WO1991016701A1 - Process for producing colour change devices incorporating latent indicia and the resulting devices - Google Patents

Process for producing colour change devices incorporating latent indicia and the resulting devices Download PDF

Info

Publication number
WO1991016701A1
WO1991016701A1 PCT/CA1991/000105 CA9100105W WO9116701A1 WO 1991016701 A1 WO1991016701 A1 WO 1991016701A1 CA 9100105 W CA9100105 W CA 9100105W WO 9116701 A1 WO9116701 A1 WO 9116701A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
colour
areas
adhesion
mask
Prior art date
Application number
PCT/CA1991/000105
Other languages
French (fr)
Inventor
Gary Junior Smith
Original Assignee
Alcan International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan International Limited filed Critical Alcan International Limited
Priority to KR1019920701595A priority Critical patent/KR920704255A/en
Priority to EP91907216A priority patent/EP0526480B1/en
Priority to JP91506260A priority patent/JPH05506317A/en
Priority to DE69103411T priority patent/DE69103411T2/en
Publication of WO1991016701A1 publication Critical patent/WO1991016701A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F3/0291Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time
    • G09F3/0292Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time tamper indicating labels
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/022Anodisation on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2401/00Tamper-indicating means

Definitions

  • This invention relates to devices which undergo a change of colour when physically disturbed in some way (referred to hereinafter as colour change devices) and to processes for producing such devices. More particularly, the invention relates to a process for producing colour change devices which incorporate latent indicia. BACKGROUND ART
  • a process for producing colour change devices is disclosed.
  • the process involves anodizing a colour generating metal such as a valve metal (e.g. Ta, Nb, Zr, Hf and Ti) , a refractory metal (e.g. W, V and Mo), a grey transition metal (e.g. Ni, Fe and Cr) , a semi-metal (e.g. Bi) or a semiconductor (e.g.
  • a colour generating metal such as a valve metal (e.g. Ta, Nb, Zr, Hf and Ti)
  • a refractory metal e.g. W, V and Mo
  • a grey transition metal e.g. Ni, Fe and Cr
  • a semi-metal e.g. Bi
  • a semiconductor e.g.
  • the resulting laminates exhibit a strong interference colour when illuminated with white light because of light interference effects caused by reflections of the light from the closely spaced metal and oxide surfaces and because of light absorption which takes place at the metal/oxide interface.
  • the resulting structures can be used as colour change devices if the anodization is carried out in the presence of an adhesion reducing agent (e.g. a fluoride) which lowers the normally tenacious adhesion of the oxide film to the metal substrate. This allows the oxide film to be detached from the substrate with consequent destruction or modification of the exhibited colour. Reattachment of the oxide layer does not result in regeneration of the original colour, so the essentially irreversible colour change is an effective indicator of tampering.
  • an adhesion reducing agent e.g. a fluoride
  • the detachment of the anodic film from the metal substrate can be assisted by adhering a transparent or translucent sheet to the anodic film and using this sheet to reinforce the delicate film so that the film can be detached from the metal substrate in amounts large enough to be readily visible.
  • the above-mentioned patent also discloses a procedure for incorporating "latent indicia", e.g. initially invisible messages, patterns or designs, into the resulting colour change devices. This is achieved by masking off predetermined areas of the colour generating metal, carrying out partial anodization in the presence of the adhesion reducing agent to reduce the adhesion of the oxide film to the metal substrate in the unmasked areas, removing the mask and then continuing the anodization of the whole device in an electrolyte containing no adhesion reducing agent.
  • the oxide film which is formed on the previously masked areas of the metal during the final anodization step adheres tenaciously to the metal but the film formed on the unmasked areas is detachable.
  • the film detaches only in those areas which were originally unmasked and the generated colour is destroyed or changed in those areas but remains visible in the originally masked areas of the device.
  • the areas of the device exhibiting the original colour can take on the form of any desired message, pattern or design visible against a contrasting background following separation of the detachable parts of the anodic film.
  • the improvement which comprises forming said mask from a masking material which permits anodization of areas of said surface covered by said mask while preventing said adhesion-reducing agent from exerting a substantial adhesion-reducing effect in said areas of said surface covered by said mask, and forming an anodic film having detachable and non-detachable areas by means of a single anodization step carried out in the presence of said adhesion-reducing agent.
  • the invention also relates to a colour change device incorporating latent indicia produced by a process as defined above.
  • optical thin as used herein to describe an anodic film, we mean that the film has a thickness in the order of the wavelength of light so that the required interference effects can be produced for colour generation.
  • Fig. 1 is a cross-section of a metal substrate on which the process of the invention can be carried out;
  • Figs. 2 to 4 are similar cross-sections showing steps in the process.
  • Fig. 5 is a further cross-section showing the effects of peeling a structure produced according to the present invention.
  • BEST MODEfS FOR CARRYING OUT THE INVENTION
  • the present invention is based, at least in part, on the unexpected finding that certain materials, for example certain inks and uncured resins, have the ability, when deposited in thin layers on anodizable metal substrates, of permitting anodization of the metal immediately beneath them to take place, but also of blocking, counteracting or neutralizing the effect of adhesion reducing agents contained in the electrolytes used for the anodizations.
  • the blocking action of the masking material only occurs at the initial stage of anodizing. Once a thin layer of oxide has been formed, the masking material lifts off the surface of the metal and further anodizing does not alter the release pattern already imparted, i.e. the anodic film itself may serve to block or neutralize the effect of the adhesion-reducing agent.
  • the materials which have been found to be effective in the present in the invention are, in general, printing inks and conventional uncured resist materials, but it is likely that other materials may have similar effects and that these materials can be identified by simple experimentation. It should therefore be understood that the present invention is not limited to the preferred materials mentioned herein. It has been found, however, that when conventional resist materials are used, they should normally be in the uncured form because cured resists prevent anodization from taking place beneath the resist. This gives rise to a further advantage because it eliminates the need for an extra step of curing the resist and the difficulty of removing cured resists from the metal surface after anodization has taken place.
  • the inks and uncured resists employed in the present invention can usually be removed, after the anodization step, simply by washing the anodized product with water, although caustic aqueous solutions (e.g. 4% NaOH by weight) may be more effective, especially for the uncured resists.
  • caustic aqueous solutions e.g. 4% NaOH by weight
  • Inks and resists which have been found to be effective are those containing polystyrene, polyamide, nitrocellulose, epoxy resins, alkyd resins, epoxy acrylates, etc. as well as non-aqueous solvents such as ethanol and methyl ethyl ketone, etc. It therefore appears that the inks or resists should desirably contain a long chain preferably cross-linkable organic polymer and a non-aqueous solvent, but there is no reason to exclude other materials which may be found by suitable experimentation.
  • the polymer solutions, inks and resists used in the present invention should be used at a suitable dilution to permit easy application while achieving the desired blocking or neutralization of the adhesion-reducing agent and permitting anodization to take place beneath them.
  • the appropriate concentrations vary according to the material employed, but can easily be found by simple trial and experimentation. Generally concentrations suitable for normal printing or silk-screening are suitable, sometimes with minor variations.
  • VASELINE a petroleum jelly
  • EB-157 an epoxy based screen printing ink sold by Ink Dezyne Co.
  • 16-7800Q an ink jet printing ink sold by Video Jet Co. again similar to the 16-8200Q product mentioned above.
  • These materials are preferably diluted (e.g. 30%) with a suitable solvent (e.g. butyl Cellosolve) to slow down their drying times.
  • a suitable solvent e.g. butyl Cellosolve
  • the other materials can be used without dilution.
  • the masking materials of the present invention can be applied to the colour generating metals by simple conventional techniques, e.g. silk-screening, stamping, spraying through a mask, painting, brushing, screen painting, flexographic painting, rubbing on, etc.
  • the thickness of the layer of the material used to mask the anodizable metal does not appear to play a very critical role in the observed effects, and thicknesses which can easily be formed by the conventional techniques mentioned above can generally be employed in the present invention.
  • the process has been found to work with ink resist thicknesses of ⁇ l ⁇ m to lOO ⁇ m covering the practical working range, but thicknesses outside this range may also work. It may be the case that optimum thicknesses exist, but if so, the optimum thickness is likely to be different for each masking material.
  • the anodization conditions, electrolytes, metals and end uses of the resulting devices can be essentially the same as those described in the patent referred to above.
  • the concentration levels of the adhesion-reducing agent may be the same as those employed in the patent mentioned above or lower, e.g. as low as 0.003% by volume in the case of fluoride. While there is no precise upper limit for the amount of the adhesion-reducing agent employed in the electrolyte, generally the concentration should be no higher than that required to produce a suitable effect. Very high levels may exceed the ability of the masking material to block, counteract or neutralize the effect of the adhesion-reducing agent during the single anodization step. Concentrations of fluoride in the range of 30 to 90 ppm for tantalum and 150 to 400 ppm for niobium, are usually suitable.
  • the adhesion-reducing agent is dissolved in the electrolyte used for the anodization step, but it could also be coated on the surface of the masked colour-generating metal prior to the anodization step or otherwise made present during the anodization. In any event, the adhesion-reducing agent becomes partially or completely dissolved or dispersed in the electrolyte at the initial stage of the anodization.
  • Figure 1 is a cross section of a substrate suitable for the anodization procedure.
  • the substrate consists of an aluminum layer 10 having a very thin sputtered layer 11 of tantalum metal. This arrangement is more preferable than the use of a thick layer of Ta because of the high cost of Ta metal.
  • Figure 2 is a cross section similar to Fig. 1 showing the application of a masking material 12 to certain areas of the Ta layer 11, this material being of the type referred to above.
  • Figure 3 shows the structure after anodization has been carried out in an electrolyte containing an adhesion reducing agent, e.g. 0.25M citric acid solution containing a small amount of HF.
  • the anodization has resulted in the formation of an anodic metal oxide film 13 on the surface of the Ta layer 11.
  • the thickness of the anodic film 13 is uniform throughout since the presence of the masking material 12 does not affect the rate of anodization beneath the material compared with that taking place in the exposed areas of the Ta film.
  • the anodization can be carried out to completion, if desired, because Ta and other colour generating metals do not undergo further anodization once the anodic film has reached a certain maximum thickness. Once this thickness has been reached, the anodic film itself acts as a barrier to further anodization so that additional oxide is not formed.
  • the maximum thickness of the anodic film depends on the anodization voltage but is in the order of the wavelength of light for most practical voltages.
  • Figure 4 shows the structure after the removal of the material 12, e.g. by washing.
  • the areas of the device which were covered with the masking material 12, which areas are labelled a in the Figure, are visually indistinguishable from the uncovered areas labelled b.
  • the colour generated by the structure is uniform in terms of hue and brightness over the entire anodized surface area and any pattern or message resulting from the masking treatment is unobservable.
  • Figure 5 shows the structure of Fig. 4 after the application of a transparent plastic sheet 14 (e.g.
  • a layer of tantalum was sputter coated on an aluminum foil (37 ⁇ m) polyester laminate (25 ⁇ m) .
  • the foil was anodized at room temperature in a 0.25 M citric acid solution doped with hydrofluoric acid (65 ppm) .
  • Anodization was carried out at a constant voltage of 120 V for 30 seconds over which time the starting current of 7A decayed. This produced a deep blue colour.
  • the foil was then removed from the anodizing bath and the inked patterns, which had acted as a resist to the fluoride only, were stripped by rinsing in water. The foil was uniformly coloured deep blue with no evidence of the hidden messages.
  • the foil was run through a bench-type laminator, Doculam Standard Roll Laminator, and a transparent pressure sensitive overlayer film was applied on top and a transfer adhesive with a release liner backing was applied on the bottom.
  • the overlayer was a 12 ⁇ m thick film with a medium strength adhesive, Fasson 0.5 mil Super Cold Seal Over-laminating Film, while the under-layer was Fastape 1151 from Avery Co.
  • Example 1 A coil of tantalum (5 cm by 60 m) coated aluminum foil/polyester, similar in construction to Example 1, was used here. Application of the ink resist and anodization were carried out on a continuous laboratory pilot anodizing cell. The resist ink, masking pattern and silk screening apparatus were the same as described in Example 1.
  • the laboratory silk screening unit was mounted on line in the anodizing unit between the payoff and the anodizing section.
  • the foil was continuously run through the line at a speed of 4 fpm. It was anodized in a 0.25 M citric acid electrolyte, at room temperature, doped with HF (75 ppm) directly after the resist was manually applied with the screening unit.
  • An anodizing voltage of 150 V with a current of 4A and a dwell time of 40 seconds produced a deep blue colour. Strips of the material were removed from the line and the ink was stripped by rinsing with water. The foil displayed the blue colour with little evidence of hidden messages.
  • Example 3 The overlayer and underlayer materials were applied as in Example 1. After removal of the release liner, the sample was manually laminated with a roller to a sheet of painted aluminum. When lifted the sample displayed an array of blue VOID messages and also had a loss of colour in the unmasked areas. EXAMPLE 3
  • Example 2 An array of VOID messages as described in Example 1 was silk screened onto a coupon of Ta coated aluminum foil/polyester laminate, similar to that in Example 1.
  • the resist ink used was Advance Co. « s Alka-Strip R-569 which is an air dry silk screen printable etch resist.
  • the foil sample was anodized at room temperature in a 0.25 M citric acid electrolyte doped with HF (70 ppm) . Anodization was carried out for 30 seconds at 105 V.
  • the foil was removed from the anodizing bath and the ink was stripped by rinsing with water.
  • the sample was removed from the bath and the ink was stripped by rinsing with water.
  • the sample had a uniform wine/red colour with no evidence of hidden messages.
  • the overlayer and underlayer materials were the same as in Example 1 and were applied similarly with the Do ⁇ ulam Laminator. After removal of the release liner, the foil was manually laminated with a roller onto a sheet of painted aluminum. When lifted the sample displayed an array of wine/red coloured VOID messages and also had a loss of colour in the unmasked areas.
  • a coupon of Ta coated Al foil/polyester laminate (20 ⁇ m foil/25 ⁇ m polyester) was manually rubber stamped with the message PERSONAL & CONFIDENTIAL using a flexographic printing ink.
  • the ink, A48889, a flexographic printing ink product of BASF Ink Co., was reduced 30% with butyl cellosolve solvent.
  • the sample was anodized at room temperature in a 0.25 M citric acid electrolyte doped with HF (50 ppm) . Anodization was carried out for 20 seconds at 125 V.
  • the foil was removed from the anodizing bath and the ink was stripped by rinsing with water. It had a uniform deep blue colour with no evidence of the hidden message.
  • a coupon of Ta coated Al foil/polyester laminate (20 ⁇ m/25 ⁇ m polyester) was manually rubber stamped with the message PERSONAL & CONFIDENTIAL using an ink jet printing ink.
  • the ink, 16-8200Q, an ink jet printing ink was a product of Video Jet Systems.
  • the foil was anodized at room temperature in a 0.25 M citric acid electrolyte doped with HF (50 ppm) . Anodization was carried out for 30 seconds at 140 V.
  • the sample was removed from the bath and the ink was stripped by immersion in 4% NaOH at room temperature for 5 seconds followed by a water rinse.
  • the sample had a uniform light green colour with no evidence of a hidden message.
  • Peelable colour change devices were produced by coating limited areas of a layer of niobium supported on aluminum foil with R-569 screening ink from Advance Co. in the form of a message ("VOID") .
  • the coated samples were anodized for 20 seconds in an electrolyte containing 200 ppm of fluoride at two voltages.
  • the anodized samples were washed and a 5 mil heat seal overlayer was applied.
  • the results were as follows:
  • Peelable samples were made by applying drops of calibration grade n-heptadecane (a very pure substance of low conductivity) on Ta. Anodization was carried out for 20 seconds at 125 V in an electrolyte containing 60 ppm of fluoride. After peeling, the areas corresponding to the drops of the n-heptadecane were left intact (no colour change) indicating that the material blocked the fluoride.
  • n-heptadecane a very pure substance of low conductivity
  • the present invention can be used as a simplified process for producing colour change devices having a variety of uses, e.g. as tamper-evident devices for protecting containers and packages.

Abstract

The invention relates to a process for producing colour change devices incorporating latent indicia and colour change devices incorporating latent indicia produced by the process. The process involves anodizing a colour generating metal (11), having limited surface areas thereof covered by a mask (12), in the presence of an adhesion-reducing agent in order to produce a colour-generating laminate incorporating an anodic film (13) having detachable and non-detachable areas (b, a). The improvement of the invention involves forming the mask (12) from a masking material which permits anodization of areas of the surface covered by the mask while preventing the adhesion-reducing agent from exerting a substantial adhesion-reducing effect in the areas of the surface covered by the mask. The anodic film having the detachable and non-detachable areas (b, a) can then be formed by means of a single anodization step carried out in the presence of the adhesion-reducing agent. It is therefore unnecessary to employ two partial anodization steps as in the past, which simplifies the fabrication procedure and makes the procedure less expensive.

Description

Process for producing colour change devices incorporating latent indicia and the resulting devices
TECHNICAL FIELD
This invention relates to devices which undergo a change of colour when physically disturbed in some way (referred to hereinafter as colour change devices) and to processes for producing such devices. More particularly, the invention relates to a process for producing colour change devices which incorporate latent indicia. BACKGROUND ART
In our prior U.S. patent No. 4,837,061 to S its et. al. issued on June 6, 1989 (the disclosure of which is incorporated herein by reference) , a process for producing colour change devices, particularly those used as tamper evident structures, is disclosed. The process involves anodizing a colour generating metal such as a valve metal (e.g. Ta, Nb, Zr, Hf and Ti) , a refractory metal (e.g. W, V and Mo), a grey transition metal (e.g. Ni, Fe and Cr) , a semi-metal (e.g. Bi) or a semiconductor (e.g. si) , in order to form an anodic film of metal oxide having a thickness in the order of the wavelength of light on the surface of the colour generating metal. The resulting laminates exhibit a strong interference colour when illuminated with white light because of light interference effects caused by reflections of the light from the closely spaced metal and oxide surfaces and because of light absorption which takes place at the metal/oxide interface. The resulting structures can be used as colour change devices if the anodization is carried out in the presence of an adhesion reducing agent (e.g. a fluoride) which lowers the normally tenacious adhesion of the oxide film to the metal substrate. This allows the oxide film to be detached from the substrate with consequent destruction or modification of the exhibited colour. Reattachment of the oxide layer does not result in regeneration of the original colour, so the essentially irreversible colour change is an effective indicator of tampering.
The detachment of the anodic film from the metal substrate can be assisted by adhering a transparent or translucent sheet to the anodic film and using this sheet to reinforce the delicate film so that the film can be detached from the metal substrate in amounts large enough to be readily visible.
The above-mentioned patent also discloses a procedure for incorporating "latent indicia", e.g. initially invisible messages, patterns or designs, into the resulting colour change devices. This is achieved by masking off predetermined areas of the colour generating metal, carrying out partial anodization in the presence of the adhesion reducing agent to reduce the adhesion of the oxide film to the metal substrate in the unmasked areas, removing the mask and then continuing the anodization of the whole device in an electrolyte containing no adhesion reducing agent. The oxide film which is formed on the previously masked areas of the metal during the final anodization step adheres tenaciously to the metal but the film formed on the unmasked areas is detachable. As a consequence of this, when attempts are made to peel the entire anodic film from the metal substrate, the film detaches only in those areas which were originally unmasked and the generated colour is destroyed or changed in those areas but remains visible in the originally masked areas of the device. By making the masked areas have suitable shapes, the areas of the device exhibiting the original colour (or, conversely, those which lose the original colour) can take on the form of any desired message, pattern or design visible against a contrasting background following separation of the detachable parts of the anodic film.
There are variations of this technique, as disclosed in the above patent, but all involve two separate partial anodization steps, one with an adhesion reducing agent in the electrolyte and one without, and this is troublesome, especially when attempts are made to operate the procedure on a commercial scale. It would therefore be desirable to develop a procedure whereby latent indicia could be incorporated into colour change devices of this kind by means of a simpler process. DISCLOSURE OF THE INVENTION
An object of the present invention is to provide a process in which latent indicia can be incorporated into colour change devices of the type described above employing a single anodization step. Another object of the invention is to provide a process of this kind which is suited to continuous production techniques.
According to one aspect of the present invention there is provided, in process for producing colour change devices incorporating latent indicia by anodizing a colour-generating metal, having limited surface areas thereof covered by a mask, in the presence of an adhesion- reducing agent in order to produce a colour-generating laminate incorporating an anodic film having detachable and non-detachable areas, the improvement which comprises forming said mask from a masking material which permits anodization of areas of said surface covered by said mask while preventing said adhesion-reducing agent from exerting a substantial adhesion-reducing effect in said areas of said surface covered by said mask, and forming an anodic film having detachable and non-detachable areas by means of a single anodization step carried out in the presence of said adhesion-reducing agent.
The invention also relates to a colour change device incorporating latent indicia produced by a process as defined above.
By the term "optically thin" as used herein to describe an anodic film, we mean that the film has a thickness in the order of the wavelength of light so that the required interference effects can be produced for colour generation. BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a cross-section of a metal substrate on which the process of the invention can be carried out;
Figs. 2 to 4 are similar cross-sections showing steps in the process; and
Fig. 5 is a further cross-section showing the effects of peeling a structure produced according to the present invention. BEST MODEfS) FOR CARRYING OUT THE INVENTION The present invention is based, at least in part, on the unexpected finding that certain materials, for example certain inks and uncured resins, have the ability, when deposited in thin layers on anodizable metal substrates, of permitting anodization of the metal immediately beneath them to take place, but also of blocking, counteracting or neutralizing the effect of adhesion reducing agents contained in the electrolytes used for the anodizations. Consequently, if these materials are used to mask off areas of a metal where detachment of the anodic film is to be prevented, anodization of the metal in an electrolyte containing an adhesion reducing agent results in the growth of an anodic film of uniform thickness having detachable areas and non-detachable areas. Thus by properly choosing the masking material, the incorporation of latent indicia into colour change devices can be achieved by a process requiring just one anodization step.
The fact that certain materials, when used to form masks, have the ability to permit anodization of the surface they mask to take place while somehow blocking or counteracting the effect of the adhesion reducing agent is surprising. If anodization can take place beneath the material, the layer of the material must presumably be permeable to ions since anodization involves ion transportation. On the other hand, while adhesion reducing agents, such as fluorides, are generally ionic, it appears that the masking materials prevent these ions from reaching the metal surface and thus reducing the adhesion of the anodic film at this surface. These two effects consequently seem mutually exclusive, but nevertheless are observed to take place.
It is theorized that the blocking action of the masking material only occurs at the initial stage of anodizing. Once a thin layer of oxide has been formed, the masking material lifts off the surface of the metal and further anodizing does not alter the release pattern already imparted, i.e. the anodic film itself may serve to block or neutralize the effect of the adhesion-reducing agent.
The materials which have been found to be effective in the present in the invention are, in general, printing inks and conventional uncured resist materials, but it is likely that other materials may have similar effects and that these materials can be identified by simple experimentation. It should therefore be understood that the present invention is not limited to the preferred materials mentioned herein. It has been found, however, that when conventional resist materials are used, they should normally be in the uncured form because cured resists prevent anodization from taking place beneath the resist. This gives rise to a further advantage because it eliminates the need for an extra step of curing the resist and the difficulty of removing cured resists from the metal surface after anodization has taken place.
The inks and uncured resists employed in the present invention can usually be removed, after the anodization step, simply by washing the anodized product with water, although caustic aqueous solutions (e.g. 4% NaOH by weight) may be more effective, especially for the uncured resists.
At present, it has been found that only non-aqueous solvent-based materials work in the process of the invention because water-based materials, e.g. uncured water-based inks, tend to disintegrate or partially dissolve in the aqueous anodizing bath before anodization is complete.
Inks and resists which have been found to be effective are those containing polystyrene, polyamide, nitrocellulose, epoxy resins, alkyd resins, epoxy acrylates, etc. as well as non-aqueous solvents such as ethanol and methyl ethyl ketone, etc. It therefore appears that the inks or resists should desirably contain a long chain preferably cross-linkable organic polymer and a non-aqueous solvent, but there is no reason to exclude other materials which may be found by suitable experimentation.
The polymer solutions, inks and resists used in the present invention should be used at a suitable dilution to permit easy application while achieving the desired blocking or neutralization of the adhesion-reducing agent and permitting anodization to take place beneath them. The appropriate concentrations vary according to the material employed, but can easily be found by simple trial and experimentation. Generally concentrations suitable for normal printing or silk-screening are suitable, sometimes with minor variations.
Specific inks, resists and other materials which have been found useful to date include the following products identified by their commercial trade names: - MACUMAGE 19408 — an ultra violet curable screen printing etch resist sold by MacDermid Co. containing an epoxy acrylate polymer;
- R-569 ALKA-STRIP* — a screen printing etch resist sold by Advance Supply Co. containing an alkyd resin and glycol ether solvent;
- A48889* — a modified nitrocellulose-based flexographic ink sold by BASF Co. ;
- A48893* — a polyamide-based flexographic ink sold by BASF Co.; - CR4281* — a polyamide-based flexographic ink sold by BASF Co. ;
- VASELINE — a petroleum jelly; - EB-157 — an epoxy based screen printing ink sold by Ink Dezyne Co. ;
- 16-8200Q — an ink jet printing ink sold by Video Jet Co. which is a complex mixture of ingredients, the major one being polystyrene, and including methanol and methyl ethyl ketone solvent systems;
- 16-8700Q — an ink jet printing ink sold by Video Jet Co. similar in composition to the product immediately above;
16-7800Q — an ink jet printing ink sold by Video Jet Co. again similar to the 16-8200Q product mentioned above. These materials are preferably diluted (e.g. 30%) with a suitable solvent (e.g. butyl Cellosolve) to slow down their drying times. The other materials can be used without dilution.
The masking materials of the present invention can be applied to the colour generating metals by simple conventional techniques, e.g. silk-screening, stamping, spraying through a mask, painting, brushing, screen painting, flexographic painting, rubbing on, etc.
The thickness of the layer of the material used to mask the anodizable metal does not appear to play a very critical role in the observed effects, and thicknesses which can easily be formed by the conventional techniques mentioned above can generally be employed in the present invention. The process has been found to work with ink resist thicknesses of <lμm to lOOμm covering the practical working range, but thicknesses outside this range may also work. It may be the case that optimum thicknesses exist, but if so, the optimum thickness is likely to be different for each masking material.
The anodization conditions, electrolytes, metals and end uses of the resulting devices can be essentially the same as those described in the patent referred to above. The concentration levels of the adhesion-reducing agent may be the same as those employed in the patent mentioned above or lower, e.g. as low as 0.003% by volume in the case of fluoride. While there is no precise upper limit for the amount of the adhesion-reducing agent employed in the electrolyte, generally the concentration should be no higher than that required to produce a suitable effect. Very high levels may exceed the ability of the masking material to block, counteract or neutralize the effect of the adhesion-reducing agent during the single anodization step. Concentrations of fluoride in the range of 30 to 90 ppm for tantalum and 150 to 400 ppm for niobium, are usually suitable.
In most cases, the adhesion-reducing agent is dissolved in the electrolyte used for the anodization step, but it could also be coated on the surface of the masked colour-generating metal prior to the anodization step or otherwise made present during the anodization. In any event, the adhesion-reducing agent becomes partially or completely dissolved or dispersed in the electrolyte at the initial stage of the anodization.
Specific embodiments of the present invention are described in more detail below with reference to the accompanying drawings. Figure 1 is a cross section of a substrate suitable for the anodization procedure. The substrate consists of an aluminum layer 10 having a very thin sputtered layer 11 of tantalum metal. This arrangement is more preferable than the use of a thick layer of Ta because of the high cost of Ta metal.
Figure 2 is a cross section similar to Fig. 1 showing the application of a masking material 12 to certain areas of the Ta layer 11, this material being of the type referred to above. Figure 3 shows the structure after anodization has been carried out in an electrolyte containing an adhesion reducing agent, e.g. 0.25M citric acid solution containing a small amount of HF. The anodization has resulted in the formation of an anodic metal oxide film 13 on the surface of the Ta layer 11. The thickness of the anodic film 13 is uniform throughout since the presence of the masking material 12 does not affect the rate of anodization beneath the material compared with that taking place in the exposed areas of the Ta film. The anodization can be carried out to completion, if desired, because Ta and other colour generating metals do not undergo further anodization once the anodic film has reached a certain maximum thickness. Once this thickness has been reached, the anodic film itself acts as a barrier to further anodization so that additional oxide is not formed. The maximum thickness of the anodic film depends on the anodization voltage but is in the order of the wavelength of light for most practical voltages.
Figure 4 shows the structure after the removal of the material 12, e.g. by washing. The areas of the device which were covered with the masking material 12, which areas are labelled a in the Figure, are visually indistinguishable from the uncovered areas labelled b. The colour generated by the structure is uniform in terms of hue and brightness over the entire anodized surface area and any pattern or message resulting from the masking treatment is unobservable. Despite this, there is a difference between the areas a and b, namely that the HF in the electrolyte has weakened the adhesion between the Ta and oxide layers 11 and 13, respectively, in the areas b but not in the areas a. Figure 5 shows the structure of Fig. 4 after the application of a transparent plastic sheet 14 (e.g. made of polypropylene preferably heat sealed to the anodic film 13) and partial peeling of the plastic sheet from the substrate. As the peeling takes place, the anodic film 13 is detached from the underlying structure in the areas b, but remains attached to the underlying structure in the areas a because of the tenacious adhesion of the anodic film to the Ta in these areas. The device remaining after the peeling step appears coloured in the area a but has a metallic appearance in the areas b. Hence the latent message or pattern is made visible. If the aluminum layer 10 is in the form of a thin flexible foil, and if the transparent layer 14 is quite thick, the underlying structure can be peeled away from the layer 14 rather than vice versa, with the same effect. The invention is illustrated further by the following non-limiting Examples. EXAMPLE 1
A layer of tantalum was sputter coated on an aluminum foil (37 μm) polyester laminate (25 μm) . A mask consisting of a silk screen with an array of VOID messages, 1 cm in size and spaced 1 cm apart, was prepared by techniques well known in graphic arts. The screen formed a negative image with the VOID areas open and the surrounding area blocked off. The screen was then pressed onto a coupon of the Ta coated foil and a UV curable type screen printable plating and etch resist ink, Macumage 19408 (Manufactured by MacDermid Inc.), was applied through the open areas leaving an array of VOID messages as positive images.
Immediately the foil was anodized at room temperature in a 0.25 M citric acid solution doped with hydrofluoric acid (65 ppm) . Anodization was carried out at a constant voltage of 120 V for 30 seconds over which time the starting current of 7A decayed. This produced a deep blue colour. The foil was then removed from the anodizing bath and the inked patterns, which had acted as a resist to the fluoride only, were stripped by rinsing in water. The foil was uniformly coloured deep blue with no evidence of the hidden messages. Next the foil was run through a bench-type laminator, Doculam Standard Roll Laminator, and a transparent pressure sensitive overlayer film was applied on top and a transfer adhesive with a release liner backing was applied on the bottom. The overlayer was a 12 μm thick film with a medium strength adhesive, Fasson 0.5 mil Super Cold Seal Over-laminating Film, while the under-layer was Fastape 1151 from Avery Co.
The release liner was removed and the foil sample was manually laminated with a roller onto a sheet of painted aluminum. When lifted the colour disappeared on the unmasked areas resulting in an array of deep blue VOID messages against a grey, metallic background. EXAMPLE 2
A coil of tantalum (5 cm by 60 m) coated aluminum foil/polyester, similar in construction to Example 1, was used here. Application of the ink resist and anodization were carried out on a continuous laboratory pilot anodizing cell. The resist ink, masking pattern and silk screening apparatus were the same as described in Example 1.
The laboratory silk screening unit was mounted on line in the anodizing unit between the payoff and the anodizing section. The foil was continuously run through the line at a speed of 4 fpm. It was anodized in a 0.25 M citric acid electrolyte, at room temperature, doped with HF (75 ppm) directly after the resist was manually applied with the screening unit. An anodizing voltage of 150 V with a current of 4A and a dwell time of 40 seconds produced a deep blue colour. Strips of the material were removed from the line and the ink was stripped by rinsing with water. The foil displayed the blue colour with little evidence of hidden messages.
The overlayer and underlayer materials were applied as in Example 1. After removal of the release liner, the sample was manually laminated with a roller to a sheet of painted aluminum. When lifted the sample displayed an array of blue VOID messages and also had a loss of colour in the unmasked areas. EXAMPLE 3
An array of VOID messages as described in Example 1 was silk screened onto a coupon of Ta coated aluminum foil/polyester laminate, similar to that in Example 1. The resist ink used was Advance Co. «s Alka-Strip R-569 which is an air dry silk screen printable etch resist. Directly after screening the foil sample was anodized at room temperature in a 0.25 M citric acid electrolyte doped with HF (70 ppm) . Anodization was carried out for 30 seconds at 105 V.
The foil was removed from the anodizing bath and the ink was stripped by rinsing with water. The sample was removed from the bath and the ink was stripped by rinsing with water. The sample had a uniform wine/red colour with no evidence of hidden messages.
The overlayer and underlayer materials were the same as in Example 1 and were applied similarly with the Doσulam Laminator. After removal of the release liner, the foil was manually laminated with a roller onto a sheet of painted aluminum. When lifted the sample displayed an array of wine/red coloured VOID messages and also had a loss of colour in the unmasked areas. EXAMPLE 4
A coupon of Ta coated Al foil/polyester laminate (20 μm foil/25 μm polyester) was manually rubber stamped with the message PERSONAL & CONFIDENTIAL using a flexographic printing ink. The ink, A48889, a flexographic printing ink product of BASF Ink Co., was reduced 30% with butyl cellosolve solvent. Directly after message application the sample was anodized at room temperature in a 0.25 M citric acid electrolyte doped with HF (50 ppm) . Anodization was carried out for 20 seconds at 125 V.
The foil was removed from the anodizing bath and the ink was stripped by rinsing with water. It had a uniform deep blue colour with no evidence of the hidden message.
A 5 mil thick polyester film overlayer, having a heat sensitive adhesive, was laminated onto the foil with the same Doculam Laminator, as in Example 1, set to an operating temperature of 150βC.
The overlayer could be peeled manually. The colour disappeared on the unmasked areas leaving a blue message of PERSONAL & CONFIDENTIAL. Pressing the plastic overlayer back onto the foil did not restore the colour. EXAMPLE 5
A coupon of Ta coated Al foil/polyester laminate (20 μm/25 μm polyester) was manually rubber stamped with the message PERSONAL & CONFIDENTIAL using an ink jet printing ink. The ink, 16-8200Q, an ink jet printing ink, was a product of Video Jet Systems.
Immediately after message stamping the foil was anodized at room temperature in a 0.25 M citric acid electrolyte doped with HF (50 ppm) . Anodization was carried out for 30 seconds at 140 V.
The sample was removed from the bath and the ink was stripped by immersion in 4% NaOH at room temperature for 5 seconds followed by a water rinse. The sample had a uniform light green colour with no evidence of a hidden message.
A 5 mil thick polyester overlayer film, having a heat sensitive adhesive, was laminated with the Doculam Laminator, as in Example 1, set at an operating temperature of 150°C.
The overlayer could be peeled manually. The colour disappeared on the unmasked areas leaving a light green message of PERSONAL & CONFIDENTIAL. Pressing the plastic back onto the foil did not restore the colour. EXAMPLE 6
Peelable colour change devices were produced by coating limited areas of a layer of niobium supported on aluminum foil with R-569 screening ink from Advance Co. in the form of a message ("VOID") . The coated samples were anodized for 20 seconds in an electrolyte containing 200 ppm of fluoride at two voltages. The anodized samples were washed and a 5 mil heat seal overlayer was applied. The results were as follows:
• 90 V blue - message visible after peeling
• 120 V pink - message visible after peeling. The masking material clearly blocked the effect of the fluoride in the coated areas.
EXAMPLE 7
Messages were screened on Ta samples using Vaseline as the masking material and anodization was carried out for 20 seconds at voltages of 110, 125 and 150 V in electrolytes containing 60 ppm of fluoride. After anodizing, a 5 mil heat seal overlayer was applied.
After removal of the overlayer the message remained, indicating that Vaseline works as a resist in the process. EXAMPLE 8
Peelable samples were made by applying drops of calibration grade n-heptadecane (a very pure substance of low conductivity) on Ta. Anodization was carried out for 20 seconds at 125 V in an electrolyte containing 60 ppm of fluoride. After peeling, the areas corresponding to the drops of the n-heptadecane were left intact (no colour change) indicating that the material blocked the fluoride. INDUSTRIAL APPLICABILITY
The present invention can be used as a simplified process for producing colour change devices having a variety of uses, e.g. as tamper-evident devices for protecting containers and packages.

Claims

CLAIMS ;
1. A process for producing colour change devices incorporating latent indicia by anodizing a colour- generating metal (11) , having limited surface areas thereof covered by a mask (12) , in the presence of an adhesion-reducing agent in order to produce a colour- generating laminate incorporating an anodic film (13) having detachable and non-detachable areas (b,a), characterized in that said mask (12) is formed from a masking material which permits anodization of areas of said surface covered by said mask while preventing said adhesion-reducing agent from exerting a substantial adhesion-reducing effect in said areas of said surface covered by said mask, and forming an anodic film (13) having detachable and non-detachable areas (b,a) by means of a single anodization step carried out in the presence of said adhesion-reducing agent.
2. A process according to Claim 1, characterized in that said masking material comprises a non-aqueous solution of an organic polymer.
3. A process according to Claim 1, characterized in that said masking material comprises an uncured non- aqueous solvent based resist.
4. A process according to Claim 1, characterized in that said masking material comprises a non-aqueous printing ink.
5. A process according to Claim 1, characterized in that said masking material comprises an organic polymer selected from polystyrene, polyamide, nitrocellulose, epoxy resin, alkyd resin and epoxy acrylate.
6. A process according to Claim 5, characterized in that said mask further comprises a non-aqueous solvent selected from methanol, methy ethyl ketone and mixtures thereof.
7. A process according to Claim 1 characterized in that said masking material comprises an ink or uncured resist selected from the products identified by the tradenames MACUMAGE 19408, R-569 ALKA-STRIP, A 488889, A 48893, CR4281, VASELINE, EB 157, 16-8200Q, 16-8700Q and 16-7800Q.
8. A process according to Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6 or Claim 7, characterized in that said masking material is applied to said part of the
5 surface of said metal (11) to a thickness in the range of lμ to lOOμ .
9. A process according to Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6 or Claim 7, characterized in that said masking material is applied to said part of the 0 surface of the metal (11) by a method selected from silk- screening, stamping, spraying through a mask, painting, brushing, screen painting, flexographic printing and rubbing on.
10. A process according to Claim 1, Claim 2, Claim 3, 5 Claim 4, Claim 5, Claim 6 or Claim 7, characterized in that said adhesion reducing agent is a fluoride.
11. A process according to Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6 or Claim 7, characterized in that said adhesion reducing agent is HF. 0
12. A process according to Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6 or Claim 7, characterized in that said colour generating metal (11) is selected from valve metals, refractory metals, semi-metals and semiconductors. 5
13. A process according to Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6 or Claim 7, characterized in that said colour generating metal (11) is selected from Ta, Nb, Zr, Hf, Ti, W, V, Mo, Ni, Fe, Cr, Bi and Si.
14. A process according to Claim 1, Claim 2, Claim 3, 30 Claim 4, Claim 5, Claim 6 or Claim 7, characterized in that said colour generating metal (11) comprises Ta.
15. A process according to Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6 or Claim 7, characterized in that said colour generating metal (11) comprises Nb.
35 16. A process according to Claim 1, characterized in that said colour generating metal (11) is in the form of a thin film supported on a substrate (10) .
17. A process according to Claim 16, characterized in that said substrate (10) is thin and flexible.
18. A process according to Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6 or Claim 7, characterized in that said process further comprises adhering a transparent or translucent sheet (14) onto said anodic oxide film (13) to facilitate detachment of parts of said film from said colour generating metal (11) .
19. A colour change device incorporating latent indicia, characterized in that said device is produced by a process according to Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6 or Claim 7.
PCT/CA1991/000105 1990-04-17 1991-04-03 Process for producing colour change devices incorporating latent indicia and the resulting devices WO1991016701A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019920701595A KR920704255A (en) 1990-04-17 1991-04-03 Process for manufacturing discoloration apparatus incorporating latent signal and apparatus therefor
EP91907216A EP0526480B1 (en) 1990-04-17 1991-04-03 Process for producing colour change devices incorporating latent indicia and the resulting devices
JP91506260A JPH05506317A (en) 1990-04-17 1991-04-03 Method for manufacturing a color changing device incorporating latent features and device manufactured by the method
DE69103411T DE69103411T2 (en) 1990-04-17 1991-04-03 METHOD FOR THE PRODUCTION OF COLOR-CHANGING DEVICES PROVIDED WITH LATENT MARK, AND DEVICES MANUFACTURED WITH THIS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/510,175 US5062928A (en) 1990-04-17 1990-04-17 Process for producing color change devices incorporating latent indicia and the resulting devices
US510,175 1990-04-17

Publications (1)

Publication Number Publication Date
WO1991016701A1 true WO1991016701A1 (en) 1991-10-31

Family

ID=24029670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1991/000105 WO1991016701A1 (en) 1990-04-17 1991-04-03 Process for producing colour change devices incorporating latent indicia and the resulting devices

Country Status (10)

Country Link
US (1) US5062928A (en)
EP (1) EP0526480B1 (en)
JP (1) JPH05506317A (en)
KR (1) KR920704255A (en)
AT (1) ATE109916T1 (en)
AU (1) AU645306B2 (en)
CA (1) CA2071987A1 (en)
DE (1) DE69103411T2 (en)
ES (1) ES2057884T3 (en)
WO (1) WO1991016701A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1080184C (en) * 1996-05-03 2002-03-06 巴克斯特国际有限公司 Orienting extrusion processes for medical tubing

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220140A (en) * 1991-06-17 1993-06-15 Alcan International Limited Susceptors for browning or crisping food in microwave ovens
US5401575A (en) * 1992-12-04 1995-03-28 Aluminum Company Of America Aluminum sheet coated with a lubricant comprising dioctyl sebacate and petrolatum
US5672401A (en) * 1995-10-27 1997-09-30 Aluminum Company Of America Lubricated sheet product and lubricant composition
DE19747000C2 (en) * 1997-10-24 2003-10-30 Tesa Ag Laser labels and their use
US6004656A (en) * 1997-11-14 1999-12-21 3M Innovative Properties Company Color changeable device
EP1547055B1 (en) * 2002-09-30 2007-03-21 Polymeric Converting LLC Color changing tape, label, card and game intermediates
US6790335B2 (en) * 2002-11-15 2004-09-14 Hon Hai Precision Ind. Co., Ltd Method of manufacturing decorative plate
TWI280989B (en) * 2002-12-20 2007-05-11 Sutech Trading Ltd Method of manufacturing cover with cellular blind holes
US7387740B2 (en) * 2003-01-17 2008-06-17 Sutech Trading Limited Method of manufacturing metal cover with blind holes therein
US20110171411A1 (en) * 2010-01-14 2011-07-14 Jordan Robert C Asymmetrical Security Seal
US10029841B2 (en) * 2013-05-07 2018-07-24 Baby Blue Brand Damage indicating packaging
US11542080B2 (en) 2013-05-07 2023-01-03 BBB Holding Company Track and trace packaging and systems
PL2851194T3 (en) * 2013-09-20 2016-06-30 Hueck Folien Gmbh Safety element, in particular safety label

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303400A2 (en) * 1987-08-10 1989-02-15 Alcan International Limited Tamper-evident structures

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US841321A (en) * 1905-11-29 1907-01-15 Howard Label Company Label.
US2360325A (en) * 1942-03-18 1944-10-17 Durochrome Co Inc Method and means for insuring sabotage detection
US4082573A (en) * 1974-01-02 1978-04-04 Southwire Company High tensile strength aluminum alloy conductor and method of manufacture
DE2539163A1 (en) * 1975-09-03 1977-03-17 Hoechst Ag FILM OR FILM COMPOSITE MADE OF THERMOPLASTIC PLASTIC WITH OPTICAL INHOMOGENITIES
US4082873A (en) * 1976-11-02 1978-04-04 Monarch Marking Systems, Inc. Switch-proof label
JPS54115907A (en) * 1977-12-02 1979-09-08 Barry Graham Charles Thin sheet printed with transparent ink* and developer eraser for said ink
US4516679A (en) * 1982-11-04 1985-05-14 Simpson Carolyn N Tamper-proof wrap
US4424911A (en) * 1982-12-10 1984-01-10 Kenneth R. Bowers Container tamper detection device
US4480760A (en) * 1982-12-21 1984-11-06 Milton Schonberger Tamper visible indicator for container lid
US4519515A (en) * 1982-12-21 1985-05-28 Milton Schonberger Disc for indicator for tamper-evident lid
US4489841A (en) * 1983-02-18 1984-12-25 Tri-Tech Systems International, Inc. Tamper evident closures and packages
US4511052A (en) * 1983-03-03 1985-04-16 Klein Howard J Container seal with tamper indicator
CH661368A5 (en) * 1984-01-03 1987-07-15 Landis & Gyr Ag Diffraction optical safety element.
US4557505A (en) * 1984-01-05 1985-12-10 Minnesota Mining And Manufacturing Company Stress-opacifying tamper indicating tape
US4502605A (en) * 1984-06-29 1985-03-05 Denerik Creativity, Inc. Container closure integrity system
US4705300A (en) * 1984-07-13 1987-11-10 Optical Coating Laboratory, Inc. Thin film optically variable article and method having gold to green color shift for currency authentication
US4591062A (en) * 1984-12-24 1986-05-27 Jeffrey Sandhaus Tamper-evident closure apparatus
NZ218573A (en) * 1985-12-23 1989-11-28 Optical Coating Laboratory Inc Optically variable inks containing flakes
US4721217A (en) * 1986-08-07 1988-01-26 Optical Coating Laboratory, Inc. Tamper evident optically variable device and article utilizing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303400A2 (en) * 1987-08-10 1989-02-15 Alcan International Limited Tamper-evident structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1080184C (en) * 1996-05-03 2002-03-06 巴克斯特国际有限公司 Orienting extrusion processes for medical tubing

Also Published As

Publication number Publication date
CA2071987A1 (en) 1991-10-18
ATE109916T1 (en) 1994-08-15
KR920704255A (en) 1992-12-19
AU645306B2 (en) 1994-01-13
AU7549091A (en) 1991-11-11
US5062928A (en) 1991-11-05
DE69103411D1 (en) 1994-09-15
EP0526480A1 (en) 1993-02-10
EP0526480B1 (en) 1994-08-10
DE69103411T2 (en) 1994-12-01
JPH05506317A (en) 1993-09-16
ES2057884T3 (en) 1994-10-16

Similar Documents

Publication Publication Date Title
US5084143A (en) Color change devices incorporating areas of contrasting appearance
EP0526480B1 (en) Process for producing colour change devices incorporating latent indicia and the resulting devices
CA1316128C (en) Tamper-evident structures
US5015318A (en) Method of making tamper-evident structures
US5156720A (en) Process for producing released vapor deposited films and product produced thereby
CA2083845C (en) Color change devices activatable by bending
US3450606A (en) Multi-colored aluminum anodizing process
US4994314A (en) Color change devices incorporating thin anodic films
US3089800A (en) Foil applique structure
JP3100633B2 (en) Method for producing an anode film exhibiting a colored pattern and structure incorporating the film
EP0188051A2 (en) Transfer sheet
CA1315574C (en) Colour change devices incorporating thin anodic films
US9498947B2 (en) Method for creating tamper-evident labels
EP0381512A2 (en) Bilayer oxide film and process for producing same
JP3502635B2 (en) Manufacturing method of anodized film showing colored pattern
JPH1129882A (en) Etching method for base material and acidic ink to be used for the same
JPH0281082A (en) Formation of embossed hologram sheet
CA2042161A1 (en) Process for producing anodic films exhibiting coloured patterns and structures incorporating such films
JPS6311389A (en) Transfer base paper
DE2239018A1 (en) COATED MATERIALS
DE1807358A1 (en) Photosensitive products and ensitised plates for use in
EP1523586A2 (en) In-line demetallization process for flexible metallized substrates
JPH05301442A (en) Production of transfer foil
JPH02127099A (en) Manufacture of transfer printing sheet
KR20020040002A (en) method for coating treatment of the aluminium or the same alloy surface

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH DE DK ES FI GB HU JP KP KR LK LU MC MG MW NL NO PL RO SD SE SU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB GR IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2071987

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1991907216

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991907216

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1991907216

Country of ref document: EP