WO1995009006A1 - Monoglyceride/lactate ester permeation enhancer - Google Patents

Monoglyceride/lactate ester permeation enhancer Download PDF

Info

Publication number
WO1995009006A1
WO1995009006A1 PCT/US1994/011120 US9411120W WO9509006A1 WO 1995009006 A1 WO1995009006 A1 WO 1995009006A1 US 9411120 W US9411120 W US 9411120W WO 9509006 A1 WO9509006 A1 WO 9509006A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
lactate
mixture
reservoir
skin
Prior art date
Application number
PCT/US1994/011120
Other languages
French (fr)
Inventor
Lina Tormen Taskovich
Su Il Yum
Eun Soo Lee
Nieves Marzan Crisologo
Original Assignee
Alza Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alza Corporation filed Critical Alza Corporation
Priority to KR1019960701610A priority Critical patent/KR960704578A/en
Priority to AU79249/94A priority patent/AU679793B2/en
Priority to JP51047695A priority patent/JP3688293B2/en
Priority to EP94929976A priority patent/EP0721348B1/en
Priority to DE69420419T priority patent/DE69420419T2/en
Priority to US08/637,678 priority patent/US5750137A/en
Priority to ZA947700A priority patent/ZA947700B/en
Publication of WO1995009006A1 publication Critical patent/WO1995009006A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7038Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer
    • A61K9/7046Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds
    • A61K9/7053Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds, e.g. polyvinyl, polyisobutylene, polystyrene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7084Transdermal patches having a drug layer or reservoir, and one or more separate drug-free skin-adhesive layers, e.g. between drug reservoir and skin, or surrounding the drug reservoir; Liquid-filled reservoir patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system

Definitions

  • This invention relates to the transdermal delivery of drugs and other biologically active agents. More particularly, this invention relates to novel methods and compositions for enhancing the percutaneous absorption of drugs when incorporated in transdermal drug delivery systems. More particularly, but without limitation thereto, this invention relates to the transdermal delivery of drugs utilizing a permeation-enhancing mixture of a monoglyceride and a lactate ester. Still more particularly, but without limitation thereto, this invention relates to the transdermal delivery of drugs utilizing a permeation-enhancing mixture of a monoglyceride and a lactate ester wherein the monoglyceride and lactate ester are present in the composition in specific weight percentages.
  • transdermal route of parenteral delivery of drugs provides many advantages over other administrative routes, and transdermal systems for delivering a wide variety of drugs or other beneficial agents are described in US Patent Numbers 3,598,122; 3,598,123; 3,731 ,683; 3,797,494; 4,031 ,894; 4,201 ,211 ; 4,286,592; 4,314,557; 4,379,454; 4,435,180; 4,559,222; 4,568,343; 4,573,995; 4,588,580; 4,645,502; 4,704,282; 4,788,062; 4,816,258; 4,849,226; 4,908,027; 4,943,435; and 5,004,610.
  • the disclosures of the above patents are incorporated herein by reference.
  • drugs which would appear to be ideal candidates for transdermal delivery are found to have such low permeability through intact skin that they cannot be delivered at therapeutically effective rates from reasonably sized systems.
  • a permeation enhancer should have the ability to enhance the permeability of the skin for at least one and preferably a significant number of drugs. More importantly, it should be able to enhance the skin permeability such that the drug delivery rate from a reasonably sized system (preferably 5-50 cm 2 ) is at therapeutic levels. Additionally, the enhancer, when applied to the skin surface, should be non-toxic, non-irritating on prolonged exposure and under occlusion, and non-sensitizing on repeated exposure. Preferably, it should be capable of delivering drugs without producing topical reactions, burning or tingling sensations. The present invention greatly increases drug permeability through the skin, and also reduces the lag time between application of the drug to the skin and attainment of the desired therapeutic effect.
  • this invention utilizes a novel combination of a monoglyceride and a lactate ester. Further, the invention utilizes specific weight percentages of the novel components, the monoglyceride and lactate ester, ie, 15 to 25 wt% of monoglyceride and 8 to 25 wt% of lactic acid ester.
  • the combined effect and, further, specific weight percentages produces a significant and surprising improvement ie, more than an additive effect over use of either a monoglyceride or a lactate ester alone, as well as over the combination of monoglyceride and lactate ester in specified weight percentages.
  • the present invention relates to improved compositions and methods for improving the penetration of a broad category of beneficial agents that produce little or no skin irritation.
  • the system of the invention comprises a carrier or matrix adapted to be placed in drug- and permeation-enhancing mixture-transmitting relation to the selected skin or other body site.
  • the carrier or matrix contains sufficient amounts of drug and the permeation- enhancing mixture to continuously coadminister to the site, over a predetermined delivery period, the drug, in a therapeutically effective amount, and the permeation-enhancing mixture of a monoglyceride and a lactate ester, present in specific concentrations, ie, 15 to 25 wt% of monoglyceride and 8 to 25 wt% of a lactate ester, preferably 20 wt% monoglyceride and 12 wt% lactate ester in an amount effective to enhance the permeation of the drug to the skin.
  • the term "transdermal" delivery or application refers to the delivery or application of agents by passage through skin, mucosa and/or other body surfaces by topical application or by iontophoresis.
  • terapéuticaally effective amount or rate refers to the amount or rate of drug or active agent needed to effect the desired therapeutic result.
  • the term "monoglyceride” refers to glycerol monooleate, glycerol monolaurate and glycerol monolinoleate, or a mixture thereof.
  • Monoglycerides are generally available as a mixture of monoglycerides, with the mixture deriving its name from the monoglyceride present in the greatest amount.
  • the permeation enhancer monoglyceride component is glycerol monolaurate.
  • glycerol monooleate refers to glycerol monooleate itself or a mixture of glycerides wherein glycerol monooleate is present in the greatest amount.
  • glycerol monolaurate refers to glycerol monolaurate itself or a mixture of glycerides wherein glycerol monolaurate is present in the greatest amount.
  • glycerol monolinoleate refers to glycerol monolinoleate itself or a mixture of glycerides wherein glycerol monolinoleate is present in the greatest amount.
  • lactate ester or “lactic ester of an alcohol” refers to ethyl lactate, lauryl lactate, myristyl lactate or cetyl lactate, or a mixture thereof.
  • the lactate ester is lauryl lactate or ethyl lactate or a mixture thereof.
  • substantially portion of the time period means at least about 60% of the time period, preferably at least about 90% of the time period.
  • substantially constant means a variation of less than about ⁇ 20%, preferably less than about ⁇ 10%, over a substantial portion of the time period.
  • the term "permeation enhancing mixture” refers to a mixture comprising one or more lactate esters and one or more monoglycerides.
  • the monoglyceride or mixture preferably, glycerol monolaurate, is present in the range of about 15 to about 25 weight percent.
  • the second component ie, a lactic acid ester, eg, lauryl, myristyl, cetyl, ethyl, methyl or oleic acid, benzoic acid or lactic acid is present in the range of about 8 to about 25 weight percent. More preferably, the permeation enhancer mixture by weight comprises 20% monoglyceride and 12% lactic acid ester.
  • predetermined delivery period or extended time period refers to the delivery of drug for a time period of from several hours to seven days or longer. Preferably, the time period is from 16 hours to 3 or 4 days.
  • permeation enhancing amount or rate refers to the rate or amount that provides increased permeability of the application site to the drug.
  • poly-N-vinyl amide means a cross-linked poly-N-vinyl amide or combination of poly-N-vinyl amide such as poly-N-vinyimethylacetamide, poly-N-vinylethylacetamide, poly-N-vinylmethyl- isobutyramide, poly-N-vinyl-2-pyrrolidone, poly-N-vinylpyrrolidone, poly-N-vinyl-2-piperidone, poly-N-vinyl-caprolactam, poly-N-vinyl-5-methyl-2-pyrrolidone, poly-N-vinyl-3-methyl-2-pyrrolidone, and the like.
  • the poly-N-vinyl amide is poly-N-vinyl-2-pyrrolidone (more preferably Polyplasdone XL®, Polyplasdone XL-10®, GAF).
  • FIG. 1 is a cross-sectional view of one embodiment of the transdermal drug delivery system according to this invention.
  • FIG. 2 is a cross-sectional view of another embodiment of the transdermal drug delivery system of this invention.
  • FIG. 3 is a cross-sectional view of still another embodiment of the transdermal drug delivery system according to this invention.
  • FIG. 4 is a cross-sectional view of yet another embodiment of the transdermal drug delivery system of this invention.
  • FIG. 5 is a graph of the flux of alprazolam through human epidermis at 35°C, in vitro, with glycerol monolaurate and lauryl lactate.
  • FIG. 6 is a graph of the flux of alprazolam through human epidermis at 35°C, in vitro, with glycerol monolaurate and lauryl lactate.
  • FIG. 7 is a graph of the flux of estradiol through human epidermis at 35°C, in vitro, with glycerol monolaurate and lauryl lactate.
  • FIG. 8 is a graph of the flux of testosterone through human epidermis at 35°C, in vitro, with glycerol monolaurate and lauryl lactate.
  • FIG. 9 is a bar graph of the cumulative flux of alprazolam through human epidermis at 35°C, in vitro, with varying weight percents of glycerol monolaurate and lauryl lactate.
  • FIG. 10 is a graph of the cumulative flux of testosterone through human epidermis at 35°C, in vitro, with various flux enhancers.
  • FIG. 11 is a bar graph showing the effect of various concentrations of glycerol monolaurate and lauryl lactate on the flux of alprazolam through human epidermis at 35°C, in vitro.
  • This invention co-delivers one or more monoglycerides and one or more lactate esters to aid in delivery of drugs across the skin.
  • this invention calls for the monoglycerides and lactate esters to be present in a specific concentrations eg, 15-25 wt% and 8-25 wt%, respectively.
  • concentrations eg, 15-25 wt% and 8-25 wt%, respectively.
  • the combined effect and preferred concentrations according to this invention have been shown to produce dramatic, ie, more than an additive, increases in the permeation of drugs when compared to the use of either a lactate ester or a monoglyceride alone or in unspecified weight percentages.
  • the present invention in one embodiment is directed to a composition of matter for application to a body surface or membrane to administer a drug by permeation through the body surface or membrane, the composition comprising, in combination:
  • the drug may be present in the composition in an amount ranging from 0.01 to 50% by weight.
  • the permeation-enhancing mixture preferably contains the monoglyceride and lactate ester in 20 wt% and 12 wt%, respectively.
  • This invention finds particular usefulness in enhancing drug permeability across skin. It is also useful, however, in enhancing flux across mucosa. Further, this invention is useful in delivery of both systemically and topically active drugs.
  • the permeation-enhancing mixture and the drug to be delivered are placed in drug- and permeation- enhancing mixture-transmitting relationship to the appropriate body surface, preferably in a pharmaceutically acceptable carrier therefor, and maintained in place for the desired period of time.
  • the drug and the permeation-enhancing mixture are typically dispersed within a physiologically compatible matrix or carrier as more fully described below which may be applied directly to the body as an ointment, gel, cream, suppository or sublingual or buccal tablet, for example.
  • a physiologically compatible matrix or carrier as more fully described below which may be applied directly to the body as an ointment, gel, cream, suppository or sublingual or buccal tablet, for example.
  • a physiologically compatible matrix or carrier as more fully described below which may be applied directly to the body as an ointment, gel, cream, suppository or sublingual or buccal tablet, for example.
  • a physiologically compatible matrix or carrier as more fully described below which may be applied directly to the body as an ointment, gel, cream, suppository or sublingual or buccal tablet, for example.
  • Such compositions can also contain other permeation enhancers, stabilizers, dyes, diluents, pigments, vehicles, inert fillers
  • the drug and permeation enhancing mixture would be administered from a transdermal delivery device as more fully described below.
  • a transdermal delivery device Examples of suitable transdermal delivery devices are illustrated in Figures 1, 2, 3 and 4.
  • the same reference numbers are used throughout the different figures to designate the same or similar components. The figures are not drawn to scale.
  • transdermal delivery device 10 comprises a reservoir 12 containing the drug and the permeation-enhancing mixture.
  • Reservoir 12 is preferably in the form of a matrix containing the drug and permeation enhancing mixture dispersed therein.
  • Reservoir 12 is sandwiched between a backing layer 14 and an in-line contact adhesive layer 16.
  • the device 10 adheres to the surface of the skin 18 by means of the adhesive layer 16.
  • the adhesive layer 16 may optionally contain the permeation enhancing mixture and/or drug.
  • a strippable release liner (not shown in Figure 1) is normally provided along the exposed surface of adhesive layer 16 and is removed prior to application of device 10 to the skin 18.
  • a rate- controlling membrane (not shown) may be present between the reservoir 12 and the adhesive layer 16.
  • transdermal therapeutic device 20 may be attached to the skin or mucosa of a patient by means of an adhesive overlay 22.
  • Device 20 is comprised of a drug- and permeation enhancing mixture-containing reservoir 12 which is preferably in the form of a matrix containing the drug and the enhancing mixture dispersed therein.
  • a backing layer 14 is provided adjacent one surface of reservoir 12.
  • Adhesive overlay 22 maintains the device on the skin and may be fabricated together with, or provided separately from, the remaining elements of the device. With certain formulations, the adhesive overlay 22 may be preferable to the in-line contact adhesive 16 as shown in Figure 1.
  • Backing layer 14 is preferably slightly larger than reservoir 12, and in this manner prevents the materials in reservoir 12 from adversely interacting with the adhesive in overlay 22.
  • a rate-controlling membrane (not shown in Figure 2) may be provided on the skin-proximal side of reservoir 12.
  • a strippable release liner 24 is also provided with device 20 and is removed just prior to application of device 20 to the skin.
  • transdermal delivery device 30 comprises a drug- and permeation enhancing mixture-containing reservoir ("drug reservoir") 12 substantially as described with respect to Figure 1.
  • Permeation enhancer reservoir (“enhancer reservoir”) 26 comprises the permeation enhancing mixture dispersed throughout and the drug at or below saturation when in equilibrium.
  • Enhancer reservoir 26 is preferably made from substantially the same matrix as is used to form drug reservoir 12.
  • a rate-controlling membrane 28 for controlling the release rate of the permeation enhancer from enhancer reservoir 26 to drug reservoir 12 is placed between the two reservoirs.
  • a rate-controlling membrane (not shown in Figure 3) for controlling the release rate of the enhancer from drug reservoir 12 to the skin may also optionally be utilized and would be present between adhesive layer 16 and reservoir 12.
  • the rate-controlling membrane may be fabricated from permeable, semipermeable or microporous materials which are known in the art to control the rate of agents into and out of delivery devices and having a permeability to the permeation enhancer lower than that of drug reservoir 12. Suitable materials include, but are not limited to, polyethylene, polyvinyl acetate, ethylene n-butyl acetate and ethylene vinyl acetate copolymers.
  • a backing 14 superimposed over the permeation enhancer reservoir 26 of device 30 is a backing 14.
  • an adhesive layer 16 and a strippable liner 24 which would be removed prior to application of the device 30 to the skin.
  • the carrier or matrix material of the reservoirs has sufficient viscosity to maintain its shape without oozing or flowing. If, however, the matrix or carrier is a low-viscosity flowable material such as a liquid or a gel, the composition can be fully enclosed in a pouch or pocket, as known to the art from US Pat. No. 4,379,454 (noted above), for example, and as illustrated in Figure 4.
  • Device 40 shown in Figure 4 comprises a backing member 14 which serves as a protective cover for the device, imparts structural support, and substantially keeps components in device 40 from escaping the device.
  • Device 40 also includes reservoir 12 which contains the drug and permeation enhancing mixture and bears on its surface distant from backing member 14 a rate- controlling membrane 28 for controlling the release of drug and/or permeation enhancing mixture from device 40.
  • the outer edges of backing member 14 overlay the edges of reservoir 12 and are joined along the perimeter with the outer edges of the rate-controlling membrane 28 in a fluid- tight arrangement.
  • This sealed reservoir may be effected by pressure, fusion, adhesion, an adhesive applied to the edges, or other methods known in the art.
  • reservoir 12 is contained wholly between backing member 14 and rate-controlling membrane 28.
  • On the skin-proximal side of rate-controlling membrane 28 are an adhesive layer 16 and a strippable liner 24 which would be removed prior to application of the device 40 to the skin.
  • reservoir 12 contains the permeation enhancing mixture and the drug at or below saturation.
  • the drug at saturation and an additional amount of permeation enhancing mixture are present in adhesive layer 16 which acts as a separate reservoir.
  • the drug and the permeation enhancing mixture can be co- extensively administered to human skin or mucosa by direct application to the skin or mucosa in the form of an ointment, gel, cream or lotion, for example, but are preferably administered from a skin patch or other known transdermal delivery device which contains a saturated or subsaturated formulation of the drug and the enhancer.
  • the formulation is non-aqueous based and designed to deliver the drug and the permeation enhancing mixture at the necessary fluxes.
  • Typical non-aqueous gels are comprised of silicone fluid or mineral oil.
  • Mineral oil-based gels also typically contain 1-2 wt% of a gelling agent such as colloidal silicon dioxide. The suitability of a particular gel depends upon the compatibility of its constituents with both the drug and the permeation enhancing mixture and any other components in the formulation.
  • the reservoir matrix should be compatible with the drug, the permeation enhancer and any carrier therefor.
  • matrix refers to a well-mixed composite of ingredients fixed into shape.
  • the reservoir matrix is preferably composed of a hydrophobic polymer.
  • Suitable polymeric matrices are well known in the transdermal drug delivery art, and examples are listed in the above-named patents previously incorporated herein by reference.
  • a typical laminated system would comprise a polymeric membrane and/or matrix such as ethylene vinyl acetate (EVA) copolymers, such as those described in US Pat. No. 4,144,317, preferably having a vinyl acetate (VA) content in the range of from about 9% up to about 60% and more preferably about 9% to 40% VA.
  • EVA ethylene vinyl acetate
  • Polyisobutylene/oil polymers containing from 4-25% high molecular weight polyisobutylene and 20-81% low molecular weight polyisobutylene with the balance being an oil such as mineral oil or polyisobutynes may also be used as the matrix material.
  • the amount of drug present in the therapeutic device and required to achieve an effective therapeutic result depends on many factors, such as the minimum necessary dosage of the drug for the particular indication being treated; the solubility and permeability of the matrix, of the adhesive layer and of the rate-controlling membrane, if present; and the period of time for which the device will be fixed to the skin.
  • the minimum amount of drug is determined by the requirement that sufficient quantities of drug must be present in the device to maintain the desired rate of release over the given period of application.
  • the maximum amount for safety purposes is determined by the requirement that the quantity of drug present cannot exceed a rate of release that reaches toxic levels.
  • the drug is normally present in the matrix or carrier at a concentration in excess of saturation, the amount of excess being a function of the desired length of the drug delivery period of the system.
  • the drug may, however, be present at a level below saturation without departing from this invention as long as the drug is continuously administered to the skin or mucosal site in an amount and for a period of time sufficient to provide the desired therapeutic rate.
  • the permeation enhancing mixture is dispersed through the matrix or carrier, preferably at a concentration sufficient to provide permeation- enhancing amounts of enhancer in the reservoir throughout the anticipated administration period. Where there is an additional, separate permeation enhancer matrix layer as well, as in Figures 3 and 4, the permeation enhancer normally is present in the separate reservoir in excess of saturation.
  • the unexpected effects of the specific weight percentages of the components of the permeation enhancer mixture is due, in part to the solubility of the monoglyceride in the lactic acid ester. It is known that monoglycerides by themselves are effective permeation enhancers. The enhancement occurs by the solubilization of the monoglyceride in the lipid layer of the skin.
  • the solubilization of the monoglyceride in the lipid layer increases as a function of lactic acid ester concentration.
  • the solubility of glycerol monolaurate in lauryl lactate is 350 mg/g of solution when the solution is stirred.
  • GML is practically insoluble in, for example, an EVA 40 matrix.
  • the amount of GML dissolved, ie, free GML is dictated by and proportional to the lauryl lactate loading in the polymer.
  • the preferred formulations containing 20 wt% GML and 12 wt% lauryl lactate, were equally effective in enhancing drug permeability as those containing 20 wt% GML and 20 wt% lauryl lactate.
  • the invention is directed to a permeation enhancing mixture containing a monoglyceride or monoglyceride mixture from 15 to 25 wt% and a lactic acid ester present from 8 to 25 wt%, the 20 wt% monoglyceride and 12 wt% lactic acid ester is preferred because it is as effective as the higher percentage lactic acid ester compositions yet it delivers less of a lactic acid ester which is a known potential irritant.
  • the matrix or carrier may also contain dyes, pigments, inert fillers, excipients and other conventional components of pharmaceutical products or transdermal devices known to the art.
  • Rate control can be obtained either through a rate-controlling membrane or adhesive or both as well as through the other means.
  • a certain amount of drug will bind reversibly to the skin, and it is accordingly preferred that the skin-contacting layer of the device include this amount of the agent as a loading dose.
  • the surface area of the device of this invention can vary from less than 1 cm 2 to greater than 200 cm 2 .
  • a typical device will have a surface area within the range of about 5-50 cm 2 .
  • the devices of this invention can be designed to effectively deliver drug for an extended time period of from several hours up to 7 days or longer. Seven days is generally the maximum time limit for application of a single device because the adverse affect of occlusion of a skin site increases with time and the normal cycle of sloughing and replacement of the skin cells occurs in about 7 days.
  • the method of this invention comprises: (a) administering a drug, in a therapeutically effective amount, to the area of skin over the time period; and
  • composition delivered by the method contains a permeation enhancing mixture, ie, 15 to 25 wt% or a monoglyceride or monoglyceride mixture and 8 to 25 wt% of a lactate ester and enough drug to provide systemic administration of drug through the skin for a predetermined period of time to provide an effective therapeutic result.
  • a permeation enhancing mixture ie, 15 to 25 wt% or a monoglyceride or monoglyceride mixture and 8 to 25 wt% of a lactate ester and enough drug to provide systemic administration of drug through the skin for a predetermined period of time to provide an effective therapeutic result.
  • drug and “agent” are used interchangeably and are intended to have their broadest interpretation as to any therapeutically active substance which is delivered to a living organism to produce a desired, usually beneficial, effect.
  • this includes therapeutic agents in all of the major therapeutic areas, including, but not limited to, ACE inhibitors, adenohypophyseal hormones, adrenergic neuron blocking agents, adrenocortical steroids, inhibitors of the biosynthesis of adrenocortical steroids, alpha-adrenergic agonists, alpha-adrenergic antagonists, selective alpha-two-adrenergic agonists, analgesics, antipyretics and anti-inflammatory agents, androgens, local anesthetics, general anesthetics, antiaddictive agents, antiandrogens, antiarrhythmic agents, antiasthmatic agents, anticholinergic agents, anticholinesterase agents, anticoagulants, antidiabetic agents, antidiarrheal agents, antidiuretic, antiemetic and prokinetic agents, antiepileptic agents, antiestrogens, antifungal agents, antihypertensive agents, antimicrobial agents,
  • Representative drugs include, by way of example and not for purposes of limitation, bepridil, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nimodipine, nitredipine, verapamil, dobutamine, isoproterenol, carteolol, labetalol, levobunolol, nadolol, penbutolol, pindolol, propranolol, sotalol, timolol, acebutolol, atenolol, betaxolol, esmolol, metoprolol, albuterol, bitolterol, isoetharine, metaproterenol, pirbuterol, ritodrine, terbutaline, alclometasone, aldosterone, amcinonide, beclomethasone dipropionate, betamethasone
  • the drug is a benzodiazepine, such as alprazolam, brotizolam, chlordiazepoxide, clobazam, clonazepam, clorazepate, demoxepam, diazepam, flumazenil, flurazepam, halazepam, lorazepam, midazolam, nitrazepam, nordazepam, oxazepam, prazepam, quazepam, temazepam, triazolam, and the like; an antimuscarinic agents, such as anisotropine, atropine, clidinium, cyclopentolate, dicyclomine, flavoxate, glycopyrrolate, hexocyclium, homatropine, ipratropium, isopropamide, mepenzolate, methantheline, oxyphencyclimine, pirenzepine, propantheline, scopolamine, tele
  • a device for the transdermal administration of a drug, at a therapeutically effective rate comprises:
  • a therapeutically effective amount of a drug or active agent (i) a therapeutically effective amount of a drug or active agent, (ii) 15 to 25% by weight monoglyceride or mixture of monoglycerides,
  • (c) means for maintaining the reservoir in drug- and permeation enhancing mixture-transmitting relation with the skin.
  • the monoglyceride is glycerol monolaurate and the lactic acid ester is lauryl lactate.
  • a device for the transdermal administration of the drug, at a therapeutically effective rate comprises: (a) a reservoir comprising:
  • (c) means for maintaining the reservoir in drug- and permeation enhancing mixture-transmitting relation with the skin.
  • the reservoir further comprises 5-25% by weight cross-linked poly-N-vinyl-2-pyrrolidone, eg, N-vinyl-2-pyrrolidone XL-10, G&F).
  • the backing is a breathable backing, such as NRU-100- C® (Flexcon, Spencer, MA). If an occluded backing is used, preferably it is Medpar® (3M, St. Paul, MN).
  • the means for maintaining the reservoir in drug and permeation enhancing mixture transmitting relation with the skin is an acrylic contact adhesive, such as MSP041991P, 3M.
  • the ethylene vinyl acetate copolymer has a acetate content of 33% or 40%.
  • the drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent ("EVA 40", U.S.I. Chemicals, Illinois) in an internal mixer (Bra Bender type mixer) until the EVA 40 pellets fused.
  • EVA 40 ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent
  • Alprazolam GYMA Labs of America, Garden City, NJ
  • glycerol monolaurate Grindsted ML 90, Grindsted Products A/S, Brabrand, Denmark
  • lauryl lactate Van Dyk, Inc., Belleview, NJ
  • the mixture was quickly cooled to 40°-45°C, and calendered to a 13 mil thick film.
  • the film was then laminated to an acrylic contact adhesive (MSPO419910, 3M) on one side and a Medpar® backing (3M, St. Paul, Minn.) or NRU-100-C® backing (Flexcon, Spencer, MA) on the opposite side.
  • the laminate was then cut into circles using a stainless steel punch.
  • composition of the drug reservoirs is shown in Table 1.
  • Circular pieces of human-epidermis were mounted on horizontal permeation cells with the stratum corneum facing the donor compartment of the cell.
  • the release liner of the system was then removed and the system was centered over the stratum corneum side of the epidermis.
  • a known volume of the receptor solution (0.01 M potassium phosphate at pH 6 containing 2% isopropanol) that had been equilibrated at 35°C was placed in the receptor compartment. Air bubbles were removed from the receptor compartment; the cell was capped and placed in a water bath-shaker at 35°C.
  • the entire receptor solution was removed from the cells and replaced with an equal volume of fresh receptor solutions previously equilibrated at 35°C.
  • the drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent ("EVA 40", U.S.I. Chemicals, Illinois) in an internal mixer (Bra Bender type mixer) until the EVA 40 pellets fused. Alprazolam, glycerol monolaurate and lauryl lactate were then added. The mixture was blended for approximately 20 minutes at 54°-56°C and 30 rpm. After blending, the mixture was quickly cooled to 40°-45°C, and calendered to a 5 mil thick film. The compositions of reservoirs are shown in Table 2.
  • the drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 28 percent ("EVA 28", U.S.I. Chemicals, Illinois) and cross-linked poly- N-vinyl-2-pyrrolidone (Polyplasdone XL-10®, GAF) in an internal mixer (Bra Bender type mixer) until the EVA 28 pellets fused. Estradiol, glycerol monolaurate and lauryl lactate were then added. The mixture was blended, and calendered to a 4.0 mil thick film. The compositions of the reservoir is given in Table 3.
  • This film was then laminated to an acrylic contact adhesive (147-123- 4, Adhesive Research Co.) on one side and dermaFlex NRU-100-C® backing (Flexcon Co.) on the opposite side.
  • the film was then cut into circles and taped to prevent edge release.
  • the adhesive was placed against the stratum corneum side of a disc of human epidermis that had been blotted dry just prior to use. The excess epidermis was wrapped around the device so that none of the device edge was exposed to the receptor solution.
  • the device covered with epidermis was attached to the flat side of the Teflon holder of a release rod using nylon netting and nickel wire. The rods were reciprocated in a fixed volume of receptor solution (distilled water). The entire receptor solution was changed at each sampling time. The temperature of the receptor solution in the water bath was maintained at 35°C.
  • the receptor solutions were stored in capped vials at 4°C until assayed for estradiol content by HPLC.
  • the fluxes achieved for the different systems are shown in Figure 7.
  • the drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 28 percent ("EVA 28", U.S.I. Chemicals, Illinois) and cross-linked poly N-vinyl-2-pyrrolidone (Polyplasdone XL®, GAF) in an internal mixer (Bra Bender type mixer) until the EVA 28 pellets fused. Testosterone, glycerol monolaurate and lauryl lactate were then added. The mixture was blended, and calendered to a 4.0 mil thick film. The compositions of the reservoir is given in Table 4. TABLE 4
  • Drug/Permeation Enhancer Reservoir Composition (weight percent) testosterone/glycerol monolaurate/lauryl lactate/EVA 28/N-vinyl-2-pyrrolidone (5/20/20/50/5)
  • This film was then laminated to an acrylic contact adhesive (147-123- 4, Adhesive Research Co.) on one side and dermaFlex NRU-100-C® backing (Flexcon Co.) on the opposite side. The film was then cut into circles and taped to prevent edge release.
  • the adhesive was placed against the stratum corneum side of a disc of human epidermis that had been blotted dry just prior to use.
  • the excess epidermis was wrapped around the device so that none of the device edge was exposed to the receptor solution.
  • the device covered with epidermis was attached to the flat side of the Teflon holder of a release rod using nylon netting and nickel wire.
  • the rods were reciprocated in a fixed volume of receptor solution (distilled water). The entire receptor solution was changed at each sampling time. The temperature of the receptor solution in the water bath was maintained at 35°C.
  • the receptor solutions were stored in capped vials at 4°C until assayed for testosterone content by HPLC.
  • the fluxes achieved for the different systems are shown in Figure 8.
  • the drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent ("EVA 40", U.S.I. Chemicals, Illinois) in an internal mixer (Bra Bender type mixer) until the EVA 40 pellets fused. Alprazolam, glycerol monolaurate and lauryl lactate were then added. The mixture was blended for approximately 20 minutes at 54°-56°C and 30 rpm. After blending, the mixture was quickly cooled to 40°-45°C, and calendared to a 5 mil thick film. The composition of the drug reservoirs is shown in Table 5.
  • the drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent ("EVA 40", U.S.I. Chemicals, Illinois) and optionally cross-linked poly N-vinyl- 2-pyrrolidone (Polyplasdone XL®, GAF) in an internal mixer (Bra Bender type mixer) until the EVA 40 pellets fused. Testosterone, glycerol monolaurate and lauryl lactate were then added. The mixture was blended, and calendered to a 4.0 mil thick film. The compositions of the reservoir is given in Table 6. TABLE 6
  • Drug/Permeation Enhancer Reservoir Composition (weight percent) testosterone/glycerol monolaurate/lauryl lactate/EVA 40 (5/20/20/50/5) testosterone/glycerol monolaurate/myristyl lactate/myristyl alcohol/EVA 40
  • This film was then laminated to an acrylic contact adhesive (MSP041991P, 3M) on one side and Medpar® or NRU-100-C® backing on the opposite side.
  • the laminate was then cut into circles and taped to prevent edge release.
  • the adhesive was placed against the stratum corneum side of a disc of human epidermis that had been blotted dry just prior to use.
  • the excess epidermis was wrapped around the device so that none of the device edge was exposed to the receptor solution.
  • the device covered with epidermis was attached to the flat side of the Teflon holder of a release rod using nylon netting and nickel wire.
  • the rods were reciprocated in a fixed volume of receptor solution (0.1% Benzoic acid). The entire receptor solution was changed at each sampling time.
  • the temperature of the receptor solution in the water bath was maintained at 35°C.
  • the receptor solutions were stored in capped vials at 4°C until assayed for testosterone content by HPLC.
  • the fluxes achieved for the different systems are shown in Figure 10.
  • the drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent ("EVA 40", U.S.I. Chemicals, Illinois) in an internal mixer (Bra Bender type mixer) until the EVA 40 pellets fused. Alprazolam, glycerol monolaurate and lauryl lactate were then added. The mixture was blended, and calendered to a 5.0 mil thick film. The composition of the reservoirs are given in Table 7.
  • Alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/0/0/85 The film was then laminated to an acrylic contact adhesive (MSP041991P, 3M) on one side and Medpar® or NRU-100-C® backing (Flexcon Co.) on the opposite side. The film was then cut into circles and taped to prevent drug release from the edges.
  • MSP041991P, 3M Acrylic contact adhesive
  • Medpar® or NRU-100-C® backing Felexcon Co.
  • the adhesive was placed against the stratum corneum side of a disc of human epidermis that had been blotted dry just prior to use. The excess epidermis was wrapped around the device so that none of the device edge was exposed to the receptor solution.
  • the device covered with epidermis was attached to the flat side of the Teflon holder of a release rod using nylon netting and nickel wire. The rods were reciprocated in a fixed volume of receptor solution (0.01 M potassium phosphate at pH 6 containing 2% isopropanol). The entire receptor solution was changed at each sampling time. The temperature of the receptor solution in the water bath was maintained at 35°C.
  • the receptor solutions were stored in capped vials at 4°C until assayed for alprazolam content by HPLC.
  • the fluxes achieved for the different systems are shown in Figure 11.

Abstract

A composition of matter for application to a body surface or membrane to administer a drug by permeation through the body surface or membrane, the composition comprising, in combination, the drug to be administered, in a therapeutically effective amount; and a permeation-enhancing mixture comprising a monoglyceride or a mixture of monoglycerides, and a lactate ester or a mixture of lactate esters.

Description

MONOGLYCER1DE/LACTATE ESTER PERMEATION ENHANCER
RELATED APPLICATIONS
This is a continuation-in-part of US application Serial No. 08/129,494, filed September 29, 1993, which application is incorporated herein in its entirety by reference and benefit is claimed of its filing date.
FIELD OF THE INVENTION
This invention relates to the transdermal delivery of drugs and other biologically active agents. More particularly, this invention relates to novel methods and compositions for enhancing the percutaneous absorption of drugs when incorporated in transdermal drug delivery systems. More particularly, but without limitation thereto, this invention relates to the transdermal delivery of drugs utilizing a permeation-enhancing mixture of a monoglyceride and a lactate ester. Still more particularly, but without limitation thereto, this invention relates to the transdermal delivery of drugs utilizing a permeation-enhancing mixture of a monoglyceride and a lactate ester wherein the monoglyceride and lactate ester are present in the composition in specific weight percentages.
BACKGROUND OF THE INVENTION
The transdermal route of parenteral delivery of drugs provides many advantages over other administrative routes, and transdermal systems for delivering a wide variety of drugs or other beneficial agents are described in US Patent Numbers 3,598,122; 3,598,123; 3,731 ,683; 3,797,494; 4,031 ,894; 4,201 ,211 ; 4,286,592; 4,314,557; 4,379,454; 4,435,180; 4,559,222; 4,568,343; 4,573,995; 4,588,580; 4,645,502; 4,704,282; 4,788,062; 4,816,258; 4,849,226; 4,908,027; 4,943,435; and 5,004,610. The disclosures of the above patents are incorporated herein by reference.
In many instances, drugs which would appear to be ideal candidates for transdermal delivery are found to have such low permeability through intact skin that they cannot be delivered at therapeutically effective rates from reasonably sized systems.
In an effort to increase skin permeability, it has been proposed to pretreat the skin with various chemicals or to concurrently deliver the drug in the presence of a permeation enhancer. Various materials have been suggested for this purpose, as described in US Pat. Nos. 3,472,931, 3,527,864, 3,896,238, 3,903,256, 3,952,099, 4,046,886, 4,130,643, 4,130,667, 4,299,826, 4,335,115, 4,343,798, 4,379,454, 4,405,616 and 4,746,515, all of which are incorporated herein by reference; British Pat. No. 1 ,001 ,949; and Idson, Percutaneous Absorption, J. Pharm. Sci., vol. 64, No. b6, June 1975, pp 901-924 (particularly 919-921).
To be considered useful, a permeation enhancer should have the ability to enhance the permeability of the skin for at least one and preferably a significant number of drugs. More importantly, it should be able to enhance the skin permeability such that the drug delivery rate from a reasonably sized system (preferably 5-50 cm2) is at therapeutic levels. Additionally, the enhancer, when applied to the skin surface, should be non-toxic, non-irritating on prolonged exposure and under occlusion, and non-sensitizing on repeated exposure. Preferably, it should be capable of delivering drugs without producing topical reactions, burning or tingling sensations. The present invention greatly increases drug permeability through the skin, and also reduces the lag time between application of the drug to the skin and attainment of the desired therapeutic effect.
While it is known in the art to combine permeation enhancers, see, eg, European Patent Publication numbers 0295411 and 0368339, this invention utilizes a novel combination of a monoglyceride and a lactate ester. Further, the invention utilizes specific weight percentages of the novel components, the monoglyceride and lactate ester, ie, 15 to 25 wt% of monoglyceride and 8 to 25 wt% of lactic acid ester. The combined effect and, further, specific weight percentages, produces a significant and surprising improvement ie, more than an additive effect over use of either a monoglyceride or a lactate ester alone, as well as over the combination of monoglyceride and lactate ester in specified weight percentages.
SUMMARY OF THE INVENTION
The present invention relates to improved compositions and methods for improving the penetration of a broad category of beneficial agents that produce little or no skin irritation. The system of the invention comprises a carrier or matrix adapted to be placed in drug- and permeation-enhancing mixture-transmitting relation to the selected skin or other body site. The carrier or matrix contains sufficient amounts of drug and the permeation- enhancing mixture to continuously coadminister to the site, over a predetermined delivery period, the drug, in a therapeutically effective amount, and the permeation-enhancing mixture of a monoglyceride and a lactate ester, present in specific concentrations, ie, 15 to 25 wt% of monoglyceride and 8 to 25 wt% of a lactate ester, preferably 20 wt% monoglyceride and 12 wt% lactate ester in an amount effective to enhance the permeation of the drug to the skin. As used herein, the term "transdermal" delivery or application refers to the delivery or application of agents by passage through skin, mucosa and/or other body surfaces by topical application or by iontophoresis.
As used herein, the term "therapeutically effective" amount or rate refers to the amount or rate of drug or active agent needed to effect the desired therapeutic result.
As used herein, the term "monoglyceride" refers to glycerol monooleate, glycerol monolaurate and glycerol monolinoleate, or a mixture thereof. Monoglycerides are generally available as a mixture of monoglycerides, with the mixture deriving its name from the monoglyceride present in the greatest amount. In a preferred embodiment of this invention, the permeation enhancer monoglyceride component is glycerol monolaurate.
As used herein, the term "glycerol monooleate" refers to glycerol monooleate itself or a mixture of glycerides wherein glycerol monooleate is present in the greatest amount.
As used herein, the term "glycerol monolaurate" refers to glycerol monolaurate itself or a mixture of glycerides wherein glycerol monolaurate is present in the greatest amount.
As used herein, the term "glycerol monolinoleate" refers to glycerol monolinoleate itself or a mixture of glycerides wherein glycerol monolinoleate is present in the greatest amount.
As used herein, the term "lactate ester" or "lactic ester of an alcohol" refers to ethyl lactate, lauryl lactate, myristyl lactate or cetyl lactate, or a mixture thereof. Preferably, the lactate ester is lauryl lactate or ethyl lactate or a mixture thereof. As used herein, the term "substantial portion of the time period" means at least about 60% of the time period, preferably at least about 90% of the time period. Correlatively, the term "substantially constant" means a variation of less than about ±20%, preferably less than about ±10%, over a substantial portion of the time period.
As used herein, the term "permeation enhancing mixture" refers to a mixture comprising one or more lactate esters and one or more monoglycerides. The monoglyceride or mixture, preferably, glycerol monolaurate, is present in the range of about 15 to about 25 weight percent. The second component, ie, a lactic acid ester, eg, lauryl, myristyl, cetyl, ethyl, methyl or oleic acid, benzoic acid or lactic acid is present in the range of about 8 to about 25 weight percent. More preferably, the permeation enhancer mixture by weight comprises 20% monoglyceride and 12% lactic acid ester.
As used herein, the term "predetermined delivery period" or "extended time period" refers to the delivery of drug for a time period of from several hours to seven days or longer. Preferably, the time period is from 16 hours to 3 or 4 days.
As used herein, the term "permeation enhancing amount or rate" refers to the rate or amount that provides increased permeability of the application site to the drug.
As used herein, the term "poly-N-vinyl amide" means a cross-linked poly-N-vinyl amide or combination of poly-N-vinyl amide such as poly-N-vinyimethylacetamide, poly-N-vinylethylacetamide, poly-N-vinylmethyl- isobutyramide, poly-N-vinyl-2-pyrrolidone, poly-N-vinylpyrrolidone, poly-N-vinyl-2-piperidone, poly-N-vinyl-caprolactam, poly-N-vinyl-5-methyl-2-pyrrolidone, poly-N-vinyl-3-methyl-2-pyrrolidone, and the like. Preferably, the poly-N-vinyl amide is poly-N-vinyl-2-pyrrolidone (more preferably Polyplasdone XL®, Polyplasdone XL-10®, GAF).
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be described in further detail with reference to the accompanying drawings wherein:
FIG. 1 is a cross-sectional view of one embodiment of the transdermal drug delivery system according to this invention;
FIG. 2 is a cross-sectional view of another embodiment of the transdermal drug delivery system of this invention;
FIG. 3 is a cross-sectional view of still another embodiment of the transdermal drug delivery system according to this invention;
FIG. 4 is a cross-sectional view of yet another embodiment of the transdermal drug delivery system of this invention;
FIG. 5 is a graph of the flux of alprazolam through human epidermis at 35°C, in vitro, with glycerol monolaurate and lauryl lactate.
FIG. 6 is a graph of the flux of alprazolam through human epidermis at 35°C, in vitro, with glycerol monolaurate and lauryl lactate.
FIG. 7 is a graph of the flux of estradiol through human epidermis at 35°C, in vitro, with glycerol monolaurate and lauryl lactate.
FIG. 8 is a graph of the flux of testosterone through human epidermis at 35°C, in vitro, with glycerol monolaurate and lauryl lactate. FIG. 9 is a bar graph of the cumulative flux of alprazolam through human epidermis at 35°C, in vitro, with varying weight percents of glycerol monolaurate and lauryl lactate.
FIG. 10 is a graph of the cumulative flux of testosterone through human epidermis at 35°C, in vitro, with various flux enhancers.
FIG. 11 is a bar graph showing the effect of various concentrations of glycerol monolaurate and lauryl lactate on the flux of alprazolam through human epidermis at 35°C, in vitro.
DESCRIPTION OF THE INVENTION
This invention co-delivers one or more monoglycerides and one or more lactate esters to aid in delivery of drugs across the skin. In addition, thereto this invention calls for the monoglycerides and lactate esters to be present in a specific concentrations eg, 15-25 wt% and 8-25 wt%, respectively. The combined effect and preferred concentrations according to this invention have been shown to produce dramatic, ie, more than an additive, increases in the permeation of drugs when compared to the use of either a lactate ester or a monoglyceride alone or in unspecified weight percentages. Improved enhancement of permeation according to this invention can be obtained over a relatively wide range of lactate ester/monoglyceride weight percentages given above, however, the inventors have found that 20 wt% and 12 wt% of the monoglyceride and lactate ester, respectively, provides the greatest enhancement without any negative side effect.
The present invention in one embodiment is directed to a composition of matter for application to a body surface or membrane to administer a drug by permeation through the body surface or membrane, the composition comprising, in combination:
(a) the drug to be administered, in a therapeutically effective amount; and (b) a permeation-enhancing mixture comprising:
(i) 15 to 25 wt% of a monoglyceride or a mixture of monoglycerides, and (ii) 8 to 25 wt% of a lactate ester or a mixture of lactate esters.
The drug may be present in the composition in an amount ranging from 0.01 to 50% by weight. The permeation-enhancing mixture preferably contains the monoglyceride and lactate ester in 20 wt% and 12 wt%, respectively.
This invention finds particular usefulness in enhancing drug permeability across skin. It is also useful, however, in enhancing flux across mucosa. Further, this invention is useful in delivery of both systemically and topically active drugs. According to our invention, the permeation-enhancing mixture and the drug to be delivered are placed in drug- and permeation- enhancing mixture-transmitting relationship to the appropriate body surface, preferably in a pharmaceutically acceptable carrier therefor, and maintained in place for the desired period of time.
The drug and the permeation-enhancing mixture are typically dispersed within a physiologically compatible matrix or carrier as more fully described below which may be applied directly to the body as an ointment, gel, cream, suppository or sublingual or buccal tablet, for example. When used in the form of a liquid, ointment, lotion, cream or gel applied directly to the skin, it is preferable, although not required, to occlude the site of administration. Such compositions can also contain other permeation enhancers, stabilizers, dyes, diluents, pigments, vehicles, inert fillers, excipients, gelling agents, vasoconstrictors, and other components of topical compositions as are known to the art.
In other embodiments, the drug and permeation enhancing mixture would be administered from a transdermal delivery device as more fully described below. Examples of suitable transdermal delivery devices are illustrated in Figures 1, 2, 3 and 4. In the drawings, the same reference numbers are used throughout the different figures to designate the same or similar components. The figures are not drawn to scale.
In Figure 1, transdermal delivery device 10 comprises a reservoir 12 containing the drug and the permeation-enhancing mixture. Reservoir 12 is preferably in the form of a matrix containing the drug and permeation enhancing mixture dispersed therein. Reservoir 12 is sandwiched between a backing layer 14 and an in-line contact adhesive layer 16. The device 10 adheres to the surface of the skin 18 by means of the adhesive layer 16. The adhesive layer 16 may optionally contain the permeation enhancing mixture and/or drug. A strippable release liner (not shown in Figure 1) is normally provided along the exposed surface of adhesive layer 16 and is removed prior to application of device 10 to the skin 18. Optionally, a rate- controlling membrane (not shown) may be present between the reservoir 12 and the adhesive layer 16.
Alternatively, as shown in Figure 2, transdermal therapeutic device 20 may be attached to the skin or mucosa of a patient by means of an adhesive overlay 22. Device 20 is comprised of a drug- and permeation enhancing mixture-containing reservoir 12 which is preferably in the form of a matrix containing the drug and the enhancing mixture dispersed therein. A backing layer 14 is provided adjacent one surface of reservoir 12. Adhesive overlay 22 maintains the device on the skin and may be fabricated together with, or provided separately from, the remaining elements of the device. With certain formulations, the adhesive overlay 22 may be preferable to the in-line contact adhesive 16 as shown in Figure 1. Backing layer 14 is preferably slightly larger than reservoir 12, and in this manner prevents the materials in reservoir 12 from adversely interacting with the adhesive in overlay 22. Optionally, a rate-controlling membrane (not shown in Figure 2) may be provided on the skin-proximal side of reservoir 12. A strippable release liner 24 is also provided with device 20 and is removed just prior to application of device 20 to the skin.
In Figure 3, transdermal delivery device 30 comprises a drug- and permeation enhancing mixture-containing reservoir ("drug reservoir") 12 substantially as described with respect to Figure 1. Permeation enhancer reservoir ("enhancer reservoir") 26 comprises the permeation enhancing mixture dispersed throughout and the drug at or below saturation when in equilibrium. Enhancer reservoir 26 is preferably made from substantially the same matrix as is used to form drug reservoir 12. A rate-controlling membrane 28 for controlling the release rate of the permeation enhancer from enhancer reservoir 26 to drug reservoir 12 is placed between the two reservoirs. A rate-controlling membrane (not shown in Figure 3) for controlling the release rate of the enhancer from drug reservoir 12 to the skin may also optionally be utilized and would be present between adhesive layer 16 and reservoir 12.
The rate-controlling membrane may be fabricated from permeable, semipermeable or microporous materials which are known in the art to control the rate of agents into and out of delivery devices and having a permeability to the permeation enhancer lower than that of drug reservoir 12. Suitable materials include, but are not limited to, polyethylene, polyvinyl acetate, ethylene n-butyl acetate and ethylene vinyl acetate copolymers. Superimposed over the permeation enhancer reservoir 26 of device 30 is a backing 14. On the skin-proximal side of reservoir 12 are an adhesive layer 16 and a strippable liner 24 which would be removed prior to application of the device 30 to the skin.
In the embodiments of Figures 1 , 2 and 3, the carrier or matrix material of the reservoirs has sufficient viscosity to maintain its shape without oozing or flowing. If, however, the matrix or carrier is a low-viscosity flowable material such as a liquid or a gel, the composition can be fully enclosed in a pouch or pocket, as known to the art from US Pat. No. 4,379,454 (noted above), for example, and as illustrated in Figure 4. Device 40 shown in Figure 4 comprises a backing member 14 which serves as a protective cover for the device, imparts structural support, and substantially keeps components in device 40 from escaping the device. Device 40 also includes reservoir 12 which contains the drug and permeation enhancing mixture and bears on its surface distant from backing member 14 a rate- controlling membrane 28 for controlling the release of drug and/or permeation enhancing mixture from device 40. The outer edges of backing member 14 overlay the edges of reservoir 12 and are joined along the perimeter with the outer edges of the rate-controlling membrane 28 in a fluid- tight arrangement. This sealed reservoir may be effected by pressure, fusion, adhesion, an adhesive applied to the edges, or other methods known in the art. In this manner, reservoir 12 is contained wholly between backing member 14 and rate-controlling membrane 28. On the skin-proximal side of rate-controlling membrane 28 are an adhesive layer 16 and a strippable liner 24 which would be removed prior to application of the device 40 to the skin.
In an alternative embodiment of device 40 of Figure 4, reservoir 12 contains the permeation enhancing mixture and the drug at or below saturation. The drug at saturation and an additional amount of permeation enhancing mixture are present in adhesive layer 16 which acts as a separate reservoir.
The drug and the permeation enhancing mixture can be co- extensively administered to human skin or mucosa by direct application to the skin or mucosa in the form of an ointment, gel, cream or lotion, for example, but are preferably administered from a skin patch or other known transdermal delivery device which contains a saturated or subsaturated formulation of the drug and the enhancer. The formulation is non-aqueous based and designed to deliver the drug and the permeation enhancing mixture at the necessary fluxes. Typical non-aqueous gels are comprised of silicone fluid or mineral oil. Mineral oil-based gels also typically contain 1-2 wt% of a gelling agent such as colloidal silicon dioxide. The suitability of a particular gel depends upon the compatibility of its constituents with both the drug and the permeation enhancing mixture and any other components in the formulation.
The reservoir matrix should be compatible with the drug, the permeation enhancer and any carrier therefor. The term "matrix" as used herein refers to a well-mixed composite of ingredients fixed into shape.
When using a non-aqueous-based formulation, the reservoir matrix is preferably composed of a hydrophobic polymer. Suitable polymeric matrices are well known in the transdermal drug delivery art, and examples are listed in the above-named patents previously incorporated herein by reference. A typical laminated system would comprise a polymeric membrane and/or matrix such as ethylene vinyl acetate (EVA) copolymers, such as those described in US Pat. No. 4,144,317, preferably having a vinyl acetate (VA) content in the range of from about 9% up to about 60% and more preferably about 9% to 40% VA. Polyisobutylene/oil polymers containing from 4-25% high molecular weight polyisobutylene and 20-81% low molecular weight polyisobutylene with the balance being an oil such as mineral oil or polyisobutynes may also be used as the matrix material.
The amount of drug present in the therapeutic device and required to achieve an effective therapeutic result depends on many factors, such as the minimum necessary dosage of the drug for the particular indication being treated; the solubility and permeability of the matrix, of the adhesive layer and of the rate-controlling membrane, if present; and the period of time for which the device will be fixed to the skin. The minimum amount of drug is determined by the requirement that sufficient quantities of drug must be present in the device to maintain the desired rate of release over the given period of application. The maximum amount for safety purposes is determined by the requirement that the quantity of drug present cannot exceed a rate of release that reaches toxic levels.
The drug is normally present in the matrix or carrier at a concentration in excess of saturation, the amount of excess being a function of the desired length of the drug delivery period of the system. The drug may, however, be present at a level below saturation without departing from this invention as long as the drug is continuously administered to the skin or mucosal site in an amount and for a period of time sufficient to provide the desired therapeutic rate.
The permeation enhancing mixture is dispersed through the matrix or carrier, preferably at a concentration sufficient to provide permeation- enhancing amounts of enhancer in the reservoir throughout the anticipated administration period. Where there is an additional, separate permeation enhancer matrix layer as well, as in Figures 3 and 4, the permeation enhancer normally is present in the separate reservoir in excess of saturation. The unexpected effects of the specific weight percentages of the components of the permeation enhancer mixture is due, in part to the solubility of the monoglyceride in the lactic acid ester. It is known that monoglycerides by themselves are effective permeation enhancers. The enhancement occurs by the solubilization of the monoglyceride in the lipid layer of the skin. The solubilization of the monoglyceride in the lipid layer increases as a function of lactic acid ester concentration. For example, the solubility of glycerol monolaurate in lauryl lactate is 350 mg/g of solution when the solution is stirred. GML is practically insoluble in, for example, an EVA 40 matrix. Thus, the amount of GML dissolved, ie, free GML is dictated by and proportional to the lauryl lactate loading in the polymer.
Based on the GML solubility of 350 mg/g, free GML concentrations based upon varying weight percents of lauryl lactate in EVA 40 are as follows:
Wt% Lauryl Lactate Wt% GML in Solution
12% 4.2%
20% 7.0%
27% 9.5%
30% 10.5%
Thus, based upon the amount of GML in solution it would have appeared that the higher wt% of lauryl lactate would have resulted in a higher level of free GML and thus greater efficacy in increasing permeation. However, as shown by the examples, the preferred formulations, containing 20 wt% GML and 12 wt% lauryl lactate, were equally effective in enhancing drug permeability as those containing 20 wt% GML and 20 wt% lauryl lactate. While the invention is directed to a permeation enhancing mixture containing a monoglyceride or monoglyceride mixture from 15 to 25 wt% and a lactic acid ester present from 8 to 25 wt%, the 20 wt% monoglyceride and 12 wt% lactic acid ester is preferred because it is as effective as the higher percentage lactic acid ester compositions yet it delivers less of a lactic acid ester which is a known potential irritant.
In addition to drug and the permeation enhancing mixture, which are essential to the invention, the matrix or carrier may also contain dyes, pigments, inert fillers, excipients and other conventional components of pharmaceutical products or transdermal devices known to the art.
Because of the wide variation in skin permeability from individual to individual and from site to site on the same body, it may be preferable that drug and the permeation enhancing mixture be administered from a rate-controlled transdermal delivery device. Rate control can be obtained either through a rate-controlling membrane or adhesive or both as well as through the other means.
A certain amount of drug will bind reversibly to the skin, and it is accordingly preferred that the skin-contacting layer of the device include this amount of the agent as a loading dose.
The surface area of the device of this invention can vary from less than 1 cm2 to greater than 200 cm2. A typical device, however, will have a surface area within the range of about 5-50 cm2.
The devices of this invention can be designed to effectively deliver drug for an extended time period of from several hours up to 7 days or longer. Seven days is generally the maximum time limit for application of a single device because the adverse affect of occlusion of a skin site increases with time and the normal cycle of sloughing and replacement of the skin cells occurs in about 7 days.
The method of this invention comprises: (a) administering a drug, in a therapeutically effective amount, to the area of skin over the time period; and
(b) coadministering the permeation-enhancing mixture according to this invention to the area of skin.
The composition delivered by the method contains a permeation enhancing mixture, ie, 15 to 25 wt% or a monoglyceride or monoglyceride mixture and 8 to 25 wt% of a lactate ester and enough drug to provide systemic administration of drug through the skin for a predetermined period of time to provide an effective therapeutic result.
It is believed that this invention has utility in connection with the delivery of drugs within the broad class normally delivered through body surfaces and membranes, including skin. As used herein, the expressions "drug" and "agent" are used interchangeably and are intended to have their broadest interpretation as to any therapeutically active substance which is delivered to a living organism to produce a desired, usually beneficial, effect. In general, this includes therapeutic agents in all of the major therapeutic areas, including, but not limited to, ACE inhibitors, adenohypophyseal hormones, adrenergic neuron blocking agents, adrenocortical steroids, inhibitors of the biosynthesis of adrenocortical steroids, alpha-adrenergic agonists, alpha-adrenergic antagonists, selective alpha-two-adrenergic agonists, analgesics, antipyretics and anti-inflammatory agents, androgens, local anesthetics, general anesthetics, antiaddictive agents, antiandrogens, antiarrhythmic agents, antiasthmatic agents, anticholinergic agents, anticholinesterase agents, anticoagulants, antidiabetic agents, antidiarrheal agents, antidiuretic, antiemetic and prokinetic agents, antiepileptic agents, antiestrogens, antifungal agents, antihypertensive agents, antimicrobial agents, antimigraine agents, antimuscarinic agents, antineoplastic agents, antiparasitic agents, antiparkinson's agents, antiplatelet agents, antiprogestins, antithyroid agents, antitussives, antiviral agents, atypical antidepressants, azaspirodecanediones, barbiturates, benzodiazepines, benzothiadiazides, beta-ad renergic agonists, beta-ad renergic antagonists, selective beta-one-adrenergic antagonists, selective beta-two-adrenergic agonists, bile salts, agents affecting volume and composition of body fluids, butyrophenones, agents affecting calcification, calcium channel blockers, cardiovascular drugs, catecholamines and sympathomimetic drugs, cholinergic agonists, cholinesterase reactivators, dermatological agents, diphenylbutylpiperidines, diuretics, ergot alkaloids, estrogens, ganglionic blocking agents, ganglionic stimulating agents, hydantoins, agents for control of gastric acidity and treatment of peptic ulcers, hematopoietic agents, histamines, histamine antagonists, 5-hydroxytryptamine antagonists, drugs for the treatment of hyperlipoproteinemia, hypnotics and sedatives, immunosuppressive agents, laxatives, methylxanthines, monoamine oxidase inhibitors, neuromuscular blocking agents, organic nitrates, opioid analgesics and antagonists, pancreatic enzymes, phenothiazines, progestins, prostaglandins, agents for the treatment of psychiatric disorders, retinoids, sodium channel blockers, agents for spasticity and acute muscle spasms, succinimides, thioxanthenes, thrombolytic agents, thyroid agents, tricyclic antidepressants, inhibitors of tubular transport of organic compounds, drugs affecting uterine motility, vasodilators, vitamins and the like.
Representative drugs include, by way of example and not for purposes of limitation, bepridil, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nimodipine, nitredipine, verapamil, dobutamine, isoproterenol, carteolol, labetalol, levobunolol, nadolol, penbutolol, pindolol, propranolol, sotalol, timolol, acebutolol, atenolol, betaxolol, esmolol, metoprolol, albuterol, bitolterol, isoetharine, metaproterenol, pirbuterol, ritodrine, terbutaline, alclometasone, aldosterone, amcinonide, beclomethasone dipropionate, betamethasone, clobetasol, clocortolone, cortisol, cortisone, corticosterone, desonide, desoximetasone, 11-desoxycorticosterone, 11-desoxycortisol, dexamethasone, diflorasone, fludrocortisone, flunisolide, fluocinolone, fluocinonide, fluorometholone, flurandrenolide, halcinonide, hydrocortisone, medrysone, 6α-methylprednisolone, mometasone, paramethasone, prednisolone, prednisone, tetrahydrocortisol, triamcinolone, benoxinate, benzocaine, bupivacaine, chloroprocaine, cocaine, dibucaine, dyclonine, etidocaine, lidocaine, mepivacaine, pramoxine, prilocaine, procaine, proparacaine, tetracaine, alfentanil, chloroform, clonidine, cyclopropane, desflurane, diethyl ether, droperidol, enflurane, etomidate, fentanyl, halothane, isoflurane, ketamine hydrochloride, meperidine, methohexital, methoxyflurane, morphine, propofol, sevoflurane, sufentanil, thiamylal, thiopental, acetaminophen, allopurinol, apazone, aspirin, auranofin, aurothioglucose, colchicine, diclofenac, diflunisal, etodolac, fenoprofen, flurbiprofen, gold sodium thiomalate, ibuprofen, indomethacin, ketoprofen, meclofenamate, mefenamic acid, mesalamine, methyl salicylate, nabumetone, naproxen, oxyphenbutazone, phenacetin, phenylbutazone, piroxicam, salicylamide, salicylate, salicylic acid, salsalate, sulfasalazine, sulindac, tolmetin, acetophenazine, chlorpromazine, fluphenazine, mesoridazine, perphenazine, thioridazine, trifluoperazine, triflupromazine, disopyramide, encainide, flecainide, indecainide, mexiletine, moricizine, phenytoin, procainamide, propafenone, quinidine, tocainide, cisapride, domperidone, dronabinol, haloperidol, metoclopramide, nabilone, prochlorperazine, promethazine, thiethylperazine, trimethobenzamide, buprenorphine, butorphanol, codeine, dezocine, diphenoxylate, drocode, hydrocodone, hydromorphone, levallorphan, levorphanol, loperamide, meptazinol, methadone, nalbuphine, nalmefene, nalorphine, naloxone, naltrexone, oxycodone, oxymorphone, pentazocine, propoxyphene, isosorbide dinitrate, nitroglycerin, theophylline, phenylephrine, ephedrine, pilocarpine, furosemide, tetracycline, chlorpheniramine, ketorolac, bromocriptine, guanabenz, prazosin, doxazosin, and flufenamic acid.
Preferably, the drug is a benzodiazepine, such as alprazolam, brotizolam, chlordiazepoxide, clobazam, clonazepam, clorazepate, demoxepam, diazepam, flumazenil, flurazepam, halazepam, lorazepam, midazolam, nitrazepam, nordazepam, oxazepam, prazepam, quazepam, temazepam, triazolam, and the like; an antimuscarinic agents, such as anisotropine, atropine, clidinium, cyclopentolate, dicyclomine, flavoxate, glycopyrrolate, hexocyclium, homatropine, ipratropium, isopropamide, mepenzolate, methantheline, oxyphencyclimine, pirenzepine, propantheline, scopolamine, telenzepine, tridihexethyl, tropicamide, and the like; an estrogen such as chlorotrianisene, diethylstilbestrol, estradiol, estradiol cypionate, estradiol valerate, estrone, estrone sodium sulfate, estropipate, ethinyl estradiol, mestranol, quinestrol, sodium equilin sulfate and the like; an androgen, such as danazol, fluoxymesterone, methandrostenolone, methyltestosterone, nandrolone decanoate, nandrolone phenpropionate, oxandrolone, oxymetholone, stanozolol, testolactone, testosterone, testosterone cypionate, testosterone enanthate, testosterone propionate, and the like; or a progestin such as ethynodiol diacetate, gestodene, hydroxyprogesterone caproate, levonorgestrel, medroxyprogesterone acetate, megestrol acetate, norethindrone, norethindrone acetate, norethynodrel, norgestrel, progesterone, and the like.
Preferably, a device for the transdermal administration of a drug, at a therapeutically effective rate, comprises:
(a) a reservoir comprising:
(i) a therapeutically effective amount of a drug or active agent, (ii) 15 to 25% by weight monoglyceride or mixture of monoglycerides,
(iii) 8 to 25% by weight lactic acid ester, and
(iv) the remainder ethylene vinyl acetate copolymer;
(b) a backing on the skin-distal surface of the reservoir; and
(c) means for maintaining the reservoir in drug- and permeation enhancing mixture-transmitting relation with the skin. Preferably, the monoglyceride is glycerol monolaurate and the lactic acid ester is lauryl lactate.
More preferably, a device for the transdermal administration of the drug, at a therapeutically effective rate, comprises: (a) a reservoir comprising:
(i) 5 to 40% by weight drug, (ii) 20% by weight glycerol monolaurate, (iii) 12% by weight lauryl lactate, and (iv) 28 to 63% by weight ethylene vinyl acetate copolymer; (b) a backing on the skin-distal surface of the reservoir; and
(c) means for maintaining the reservoir in drug- and permeation enhancing mixture-transmitting relation with the skin.
In one embodiment, the reservoir further comprises 5-25% by weight cross-linked poly-N-vinyl-2-pyrrolidone, eg, N-vinyl-2-pyrrolidone XL-10, G&F). Preferably, the backing is a breathable backing, such as NRU-100- C® (Flexcon, Spencer, MA). If an occluded backing is used, preferably it is Medpar® (3M, St. Paul, MN). Preferably, the means for maintaining the reservoir in drug and permeation enhancing mixture transmitting relation with the skin is an acrylic contact adhesive, such as MSP041991P, 3M. Preferably, the ethylene vinyl acetate copolymer has a acetate content of 33% or 40%.
The aforementioned patents describe a wide variety of materials which can be used for fabricating the various layers or components of the transdermal drug delivery devices according to this invention. This invention therefore contemplates the use of materials other than those specifically disclosed herein, including those which may hereafter become known to the art to be capable of performing the necessary functions. The following examples are offered to illustrate the practice of the present invention and are not intended to limit the invention in any manner.
EXAMPLE 1
The drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent ("EVA 40", U.S.I. Chemicals, Illinois) in an internal mixer (Bra Bender type mixer) until the EVA 40 pellets fused. Alprazolam (GYMA Labs of America, Garden City, NJ), glycerol monolaurate (Grindsted ML 90, Grindsted Products A/S, Brabrand, Denmark) and lauryl lactate (Van Dyk, Inc., Belleview, NJ) were then added. The mixture was blended for approximately 20 minutes at 54°-56°C and 30 rpm. After blending, the mixture was quickly cooled to 40°-45°C, and calendered to a 13 mil thick film. The film was then laminated to an acrylic contact adhesive (MSPO419910, 3M) on one side and a Medpar® backing (3M, St. Paul, Minn.) or NRU-100-C® backing (Flexcon, Spencer, MA) on the opposite side. The laminate was then cut into circles using a stainless steel punch.
The composition of the drug reservoirs is shown in Table 1.
TABLE 1
Drug/Permeation Enhancer Reservoir Composition (weight percent)
Figure 5 alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 (15/20/20/45) alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 (15/10/30/45) alprazolam/lauryl lactate/EVA 40 (15/30/55)
Figure 6 alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 (15/20/20/45) alprazolam/glycerol monolaurate/EVA 40 (15/20/65)
Circular pieces of human-epidermis were mounted on horizontal permeation cells with the stratum corneum facing the donor compartment of the cell. The release liner of the system was then removed and the system was centered over the stratum corneum side of the epidermis. A known volume of the receptor solution (0.01 M potassium phosphate at pH 6 containing 2% isopropanol) that had been equilibrated at 35°C was placed in the receptor compartment. Air bubbles were removed from the receptor compartment; the cell was capped and placed in a water bath-shaker at 35°C.
A given time intervals, the entire receptor solution was removed from the cells and replaced with an equal volume of fresh receptor solutions previously equilibrated at 35°C. The receptor solutions were stored in capped vials at 4°C until assayed for alprazolam content by HPLC. From the drug concentration and the volume of the receptor solutions, the area of permeation and the time interval, the flux of the drug through the epidermis was calculated as follows: (drug concentration x volume of receptor)/(area x time) = flux (μg/cm hr). The fluxes achieved for the different systems are shown in Figures 5 and 6. As can be seen in Figures 5 and 6, the fluxes obtained from the systems containing glycerol monolaurate and lauryl lactate were significantly higher than the fluxes obtained from the systems containing either glycerol monolaurate or lauryl lactate.
EXAMPLE 2
The drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent ("EVA 40", U.S.I. Chemicals, Illinois) in an internal mixer (Bra Bender type mixer) until the EVA 40 pellets fused. Alprazolam, glycerol monolaurate and lauryl lactate were then added. The mixture was blended for approximately 20 minutes at 54°-56°C and 30 rpm. After blending, the mixture was quickly cooled to 40°-45°C, and calendered to a 5 mil thick film. The compositions of reservoirs are shown in Table 2.
TABLE 2
Plasma Levels of Alprazolam (ng/mL)
Composition of Reservoir
24 hrs 48 hrs alprazolam/glycerol monolaurate/ EVA 40 (15%/20%/65%) 0.2 0.2 alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 (15%/20%/20%/45%) 0.7 1.2 This film was then laminated to an acrylic contact adhesive (MSP041991P, 3M) on one side and Medpar® backing (3M) on the opposite side. The laminate was then cut into 5 cm2 square. As can be seen in Table 3, the plasma levels for the combination of glycerol monolaurate and lauryl lactate was significantly higher than the plasma level for glycerol monolaurate alone.
EXAMPLE 3
The drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 28 percent ("EVA 28", U.S.I. Chemicals, Illinois) and cross-linked poly- N-vinyl-2-pyrrolidone (Polyplasdone XL-10®, GAF) in an internal mixer (Bra Bender type mixer) until the EVA 28 pellets fused. Estradiol, glycerol monolaurate and lauryl lactate were then added. The mixture was blended, and calendered to a 4.0 mil thick film. The compositions of the reservoir is given in Table 3.
TABLE 3
Drug/Permeation Enhancer Reservoir Composition (weight percent)
Estradiol/glycerol monolaurate/lauryl lactate/EVA 28/N-vinyl-2-pyrrolidone (2.5/20/20/52.5/5)
This film was then laminated to an acrylic contact adhesive (147-123- 4, Adhesive Research Co.) on one side and dermaFlex NRU-100-C® backing (Flexcon Co.) on the opposite side. The film was then cut into circles and taped to prevent edge release. For each device tested, the adhesive was placed against the stratum corneum side of a disc of human epidermis that had been blotted dry just prior to use. The excess epidermis was wrapped around the device so that none of the device edge was exposed to the receptor solution. The device covered with epidermis was attached to the flat side of the Teflon holder of a release rod using nylon netting and nickel wire. The rods were reciprocated in a fixed volume of receptor solution (distilled water). The entire receptor solution was changed at each sampling time. The temperature of the receptor solution in the water bath was maintained at 35°C.
The receptor solutions were stored in capped vials at 4°C until assayed for estradiol content by HPLC. The fluxes achieved for the different systems are shown in Figure 7.
EXAMPLE 4
The drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 28 percent ("EVA 28", U.S.I. Chemicals, Illinois) and cross-linked poly N-vinyl-2-pyrrolidone (Polyplasdone XL®, GAF) in an internal mixer (Bra Bender type mixer) until the EVA 28 pellets fused. Testosterone, glycerol monolaurate and lauryl lactate were then added. The mixture was blended, and calendered to a 4.0 mil thick film. The compositions of the reservoir is given in Table 4. TABLE 4
Drug/Permeation Enhancer Reservoir Composition (weight percent) testosterone/glycerol monolaurate/lauryl lactate/EVA 28/N-vinyl-2-pyrrolidone (5/20/20/50/5)
This film was then laminated to an acrylic contact adhesive (147-123- 4, Adhesive Research Co.) on one side and dermaFlex NRU-100-C® backing (Flexcon Co.) on the opposite side. The film was then cut into circles and taped to prevent edge release.
For each device tested, the adhesive was placed against the stratum corneum side of a disc of human epidermis that had been blotted dry just prior to use. The excess epidermis was wrapped around the device so that none of the device edge was exposed to the receptor solution. The device covered with epidermis was attached to the flat side of the Teflon holder of a release rod using nylon netting and nickel wire. The rods were reciprocated in a fixed volume of receptor solution (distilled water). The entire receptor solution was changed at each sampling time. The temperature of the receptor solution in the water bath was maintained at 35°C.
The receptor solutions were stored in capped vials at 4°C until assayed for testosterone content by HPLC. The fluxes achieved for the different systems are shown in Figure 8.
EXAMPLE 5
The drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent ("EVA 40", U.S.I. Chemicals, Illinois) in an internal mixer (Bra Bender type mixer) until the EVA 40 pellets fused. Alprazolam, glycerol monolaurate and lauryl lactate were then added. The mixture was blended for approximately 20 minutes at 54°-56°C and 30 rpm. After blending, the mixture was quickly cooled to 40°-45°C, and calendared to a 5 mil thick film. The composition of the drug reservoirs is shown in Table 5.
TABLE 5
Drug/Permeation Enhancer Reservoir Composition (weight percent)
Figure 9 alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/20/0/65 alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/20/12/53 alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/17/12/56 alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/17/20/48 alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/13/20/52 alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/13/27/45 alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/0/27/58
This film was then laminated to an acrylic contact adhesive
(MSP041991P, 3M) on one side and Medpar® or NRU-100-C® backing (Flexcon, Spencer, MA) on the opposite side. The laminate was then cut into circles using a stainless steel punch. Circular pieces of human-epidermis were mounted on horizontal permeation cells with the stratum corneum facing the donor compartment of the cell. The release liner of the system was then removed and the system was centered over the stratum corneum side of the epidermis. A known volume of the receptor solution (0.01 M potassium phosphate at pH 6 containing 2% isopropanol) that had been equilibrated at 35°C was placed in the receptor compartment. Air bubbles were removed; the cell was capped and placed in a water bath-shaker at 35°C.
At given time intervals, the entire receptor solution was removed from the cells and replaced with an equal volume of fresh receptor solutions previously equilibrated at 35°C. The receptor solutions were stored in capped vials at 4°C until assayed for alprazolam content by HPLC. The fluxes achieved for the different systems are shown in Figure 9. As is demonstrated by Figure 9, a system containing 20% GML and 12% LL provided a superior cumulative flux of alprazolam.
EXAMPLE 6
The drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent ("EVA 40", U.S.I. Chemicals, Illinois) and optionally cross-linked poly N-vinyl- 2-pyrrolidone (Polyplasdone XL®, GAF) in an internal mixer (Bra Bender type mixer) until the EVA 40 pellets fused. Testosterone, glycerol monolaurate and lauryl lactate were then added. The mixture was blended, and calendered to a 4.0 mil thick film. The compositions of the reservoir is given in Table 6. TABLE 6
Drug/Permeation Enhancer Reservoir Composition (weight percent) testosterone/glycerol monolaurate/lauryl lactate/EVA 40 (5/20/20/50/5) testosterone/glycerol monolaurate/myristyl lactate/myristyl alcohol/EVA 40
(20/20/12/48) testosterone/glycerol monolaurate/lauric acid/EVA 40 (20/20/12/48) testosterone/glycerol monolaurate/Tween 20/EVA 40 (20/20/10/50) testosterone/glycerol monolaurate/lauryl lactate/EVA 40 (20/20/12/48) testosterone/glycerol monolaurate/lauryl lactate/N-vinyl-2- pyrrolidone/EVA 40
(20/20/12/16/32)
This film was then laminated to an acrylic contact adhesive (MSP041991P, 3M) on one side and Medpar® or NRU-100-C® backing on the opposite side. The laminate was then cut into circles and taped to prevent edge release.
For each device tested, the adhesive was placed against the stratum corneum side of a disc of human epidermis that had been blotted dry just prior to use. The excess epidermis was wrapped around the device so that none of the device edge was exposed to the receptor solution. The device covered with epidermis was attached to the flat side of the Teflon holder of a release rod using nylon netting and nickel wire. The rods were reciprocated in a fixed volume of receptor solution (0.1% Benzoic acid). The entire receptor solution was changed at each sampling time. The temperature of the receptor solution in the water bath was maintained at 35°C.
The receptor solutions were stored in capped vials at 4°C until assayed for testosterone content by HPLC. The fluxes achieved for the different systems are shown in Figure 10.
EXAMPLE 7
The drug/permeation enhancer reservoir was prepared by mixing ethylene vinyl acetate copolymer having a vinyl acetate content of 40 percent ("EVA 40", U.S.I. Chemicals, Illinois) in an internal mixer (Bra Bender type mixer) until the EVA 40 pellets fused. Alprazolam, glycerol monolaurate and lauryl lactate were then added. The mixture was blended, and calendered to a 5.0 mil thick film. The composition of the reservoirs are given in Table 7.
TABLE 7
Drug/Permeation Enhancer Reservoir Composition (weight percent)
Alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/10/30/45
Alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/20/20/45
Alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/13/27/45
Alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/20/12/53
Alprazolam/glycerol monolaurate/lauryl lactate/EVA 40 15/0/0/85 The film was then laminated to an acrylic contact adhesive (MSP041991P, 3M) on one side and Medpar® or NRU-100-C® backing (Flexcon Co.) on the opposite side. The film was then cut into circles and taped to prevent drug release from the edges.
For each device tested, the adhesive was placed against the stratum corneum side of a disc of human epidermis that had been blotted dry just prior to use. The excess epidermis was wrapped around the device so that none of the device edge was exposed to the receptor solution. The device covered with epidermis was attached to the flat side of the Teflon holder of a release rod using nylon netting and nickel wire. The rods were reciprocated in a fixed volume of receptor solution (0.01 M potassium phosphate at pH 6 containing 2% isopropanol). The entire receptor solution was changed at each sampling time. The temperature of the receptor solution in the water bath was maintained at 35°C.
The receptor solutions were stored in capped vials at 4°C until assayed for alprazolam content by HPLC. The fluxes achieved for the different systems are shown in Figure 11.
This invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

Claims

CLAIMSWhat is claimed is:
1. A composition of matter for application to a body surface or membrane to administer a drug by permeation through the body surface or membrane, the composition comprising, in combination:
(a) the drug to be administered, in a therapeutically effective amount; and
(b) a permeation-enhancing mixture comprising:
(i) 15 to 25% by weight of a monoglyceride or a mixture of monoglycerides, and (ii) 8 to 25% by weight of a lactate ester or a mixture of lactate esters.
2. A composition according to claim 1 wherein the monoglyceride or mixture of monoglycerides comprises 20% by weight of the composition and the lactate ester or mixture of lactate esters comprises 12% by weight of the composition.
3. A composition according to claim 1 wherein the lactate ester is lauryl lactate.
4. A composition according to claim 1 wherein the lactate ester is ethyl lactate.
5. A composition according to claim 1 wherein the lactate ester is myristyl lactate.
6. A composition according to claim 1 wherein the lactate ester is cetyl lactate.
7. A composition according to claim 1 wherein the mixture of lactate esters is ethyl lactate and lauryl lactate.
8. A composition according to claim 3, 4, 5, 6, or 7 wherein the monoglyceride is glycerol monolaurate.
9. A composition according to claim 8 wherein the glycerol monolaurate comprises 20% by weight of the composition and the lactate ester comprises 12% by weight of the composition.
10. A composition according to claim 1 wherein the drug is selected from the group consisting of a benzodiazepine, an antimuscarinic agent, an adrenocortical steroid, an estrogen, an androgen, or a progestin.
11. A composition according to claim 10 wherein the adrenocortical steroid is selected from the group consisting of alclometasone, aldosterone, amcinonide, beclomethasone dipropionate, betamethasone, clobetasol, clocortolone, cortisol, cortisone, corticosterone, desonide, desoximetasone, 11-desoxycorticosterone, 11-desoxycortisol, dexamethasone, diflorasone, fludrocortisone, flunisolide, fluocinolone, fluocinonide, fluorometholone, flurandrenolide, halcinonide, hydrocortisone, medrysone, 6α-methylprednisolone, mometasone, paramethasone, prednisolone, prednisone, tetrahydrocortisol or triamcinolone.
12. A composition according to claim 10 wherein the androgen is selected from the group consisting of danazol, fluoxymesterone, methandrostenolone, methyltestosterone, nandrolone decanoate, nandrolone phenpropionate, oxandrolone, oxymetholone, stanozolol, testolactone, testosterone, testosterone cypionate, testosterone enanthate or testosterone propionate.
13. A composition according to claim 10 wherein the estrogen is selected from the group consisting of chlorotrianisene, diethylstilbestrol, estradiol, estradiol cypionate, estradiol valerate, estrone, estrone sodium sulfate, estropipate, ethinyl estradiol, mestranol, quinestrol or sodium equilin sulfate.
14. A composition according to claim 10 wherein the progestin is selected from the group consisting of ethynodiol diacetate, gestodene, hydroxyprogesterone caproate, levonorgestrel, medroxyprogesterone acetate, megestrol acetate, norethindrone, norethindrone acetate, norethynodrel, norgestrel or progesterone.
15. A composition according to claim 10 wherein the antimuscarinic agent is selected from the group consisting of anisotropine, atropine, clidinium, cyclopentolate, dicyclomine, flavoxate, glycopyrrolate, hexocyclium, homatropine, ipratropium, isopropamide, mepenzolate, methantheline, oxyphencyclimine, pirenzepine, propantheline, scopolamine, telenzepine, tridihexethyl or tropicamide.
16. A device for the transdermal administration, at a therapeutically effective rate, of a drug, which device comprises:
(a) a reservoir comprising a therapeutically effective amount of a drug and a skin permeation-enhancing amount of a permeation mixture comprising:
(i) 15 to 25% by weight of a monoglyceride or a mixture of monoglycerides, and (ii) 8 to 25% by weight of a lactate ester or a mixture of lactate esters;
(b) a backing on the skin-distal surface of the reservoir; and
(c) means for maintaining the reservoir in drug- and permeation enhancing mixture-transmitting relation with the skin.
17. A device for the transdermal administration, at a therapeutically effective rate, of a drug, which device comprises:
(a) a first reservoir comprising a therapeutically effective amount of drug and a skin permeation-enhancing amount of a permeation mixture comprising:
(i) 15 to 25% by weight of a monoglyceride or a mixture of monoglycerides, and (ii) 8 to 25% by weight of a lactate ester or a mixture of lactate esters;
(b) a second reservoir comprising an excess of the permeation enhancing mixture and drug at or below saturation;
(c) a rate-controlling membrane between the first reservoir and the second reservoir;
(d) a backing on the skin-distal surface of the second reservoir; and
(e) means for maintaining the first and second reservoirs in drug- and permeation enhancing mixture-transmitting relation with the skin.
18. A device according to claim 16 or 17 wherein the monoglyceride is glycerol monolaurate.
19. A device according to claim 16 or 17 wherein the lactate ester is lauryl lactate.
20. A device according to claim 16 or 17 wherein the lactate ester is ethyl lactate.
21. A device according to claim 16 or 17 wherein the lactate ester is cetyl or myristyl lactate.
22. A device according to claim 16 or 17 wherein the mixture of lactate esters is ethyl and lauryl lactate.
23. A device according to claim 16 or 17 wherein the monoglyceride is glycerol monolaurate and the lactate ester is ethyl lactate or lauryl lactate or a mixture thereof.
24. A device according to claim 16 or 17 wherein the drug is selected from the group consisting of a benzodiazepine, an antimuscarinic agent, an estrogen, an androgen, or a progestin.
25. A device according to claim 16 or 17 wherein the drug is selected from the group consisting of alclometasone, aldosterone, amcinonide, beciomethasone dipropionate, betamethasone, clobetasol, clocortolone, cortisol, cortisone, corticosterone, desonide, desoximetasone, 11-desoxycorticosterone, 11-desoxycortisol, dexamethasone, diflorasone, fludrocortisone, flunisolide, fluocinolone, fluocinonide, fluorometholone, flurandrenolide, halcinonide, hydrocortisone, medrysone, 6α-methylprednisolone, mometasone, paramethasone, prednisolone, prednisone, tetrahydrocortisol or triamcinolone.
26. A device according to claim 16 or 17 wherein the drug is selected from the group consisting of danazol, fluoxymesterone, methandrostenolone, methyltestosterone, nandrolone decanoate, nandrolone phenpropionate, oxandrolone, oxymetholone, stanozolol, testolactone, testosterone, testosterone cypionate, testosterone enanthate or testosterone propionate.
27. A device according to claim 16 or 17 wherein the drug is selected from the group consisting of chlorotrianisene, diethylstilbestrol, estradiol, estradiol cypionate, estradiol valerate, estrone, estrone sodium sulfate, estropipate, ethinyl estradiol, mestranol, quinestrol or sodium equilin sulfate.
28. A device according to claim 16 or 17 wherein the drug is selected from the group consisting of ethynodiol diacetate, gestodene, hydroxyprogesterone caproate, levonorgestrel, medroxyprogesterone acetate, megestrol acetate, norethindrone, norethindrone acetate, norethynodrel, norgestrel or progesterone.
29. A device according to claim 16 or 17 wherein the drug is selected from the group consisting of anisotropine, atropine, clidinium, cyclopentolate, dicyclomine, flavoxate, glycopyrrolate, hexocyclium, homatropine, ipratropium, isopropamide, mepenzolate, methantheline, oxyphencyclimine, pirenzepine, propantheline, scopolamine, telenzepine, tridihexethyl or tropicamide.
30. A device according to claim 16 wherein the means for maintaining the reservoir in relation with the skin comprises an in-line adhesive layer on the skin-proximal surface of the reservoir.
31. A device according to claim 17 wherein the means for maintaining the reservoirs in relation with the skin comprises an in-line adhesive layer on the skin-proximal surface of the first reservoir.
32. A device according to claim 17 wherein the first reservoir also is an adhesive layer which functions as the means for maintaining the reservoirs in relation with the skin.
33. A device according to claim 19, 20, 21 or 22 wherein the monoglyceride is glycerol monolaurate.
34. A device according to claim 33 wherein the glycerol monolaurate and lactate esters comprise 20 wt % and 12 wt % of the drug containing reservoir, respectively.
35. A method for the transdermal administration of a drug, which method comprises:
(a) administering the drug at a therapeutically effective rate to an area of skin; and
(b) simultaneously administering a permeation enhancing mixture comprising:
(i) 15 to 25% by weight based on the drug and permeation enhancer mixture of a monoglyceride or a mixture of monoglycerides, and (ii) 8 to 25% by weight based on the drug and permeation enhancer mixture at a lactate ester or a mixture of lactate esters; to the area of skin at a rate which is sufficient to substantially increase the permeability of the area to the drug.
36. A method for the transdermal administration of a drug, the method comprising the step of placing a transdermal drug delivery device onto the skin of a person, the transdermal delivery device comprising:
(a) a reservoir comprising drug in an amount sufficient to provide a therapeutic effect for an extended period of time and a permeation enhancing mixture comprising:
(i) 15 to 25% by weight of a monoglyceride or a mixture of monoglycerides, and (ii) 8 to 25% by weight of a lactate ester or a mixture of lactate esters, in a skin permeation-enhancing amount;
(b) a backing on the skin-distal surface of the reservoir; and (c) means for maintaining the reservoir in drug- and permeation enhancing mixture-transmitting relation with the skin.
37. A method for the transdermal administration of a drug, the method comprising the step of placing a transdermal drug delivery device onto the skin of a person, the transdermal delivery device comprising:
(a) a first reservoir comprising a therapeutically effective amount of drug and a skin permeation-enhancing amount of a permeation mixture comprising:
(i) 15 to 25% by weight of a monoglyceride or a mixture of monoglycerides, and (ii) 8 to 25% by weight of a lactate ester or a mixture of lactate esters;
(b) a second reservoir comprising an excess of the permeation enhancing mixture and drug at or below saturation;
(c) a rate-controlling membrane between the first reservoir and the second reservoir;
(d) a backing on the skin-distal surface of the second reservoir; and
(e) means for maintaining the first and second reservoirs in drug- and permeation enhancing mixture-transmitting relation with the skin.
38. A method according to claim 35, 36 or 37 wherein the monoglyceride is glycerol monolaurate.
39. A method according to claim 35, 36 or 37 wherein the lactate ester is lauryl lactate.
40. A method according to claim 35, 36 or 37 wherein the lactate ester is ethyl lactate.
41. A method according to claim 35, 36 or 37 wherein the lactate ester is cetyl or myristyl lactate.
42. A method according to claim 35, 36, or 37 wherein the mixture of lactate esters is ethyl and lauryl lactate.
43. A method according to claim 35, 36 or 37 wherein the monoglyceride is glycerol monolaurate and the lactate ester is ethyl lactate or lauryl lactate or a mixture thereof.
44. A method according to claim 35, 36 or 37 wherein the drug is selected from the group consisting of a benzodiazepine, an antimuscarinic agent, an estrogen, an androgen, or a progestin.
45. A method according to claim 36 or 37 wherein the monoglyceride is glycerol monolaurate and the glycerol monolaurate and lactate esters comprise 20 wt % and 12 wt% of the drug containing reservoir, respectively.
46. A method according to claim 35 wherein the monoglyceride is glycerol monolaurate and the glycerol monolaurate and lactate esters comprise 20 wt% and 12 wt%, respectively or the drug and permeation enhancer mixture.
PCT/US1994/011120 1993-09-29 1994-09-29 Monoglyceride/lactate ester permeation enhancer WO1995009006A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1019960701610A KR960704578A (en) 1993-09-29 1994-09-29 Monoglyceride / Lactate Ester Permeation Enhancer
AU79249/94A AU679793B2 (en) 1993-09-29 1994-09-29 Monoglyceride/lactate ester permeation enhancer
JP51047695A JP3688293B2 (en) 1993-09-29 1994-09-29 Monoglyceride / lactic acid ester permeation enhancer
EP94929976A EP0721348B1 (en) 1993-09-29 1994-09-29 Monoglyceride/lactate ester permeation enhancer
DE69420419T DE69420419T2 (en) 1993-09-29 1994-09-29 SKIN PERMEABILITY HIGHER CONSISTING OF MONOGLYCERIDE / LACTATE ESTERS
US08/637,678 US5750137A (en) 1993-09-29 1994-09-29 Monoglyceride/lactate ester permeation enhancer
ZA947700A ZA947700B (en) 1994-09-29 1994-10-03 Monoglyceride/lactate ester permeation enhancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12949493A 1993-09-29 1993-09-29
US129,494 1993-09-29

Publications (1)

Publication Number Publication Date
WO1995009006A1 true WO1995009006A1 (en) 1995-04-06

Family

ID=22440240

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1994/011226 WO1995009007A1 (en) 1993-09-29 1994-09-29 Monoglyceride/lactate ester permeation enhancer for oxybutynin
PCT/US1994/011120 WO1995009006A1 (en) 1993-09-29 1994-09-29 Monoglyceride/lactate ester permeation enhancer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US1994/011226 WO1995009007A1 (en) 1993-09-29 1994-09-29 Monoglyceride/lactate ester permeation enhancer for oxybutynin

Country Status (10)

Country Link
US (3) US5747065A (en)
EP (2) EP0721348B1 (en)
JP (3) JP3688293B2 (en)
KR (2) KR960704578A (en)
AT (1) ATE183926T1 (en)
AU (2) AU679793B2 (en)
CA (2) CA2167526A1 (en)
DE (1) DE69420419T2 (en)
NZ (2) NZ274711A (en)
WO (2) WO1995009007A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010429A2 (en) * 1994-09-29 1996-04-11 Alza Corporation Improved transdermal device having decreased delamination
WO1996037231A1 (en) * 1995-05-26 1996-11-28 Alza Corporation Skin permeation enhancer compositions using acyl lactylates
FR2735027A1 (en) * 1995-06-07 1996-12-13 Alza Corp Compsns. for acceleration of transdermal passage of active materials
WO1996040259A2 (en) * 1995-06-07 1996-12-19 Alza Corporation Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
WO1997024148A1 (en) * 1995-12-29 1997-07-10 Cygnus, Inc. Systems and methods for the transdermal administration of androgenic agents
WO1997039743A1 (en) * 1996-04-24 1997-10-30 Rutgers, The State University Of New Jersey Transdermal contraceptive delivery system
WO1998000118A2 (en) * 1996-07-03 1998-01-08 Alza Corporation Drug delivery devices and process of manufacture
WO1998010770A1 (en) * 1996-09-11 1998-03-19 Tillotts Pharma Ag Oral compositions containing fluocinonide
US5925629A (en) * 1997-10-28 1999-07-20 Vivus, Incorporated Transurethral administration of androgenic agents for the treatment of erectile dysfunction
US6004578A (en) * 1996-10-24 1999-12-21 Alza Corporation Permeation enhances for transdermal drug delivery compositions, devices and methods
US6007837A (en) * 1996-07-03 1999-12-28 Alza Corporation Drug delivery devices and process of manufacture
US6174545B1 (en) 1997-07-01 2001-01-16 Alza Corporation Drug delivery devices and process of manufacture
US6203817B1 (en) 1997-02-19 2001-03-20 Alza Corporation Reduction of skin reactions caused by transdermal drug delivery
US6267984B1 (en) 1997-12-22 2001-07-31 Alza Corporation Skin permeation enhancer compositions comprising a monoglyceride and ethyl palmitate
US6512010B1 (en) 1996-07-15 2003-01-28 Alza Corporation Formulations for the administration of fluoxetine
US6960353B2 (en) 1998-07-24 2005-11-01 Alza Corporation Formulations for the transdermal administration of fenoldopam
EP1666026B2 (en) 1999-02-08 2015-02-25 Intarcia Therapeutics, Inc Non-aqueous single phase biocompatible viscous vehicles and methods for preparing the same
US8992961B2 (en) 1999-02-08 2015-03-31 Intarcia Therapeutics, Inc. Stable non-aqueous single phase viscous vehicles and formulations utilizing such vehicles
US9006462B2 (en) 2013-02-28 2015-04-14 Dermira, Inc. Glycopyrrolate salts
US9006461B2 (en) 2013-02-28 2015-04-14 Dermira, Inc. Crystalline glycopyrrolate tosylate
US9526763B2 (en) 2005-02-03 2016-12-27 Intarcia Therapeutics Inc. Solvent/polymer solutions as suspension vehicles
US9539200B2 (en) 2005-02-03 2017-01-10 Intarcia Therapeutics Inc. Two-piece, internal-channel osmotic delivery system flow modulator
US9572889B2 (en) 2008-02-13 2017-02-21 Intarcia Therapeutics, Inc. Devices, formulations, and methods for delivery of multiple beneficial agents
US9610278B2 (en) 2013-02-28 2017-04-04 Dermira, Inc. Glycopyrrolate salts
US9682127B2 (en) 2005-02-03 2017-06-20 Intarcia Therapeutics, Inc. Osmotic delivery device comprising an insulinotropic peptide and uses thereof
US9724293B2 (en) 2003-11-17 2017-08-08 Intarcia Therapeutics, Inc. Methods of manufacturing viscous liquid pharmaceutical formulations
US9889085B1 (en) 2014-09-30 2018-02-13 Intarcia Therapeutics, Inc. Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c
US10028858B2 (en) 2011-07-11 2018-07-24 Medicines360 Intrauterine systems, IUD insertion devices, and related methods and kits therefor
USD835783S1 (en) 2016-06-02 2018-12-11 Intarcia Therapeutics, Inc. Implant placement guide
US10159714B2 (en) 2011-02-16 2018-12-25 Intarcia Therapeutics, Inc. Compositions, devices and methods of use thereof for the treatment of cancers
US10231923B2 (en) 2009-09-28 2019-03-19 Intarcia Therapeutics, Inc. Rapid establishment and/or termination of substantial steady-state drug delivery
USD860451S1 (en) 2016-06-02 2019-09-17 Intarcia Therapeutics, Inc. Implant removal tool
US10501517B2 (en) 2016-05-16 2019-12-10 Intarcia Therapeutics, Inc. Glucagon-receptor selective polypeptides and methods of use thereof
US10527170B2 (en) 2006-08-09 2020-01-07 Intarcia Therapeutics, Inc. Osmotic delivery systems and piston assemblies for use therein
US10835580B2 (en) 2017-01-03 2020-11-17 Intarcia Therapeutics, Inc. Methods comprising continuous administration of a GLP-1 receptor agonist and co-administration of a drug
US10925639B2 (en) 2015-06-03 2021-02-23 Intarcia Therapeutics, Inc. Implant placement and removal systems
US11246913B2 (en) 2005-02-03 2022-02-15 Intarcia Therapeutics, Inc. Suspension formulation comprising an insulinotropic peptide

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736577A (en) * 1995-01-31 1998-04-07 Sepracor, Inc. Methods and compositions for treating urinary incontinence using optically pure (S)-oxybutynin
EP0705097B2 (en) * 1993-06-25 2004-01-14 Alza Corporation Incorporating poly-n-vinyl amide in a transdermal system
WO1995009007A1 (en) * 1993-09-29 1995-04-06 Alza Corporation Monoglyceride/lactate ester permeation enhancer for oxybutynin
US5677346A (en) * 1995-01-31 1997-10-14 Sepracor, Inc. Treating urinary incontinence using (S)-desethyloxybutynin
US5674895A (en) * 1995-05-22 1997-10-07 Alza Corporation Dosage form comprising oxybutynin
US6028057A (en) * 1998-02-19 2000-02-22 Thorn Bioscience, Llc Regulation of estrus and ovulation in gilts
DE29823343U1 (en) * 1998-03-20 1999-07-15 Sanol Arznei Schwarz Gmbh Transdermal therapeutic system (TTS) containing oxybutynin
US6096332A (en) * 1998-06-30 2000-08-01 Mcneil-Ppc, Inc. Adding pharmaceutically active compounds to substrates
WO2000064434A1 (en) * 1999-04-26 2000-11-02 Lead Chemical Co., Ltd. Percutaneous preparations containing oxybutynin
AU4808000A (en) * 1999-04-28 2000-11-10 Situs Corporation Drug delivery system
WO2000071108A2 (en) * 1999-05-20 2000-11-30 Sepracor Inc. Methods for treatment of asthma using s-oxybutynin
US6787531B1 (en) * 1999-08-31 2004-09-07 Schering Ag Pharmaceutical composition for use as a contraceptive
AU784196B2 (en) * 1999-11-24 2006-02-23 Agile Therapeutics, Inc. Improved transdermal contraceptive delivery system and process
US7384650B2 (en) 1999-11-24 2008-06-10 Agile Therapeutics, Inc. Skin permeation enhancement composition for transdermal hormone delivery system
US7045145B1 (en) 1999-11-24 2006-05-16 Agile Therapeutics, Inc. Transdermal contraceptive delivery system and process
US20020132801A1 (en) * 2001-01-11 2002-09-19 Schering Aktiengesellschaft Drospirenone for hormone replacement therapy
US7029694B2 (en) * 2000-04-26 2006-04-18 Watson Laboratories, Inc. Compositions and methods for transdermal oxybutynin therapy
US20030124177A1 (en) * 2000-04-26 2003-07-03 Watson Pharmaceuticals, Inc. Compositions and methods for transdermal oxybutynin therapy
US7179483B2 (en) * 2000-04-26 2007-02-20 Watson Pharmaceuticals, Inc. Compositions and methods for transdermal oxybutynin therapy
EP1992342A1 (en) 2000-04-26 2008-11-19 Watson Pharmaceuticals, Inc. Minimizing adverse experience associated with oxybutynin therapy
US20020119187A1 (en) * 2000-09-29 2002-08-29 Cantor Adam S. Composition for the transdermal delivery of fentanyl
ES2270746T3 (en) * 2001-03-16 2007-12-01 Alza Corporation TRANSDERMAL PATCH TO ADMINISTER FENTANIL.
US20050208117A1 (en) * 2001-03-16 2005-09-22 Venkatraman Subramanian S Transdermal administration of fentanyl and analogs thereof
EP1372605A2 (en) * 2001-03-27 2004-01-02 Galen (Chemicals) Limited Intravaginal drug delivery devices for the administration of an antimicrobial agent
HUP0401022A3 (en) * 2001-08-14 2006-11-28 Biotie Therapies Corp Method for the preparation of pharmaceutical compositions containing opioid antagonist for treating alcoholism or alcohol abuse
US7921999B1 (en) 2001-12-20 2011-04-12 Watson Laboratories, Inc. Peelable pouch for transdermal patch and method for packaging
US20040033253A1 (en) * 2002-02-19 2004-02-19 Ihor Shevchuk Acyl opioid antagonists
US20040033255A1 (en) * 2002-06-10 2004-02-19 Baker Carl J. Transdermal delivery device disposal system
DE60326354D1 (en) * 2002-08-20 2009-04-09 Euro Celtique Sa TRANSDERMAL DOSAGE FORM CONTAINING AN ACTIVE SUBSTANCE AND AN ANTAGONIST IN FREE BASE AND SALT FORM
US20040062794A1 (en) * 2002-09-30 2004-04-01 Lee Shulman 17Beta- estradiol/levonorgestrel transdermal patch for hormone replacement therapy
DE10251256A1 (en) * 2002-11-04 2004-05-13 Novosis Ag Transdermal drug delivery system for oxybutynin
US20040258742A1 (en) * 2003-04-11 2004-12-23 Van Osdol William Woodson Transdermal administration of N-(2,5-disubstituted phenyl)-N'-(3-substituted phenyl)-N'-methyl guanidines
US20080020028A1 (en) * 2003-08-20 2008-01-24 Euro-Celtique S.A. Transdermal dosage form comprising an active agent and a salt and a free-base form of an adverse agent
CA2540838C (en) * 2003-10-03 2014-12-16 Thorn Bioscience, Llc Process for the synchronization of ovulation for timed breeding without heat detection
US7105263B2 (en) * 2003-12-30 2006-09-12 Samsung Electronics Company Dry toner comprising encapsulated pigment, methods and uses
US20060004094A1 (en) * 2004-07-02 2006-01-05 Agisim Gary R Composition and method for treating hemorrhoids and/or anorectal disorders
US20060008432A1 (en) * 2004-07-07 2006-01-12 Sebastiano Scarampi Gilsonite derived pharmaceutical delivery compositions and methods: nail applications
US8252319B2 (en) 2004-10-21 2012-08-28 Durect Corporation Transdermal delivery system for sufentanil
CN101146523B (en) 2004-10-21 2010-12-29 杜雷科特公司 Transdermal delivery systems
US20060127437A1 (en) * 2004-12-13 2006-06-15 Misty Anderson Kennedy Semisolid system and combination semisolid, multiparticulate system for sealing tissues and/or controlling biological fluids
US8535709B2 (en) * 2004-12-13 2013-09-17 Southeastern Medical Technologies, Llc Agents for controlling biological fluids and methods of use thereof
US20070059350A1 (en) * 2004-12-13 2007-03-15 Kennedy John P Agents for controlling biological fluids and methods of use thereof
WO2007011763A2 (en) * 2005-07-15 2007-01-25 3M Innovative Properties Company Adhesive sheet and methods of use thereof
WO2007035940A2 (en) * 2005-09-23 2007-03-29 Alza Corporation Transdermal norelgestromin delivery system
WO2007035941A2 (en) * 2005-09-23 2007-03-29 Alza Corporation Transdermal galantamine delivery system
US8383149B2 (en) 2005-09-23 2013-02-26 Alza Corporation High enhancer-loading polyacrylate formulation for transdermal applications
CN101340884A (en) 2005-10-19 2009-01-07 曼尼·马纳舍·辛格尔 Methods for the treatment of hyperhidrosis
CA2575398C (en) * 2006-02-02 2011-12-20 Omp, Inc. Methods of treating skin to enhance therapeutic treatment thereof
JP2009528990A (en) * 2006-02-13 2009-08-13 アヴィバ ドラッグ デリバリー システムズ Adhesive preparation containing sufentanil and method of using the same
US20070197435A1 (en) * 2006-02-17 2007-08-23 Webel Stephen K Process for the synchronization of ovulation for timed breeding without heat detection
CN101902996B (en) * 2007-10-15 2014-11-26 阿尔扎公司 Once-a-day replacement transdermal administration of fentanyl
US20090175810A1 (en) 2008-01-03 2009-07-09 Gareth Winckle Compositions and methods for treating diseases of the nail
CN102596215B (en) 2009-04-23 2015-04-29 佩纳特克有限责任公司 Method and composition for synchronizing time of insemination
US8920392B2 (en) 2009-05-05 2014-12-30 Watson Laboratories, Inc. Method for treating overactive bladders and a device for storage and administration of topical oxybutynin compositions
DE102009022915A1 (en) * 2009-05-27 2010-12-09 Lts Lohmann Therapie-Systeme Ag Transdermal therapeutic system with controlled drug flux
US8039494B1 (en) 2010-07-08 2011-10-18 Dow Pharmaceutical Sciences, Inc. Compositions and methods for treating diseases of the nail
US9950952B2 (en) 2010-11-30 2018-04-24 Schlumberger Technology Corporation Methods for servicing subterranean wells
US9834719B2 (en) * 2010-11-30 2017-12-05 Schlumberger Technology Corporation Methods for servicing subterranean wells
US9301920B2 (en) 2012-06-18 2016-04-05 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
WO2013078422A2 (en) 2011-11-23 2013-05-30 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US10806697B2 (en) 2012-12-21 2020-10-20 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US20150196640A1 (en) 2012-06-18 2015-07-16 Therapeuticsmd, Inc. Progesterone formulations having a desirable pk profile
US20130338122A1 (en) 2012-06-18 2013-12-19 Therapeuticsmd, Inc. Transdermal hormone replacement therapies
US10806740B2 (en) 2012-06-18 2020-10-20 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
ES2808409T3 (en) 2012-11-28 2021-02-26 United Ah Ii Llc Method to synchronize insemination time in gilts
US11266661B2 (en) 2012-12-21 2022-03-08 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10537581B2 (en) 2012-12-21 2020-01-21 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US9180091B2 (en) 2012-12-21 2015-11-10 Therapeuticsmd, Inc. Soluble estradiol capsule for vaginal insertion
US10568891B2 (en) 2012-12-21 2020-02-25 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10471072B2 (en) 2012-12-21 2019-11-12 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11246875B2 (en) 2012-12-21 2022-02-15 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
CA2924748C (en) 2013-10-03 2019-09-03 Dow Pharmaceutical Sciences, Inc. Stabilized efinaconazole formulations
EP3071295A4 (en) 2013-11-22 2017-05-31 Dow Pharmaceutical Sciences, Inc. Anti-infective methods, compositions, and devices
AU2015264003A1 (en) 2014-05-22 2016-11-17 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
CA2951284A1 (en) 2014-07-29 2016-02-04 Therapeuticsmd, Inc. Transdermal cream
EP4122460A1 (en) 2015-01-09 2023-01-25 Chase Pharmaceuticals Corporation Oxybutynin transdermal therapeutic system combination
US10328087B2 (en) 2015-07-23 2019-06-25 Therapeuticsmd, Inc. Formulations for solubilizing hormones
WO2017173044A1 (en) 2016-04-01 2017-10-05 Therapeuticsmd Inc. Steroid hormone compositions in medium chain oils
US9931349B2 (en) 2016-04-01 2018-04-03 Therapeuticsmd, Inc. Steroid hormone pharmaceutical composition
KR102317575B1 (en) * 2016-10-11 2021-10-25 히사미쓰 세이야꾸 가부시키가이샤 Transdermal absorption preparation containing oxybutynin
EP3705123A4 (en) * 2017-10-30 2021-08-04 Teikoku Seiyaku Co., Ltd. Transdermally administrable preparation
SG11202003820VA (en) * 2017-10-30 2020-05-28 Kaken Pharmaceutical Co Ltd External preparation for treating trichophytosis unguium
USD933219S1 (en) 2018-07-13 2021-10-12 Intarcia Therapeutics, Inc. Implant removal tool and assembly
US11633405B2 (en) 2020-02-07 2023-04-25 Therapeuticsmd, Inc. Steroid hormone pharmaceutical formulations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295411A1 (en) * 1987-05-15 1988-12-21 Sansho Co., Ltd. Pharmaceutical preparation for percutaneous administration containing eperisone or tolperisone or a salt thereof
EP0368339A2 (en) * 1988-11-11 1990-05-16 Eisai Co., Ltd. Pharmaceutical preparation for percutaneous administration containing bunazosin or its salt
EP0431942A2 (en) * 1989-12-06 1991-06-12 Sansho Co., Ltd. Percutaneously absorbable pharmaceutical preparation containing dopamine derivative

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527864A (en) * 1966-11-18 1970-09-08 Procter & Gamble Compositions for topical application to animal tissue and method of enhancing penetration thereof
US3551554A (en) * 1968-08-16 1970-12-29 Crown Zellerbach Corp Enhancing tissue penetration of physiologically active agents with dmso
US4116956A (en) * 1968-11-05 1978-09-26 Takeda Chemical Industries, Ltd. Benzodiazepine derivatives
US3472931A (en) * 1969-01-17 1969-10-14 Foster Milburn Co Percutaneous absorption with lower alkyl amides
US3987052A (en) * 1969-03-17 1976-10-19 The Upjohn Company 6-Phenyl-4H-s-triazolo[4,3-a][1,4]benzodiazepines
US3598122A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3598123A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3797494A (en) * 1969-04-01 1974-03-19 Alza Corp Bandage for the administration of drug by controlled metering through microporous materials
US3731683A (en) * 1971-06-04 1973-05-08 Alza Corp Bandage for the controlled metering of topical drugs to the skin
US3903256A (en) * 1972-02-07 1975-09-02 Procter & Gamble Compositions for topical application of animal tissue and method of enhancing penetration thereof
US3896238A (en) * 1972-04-05 1975-07-22 Procter & Gamble Dermatological compositions
US3952099A (en) * 1973-03-13 1976-04-20 The Procter & Gamble Company Dermatological compositions
US4006218A (en) * 1974-07-08 1977-02-01 Johnson & Johnson Potentiated medicaments
US4046886A (en) * 1975-01-17 1977-09-06 The Procter & Gamble Company Dermatological compositions
US4144317A (en) * 1975-05-30 1979-03-13 Alza Corporation Device consisting of copolymer having acetoxy groups for delivering drugs
US4405616A (en) * 1975-06-19 1983-09-20 Nelson Research & Development Company Penetration enhancers for transdermal drug delivery of systemic agents
US4031894A (en) * 1975-12-08 1977-06-28 Alza Corporation Bandage for transdermally administering scopolamine to prevent nausea
US4130667A (en) * 1976-01-12 1978-12-19 The Procter & Gamble Company Dermatological compositions
US4335115A (en) * 1976-11-01 1982-06-15 The Procter & Gamble Company Anti-acne composition
US4201211A (en) * 1977-07-12 1980-05-06 Alza Corporation Therapeutic system for administering clonidine transdermally
US4299826A (en) * 1979-10-12 1981-11-10 The Procter & Gamble Company Anti-acne composition
US4286592A (en) * 1980-02-04 1981-09-01 Alza Corporation Therapeutic system for administering drugs to the skin
US4314557A (en) * 1980-05-19 1982-02-09 Alza Corporation Dissolution controlled active agent dispenser
US4379454A (en) * 1981-02-17 1983-04-12 Alza Corporation Dosage for coadministering drug and percutaneous absorption enhancer
US4464378A (en) * 1981-04-28 1984-08-07 University Of Kentucky Research Foundation Method of administering narcotic antagonists and analgesics and novel dosage forms containing same
US4343798A (en) * 1981-06-23 1982-08-10 The Procter & Gamble Company Topical antimicrobial anti-inflammatory compositions
US4849226A (en) * 1981-06-29 1989-07-18 Alza Corporation Method for increasing oxygen supply by administering vasodilator
US4440777A (en) * 1981-07-07 1984-04-03 Merck & Co., Inc. Use of eucalyptol for enhancing skin permeation of bio-affecting agents
US4435180A (en) * 1982-05-25 1984-03-06 Alza Corporation Elastomeric active agent delivery system and method of use
US4468391A (en) * 1982-06-25 1984-08-28 Ayerst, Mckenna & Harrison, Inc. Combination of β-adrenoceptor antagonists and anxiolytic agents
US4508726A (en) * 1982-09-16 1985-04-02 The Upjohn Company Treatment of panic disorders with alprazolam
US4559222A (en) * 1983-05-04 1985-12-17 Alza Corporation Matrix composition for transdermal therapeutic system
US4710497A (en) * 1983-05-20 1987-12-01 Nitto Electric Industrial Co., Ltd. Method for percutaneously administering physiologically active agents
US4537776A (en) * 1983-06-21 1985-08-27 The Procter & Gamble Company Penetrating topical pharmaceutical compositions containing N-(2-hydroxyethyl) pyrrolidone
US4552872A (en) * 1983-06-21 1985-11-12 The Procter & Gamble Company Penetrating topical pharmaceutical compositions containing corticosteroids
US4557934A (en) * 1983-06-21 1985-12-10 The Procter & Gamble Company Penetrating topical pharmaceutical compositions containing 1-dodecyl-azacycloheptan-2-one
US4590190A (en) * 1983-07-01 1986-05-20 Nitto Electric Industrial Co., Ltd. Method for percutaneously administering physiologically active agents using an alcohol adjuvant and a solvent
US4752612A (en) * 1983-07-01 1988-06-21 Nitto Electrical Industrial Co., Ltd. Method and percutaneously administering physiologically active agents using an alcohol adjuvant and a solvent
US4588721A (en) * 1983-09-12 1986-05-13 The Upjohn Company Treatment of negative symptoms of schizophrenia
US4933184A (en) * 1983-12-22 1990-06-12 American Home Products Corp. (Del) Menthol enhancement of transdermal drug delivery
US4683231A (en) * 1984-03-02 1987-07-28 Research Foundation For Mental Hygiene, Inc. Method of preventing withdrawal symptoms associated with the cessation or reduction of tobacco smoking
US4588739A (en) * 1984-03-02 1986-05-13 Research Foundation For Mental Hygiene, Inc. Method of preventing withdrawal symptoms associated with the cessation or reduction of tobacco smoking
US4783456A (en) * 1984-03-02 1988-11-08 Research Foundation For Mental Hygiene, Inc. Method of preventing withdrawal symptoms associated with the cessation or reduction of tobacco smoking
US4851228A (en) * 1984-06-20 1989-07-25 Merck & Co., Inc. Multiparticulate controlled porosity osmotic
US4968507A (en) * 1984-06-20 1990-11-06 Merck & Co., Inc. Controlled porosity osmotic pump
US4704282A (en) * 1984-06-29 1987-11-03 Alza Corporation Transdermal therapeutic system having improved delivery characteristics
US4588580B2 (en) * 1984-07-23 1999-02-16 Alaz Corp Transdermal administration of fentanyl and device therefor
US4721709A (en) * 1984-07-26 1988-01-26 Pyare Seth Novel pharmaceutical compositions containing hydrophobic practically water-insoluble drugs adsorbed on pharmaceutical excipients as carrier; process for their preparation and the use of said compositions
US4626539A (en) * 1984-08-10 1986-12-02 E. I. Dupont De Nemours And Company Trandermal delivery of opioids
US4568343A (en) * 1984-10-09 1986-02-04 Alza Corporation Skin permeation enhancer compositions
US4573995A (en) * 1984-10-09 1986-03-04 Alza Corporation Transdermal therapeutic systems for the administration of naloxone, naltrexone and nalbuphine
US4806341A (en) * 1985-02-25 1989-02-21 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit for narcotic analgesics and antagonists and process for administration
US4663454A (en) * 1985-04-17 1987-05-05 The Upjohn Company Process to prepare α-chloroalprazolam
US4645502A (en) * 1985-05-03 1987-02-24 Alza Corporation Transdermal delivery of highly ionized fat insoluble drugs
US4685913A (en) * 1985-05-24 1987-08-11 Professional Care Products, Inc. External single-use catheter
JPS61293911A (en) * 1985-06-24 1986-12-24 Teisan Seiyaku Kk Sustained release preparation
US4666903A (en) * 1985-08-13 1987-05-19 Yale University Novel use of benzodiazepine antagonist
US4595684A (en) * 1985-08-16 1986-06-17 Ciba-Geigy Corporation Method of suppressing benzodiazepine induced sedation with 2-(p-methoxypenyl)-pyrazolo[4,3-c]quinolin-3(5H)-one or a salt thereof
US4634703A (en) * 1985-10-25 1987-01-06 Bristol-Myers Company Method for alleviation of panic disorders
DE3767615D1 (en) * 1986-03-10 1991-02-28 Kurt Burghart PHARMACEUTICAL AND METHOD FOR THE PRODUCTION THEREOF.
US4908389A (en) * 1986-08-27 1990-03-13 Warner-Lambert Company Penetration enhancement system
US4908027A (en) * 1986-09-12 1990-03-13 Alza Corporation Subsaturated transdermal therapeutic system having improved release characteristics
US4863970A (en) * 1986-11-14 1989-09-05 Theratech, Inc. Penetration enhancement with binary system of oleic acid, oleins, and oleyl alcohol with lower alcohols
US4876249A (en) * 1987-01-12 1989-10-24 Rajadhyaksha Vithal J Compositions and method comprising heterocyclic compounds containing two heteroatoms
US4788062A (en) * 1987-02-26 1988-11-29 Alza Corporation Transdermal administration of progesterone, estradiol esters, and mixtures thereof
US4940586A (en) * 1987-02-26 1990-07-10 Alza Corporation Skin permeation enhancer compositions using sucrose esters
US4816258A (en) * 1987-02-26 1989-03-28 Alza Corporation Transdermal contraceptive formulations
US4746515A (en) * 1987-02-26 1988-05-24 Alza Corporation Skin permeation enhancer compositions using glycerol monolaurate
CH674618A5 (en) * 1987-04-02 1990-06-29 Ciba Geigy Ag
US4783450A (en) * 1987-04-13 1988-11-08 Warner-Lambert Company Use of commercial lecithin as skin penetration enhancer
US5017575A (en) * 1987-06-09 1991-05-21 Golwyn Daniel H Treatment of immunologically based disorders, specifically Crohn's disease
US4992445A (en) * 1987-06-12 1991-02-12 American Cyanamid Co. Transdermal delivery of pharmaceuticals
US4795644A (en) * 1987-08-03 1989-01-03 Merck & Co., Inc. Device for pH independent release of drugs through the Donnan-like influence of charged insoluble resins
US4814183A (en) * 1987-08-31 1989-03-21 Merck & Co., Inc. Device for the controlled release of drugs with Donnan-like modulation by charged insoluble resins
US4820720A (en) * 1987-08-24 1989-04-11 Alza Corporation Transdermal drug composition with dual permeation enhancers
US5256421A (en) * 1987-09-24 1993-10-26 Jencap Research Ltd. Hormone preparation and method
US5108995A (en) * 1987-09-24 1992-04-28 Jencap Research Ltd. Hormone preparation and method
US5276022A (en) * 1987-09-24 1994-01-04 Jencap Research Ltd. Hormone preparation and method
US4943435A (en) * 1987-10-05 1990-07-24 Pharmetrix Corporation Prolonged activity nicotine patch
US4863738A (en) * 1987-11-23 1989-09-05 Alza Corporation Skin permeation enhancer compositions using glycerol monooleate
GB8728294D0 (en) * 1987-12-03 1988-01-06 Reckitt & Colmann Prod Ltd Treatment compositions
US4925844A (en) * 1988-02-09 1990-05-15 Ici Americas Inc. Antagonizing the pharmacological effects of a benzodiazepine receptor agonist
US4994278A (en) * 1988-03-04 1991-02-19 Noven Pharmaceuticals, Inc. Breathable backing
US5004610A (en) * 1988-06-14 1991-04-02 Alza Corporation Subsaturated nicotine transdermal therapeutic system
CA2002299A1 (en) 1988-11-10 1990-05-10 Eugene G. Drust Compositions for the transdermal delivery of buprenorphine salts
US4981468A (en) * 1989-02-17 1991-01-01 Eli Lilly And Company Delivery device for orally administered therapeutic agents
US5246949A (en) * 1989-12-06 1993-09-21 Sansho Co., Ltd. Preparation for endermism containing dopamine derivatives
US5252588A (en) * 1990-04-27 1993-10-12 Sekisui Kagaku Kogyo Kabushiki Kaisha Percutaneously absorbable crosslinked polyvinylpyrrolidone eperisone or tolperisone preparation
US5314694A (en) * 1990-10-29 1994-05-24 Alza Corporation Transdermal formulations, methods and devices
US5122382A (en) * 1990-10-29 1992-06-16 Alza Corporation Transdermal contraceptive formulations, methods and devices
US5198223A (en) * 1990-10-29 1993-03-30 Alza Corporation Transdermal formulations, methods and devices
US5122383A (en) * 1991-05-17 1992-06-16 Theratech, Inc. Sorbitan esters as skin permeation enhancers
US5211952A (en) * 1991-04-12 1993-05-18 University Of Southern California Contraceptive methods and formulations for use therein
PT100502A (en) * 1991-05-20 1993-08-31 Alza Corp PHARMACEUTICAL COMPOSITIONS FOR INCREASING THE CAPACITY OF PERMEACAO IN THE SKIN USING GLYCEROL MONOLINOLEATE
US5149538A (en) * 1991-06-14 1992-09-22 Warner-Lambert Company Misuse-resistive transdermal opioid dosage form
ES2137261T3 (en) * 1992-05-13 1999-12-16 Alza Corp TRANSDERMIC ADMINISTRATION OF OXYBUTININE.
WO1995009007A1 (en) * 1993-09-29 1995-04-06 Alza Corporation Monoglyceride/lactate ester permeation enhancer for oxybutynin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295411A1 (en) * 1987-05-15 1988-12-21 Sansho Co., Ltd. Pharmaceutical preparation for percutaneous administration containing eperisone or tolperisone or a salt thereof
EP0368339A2 (en) * 1988-11-11 1990-05-16 Eisai Co., Ltd. Pharmaceutical preparation for percutaneous administration containing bunazosin or its salt
EP0431942A2 (en) * 1989-12-06 1991-06-12 Sansho Co., Ltd. Percutaneously absorbable pharmaceutical preparation containing dopamine derivative

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010429A3 (en) * 1994-09-29 1996-07-25 Alza Corp Improved transdermal device having decreased delamination
WO1996010429A2 (en) * 1994-09-29 1996-04-11 Alza Corporation Improved transdermal device having decreased delamination
US5614211A (en) * 1994-09-29 1997-03-25 Alza Corporation Oxybutynin transdermal device having decreased delamination
US5882676A (en) * 1995-05-26 1999-03-16 Alza Corporation Skin permeation enhancer compositions using acyl lactylates
WO1996037231A1 (en) * 1995-05-26 1996-11-28 Alza Corporation Skin permeation enhancer compositions using acyl lactylates
CN1107522C (en) * 1995-05-26 2003-05-07 阿尔萨公司 Skin permeation enhancer compositions using acyl lactylates
JPH11505843A (en) * 1995-05-26 1999-05-25 アルザ コーポレイション Skin permeation enhancer compositions using acyl lactylate compounds
US5785991A (en) * 1995-06-07 1998-07-28 Alza Corporation Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
WO1996040259A3 (en) * 1995-06-07 1997-02-27 Alza Corp Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
WO1996040259A2 (en) * 1995-06-07 1996-12-19 Alza Corporation Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
FR2735027A1 (en) * 1995-06-07 1996-12-13 Alza Corp Compsns. for acceleration of transdermal passage of active materials
AU714809B2 (en) * 1995-06-07 2000-01-13 Alza Corporation Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
KR100524325B1 (en) * 1995-06-07 2006-01-27 앨자 코포레이션 Skin Permeation Enhancer compositions Comprising Glycerol Monolaurate and Lauryl Acetate
US5843468A (en) * 1995-06-07 1998-12-01 Alza Corporation Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
WO1997024148A1 (en) * 1995-12-29 1997-07-10 Cygnus, Inc. Systems and methods for the transdermal administration of androgenic agents
WO1997039743A1 (en) * 1996-04-24 1997-10-30 Rutgers, The State University Of New Jersey Transdermal contraceptive delivery system
US6007837A (en) * 1996-07-03 1999-12-28 Alza Corporation Drug delivery devices and process of manufacture
WO1998000118A3 (en) * 1996-07-03 1998-03-05 Alza Corp Drug delivery devices and process of manufacture
WO1998000118A2 (en) * 1996-07-03 1998-01-08 Alza Corporation Drug delivery devices and process of manufacture
US7011844B2 (en) 1996-07-15 2006-03-14 Alza Corporation Formulations for the administration of fluoxetine
US6512010B1 (en) 1996-07-15 2003-01-28 Alza Corporation Formulations for the administration of fluoxetine
WO1998010770A1 (en) * 1996-09-11 1998-03-19 Tillotts Pharma Ag Oral compositions containing fluocinonide
US6004578A (en) * 1996-10-24 1999-12-21 Alza Corporation Permeation enhances for transdermal drug delivery compositions, devices and methods
US6203817B1 (en) 1997-02-19 2001-03-20 Alza Corporation Reduction of skin reactions caused by transdermal drug delivery
US6174545B1 (en) 1997-07-01 2001-01-16 Alza Corporation Drug delivery devices and process of manufacture
US5925629A (en) * 1997-10-28 1999-07-20 Vivus, Incorporated Transurethral administration of androgenic agents for the treatment of erectile dysfunction
US6267984B1 (en) 1997-12-22 2001-07-31 Alza Corporation Skin permeation enhancer compositions comprising a monoglyceride and ethyl palmitate
US6960353B2 (en) 1998-07-24 2005-11-01 Alza Corporation Formulations for the transdermal administration of fenoldopam
EP1666026B2 (en) 1999-02-08 2015-02-25 Intarcia Therapeutics, Inc Non-aqueous single phase biocompatible viscous vehicles and methods for preparing the same
US8992961B2 (en) 1999-02-08 2015-03-31 Intarcia Therapeutics, Inc. Stable non-aqueous single phase viscous vehicles and formulations utilizing such vehicles
US9724293B2 (en) 2003-11-17 2017-08-08 Intarcia Therapeutics, Inc. Methods of manufacturing viscous liquid pharmaceutical formulations
US9682127B2 (en) 2005-02-03 2017-06-20 Intarcia Therapeutics, Inc. Osmotic delivery device comprising an insulinotropic peptide and uses thereof
US11246913B2 (en) 2005-02-03 2022-02-15 Intarcia Therapeutics, Inc. Suspension formulation comprising an insulinotropic peptide
US10363287B2 (en) 2005-02-03 2019-07-30 Intarcia Therapeutics, Inc. Method of manufacturing an osmotic delivery device
US9526763B2 (en) 2005-02-03 2016-12-27 Intarcia Therapeutics Inc. Solvent/polymer solutions as suspension vehicles
US9539200B2 (en) 2005-02-03 2017-01-10 Intarcia Therapeutics Inc. Two-piece, internal-channel osmotic delivery system flow modulator
US10527170B2 (en) 2006-08-09 2020-01-07 Intarcia Therapeutics, Inc. Osmotic delivery systems and piston assemblies for use therein
US9572889B2 (en) 2008-02-13 2017-02-21 Intarcia Therapeutics, Inc. Devices, formulations, and methods for delivery of multiple beneficial agents
US10441528B2 (en) 2008-02-13 2019-10-15 Intarcia Therapeutics, Inc. Devices, formulations, and methods for delivery of multiple beneficial agents
US10869830B2 (en) 2009-09-28 2020-12-22 Intarcia Therapeutics, Inc. Rapid establishment and/or termination of substantial steady-state drug delivery
US10231923B2 (en) 2009-09-28 2019-03-19 Intarcia Therapeutics, Inc. Rapid establishment and/or termination of substantial steady-state drug delivery
US10159714B2 (en) 2011-02-16 2018-12-25 Intarcia Therapeutics, Inc. Compositions, devices and methods of use thereof for the treatment of cancers
US11090186B2 (en) 2011-07-11 2021-08-17 Medicines360 Methods for using intrauterine systems and IUD insertion devices
US10028858B2 (en) 2011-07-11 2018-07-24 Medicines360 Intrauterine systems, IUD insertion devices, and related methods and kits therefor
US9006461B2 (en) 2013-02-28 2015-04-14 Dermira, Inc. Crystalline glycopyrrolate tosylate
US9006462B2 (en) 2013-02-28 2015-04-14 Dermira, Inc. Glycopyrrolate salts
US11291651B2 (en) 2013-02-28 2022-04-05 Journey Medical Corporation Glycopyrrolate salts
US11291652B2 (en) 2013-02-28 2022-04-05 Journey Medical Corporation Glycopyrrolate salts
US10004717B2 (en) 2013-02-28 2018-06-26 Dermira, Inc. Glycopyrrolate salts
US9259414B2 (en) 2013-02-28 2016-02-16 Dermira, Inc. Glycopyrrolate salts
US9610278B2 (en) 2013-02-28 2017-04-04 Dermira, Inc. Glycopyrrolate salts
US10543192B2 (en) 2013-02-28 2020-01-28 Dermira, Inc. Glycopyrrolate salts
US10548875B2 (en) 2013-02-28 2020-02-04 Dermira, Inc. Glycopyrrolate salts
US10583080B2 (en) 2014-09-30 2020-03-10 Intarcia Therapeutics, Inc. Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c
US9889085B1 (en) 2014-09-30 2018-02-13 Intarcia Therapeutics, Inc. Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c
US10925639B2 (en) 2015-06-03 2021-02-23 Intarcia Therapeutics, Inc. Implant placement and removal systems
US11214607B2 (en) 2016-05-16 2022-01-04 Intarcia Therapeutics Inc. Glucagon-receptor selective polypeptides and methods of use thereof
US10501517B2 (en) 2016-05-16 2019-12-10 Intarcia Therapeutics, Inc. Glucagon-receptor selective polypeptides and methods of use thereof
US11840559B2 (en) 2016-05-16 2023-12-12 I2O Therapeutics, Inc. Glucagon-receptor selective polypeptides and methods of use thereof
USD912249S1 (en) 2016-06-02 2021-03-02 Intarcia Therapeutics, Inc. Implant removal tool
USD840030S1 (en) 2016-06-02 2019-02-05 Intarcia Therapeutics, Inc. Implant placement guide
USD860451S1 (en) 2016-06-02 2019-09-17 Intarcia Therapeutics, Inc. Implant removal tool
USD835783S1 (en) 2016-06-02 2018-12-11 Intarcia Therapeutics, Inc. Implant placement guide
USD962433S1 (en) 2016-06-02 2022-08-30 Intarcia Therapeutics, Inc. Implant placement guide
US10835580B2 (en) 2017-01-03 2020-11-17 Intarcia Therapeutics, Inc. Methods comprising continuous administration of a GLP-1 receptor agonist and co-administration of a drug
US11654183B2 (en) 2017-01-03 2023-05-23 Intarcia Therapeutics, Inc. Methods comprising continuous administration of exenatide and co-administration of a drug

Also Published As

Publication number Publication date
JP3688293B2 (en) 2005-08-24
US5747065A (en) 1998-05-05
NZ275615A (en) 1996-11-26
JPH09505278A (en) 1997-05-27
AU679793B2 (en) 1997-07-10
JP2006117688A (en) 2006-05-11
JP3792252B2 (en) 2006-07-05
AU7924994A (en) 1995-04-18
EP0721349A1 (en) 1996-07-17
KR960704579A (en) 1996-10-09
EP0721348B1 (en) 1999-09-01
WO1995009007A1 (en) 1995-04-06
US5686097A (en) 1997-11-11
AU679794B2 (en) 1997-07-10
DE69420419D1 (en) 1999-10-07
AU7964794A (en) 1995-04-18
EP0721348A1 (en) 1996-07-17
DE69420419T2 (en) 1999-12-23
CA2165802A1 (en) 1995-04-06
ATE183926T1 (en) 1999-09-15
CA2167526A1 (en) 1995-04-06
JPH09505279A (en) 1997-05-27
US5750137A (en) 1998-05-12
KR960704578A (en) 1996-10-09
NZ274711A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
AU679793B2 (en) Monoglyceride/lactate ester permeation enhancer
EP0783341B1 (en) Improved transdermal device having decreased delamination
AU697200B2 (en) Skin permeation enhancer compositions using acyl lactylates
US5785991A (en) Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
US6267984B1 (en) Skin permeation enhancer compositions comprising a monoglyceride and ethyl palmitate
US5641504A (en) Skin permeation enhancer compositions using glycerol monolinoleate
WO1992020377A1 (en) Skin permeation enhancer compositions using glycerol monolinoleate
PH27001A (en) Transdermal monolith system
WO1994021262A1 (en) Device for the transdermal administration of alprazolam
FR2735027A1 (en) Compsns. for acceleration of transdermal passage of active materials
IE921615A1 (en) Skin permeation enhancer compositions using glycerol¹monolinoleate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA FI JP KR NO NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 274711

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1994929976

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2167526

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08637678

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994929976

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994929976

Country of ref document: EP