beverage is produced, the beverage concentrate is diluted to a maximum solid contents of 50% by weight, and the diluted concentrate is then enriched with oxygen. Subsequentially the oxygenated pre-diluted
concentrate is further diluted to the desired final solids concentration and is
again enriched with oxygen by the process of the present invention, before bottling the oxygen enriched flavored beverage.
Description of the drawing
The invention is further described with reference being had to the accompa¬
nying drawing, wherein: Fig. 1 is a longitudinal cross-sectional view of the apparatus of the present invention, being in part in elevation;
Fig. 2 is a longitudinal cross-sectional view of another oxygen enriching apparatus;
Fig. 3 is a schematic arrangement of a production line for enriching a liquid with oxygen; and
Fig. 4 is a similar production line, further illustrating enriching by carbon dioxide;
Fig. 5 is a cross sectional view of a different type of oxygen enrichment vessel of in accordance the present invention; and
Fig. 6 is an elevational view of a mixing venturi.
Detailed description
In the apparatus shown in Fig. 1, an enriching vessel 1 has an enclosed
interior chamber containing a water and oxygen supply tube 2 arranged
vertically along the central axis of the vessel. A spray head 3 at the upper
end of the tube sprays the water/oxygen mixture in the form of a fine subdivided spray into the upper part of the vessel 1. Annular trays 4 are concentrically arranged around the supply tube 2 through several levels one above the another. The liquid can suitably run down in various ways through or around the plates to be collected at the bottom of the vessel 1. An overpressure relief valve 5 is provided to relieve the interior of the vessel 1 from any undesired overpressure, and a pressure gauge 6 provides a readout of the pressure prevailing within the vessel 1. Water is supplied through an inlet 7 and an air chamber 8 is provided to remove any entrapped gases from the introduced liquid. An oxygen inlet 9 with pressure reducing valve is
joined to the water inlet line, suitably through a venturi mixer such as is shown in Fig. 6, suitably a Mazzei venturi. A check valve 9a is inserted in the water line before the oxygen inlet to avoid any back pressure from escaping through the water inlet 7.
A water pump 10 in the liquid supply line has its outlet connected through a safety valve 11 to the water supply tube 2, and an electronic liquid level control unit 12 for maintaining a constant liquid level within the enriching vessel 1. Suitably the water pump 10 can be located before the oxygen input (not shown) to avoid the possibility of a vapor lock in some installations.
The oxygen enriched water can be removed through a water outlet 13 at the bottom of the vessel 1, either through an enriched water outlet valve 14, or through a valve 14a which suitably leads to a collecting tank for the
oxygen enriched water.
A switch 15 is provided on the exterior of the enriching vessel 1 for deactivating the liquid pump 10 and the electronic liquid level control unit 12. The liquid introduced into the enriching vessel through the supply tube 2 can be water or other liquid to be enriched with oxygen including water mixed with a beverage concentrate.
Suitably small openings 3a are provided in the water supply tube 2 above
each tray 4 for discharging liquid onto the trays. If the trays themselves do
not have perforations, then they may be provided with rims (not shown) to collect some liquid before overflowing through the rim to a lower tray or to the bottom of the enriching vessel. If the trays are not perforated, the liquid exiting through the openings 3a will form a boundary surface on the tray between the oxygen and the liquid 4 for maximum incorporation of oxygen into the liquid. In a suitable embodiment of the apparatus of the present invention the topmost tray 4 can be the smallest one, and as water cascades downwardly from it, it can fall on lower trays which are each larger than a tray above.
The subdivided water exiting through the spray head 3 is also exposed to the oxygen atmosphere within the enriching vessel.
A flow meter can be provided in conjunction with the oxygen inlet 9 to permit monitoring of the oxygen flow. The apparatus is adapted to prepare enrich oxygen-enriched liquids in a continuous operation. This can be monitored by the continuous inflow of the oxygen and the liquid.
Most suitably the oxygen can be continuously generated through a molecu¬ lar sieve type separator which recovers essentially pure oxygen from air by using a porous ceramic material. A suitable oxygen generator of this type is
manufactured by Airsep Corp. The concentration of the oxygen dissolved in the water can be suitably measured by the Clark-type polarographic electrode
apparatus such as made by Orion Research Incorporated.
A particularly preferred oxygen enriching apparatus of the present invention will be licensed by the applicant Life International, under their Model No.
HO2LI-101.
As explained above, an inverse relationship can be established for the temperature of the water to be saturated with oxygen, and the pressure of
the oxygen. Thus, for example, if the liquid is chilled to between about 8°C and about 12°C the oxygen pressure in the vessel is suitably between about
35 psi and about 55 psi. Depending on the room temperature, at about 17°C to about 18°C water temperature up to about 50 mg/ϋ oxygen can be incorporated into the water, whereas if the ambient temperature is higher than that, the amount of oxygen that is dissolved in the water at the same 02 pressure might be slightly lower. When the liquid is not water alone, but includes, for example, a suitable beverage concentrate, the oxygen absorbing capacity of the water becomes somewhat lower, such as from about 30 to
about 35 mg £.
Water from a central supply is normally available between about 10 and
about 20 psi. In the apparatus of Fig. 1 the pressure of the water is suitably boosted by a water pump to about 70 psi to achieve good oxygen admixing
through the venturi. At the output of the reduction valve the oxygen pres¬
sure is suitably around 45 psi and the pressure within the tank is a composite of about 50 psi generated by the composite of the 70 psi water and the 45 psi oxygen.
The apparatus of Fig. 1 can also be used for the preparation in several
stages of a nonalcoholic beverage enriched with oxygen. Suitably a beverage concentrate, such as a syrup is mixed with an oxygen enriched water to contain about 5% to about 15% wt. solids. The oxygen enrichment of the pre-mix syrup concentrate can be achieved in the apparatus of Fig. 1, or a simpler apparatus, such as is shown in Fig. 2 can be employed. The apparatus of Fig. 2 includes a cylindrical container 20 and a liquid supply tube 21 extending horizontally through the upper part of the container
20, where the water inflow is subdivided into a number of smaller streams.
A plurality of horizontal guiding plates 22 is arranged in the interior of the cylindrical container 20. Each plate 22 has one or more orifices or down¬ ward projecting studs 23. These orifices are suitably arranged in concentric circles in the plates or trays. In the drawing an arrangement of the orifices is
shown wherein they are offset between adjacent plates, and the alternate plates are shown with identical orifice layouts. A porous disk 24 is disposed below the lowermost guiding plate 22 and the gas inlet tube 25 is located below the disk 24. The disk 24 does not extend throughout the entire interior of the cylindrical container 20, so that the oxygen enriched water flowing from above can collect in the bottom of the container 20 (not
shown).
The apparatus shown in Fig. 1 can also be used for the oxygen enrichment of wastewater. Suitably the wastewater to be so treated is screened prior to the introduction into the apparatus to remove larger solid waste particles from it. In an embodiment of the apparatus according to the present invention for such treatment of wastewater does not require a pressurized oxygenated water collector at the bottom of the vessel, because the oxygen enriched wastewater can be led away under ambient pressure.
Water to be enriched in the pre-enriching apparatus of Fig. 2, is introduced into the enriching container 25 through liquid supply tube 21 suitably at not more than twice the atmospheric pressure. The liquid flows downward from the supply tube 21 and through the orifices 23 in the guiding plates 22, in countercurrent with the oxygen introduced through the gas inlet tube 25
passing upwardly in the container 20. The porous disk 24 merely serves for a substantially uniform distribution of the gas input throughout the interior of the container. A sufficiently intensive contact is established between the downward flowing liquid and the rising gas, for the absorption of the latter through the large phase boundary. Oxygen concentrations of typically from about 10 to about 20 mg £ can be obtained in the pre-enricher device of Fig.
2.
In the manufacturing system shown in Fig. 3 the starting water is fed to a water inlet 30 after optional purification and filtration. Suitably the water is also disinfected, such as by an ozonizer. Air is removed from the water in a deaeration apparatus 31 for removing dissolved gases, mainly nitrogen. The deaerated liquid is passed through a supply pump 32 to an optional cooler 33 which suitably chills the water to a temperature of from about 8 to about
12°C.
The water passes from the cooler to the first stage oxygen enriching device
20 shown in greater detail in Fig. 2. The liquid oxygenated in the container 20 is passed to a storage container 34 where the preliminary oxygenated
liquid is stored under oxygen pressure. When the system shown in Fig. 3 is used to prepare a flavored beverage, the storage container is loaded with a beverage syrup concentrate having a solids content of about 11% wt. and the oxygen enriched liquid from the enriching container 20 is introduced into the
syrup in the container 34. The oxygenated liquid is fed from the storage container 34 to a final oxygen enriching apparatus 35 which is suitably of the type shown in greater detail in Fig. 1. After leaving the oxygen enrichment stage 35, the liquid is either stored under oxygen pressure or forwarded to
bottling plant 36.
If the water is not to be mixed with a syrup-based concentrate, then the pre-oxygenating container 20 and the storage container 34 can be omitted
and the starting water can be fed, optionally through the cooler 33, directly into the final oxygen enriching apparatus 35. Fig. 4 shows a production line for an effervescent, oxygen enriched bever¬
age. The liquid input into the apparatus at the left side of Fig. 4 is identical to the parts of the apparatus shown in Fig. 3 prior to the oxygen enriching apparatus 35. Accordingly, the liquid can be fed directly with or without prior chilling and with or without prior flavoring and pre-oxygenation at the arrow-indicated input of the system shown in Fig. 4.
The output of the oxygen enriching apparatus 35 shown in Fig. 4 is intro¬ duced in a C02 saturating device that is known per se. Such known appara¬
tus usually includes a vacuum operated gas removing unit as a first stage which, however, is not necessary in the apparatus of the present invention since the already absorbed oxygen should not be removed by vacuum from the water, and because the absorbed gases from the initially input water were
already removed as shown in Fig. 3. A C02 saturating apparatus 40 is connected to a C02 tank 41 and the output 42 of the apparatus 40 is introduced into an oxygenating saturator 43. The oxygen saturator 43 can be suitably be of the same design as the oxygen enriching apparatus shown in
Fig. 1.
In the case of a beverage the effervescence-contributing carbon dioxide also has a disinfectant effect which permits the omission of any preservatives, and the absorbed C02 also contributes a preferred appearance and flavor of effervescence.
Fig. 5 shows an alternative embodiment of an oxygen enriching vessel 45
containing a plurality of trays 46 arranged around the concentrate gas/liquid supply tube 47.
Fig. 6 shows a mixing venturi having an oxygen input 49, a water input 49a,
an output 50 for the subdivided water and oxygen mixture, and a separate oxygen outlet 51 for separate introduction of the gas into the top of the enriching vessel shown of 52.
It has been found that the oxygen retention is surprisingly good of liquids enriched by the process of the present invention by the use of the apparatus
of the present invention. The oxygen decreases gradually at a relatively slow rate. When the oxygenated liquid is stored in a sealed bottle under an overpressure, the retention of the substantially high oxygen content of 50 mg £ can be maintained over several years. When opened, the excess dissolved oxygen content is released over a period of about 24 hours and levels off at a concentration which is still considerably above the oxygen
content of tap water. This means that when a beverage is consumed from a freshly opened full bottle, it will retain close to its initial oxygen content during its consumption from the open bottle at a convenient rate.
In other uses of the oxygen enriched water in accordance with the present invention the greatest usefulness of the enriched water is obtained in the case of those that involve sealed in aerobic processing containers which are
capable of retaining the oxygen in the liquid for the longest appreciable periods. In accordance with the present invention it was discovered that i otherwise conventional aerobic fermentation processes in closed vessels can be carried out advantageously with a fermentation liquor or broth comprised of a liquid oxygenated in accordance with the present invention. This invention has equal applicability to a large variety of fermentation processes, including, for example, fermentation of consumables and the manufacture of antibiotics and other substances produced in a liquid fermentation broth. According to another feature of the invention physiological saline solutions
that are kept in closed containers, particularly for intravenous use where oxygenation is of primary importance, can be advantageously prepared in accordance with the oxygenation process of the present invention. Any required sterilization need to be made in any otherwise known manner other than by boiling of the oxygenated liquid. Alternatively, otherwise known
sterile conditions can be employed in the oxygenation of a sterile saline
solution. However, use can also be advanteously made of oxygen enriched liquids in accordance with the present invention in processes where sealed containers are not employed, because it is mostly the imtial high oxygen
content of the enriched liquid that is relied on for greatest initial activity, whereas the actual retention of the oxygen throughout extended periods is
not of as great an importance.

Claims

We claim:
1. A process for enriching water with oxygen, which comprises introducing water into a sealed enriching vessel, subdividing the water in the vessel, subjecting the interior of the vessel to an oxygen pressure of at least about 20 psi, conducting the introduced water in a substantially flowing contact with the oxygen, and recovering the water.
2. The process of claim 1, wherein said recovering of the water is recovery under pressure.
3. The process of claim 1, wherein the water is subdivided at least in part by the oxygen.
4. A liquid enriched with oxygen by the process of claim 1.
5. Apparatus for enriching water with oxygen, which comprises (i) an oxygen enriching vessel having (a) an interior, (b) an interior surface, (c) a vertical axis, (d) a top, and (e) a bottom, (ii) a plurality of substantially horizontal annular trays within said enriching vessel in a vertically spaced relationship, each of said trays having (a) a substantially central opening, and (b) an outer rim spaced from said interior surface, (iii) a liquid supply tube ranging into the interior of said enriching vessel through said central open- ings, (iv) discharge means in said liquid supply tube for discharging liquid therefrom onto a tray, (v) an oxygen supply source in fluid communication with the interior for providing oxygen at a pressure of at least about 20 psi, and (vi) a liquid outlet for the removal of liquid from said vessel.
6. The apparatus of claim 5, wherein each vertically downwardly succeeding tray has a larger circumference than any tray thereabove, said liquid supply tube terminates above the topmost of said trays, and said discharge means comprises a spray-forming member at the termination of said liquid supply tube.
7. The apparatus of claim 5, wherein one or more of said trays has one or more orifices therein to permit the passing of liquid therethrough to a vertically succeeding plate, and said liquid supply tube terminates above the topmost of said trays, and said discharge means comprises a spray-forming member at the termination of said liquid supply tube.
8. The apparatus of claim 5, wherein said discharge means comprises openings in said liquid supply tube above one or more of said trays for discharging water therethrough onto said trays.
9. The apparatus of claim 5, wherein said oxygen supply source is adapted to inject the oxygen at the bottom of said vessel through said liquid supply tube.
10. The apparatus of claim 5, further comprising means for introduc- ing additional oxygen into the top of said enriching vessel.
11. The apparatus of claim 5, further comprising means for introduc- ing additional oxygen into the bottom of said enriching vessel.
12. The apparatus of claim 5, wherein said oxygen supply source terminates in the interior of said vessel in a porous disk for evenly distribut- ing oxygen flowing therethrough.
13. The apparatus of claim 7, wherein said orifices in vertically adjacent trays are arranged in radially offset positions relative to each other for spreading on a tray the liquid arriving from an orifice of an upper tray.
14. A liquid enriched with oxygen by the apparatus of claim 5.
15. An aerobic process which comprises carrying out a chemical or microbiological reaction in an oxygen enriched liquid prepared by the process of claim 1 as the reaction medium.
16. A therapeutic process which comprises carrying out a therapeutic treatment of a body with an agent comprising an oxygen enriched liquid prepared by the process of claim 1 as a vehicle.
17. An aerobic process which comprises carrying out a chemical or microbiological reaction in an oxygen enriched liquid prepared with the apparatus of claim 5 as the reaction medium.
18. A therapeutic process which comprises carrying out a therapeutic treatment of a body with an agent comprising an oxygen enriched liquid prepared with the apparatus of claim 5 as a vehicle.
19. An aerobic process which comprises carrying out a chemical or microbiological reaction in the oxygen enriched liquid of claim 4 as the reaction medium.
20. A therapeutic process which comprises carrying out a therapeutic treatment of a body with the oxygen enriched liquid of claim 4 as a vehicle.
21. An aerobic process which comprises carrying out a chemical or microbiological reaction in the oxygen enriched liquid of claim 14 as the reaction medium.
22. A therapeutic process which comprises carrying out a therapeutic treatment of a body with an agent comprising the oxygen enriched liquid of claim 14 as a vehicle.
23. A fermentation process which comprises using as the fermenta- tion liquor the oxygen enriched liquid of claim 4.
24. A physiological saline solution which comprises as the solvent the oxygen enriched liquid of claim 4.
25. A fermentation process which comprises using as the fermenta- tion liquor the oxygen enriched liquid of claim 14.
26. A physiological saline solution which comprises as the solvent the oxygen enriched liquid of claim 14.
PCT/US1995/003889 1994-04-27 1995-03-31 Oxygen enriched liquids, method and apparatus for making, and applications thereof WO1995029130A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/411,708 US5814222A (en) 1995-03-31 1995-03-31 Oxygen enriched liquids, method and apparatus for making, and applications thereof
CA 2147659 CA2147659C (en) 1994-04-27 1995-03-31 Oxygen enriched liquids, method and apparatus for making, and applications thereof
AU22320/95A AU2232095A (en) 1994-04-27 1995-03-31 Oxygen enriched liquids, method and apparatus for making, and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HUP9401210 1994-04-27
HU9401210A HU217450B (en) 1994-04-27 1994-04-27 Process and apparatus for producing beverage rich in oxigen

Publications (1)

Publication Number Publication Date
WO1995029130A1 true WO1995029130A1 (en) 1995-11-02

Family

ID=10985122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/003889 WO1995029130A1 (en) 1994-04-27 1995-03-31 Oxygen enriched liquids, method and apparatus for making, and applications thereof

Country Status (7)

Country Link
AU (1) AU2232095A (en)
CA (1) CA2147659C (en)
HU (1) HU217450B (en)
IL (1) IL113281A (en)
TW (1) TW422698B (en)
WO (1) WO1995029130A1 (en)
ZA (1) ZA952750B (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033695A2 (en) * 1995-04-26 1996-10-31 LADÁNYI, József Gel with increased oxygen content
US5766490A (en) * 1996-01-24 1998-06-16 Life International Products, Inc. Oxygenating apparatus, method for oxygenating water therewith, and applications thereof
EP0847959A1 (en) * 1996-11-19 1998-06-17 KS & P Industrietechnik GmbH Method for preparing and filling of oxygen-enriched or oxygen containing gas enriched liquids and beverage prepared by such a method
US5814222A (en) * 1995-03-31 1998-09-29 Life International Products, Inc. Oxygen enriched liquids, method and apparatus for making, and applications thereof
WO1998057897A1 (en) * 1997-06-19 1998-12-23 Mountainside Springs Corp. Oxygenated water cooler
EP0900761A1 (en) * 1997-09-04 1999-03-10 Kramer & Co. OEG Method for preparing and filling of oxygen-enriched or oxygen containing gas enriched liquids and beverage prepared by such a method
US5904851A (en) * 1998-01-19 1999-05-18 Life International Products, Inc. Oxygenating apparatus, method for oxygenating liquid therewith, and applications thereof
WO1999055450A1 (en) * 1998-04-28 1999-11-04 Life International Products, Inc. Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
DE19825559A1 (en) * 1998-06-08 1999-12-16 Privatbrauerei M C Wieninger G Oxygenation and carbonation of potable water, table water and mineral water
DE19850025A1 (en) * 1998-10-30 2000-05-11 Thomas Funk Assembly for enriching drinking water with oxygen
EP1040767A2 (en) * 1999-03-29 2000-10-04 Linde Technische Gase GmbH Method and apparatus for the production of carbonated beverages
US6190549B1 (en) 1997-06-19 2001-02-20 Oxygen8, Inc. Oxygenated water cooler
US6250609B1 (en) 1999-06-30 2001-06-26 Praxair Technology, Inc. Method of making supersaturated oxygenated liquid
EP1129036A1 (en) * 1998-10-16 2001-09-05 02 Technologies, Inc. Bottled water cooler with built-in oxygen generator and oxygen injection system
WO2002009730A1 (en) * 2000-08-01 2002-02-07 Schoenberg Michael H Oxygen-enriched agent and the use thereof for therapeutic purposes
DE10104207A1 (en) * 2001-01-31 2002-10-24 Adelholzener Alpenquellen Gmbh Compressed oxygen and carbon dioxide admixed to and impregnating water under pressure
US6524475B1 (en) 1999-05-25 2003-02-25 Miox Corporation Portable water disinfection system
WO2003052046A2 (en) * 2001-12-19 2003-06-26 Anatoly Anatolyevich Kutyev Individual means for producing oxygen cocktail and the oxygen cylinder therefor
US7244357B2 (en) 1999-05-25 2007-07-17 Miox Corporation Pumps for filtration systems
US7297268B2 (en) 1999-05-25 2007-11-20 Miox Corporation Dual head pump driven filtration system
EP3135120A1 (en) * 2015-08-25 2017-03-01 Oxy Young Co., Ltd. Oxygen-enriched water composition, biocompatible composition comprising the same, and methods of preparing and using the same
WO2017035110A1 (en) * 2015-08-25 2017-03-02 Cornelius, Inc Apparatuses, systems, and methods for inline injection of gases into liquids
US9723863B2 (en) 2013-03-08 2017-08-08 Cornelius, Inc. Batch carbonator and method of forming a carbonated beverage
US10477883B2 (en) 2015-08-25 2019-11-19 Cornelius, Inc. Gas injection assemblies for batch beverages having spargers
US11040314B2 (en) 2019-01-08 2021-06-22 Marmon Foodservice Technologies, Inc. Apparatuses, systems, and methods for injecting gasses into beverages

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326243A (en) * 1941-02-24 1943-08-10 Meyer Geo J Mfg Co Saturator
US4027045A (en) * 1975-02-03 1977-05-31 Igor Mikhailovich Fedotkin Process for preparing oxygenated cocktail
US4126544A (en) * 1975-11-26 1978-11-21 Tetra Werke, Dr. Rer. Nat. Ulrich Baensch G.M.B.H. Process and apparatus for removing impurities dissolved in water
US4749493A (en) * 1986-10-07 1988-06-07 Hicks Charles E Method and apparatus for oxygenating water
US4956080A (en) * 1987-08-03 1990-09-11 Microlift Systems, Incorporated High pressure oxygen-saturated water treatment apparatus
US5006352A (en) * 1987-02-27 1991-04-09 Mester-Coop Elelmiszeripari Es Ker. Leanyvallalat Process for the production of an oxygenated restorative drink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326243A (en) * 1941-02-24 1943-08-10 Meyer Geo J Mfg Co Saturator
US4027045A (en) * 1975-02-03 1977-05-31 Igor Mikhailovich Fedotkin Process for preparing oxygenated cocktail
US4126544A (en) * 1975-11-26 1978-11-21 Tetra Werke, Dr. Rer. Nat. Ulrich Baensch G.M.B.H. Process and apparatus for removing impurities dissolved in water
US4749493A (en) * 1986-10-07 1988-06-07 Hicks Charles E Method and apparatus for oxygenating water
US5006352A (en) * 1987-02-27 1991-04-09 Mester-Coop Elelmiszeripari Es Ker. Leanyvallalat Process for the production of an oxygenated restorative drink
US4956080A (en) * 1987-08-03 1990-09-11 Microlift Systems, Incorporated High pressure oxygen-saturated water treatment apparatus

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814222A (en) * 1995-03-31 1998-09-29 Life International Products, Inc. Oxygen enriched liquids, method and apparatus for making, and applications thereof
WO1996033695A3 (en) * 1995-04-26 1996-11-28 Ladanyi Jozsef Gel with increased oxygen content
WO1996033695A2 (en) * 1995-04-26 1996-10-31 LADÁNYI, József Gel with increased oxygen content
US5885467A (en) * 1995-05-01 1999-03-23 Life International Products, Inc. Method and apparatus for making oxygen enriched liquids
US5766490A (en) * 1996-01-24 1998-06-16 Life International Products, Inc. Oxygenating apparatus, method for oxygenating water therewith, and applications thereof
EP0880473A4 (en) * 1996-01-24 1999-12-08 Life Int Products Inc Oxygenating apparatus, method for oxygenating water therewith, and applications thereof
EP0880473A1 (en) * 1996-01-24 1998-12-02 Life International Products, Inc. Oxygenating apparatus, method for oxygenating water therewith, and applications thereof
EP0847959A1 (en) * 1996-11-19 1998-06-17 KS & P Industrietechnik GmbH Method for preparing and filling of oxygen-enriched or oxygen containing gas enriched liquids and beverage prepared by such a method
US5868944A (en) * 1997-06-19 1999-02-09 Oxygen8, Inc. Oxygenated water cooler
WO1998057897A1 (en) * 1997-06-19 1998-12-23 Mountainside Springs Corp. Oxygenated water cooler
US6228259B1 (en) 1997-06-19 2001-05-08 Oxygen8, Inc. Oxygenated water cooler
US6190549B1 (en) 1997-06-19 2001-02-20 Oxygen8, Inc. Oxygenated water cooler
US6197189B1 (en) 1997-06-19 2001-03-06 Oxygen8, Inc. Oxygenated water cooler
US6017447A (en) * 1997-06-19 2000-01-25 Oxygen8, Inc. Oxygenated water cooler
EP0900761A1 (en) * 1997-09-04 1999-03-10 Kramer & Co. OEG Method for preparing and filling of oxygen-enriched or oxygen containing gas enriched liquids and beverage prepared by such a method
US5904851A (en) * 1998-01-19 1999-05-18 Life International Products, Inc. Oxygenating apparatus, method for oxygenating liquid therewith, and applications thereof
WO1999055450A1 (en) * 1998-04-28 1999-11-04 Life International Products, Inc. Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
DE19825559A1 (en) * 1998-06-08 1999-12-16 Privatbrauerei M C Wieninger G Oxygenation and carbonation of potable water, table water and mineral water
DE19825559C2 (en) * 1998-06-08 2001-03-08 Privatbrauerei M C Wieninger G Method for enriching a liquid with two gases and device for filling liquids treated with gases
EP1129036A1 (en) * 1998-10-16 2001-09-05 02 Technologies, Inc. Bottled water cooler with built-in oxygen generator and oxygen injection system
EP1129036A4 (en) * 1998-10-16 2002-04-03 02 Technologies Inc Bottled water cooler with built-in oxygen generator and oxygen injection system
DE19850025A1 (en) * 1998-10-30 2000-05-11 Thomas Funk Assembly for enriching drinking water with oxygen
DE19850025C2 (en) * 1998-10-30 2002-05-02 Thomas Funk Device for enriching drinking water with oxygen
EP1040767A3 (en) * 1999-03-29 2001-05-23 Linde Gas Aktiengesellschaft Method and apparatus for the production of carbonated beverages
EP1040767A2 (en) * 1999-03-29 2000-10-04 Linde Technische Gase GmbH Method and apparatus for the production of carbonated beverages
US6524475B1 (en) 1999-05-25 2003-02-25 Miox Corporation Portable water disinfection system
US7297268B2 (en) 1999-05-25 2007-11-20 Miox Corporation Dual head pump driven filtration system
US7244357B2 (en) 1999-05-25 2007-07-17 Miox Corporation Pumps for filtration systems
US6250609B1 (en) 1999-06-30 2001-06-26 Praxair Technology, Inc. Method of making supersaturated oxygenated liquid
WO2002009730A1 (en) * 2000-08-01 2002-02-07 Schoenberg Michael H Oxygen-enriched agent and the use thereof for therapeutic purposes
DE10104207A1 (en) * 2001-01-31 2002-10-24 Adelholzener Alpenquellen Gmbh Compressed oxygen and carbon dioxide admixed to and impregnating water under pressure
WO2003052046A2 (en) * 2001-12-19 2003-06-26 Anatoly Anatolyevich Kutyev Individual means for producing oxygen cocktail and the oxygen cylinder therefor
WO2003052046A3 (en) * 2001-12-19 2003-09-18 Anatoly Anatolyevich Kutyev Individual means for producing oxygen cocktail and the oxygen cylinder therefor
US9723863B2 (en) 2013-03-08 2017-08-08 Cornelius, Inc. Batch carbonator and method of forming a carbonated beverage
EP3135120A1 (en) * 2015-08-25 2017-03-01 Oxy Young Co., Ltd. Oxygen-enriched water composition, biocompatible composition comprising the same, and methods of preparing and using the same
WO2017035110A1 (en) * 2015-08-25 2017-03-02 Cornelius, Inc Apparatuses, systems, and methods for inline injection of gases into liquids
US10477883B2 (en) 2015-08-25 2019-11-19 Cornelius, Inc. Gas injection assemblies for batch beverages having spargers
US10785996B2 (en) 2015-08-25 2020-09-29 Cornelius, Inc. Apparatuses, systems, and methods for inline injection of gases into liquids
US11013247B2 (en) 2015-08-25 2021-05-25 Marmon Foodservice Technologies, Inc. Apparatuses, systems, and methods for inline injection of gases into liquids
US11040314B2 (en) 2019-01-08 2021-06-22 Marmon Foodservice Technologies, Inc. Apparatuses, systems, and methods for injecting gasses into beverages

Also Published As

Publication number Publication date
HUT71206A (en) 1995-11-28
CA2147659C (en) 2003-08-12
HU217450B (en) 2000-01-28
AU2232095A (en) 1995-11-16
IL113281A0 (en) 1995-07-31
TW422698B (en) 2001-02-21
ZA952750B (en) 1995-12-21
CA2147659A1 (en) 1995-10-28
HU9401210D0 (en) 1994-08-29
IL113281A (en) 1998-10-30

Similar Documents

Publication Publication Date Title
US5814222A (en) Oxygen enriched liquids, method and apparatus for making, and applications thereof
CA2147659C (en) Oxygen enriched liquids, method and apparatus for making, and applications thereof
US6530895B1 (en) Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
US5904851A (en) Oxygenating apparatus, method for oxygenating liquid therewith, and applications thereof
US5766490A (en) Oxygenating apparatus, method for oxygenating water therewith, and applications thereof
US4970000A (en) Method for the biological denitrification of water
US4798669A (en) System for treating water with ozone
US4231863A (en) Method and apparatus for treating water
CN1156007A (en) Method and system for processing liquid food or liquid medicine by supercritical fluid of carbon dioxide
GB1573967A (en) Methods of operating back-washable filters with fixed beds constructed of granular materials
CN209507714U (en) A kind of ozone oxidation reaction device
US3724667A (en) Activated sludge process and system
CN206188442U (en) Circulation mariculture water processing system based on nanometer photoelectrocatalysis technique
US5997752A (en) Water treating apparatus for raising oxygen solubility
US6395177B1 (en) Process and apparatus for decoloring liquids and water product thereof
JPS60118181A (en) Production of edible vinegar
AU730780B2 (en) Oxygenating apparatus, method for oxygenating water therewith, and applications thereof
JPH1015562A (en) Method and apparatus for producing mineral component dissolved water
RU216118U1 (en) Ozone device
RU2196744C2 (en) Plant for integrated sewage water purification from difficultly oxidizable organic compounds
KR102047171B1 (en) Kimchi Inoculating system and process thereof
Powell The Effect of Algae on Bicarbonates in Shallow Reservoirs
CA1293067C (en) System for water treatment with ozone
JP2000117278A (en) Membrane biological treatment and membrane biological treating device
JPH11267671A (en) Water purifying device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2147659

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08411708

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ FI HU JP KR MX NO NZ PL RO RU SG SI SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: CA,US

122 Ep: pct application non-entry in european phase