WO1990012511A1 - Gradual release structures for chewing gum - Google Patents

Gradual release structures for chewing gum Download PDF

Info

Publication number
WO1990012511A1
WO1990012511A1 PCT/US1990/000430 US9000430W WO9012511A1 WO 1990012511 A1 WO1990012511 A1 WO 1990012511A1 US 9000430 W US9000430 W US 9000430W WO 9012511 A1 WO9012511 A1 WO 9012511A1
Authority
WO
WIPO (PCT)
Prior art keywords
active agent
wall material
fibers
gradual release
aspartame
Prior art date
Application number
PCT/US1990/000430
Other languages
French (fr)
Inventor
Joo Hae Song
Original Assignee
Wm. Wrigley Jr. Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wm. Wrigley Jr. Company filed Critical Wm. Wrigley Jr. Company
Priority to AT90902500T priority Critical patent/ATE95983T1/en
Priority to JP2502900A priority patent/JPH0751049B2/en
Publication of WO1990012511A1 publication Critical patent/WO1990012511A1/en
Priority to FI906250A priority patent/FI906250A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/10Chewing gum characterised by the composition containing organic or inorganic compounds characterised by the carbohydrates used, e.g. polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/02Apparatus specially adapted for manufacture or treatment of chewing gum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/18Chewing gum characterised by shape, structure or physical form, e.g. aerated products
    • A23G4/20Composite products, e.g. centre-filled, multi-layer, laminated

Definitions

  • the invention is related to delivery systems for the gradual release of active agents and processes for making such systems and is particularly directed to delivery systems for use in chewing gum that have an active agent that is gradually released by direct interaction with a solvent and melt spinning processes for making such systems.
  • the present invention is an advance in the art of delivery systems for the gradual release of active agents.
  • This invention enables an active agent to be gradually released through the direct interaction of the agent and a solvent either within channels in the structure enclosing the active agent or through exposure of the active agent to the solvent when the structure enclosing the active agent is deformed.
  • the gradual release of active agents could be accomplished by the diffusion of the active agent through an encapsulating material.
  • active agents such as drugs
  • a discussion of such encapsulated structures is found in R. Dunn & D. Lewis, Fibrous Polymers for the Delivery of Contra ⁇ ceptive Steroids to the Female Reproductive Tract, Controlled Release of Pesticides and Pharmaceuticals 125-46 (D. Lewir, ed. 1981), which describes fiber-like structures.
  • an encapsulating shell around the active agent could be ruptured causing exposure of the active agent to various solvents.
  • a particular feature of this invention is to provide a gradual release structure having an active agent that is gradually released through direct inter ⁇ action with a solvent.
  • a further feature of this in ⁇ vention is to provide a novel process for making such structures using melt spinning techniques.
  • a chewing gum which comprises a gradual release structure.
  • the gradual release structure is formed by melt spinning a mixture of active agent and wall material, having more than zero but less than about 55 percent by weight active agent, into a fiber. If necessary, the fiber is then stretched. The fiber is cut.
  • a process for making chewing gum is further provided which comprises the steps of preparing a gum base, preparing a water soluble bulk portion, and preparing a gradual release structure.
  • the gradual release structure is made by preparing a mixture of active agent and wall material, having more than zero but less than about 55 percent by weight active agent. This mixture is melt spun into a fiber which is cut.
  • the gradual release structure, the gum base, and the water soluble bulk portion are combined.
  • Fig. 1 is an illustration of a gradual release structure in fiber form.
  • Fig. 1A is an illustration of the gradual release structure of Fig. 1 after it has been subjected to a solvent.
  • Fig. 2 is a Scanning Electron Photomicrograph (SEPM) of a gradual release structure showing the end and side of a fiber.
  • SEPM Scanning Electron Photomicrograph
  • Fig. 3 is a SEPM of a gradual release structure showing the side of a fiber.
  • Figs. 4 & 5 are SEPMs of a gradual release structure showing the ends of a fiber and the channels within the encapsulating structure.
  • Fig. 6 is an SEPM showing the side and end of a fiber.
  • Fig. 7 is a SEPM showing the side of a fiber.
  • Figs. 8 & 9 are SEPMs showing the ends of a fiber.
  • Big. 10 is a graph showing the differences in sweetness over time between encapsulation and the gradual release structures of the present invention when used in chewing gums.
  • An embodiment of a structure made in accordance with the present invention is a fiber having a support matrix.
  • the support matrix is made up of a wall material.
  • An active agent is dispersed throughout the support matrix and may be in contact with itself forming a contiguous phase within the support matrix. The active agent, however, does not necessarily have to be in a contiguous phase.
  • the ends of the support matrix have openings, exposing the active agent. Additionally, the active agent may be exposed along the sides of the fiber.
  • This structure may be made by stretching an already formed fiber. It is believed that the stretching action causes the wall material to orient itself longitudinally.
  • the amount of active agent in this structure is from about 10 percent by weight to about 55 percent by weight. It is believed, however, that loading as low as a fraction of a percent will exhibit gradual release characteristics.
  • the loading of the structure is influenced by the characteristics of the active agent and the solubility or extractability from the support matrix.
  • the fibers After the fibers are formed by melt spinning they may be stretched by applying a draw, or stretching force, to the fibers.
  • the draw can be applied at a winder or by venturi after the fibers exit the die.
  • Other methods of stretching fibers known to the art may also be employed.
  • the wall material is less soluble in the solvent then the active agent and preferably the wall material should be substantially insoluble in the solvent under the conditions in which the fiber is being used.
  • the solvent first dissolves the active agent in the openings at the ends of the support matrix. If the active agent is in a contiguous phase within the support matrix, the active agent in those openings is dissolved and spaces or channels in the support matrix are created. The solvent fills these channels and begins to dissolve the newly exposed active agent, which was in contact with the now dissolved active agent located in the openings at ends of the support matrix. Thus, the length of the channels in the support matrix gradually increases as the active agent directly in contact with the solvent is dissolved.
  • the support matrix does not prevent the dissolution of the active agent because the active agent is in a contiguous phase. Rather, the support matrix serves to limit the rate of dissolution by restricting the area of active agent in direct contact with the solvent to the ends of the channels within the support matrix. Thus, the solvent can gradually work its way into the fiber by following the contiguous phase of active agent.
  • the support matrix can be deformed to expose new surface areas of active agent and thus bring them in direct contact with the solvent.
  • the pressure from chewing will flatten, stretch, and deform the fibers exposing new surface areas of active agent to the solvent.
  • This gradual release by deformation should occur even if the active agent is not in a contiguous phase.
  • Higher molecular weight polymers used as wall material will not as readily exhibit this gradual release by deformation. For instance, it is believed that polyvinylacetate having a molecular weight greater than about 100,000 will not exhibit gradual release by deformation during gum chewing.
  • the deformation of the support matrix may create channels, similar to those described above, through which the solvent can be brought in contact with the active agent.
  • the active agent chosen may dissolve by diffusion through the wall material.
  • Fig. 1 Another embodiment of a gradual release structure made in accordance with the present invention is illustrated in Fig. 1.
  • the structure is in the form of a fiber 11 having a support matrix 12.
  • the support matrix is made up of a wall material.
  • An active agent 13 is dispersed throughout the support matrix and is in contact with itself forming a contiguous phase within the support matrix.
  • the ends 14 and 15 of the support matrix have openings, exposing the active agent.
  • the active agent may be exposed along the sides of the fiber as can be seen in Figs. 2 and 3.
  • the active agent makes up at least about 25 percent of the structure by weight.
  • Gradual release of the active agent in this embodiment occurs when the fiber is brought in contact with a solvent, or dispersing media, for the active agent.
  • the wall material is less soluble in the solvent then the active agent and preferably the wall material should be substantially insoluble in the solvent under the conditions in which the fiber is being used.
  • the solvent first dissolves the active agent in the openings at the ends 14 and 15 of the support matrix. As this material is dissolved spaces or channels 13a in the support matrix are opened. The solvent fills these channels and begins to dissolve the newly exposed active agent, which was in contact with the now dissolved active agent located in the openings at ends of the support matrix. Thus, the length of the channels in the support matrix gradually increase as the active agent directly in contact with the solvent is dissolved.
  • the support matrix does not prevent the dissolution of the active agent because the active agent is in a contiguous phase. Fig. 1 and 1A. Rather, the support matrix serves to limit the rate of dissolution by restricting the area of active agent in direct contact with the solvent to the end of the channels within the support matrix. Thus, the solvent can gradually work its way into the fiber by following the contiguous phase of active agent. Additionally, depending on the wall material chosen, the active agent chosen, and the solvent being used a small amount of the active agent may dissolve by diffusion through the wall material. Gradual release by deformation may also be exhibited by this structure..
  • Figs. 4 and 5 contain SEPMs of fibers made in accordance with the present invention. These fibers were subjected to a solvent. The spaces or channels 13a where the active agent was dissolved out are shown in these SEPMs.
  • the active agent can be any material such as artificial sweeteners, powdered flavor oil, or drugs, which the gradual release of may be desired. They must be solid or in the form of powders, including liquids encapsulated by spray drying techniques or liquids adsorbed or absorbed into or onto a supporting matrix, i.e., silica, zeolite, carbon black, or porous matrices. Combinations of different active agents in the same structure may also be employed.
  • possible active agents may be: high intensity sweeteners, such as aspartame, alitame, acesulfam-k and its salts, saccharin and its salts, thaumatin, sucralose, cyclamic acid and its salts, onellin, and dihydrochalcones; acidulents, such as malic acid, citric acid, tartaric acid, and fumaric acid; salt, such as sodium chloride and potassium chloride; bases, such as, magnesium hydroxide and urea; flavors, such as spray dried natural or synthetic adsorbed onto silica, and absorbed into maltodextrin; flavor modifiers, such as thaumatin; breath fresheners, such as zinc chloride, encapsulated menthol, encapsulated anise, zinc glucinate, and encapsulated chlorophyll; and medicaments.
  • high intensity sweeteners such as aspartame, alitame, acesulfam-k and its salts, saccharin and its salt
  • the wall material can be any spinnable synthetic or nature polymer such as polyethylene, polyvinylacetate, polyesters, chitosan, and copolymers and polymer blends of these polymers.
  • the active agent and wall material must meet the solubility requirements discussed above. Additionally, they must be immiscible with each other and capable of being uniformly dispersed when mixed together during the melt spinning procedure.
  • Chewing gum consists of a gum base to which a water soluble bulk portion may normally be added.
  • Chewing gum bases generally comprise a combination of elastomers and resins together with plasticizers and inorganic fillers.
  • the gum base may contain natural gums and/or synthetic elastomers and resins. Natural gums include both elastomers and resins. Suitable natural gums include, but are not limited to chicle, jellutong, sorva, nispercftunu, niger gutta, massaranduba belata, and chiquibul.
  • the gum base When no natural gums are used, the gum base is referred to as "synthetic" and the natural gums are replaced with synthetic elastomers and resins.
  • Synthetic elastomers may include polyisoprene, poly- isobutylene, isobutylene-isoprene copolymer, styrene butadiene rubber, a copolymer form Exxon Corp. under the designation "butyl rubber,” and the like.
  • the amount of elastomer used in the gum base can typically be varied between about 10 and about 20 percent depending on the specific elastomer selected and on the physical properties desired in the final gum base. For example, the viscosity, softening point, and elasticity can be varied.
  • Resins used in gum bases may include polyvinylacetate, polyethylene, ester gums, (resin esters of glycerol), polyvinylacetate polyethylene copolymers, polyvinylacetate polyvinyl laurate copolymers, and polyterpenes. Additionally, a polyvinylacetate obtained from Monsanto under the designation "Gelva” and a polyterpene obtained from Hercules under the designation "Piccolyte” may be used.
  • the amount of resin used in the gum base can be varied depending on the particular resin selected and on the physical properties desired in the final gum base.
  • the gum base also includes plasticizers selected from the group consisting of fats, oils, waxes, and mixtures thereof.
  • the fats and oils can include tallow, hydrogenated and partially hydrogenated vegetable oils, and cocoa butter.
  • Commonly employed waxes include paraffin, microcrystalline and natural waxes such as beeswax and carnauba.
  • mixtures of the plasticizers may be used such as a mixture of paraffin wax, partially hydrogenated vegetable oil, and glycerol monostearate.
  • the gum base also includes a filler component.
  • the filler component is preferably selected from the group consisting of calcium carbonate, magnesium carbonate, talc, dicalcium phos ⁇ phate and the like.
  • the filler may constitute between about 5 to about 60 percent by weight of the gum base.
  • the filler comprises about 5 to about 50 percent by weight of the gum base.
  • gum bases may also contain optional ingredients such as antioxidants, colors, and emulsifiers.
  • ingredients of the gum base can be combined in a conventional manner.
  • the elastomer, resins, plasticizers, and the filler are typically softened by heating and then mixed for a time sufficient to insure a homogenous mass.
  • the mass can be formed into slabs, or pellets and allowed to cool before use in making chewing gum.
  • the molten mass can be used directly in a chewing gum making process.
  • the gum base constitutes between about 5 to about 95 percent by weight of the gum. More preferably the insoluble gum base comprises between 10 and 50 percent by weight of the gum and most preferably aboit 20 to about 35 percent by weight of the gum.
  • the flavoring agents are typically water insoluble.
  • the water soluble portion dissipates with a portion of the flavoring agent over a period of time during chewing, while the gum base portion is retained in the mouth throughout the chew.
  • the water soluble portion of the chewing gum may further comprise softeners, sweeteners, flavoring agents and combinations thereof.
  • Softeners are added to the chewing gum in order to optimize the chewability and mouth feel of the gum.
  • Softeners also known in the art as plasticizers or plasticizing agents, gener ⁇ ally constitute between about 0.5 to about 15.0 percent by weight of the chewing gum.
  • Softeners contemplated by the present invention include glycerin, lecithin, and combinations thereof.
  • aqueous sweetener solutions such as '.those containing sorbitol, hydrogenated star ⁇ h hydrolysates, corn syrup and combinations thereof may be used as softeners and binding agents inr he chewing gum.
  • Sugar sweeteners generally include saccharide containing components commonly known in the chewing gum art which comprise: ut are not limited to sucrose, dextrose, maltose/ • dextrin, dried invert sugar, fructose, levulose, galactose, corn syrup solids, and the like, alone or in any combination.
  • Nonsugar sweeteners can include sorbitol, mannitol, and xylitol.
  • ingredients such as colors, emulsi- fiers and pharmaceutical agents may be added to the chewing gum.
  • chewing gum is manufactured by sequentially adding the various chewing gum ingredients to a commercially available mixer known in the art. After the ingredients have been thoroughly mixed, the gum mass is discharged from the mixer and shaped into the desired form -rsuch as by rolling into sheets and cutting into sticks, extruding into chunks or casting into pellets.
  • the ingredients are mixed by first melting the gum base and adding it to the running mixer.
  • the base • /. may also be melted in the mixer itself.
  • Color or emulsifiers may also be added at this time.
  • a softener such as glycerin may also be added at this time along with syrup and a portion of bulking agent. Further portions of the bulking agent may then be added to the mixer.
  • the flavoring agent is typically added with the final portion of the bulking agent.
  • Gradual release structures that embody the present invention are made by melt spinning a uniform mixture of active agent and wall material into a fiber.
  • the general principles for melt spinning polymers are well known in the art and are described in F. Billmeyer, Jr., Text Book of Polymer Science, 518-22 (Wiley International Edition, 2nd), which is incor ⁇ porated herein by reference.
  • a mixture of a polymer for the wall material and an active agent are prepared in powder or pellet form.
  • the particles of polymer and active agent are mixed together into a homogeneous phase.
  • the concentration of active agent in this mixture is such that the particles of active agent may be in contact with each other.
  • the mixture is melt spun to produce fibers. These fibers are then gently broken into smaller sizes.
  • Fiber brittleness eases the cutting process of the fiber and can be achieved by concentrating the solid active agent particles.
  • fibers of a size such that they can pass through a 60 mesh screen are used.
  • a Model 1125 Instron Capillary Rheometer with capillary hole diameter of 152 microns was used to extrude fibers.
  • the barrel diameter was 3/8 inches.
  • the die had a Length to diameter ratio of 0.083 and had 1 hole.
  • L-aspartyl-L-phenylalanine methyl ester (Aspartame) was used as the active agent.
  • a polyvinylacetate (PVAc) having a molecular weight from about 50,000 to 80,000 was chosen as the wall material.
  • the Jet Speed is the speed of the material being meltspun in the capillary.
  • Table 1 shows that the spinnability of PVAc blends was good and not highly dependent on the Aspartame loading level.
  • the extrudates of PVAc/Aspartame blends shown in Table 1 were brittle at 17% Aspartame loading. Brittleness increased as the Aspartame loading level increased.
  • the diameter of the extruded fibers due to die swell was slightly larger than the capillary, which was 152 microns.
  • the extruded fibers were gently ground with a mortar and pestle.
  • the diameter to length ratio of these ground fibers was narrowly distributed with no major breakage of fibers along the longitudinal direc ⁇ tion.
  • Figs. 2 through 5 are SEPMs of fibers having 29% by weight Aspartame in PVAc that were prepared by the solution blending technique described above and extruded at 150°C.
  • Figs. 6 through 9 are SEPMs of fibers having 17% by weight Aspartame in PVAc that were prepared by the melt blending technique described above and extruded at 140°C. Both samples were extracted with water as the solvent for four hours. The spaces shown in the SEPMs are places from which Aspartame was dissolved.
  • Figs. 8 and 9 show that at 17% loading, the solid particles of Aspartame are isolated in polymer. Thus, Aspartame could not completely dissolve out into the water without further physical breaking of the polymeric structure.
  • Figs. 4 and 5 however, the solid particles of Aspartame formed a contiguous phase as illustrated in Fig. 1. Thus, channels in the encapsulating structure were opened and the Aspartame was gradually released, until virtually none remained.
  • Chewing gums having a formulation of:
  • the control gums contain free Aspartame.
  • the PVAc/Aspartame gums (17% by wt. Aspartame) contained fibers of the type shown in Figs. 6 through 9.
  • the PVAc/ Aspartame gums (29% by wt. Aspartame) contained fibers of the type shown in Figs. 2 through 5.
  • the release rate of Aspartame from the fiber loaded at 17% was much slower than the release rate from the fiber loaded at 29%.
  • the release rate of Aspartame from the fiber loaded at 29% is significantly slower than the control, but faster than the 17% sample.
  • Liquid Chromatography analysis was carried out on the fibers spun at 140°C and at 150°C in examples 1 through 9 to determine the amount of thermal degradation of Aspartame occurring during the melt spinning process discussed above. At 140°C thermal degradation of Aspartame is less than 10%. At 150°C the percent thermal degradation of Aspartame approached 20%.
  • the residence time of Aspartame/polymer blend in the Capillary Rheometer used to prepare the above samples was about twenty minutes. In production scale spinning, residence time could be reduced to around 20 seconds to two minutes. This would greatly reduce the degree of Aspartame degradation. At 90° - 100°C using a twin screw extruder at 2 minutes residence time, no degradation is observed.
  • Examples 10-23 a type LSM 30:34 twin screw extruder from American Leistritz Extruder Corporation was used to produce the fibers.
  • a homogeneous mixture of wall material and active agent in powdered form were poured into a hopper on the extruder.
  • the hopper feed screws which forced the mixture through heated sections of the extruder, melting the polymer, and then through a die.
  • the die consists of a plurality of holes having a specific diameter and length.
  • the fibers were stretched by either drawing them with a winder or by blowing air past them with a venturi.
  • the twin screw extruder consisted of two sets of eight element screws. These screws can operate in an intermeshing fashion in either a co-rotational or a counter rotational mode. These screws can function as kneading elements or conveying elements. For the following examples four kneading elements alternating with four conveying elements were used. Other configurations are possible and will depend on the process conditions and the types of materials being melt spun and the degree of mixing required.
  • the twin screw extruder used in the following examples was divided into eight zones.
  • the temperature of each zone was controlled.
  • a mixture of 50 percent by weight PVAc with a molecular weight of about 30,000, 25 percent by weight PVAc with a molecular weight of about 15,000, and 25 percent by Aspartame was melt spun to produce fibers.
  • the following temperatures in degrees centigrade were used for each zone: Zone Temp .
  • Example 10 Using a 1 mm die, fibers having 10% by weight Acesulfam-K (a high intensity sweetener purchased from Hoecht, of W. Germany) as the active agent and having PVAc with a molecular weight of about 50,000 - 80,000 as the wall material were extruded at 110-115°C. The fibers were drawn by a winder and had a thickness of 0.2-0.3 mm. The Acesulfam-K particles dispersed very well in the fibers and the fibers exhibited a gradual release of the active agent when chewed alone.
  • Acesulfam-K a high intensity sweetener purchased from Hoecht, of W. Germany
  • Example 11 Using a 1 mm die, fibers having 25% by weight Acesulfam-K as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extended at 110°C. The fibers were drawn by a winder. The fibers were between 0.3-0.4 mm in thickness. The Acesulfam-K particles dispersed very well in the fibers and the fibers exhibited a gradual release of the active agent when chewed alone.
  • Example 12 Using a 1 mm die, fibers having 10% by weight Aspartame as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extended at 100°C. The fibers were drawn by a winder and had a thickness of 0.2-0.3 mm. The Aspartame dispersed very well in the fibers and the fibers exhibited a gradual release of the active agent when chewed alone.
  • Example 13 Using a 1 mm die, fibers having 10% by weight Aspartame as the active agent and having . PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 100°C. The fibers were drawn by the winder and had a thickness of about 0.2 mm. The Aspartame dispersed very well in the fibers and the fibers exhibited an excellent gradual release of the active agent when chewed alone.
  • Example 14 Using a 1 mm die, fibers having 35% by weight Sodium Saccharin as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 100°C. The fibers were drawn at the winder and were 0.4-0.5 mm thick. The Sodium Saccharin dispersed very well in the fibers, although the fibers were softer than those of examples 10-13. The fibers exhibited a gradual release of the active agent when chewed alone.
  • Example 15 Using a 1 mm die, fibers having 35% by weight Saccharin Acid as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 100°C. The fibers were drawn at the winder and were 0.4-0.5 mm thick. The Saccharin Acid dispersed very well in the fiber, although the fibers were softer than those of examples 10-13. The fibers exhibited a gradual release of the active agent when chewed alone.
  • Example 16 Using a 1 mm die, fibers having 6.13% by weight NaCl, 3.87% by weight KCl as the active agents and having PVAc with a molecular weight of about 30,000 as the wall material were extruded at 113°C. The fibers were drawn at the winder and were 0.12 mm in thickness. The NaCl and KCl particles were dispersed in the fiber. The fibers exhibited good gradual release of the active agent when chewed alone.
  • Example 17 Using a 1 mm die, fibers having 6.13% by weight NaCl, 3.87% by weight KCl as the active agents and having PVAc with a molecular weight of about 15,000 as the wall material were extruded at 90°C. The fibers were drawn by air blowing and were 0.12 mm in thickness and were slightly weaker than the fibers of Example 16. The fibers exhibited a gradual release of the active agent when chewed alone.
  • Example 18 Using a 1 mm die, fibers having 24.52% by weight Na Cl, and 15.48% KCl by weight as the active agents and having Allied Chemical PE 735 as the wall material were extruded at 85-90°C. The fibers were 0.96 mm thick and were drawn by air blowing. The fibers exhibited gradual release of salts.
  • Example 19 Using a 1 mm die, fibers having 25% by weight Diamonium Phosphate as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 100°C. The fibers were drawn by air blowing and had a thickness of 0.20 - 0.38 mm.
  • Example 20 Using a 1 mm die, fibers having 25% by weight NaF as the active agent and having PVAc with a molecular weight of 50,000-80,000 were extruded at 90-100°C. The fibers were drawn by air blowing and had a thickness of 0.18 - 0.25 mm.
  • Example 21 Using a 1 mm die, fibers having 25% by weight Mg (0H)_ as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 90-100°C. The fibers were drawn by air blowing and had a thickness of 0.25 mm.
  • Example 22 Using a 1 mm die, fibers having 25% by weight Acesulfam-K as the active agent and having PVAc with a molecular weight of about 30,000 as the wall material were extruded at 90-100°C. The fibers were drawn by air blowing and had a thickness of 0.13mm. The fiber exhibited the best release characteristics of the examples.
  • Example 23 Using a 0.3 mm die, fibers having 25% by weight Aspartame as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 90-100°C. In making the fibers of this example prior to extrusion the PVAc and Aspartame were premixed in methylene chloride, following the solution blended method described above. The fibers were drawn by a winder and had a thickness of 0.127 mm.
  • This gum was chewed by a panel of sensory experts who found that the gum was sweeter in the intermediate chew in addition to longer lasting flavor than a control gum of similar formulation which did not contain gradual release fibers.
  • the syrup consisted of 67% by weight Lycasin solids, 5.36% by weight water, and 27.14% by weight glycerin.
  • the active agent in the gradual release fibers was Aspartame loaded at 33% by weight.
  • This gum was chewed by a panel of sensory experts and found to have superior sweetness lasting when compared to a control gum of similar formulation that did not contain gradual release fibers.
  • Chewing gums were prepared having the following general formula:
  • Aspartame was contained in gradual release fibers having 25% by weight loading of Aspartame and a wall material consisting of PVAc having a molecular weight of about 15,000.
  • the Aspartame was contained in gradual release fibers having 25% by weight loading of Aspartame and a wall material consisting of 50% (by weight of the total fiber) PVAc having a molecular weight of about 30,000 and 25% (by weight of the total fiber) PVAc having a molecular weight of about 100,000.
  • the Aspartame was encapsulated by the encapsulation methods disclosed in U.S. Patent Application S.N. 134,948, filed December 18, 1987.
  • a fourth gum of the above formula was prepared to which no Aspartame was added.
  • encapsulated sweetener providing sweetness during the initial and intermediate part of the chew and the gradual release structure providing sweetness during the final chew. Additionally, the data in Fig. 10 illustrates the difference in release rate between fibers having different wall material.

Abstract

Gradual release structures for the release of active agents in chewing gum and a process for making such structures are provided. The gradual release structures are formed by meltspinning techniques and comprise an active agent (13) within a support matrix (12).

Description

GRADUAL RELEASE STRUCTURES FOR CHEWING GUM
FIELD OF THE INVENTION
The invention is related to delivery systems for the gradual release of active agents and processes for making such systems and is particularly directed to delivery systems for use in chewing gum that have an active agent that is gradually released by direct interaction with a solvent and melt spinning processes for making such systems.
BACKGROUND OF THE INVENTION
The present invention is an advance in the art of delivery systems for the gradual release of active agents. This invention enables an active agent to be gradually released through the direct interaction of the agent and a solvent either within channels in the structure enclosing the active agent or through exposure of the active agent to the solvent when the structure enclosing the active agent is deformed.
Prior to the present invention, the gradual release of active agents, such as drugs, could be accomplished by the diffusion of the active agent through an encapsulating material. A discussion of such encapsulated structures is found in R. Dunn & D. Lewis, Fibrous Polymers for the Delivery of Contra¬ ceptive Steroids to the Female Reproductive Tract, Controlled Release of Pesticides and Pharmaceuticals 125-46 (D. Lewir, ed. 1981), which describes fiber-like structures. Alternatively, an encapsulating shell around the active agent could be ruptured causing exposure of the active agent to various solvents.
SUMMARY OF THE INVENTION
A particular feature of this invention is to provide a gradual release structure having an active agent that is gradually released through direct inter¬ action with a solvent. A further feature of this in¬ vention is to provide a novel process for making such structures using melt spinning techniques.
According to the invention a chewing gum is provided which comprises a gradual release structure. The gradual release structure is formed by melt spinning a mixture of active agent and wall material, having more than zero but less than about 55 percent by weight active agent, into a fiber. If necessary, the fiber is then stretched. The fiber is cut. A process for making chewing gum is further provided which comprises the steps of preparing a gum base, preparing a water soluble bulk portion, and preparing a gradual release structure. The gradual release structure is made by preparing a mixture of active agent and wall material, having more than zero but less than about 55 percent by weight active agent. This mixture is melt spun into a fiber which is cut. The gradual release structure, the gum base, and the water soluble bulk portion are combined.
To aid in understanding the invention one is directed towards the drawings and the detailed descrip¬ tion of the present preferred embodiment of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is an illustration of a gradual release structure in fiber form. Fig. 1A is an illustration of the gradual release structure of Fig. 1 after it has been subjected to a solvent.
Fig. 2 is a Scanning Electron Photomicrograph (SEPM) of a gradual release structure showing the end and side of a fiber.
Fig. 3 is a SEPM of a gradual release structure showing the side of a fiber.
Figs. 4 & 5 are SEPMs of a gradual release structure showing the ends of a fiber and the channels within the encapsulating structure.
Fig. 6 is an SEPM showing the side and end of a fiber.
Fig. 7 is a SEPM showing the side of a fiber.
Figs. 8 & 9 are SEPMs showing the ends of a fiber.
Big. 10 is a graph showing the differences in sweetness over time between encapsulation and the gradual release structures of the present invention when used in chewing gums.
DETAILED DESCRIPTION OF PRESENTLY PREFERRED EMBODIMENT OF THE INVENTION
An embodiment of a structure made in accordance with the present invention is a fiber having a support matrix. The support matrix is made up of a wall material. An active agent is dispersed throughout the support matrix and may be in contact with itself forming a contiguous phase within the support matrix. The active agent, however, does not necessarily have to be in a contiguous phase. The ends of the support matrix have openings, exposing the active agent. Additionally, the active agent may be exposed along the sides of the fiber. This structure may be made by stretching an already formed fiber. It is believed that the stretching action causes the wall material to orient itself longitudinally. The amount of active agent in this structure is from about 10 percent by weight to about 55 percent by weight. It is believed, however, that loading as low as a fraction of a percent will exhibit gradual release characteristics. The loading of the structure is influenced by the characteristics of the active agent and the solubility or extractability from the support matrix.
After the fibers are formed by melt spinning they may be stretched by applying a draw, or stretching force, to the fibers. The draw can be applied at a winder or by venturi after the fibers exit the die. Other methods of stretching fibers known to the art may also be employed.
In this structure gradual release of the active agent occurs when the fiber is brought in contact with a solvent, or dispersing media, for the active agent. The wall material is less soluble in the solvent then the active agent and preferably the wall material should be substantially insoluble in the solvent under the conditions in which the fiber is being used.
It is presently believed that the solvent first dissolves the active agent in the openings at the ends of the support matrix. If the active agent is in a contiguous phase within the support matrix, the active agent in those openings is dissolved and spaces or channels in the support matrix are created. The solvent fills these channels and begins to dissolve the newly exposed active agent, which was in contact with the now dissolved active agent located in the openings at ends of the support matrix. Thus, the length of the channels in the support matrix gradually increases as the active agent directly in contact with the solvent is dissolved.
It is presently believed that the support matrix does not prevent the dissolution of the active agent because the active agent is in a contiguous phase. Rather, the support matrix serves to limit the rate of dissolution by restricting the area of active agent in direct contact with the solvent to the ends of the channels within the support matrix. Thus, the solvent can gradually work its way into the fiber by following the contiguous phase of active agent.
Additionally, it is presently believed that depending on the stiffness of the wall material making up the support matrix, the support matrix can be deformed to expose new surface areas of active agent and thus bring them in direct contact with the solvent. For instance, when fibers are incorporated into chewing gum as the gum is chewed the pressure from chewing will flatten, stretch, and deform the fibers exposing new surface areas of active agent to the solvent. This gradual release by deformation should occur even if the active agent is not in a contiguous phase. Higher molecular weight polymers used as wall material will not as readily exhibit this gradual release by deformation. For instance, it is believed that polyvinylacetate having a molecular weight greater than about 100,000 will not exhibit gradual release by deformation during gum chewing.
Furthermore, it is theorized that if the active agent is not in a contiguous phase the deformation of the support matrix may create channels, similar to those described above, through which the solvent can be brought in contact with the active agent.
Finally, depending on the wall material chosen, the active agent chosen, and the solvent being used an extremely small amount of the active agent may dissolve by diffusion through the wall material.
Another embodiment of a gradual release structure made in accordance with the present invention is illustrated in Fig. 1. In this embodiment the structure is in the form of a fiber 11 having a support matrix 12. The support matrix is made up of a wall material. An active agent 13 is dispersed throughout the support matrix and is in contact with itself forming a contiguous phase within the support matrix. The ends 14 and 15 of the support matrix have openings, exposing the active agent. Additionally, the active agent may be exposed along the sides of the fiber as can be seen in Figs. 2 and 3. The active agent makes up at least about 25 percent of the structure by weight.
Gradual release of the active agent in this embodiment occurs when the fiber is brought in contact with a solvent, or dispersing media, for the active agent. The wall material is less soluble in the solvent then the active agent and preferably the wall material should be substantially insoluble in the solvent under the conditions in which the fiber is being used. As illustrated in Fig. 1A, the solvent first dissolves the active agent in the openings at the ends 14 and 15 of the support matrix. As this material is dissolved spaces or channels 13a in the support matrix are opened. The solvent fills these channels and begins to dissolve the newly exposed active agent, which was in contact with the now dissolved active agent located in the openings at ends of the support matrix. Thus, the length of the channels in the support matrix gradually increase as the active agent directly in contact with the solvent is dissolved.
It is presently believed that the support matrix does not prevent the dissolution of the active agent because the active agent is in a contiguous phase. Fig. 1 and 1A. Rather, the support matrix serves to limit the rate of dissolution by restricting the area of active agent in direct contact with the solvent to the end of the channels within the support matrix. Thus, the solvent can gradually work its way into the fiber by following the contiguous phase of active agent. Additionally, depending on the wall material chosen, the active agent chosen, and the solvent being used a small amount of the active agent may dissolve by diffusion through the wall material. Gradual release by deformation may also be exhibited by this structure..
Figs. 4 and 5 contain SEPMs of fibers made in accordance with the present invention. These fibers were subjected to a solvent. The spaces or channels 13a where the active agent was dissolved out are shown in these SEPMs.
The active agent can be any material such as artificial sweeteners, powdered flavor oil, or drugs, which the gradual release of may be desired. They must be solid or in the form of powders, including liquids encapsulated by spray drying techniques or liquids adsorbed or absorbed into or onto a supporting matrix, i.e., silica, zeolite, carbon black, or porous matrices. Combinations of different active agents in the same structure may also be employed. For purposes of illustration, possible active agents may be: high intensity sweeteners, such as aspartame, alitame, acesulfam-k and its salts, saccharin and its salts, thaumatin, sucralose, cyclamic acid and its salts, onellin, and dihydrochalcones; acidulents, such as malic acid, citric acid, tartaric acid, and fumaric acid; salt, such as sodium chloride and potassium chloride; bases, such as, magnesium hydroxide and urea; flavors, such as spray dried natural or synthetic adsorbed onto silica, and absorbed into maltodextrin; flavor modifiers, such as thaumatin; breath fresheners, such as zinc chloride, encapsulated menthol, encapsulated anise, zinc glucinate, and encapsulated chlorophyll; and medicaments.
Care must be taken to avoid the degradation of the active agent from high temperatures, shear, or other conditions, which may occur during formation. The wall material can be any spinnable synthetic or nature polymer such as polyethylene, polyvinylacetate, polyesters, chitosan, and copolymers and polymer blends of these polymers. The active agent and wall material must meet the solubility requirements discussed above. Additionally, they must be immiscible with each other and capable of being uniformly dispersed when mixed together during the melt spinning procedure.
The gradual release structures of the present invention can be used in chewing gum. Chewing gum consists of a gum base to which a water soluble bulk portion may normally be added.
Chewing gum bases generally comprise a combination of elastomers and resins together with plasticizers and inorganic fillers.
The gum base may contain natural gums and/or synthetic elastomers and resins. Natural gums include both elastomers and resins. Suitable natural gums include, but are not limited to chicle, jellutong, sorva, nispercftunu, niger gutta, massaranduba belata, and chiquibul.
When no natural gums are used, the gum base is referred to as "synthetic" and the natural gums are replaced with synthetic elastomers and resins. Synthetic elastomers may include polyisoprene, poly- isobutylene, isobutylene-isoprene copolymer, styrene butadiene rubber, a copolymer form Exxon Corp. under the designation "butyl rubber," and the like. The amount of elastomer used in the gum base can typically be varied between about 10 and about 20 percent depending on the specific elastomer selected and on the physical properties desired in the final gum base. For example, the viscosity, softening point, and elasticity can be varied.
Resins used in gum bases may include polyvinylacetate, polyethylene, ester gums, (resin esters of glycerol), polyvinylacetate polyethylene copolymers, polyvinylacetate polyvinyl laurate copolymers, and polyterpenes. Additionally, a polyvinylacetate obtained from Monsanto under the designation "Gelva" and a polyterpene obtained from Hercules under the designation "Piccolyte" may be used.
As with the elastomer, the amount of resin used in the gum base can be varied depending on the particular resin selected and on the physical properties desired in the final gum base.
Preferably, the gum base also includes plasticizers selected from the group consisting of fats, oils, waxes, and mixtures thereof. The fats and oils can include tallow, hydrogenated and partially hydrogenated vegetable oils, and cocoa butter. Commonly employed waxes include paraffin, microcrystalline and natural waxes such as beeswax and carnauba. Additionally, mixtures of the plasticizers may be used such as a mixture of paraffin wax, partially hydrogenated vegetable oil, and glycerol monostearate.
Preferably, the gum base also includes a filler component. The filler component is preferably selected from the group consisting of calcium carbonate, magnesium carbonate, talc, dicalcium phos¬ phate and the like. The filler may constitute between about 5 to about 60 percent by weight of the gum base. Preferably, the filler comprises about 5 to about 50 percent by weight of the gum base.
Further, gum bases may also contain optional ingredients such as antioxidants, colors, and emulsifiers.
These ingredients of the gum base can be combined in a conventional manner. In particular, the elastomer, resins, plasticizers, and the filler are typically softened by heating and then mixed for a time sufficient to insure a homogenous mass. The mass can be formed into slabs, or pellets and allowed to cool before use in making chewing gum. Alternatively, the molten mass can be used directly in a chewing gum making process.
Typically, the gum base constitutes between about 5 to about 95 percent by weight of the gum. More preferably the insoluble gum base comprises between 10 and 50 percent by weight of the gum and most preferably aboit 20 to about 35 percent by weight of the gum.
In general, a chewing gum composition typi¬ cally comprises a water soluble bulk portion added to the water insoluble chewable gum base portion. The flavoring agents are typically water insoluble. The water soluble portion dissipates with a portion of the flavoring agent over a period of time during chewing, while the gum base portion is retained in the mouth throughout the chew.
The water soluble portion of the chewing gum may further comprise softeners, sweeteners, flavoring agents and combinations thereof. Softeners are added to the chewing gum in order to optimize the chewability and mouth feel of the gum. Softeners, also known in the art as plasticizers or plasticizing agents, gener¬ ally constitute between about 0.5 to about 15.0 percent by weight of the chewing gum. Softeners contemplated by the present invention include glycerin, lecithin, and combinations thereof. Further, aqueous sweetener solutions such as '.those containing sorbitol, hydrogenated starαh hydrolysates, corn syrup and combinations thereof may be used as softeners and binding agents inr he chewing gum.
Sugar sweeteners generally include saccharide containing components commonly known in the chewing gum art which comprise: ut are not limited to sucrose, dextrose, maltose/ dextrin, dried invert sugar, fructose, levulose, galactose, corn syrup solids, and the like, alone or in any combination. Nonsugar sweeteners can include sorbitol, mannitol, and xylitol.
Optionalingredients such as colors, emulsi- fiers and pharmaceutical agents may be added to the chewing gum.
In general, chewing gum is manufactured by sequentially adding the various chewing gum ingredients to a commercially available mixer known in the art. After the ingredients have been thoroughly mixed, the gum mass is discharged from the mixer and shaped into the desired form -rsuch as by rolling into sheets and cutting into sticks, extruding into chunks or casting into pellets.
Generally, the ingredients are mixed by first melting the gum base and adding it to the running mixer. The base/.may also be melted in the mixer itself. Color or emulsifiers may also be added at this time. A softener such as glycerin may also be added at this time along with syrup and a portion of bulking agent. Further portions of the bulking agent may then be added to the mixer. The flavoring agent is typically added with the final portion of the bulking agent.
The entire mixing procedure typically takes about fifteen minutes, but longer mixing times may sometimes be required. Those skilled in the art will - 12 -
recognize that many variations of the above described procedure may be followed.
Gradual release structures that embody the present invention are made by melt spinning a uniform mixture of active agent and wall material into a fiber. The general principles for melt spinning polymers are well known in the art and are described in F. Billmeyer, Jr., Text Book of Polymer Science, 518-22 (Wiley International Edition, 2nd), which is incor¬ porated herein by reference. In this process a mixture of a polymer for the wall material and an active agent are prepared in powder or pellet form. The particles of polymer and active agent are mixed together into a homogeneous phase. The concentration of active agent in this mixture is such that the particles of active agent may be in contact with each other. The mixture is melt spun to produce fibers. These fibers are then gently broken into smaller sizes. Any grinding machine or knife which reduces the length of fiber without excessively damaging the support matrix is suitable. Fiber brittleness eases the cutting process of the fiber and can be achieved by concentrating the solid active agent particles. To avoid the detection of the fibers when chewing the gum, fibers of a size such that they can pass through a 60 mesh screen are used.
The fact that a polymer or polymer blend initially shows an unacceptably high pressure for ex¬ trusion, does not automatically eliminate the possi¬ bility of using it in this process. Processability often can be improved by increasing the processing temperature, introducing plasticizers, changing nozzle dimensions, adding dispersing agents, or modifying it by blending with other polymers.
By way of example, this process was carried out on two types of equipment. Model 1125 Instron Capillary Rhe meter
A Model 1125 Instron Capillary Rheometer, with capillary hole diameter of 152 microns was used to extrude fibers. The barrel diameter was 3/8 inches. The die had a Length to diameter ratio of 0.083 and had 1 hole. In this application of the process L-aspartyl-L-phenylalanine methyl ester (Aspartame) was used as the active agent. A polyvinylacetate (PVAc) having a molecular weight from about 50,000 to 80,000 was chosen as the wall material.
This laboratory scale Capillary Rheometer could not provide enough mixing action during extrusion. Thus, prior to extrusion, samples were pre-blended by two methods. In one method, PVAc was dissolved in Methylene Chloride (CH, Cl_) at room temperature, and then Aspartame was mixed into this solution. The solvent was evaporated overnight under vacuum at 60°C to form a solid material. This material was ground to a powder to facilitate addition into the rheometer.
This method is indicated in Table 1 as "Solution Blended." In the other method, samples were prepared for extrusion by directly blending the Aspartame with a polymer melt of the wall material in a heated beaker at 140°C. The blend was dried under vacuum at 60°C for about 5 hours to remove water. This method is indicated in Table 1 as "Melt Blended."
Using these two methods of mixing the wall material and the active agent, fibers with varying amounts of Aspartame were produced. The parameters used for these examples are set out in the following Table 1. The Jet Speed is the speed of the material being meltspun in the capillary. TABLE 1
Jet Speed Extrusion
Temp. (m/min) Load (kqf)
Example 1)
Aspartame 140°C 5 13
17 wt. % 10 18 in PVAc 20 32
(Solution Blended) 50 57
100 76
Example 2)
Aspartame 150°C 5 18
17 wt. % 10 23 in PVAc 20 34
(Solution Blended) 50 51
100 68
Example 3)
Aspartame 140°C 5 41 -59 17 wt. % 10 23 -68 in PVAc 20 45- 113 (Melt Blended) 50 68
Example 4)
Aspartame 140°C 5 13
29 wt. % 10 16 in PVAc 20 20
(Solution Blended) 100 52
Example 5)
Aspartame 150°C 5 9
29 wt. % 10 13 in PVAc 20 17
(Solution Blended) 50 25
100 36
200 50
500 59
Example 6)
Aspartame 140°C 5 32 29 wt. % 10 45 in PVAc 20 90-180 (Melt Blended) 50 less than 180
Example 7)
Aspartame 140°C 5 14
35 wt. % 10 17 in PVAc 20 25
(Solution Blended) 50 36 Example 8)
Aspartame 140°C 5 10
35 wt. % 10 12 in PVAc 20 18
(Solution Blended) 50 27
100 41
200 55
Example 9)
Aspartame 140°C 5 36-41
35 wt. % 10 54-64 in PVAc 20 113-136
(Melt Blended) 50 272-363
Table 1, shows that the spinnability of PVAc blends was good and not highly dependent on the Aspartame loading level. The extrudates of PVAc/Aspartame blends shown in Table 1 were brittle at 17% Aspartame loading. Brittleness increased as the Aspartame loading level increased. The diameter of the extruded fibers due to die swell was slightly larger than the capillary, which was 152 microns.
The extruded fibers were gently ground with a mortar and pestle. The diameter to length ratio of these ground fibers was narrowly distributed with no major breakage of fibers along the longitudinal direc¬ tion.
Figs. 2 through 5 are SEPMs of fibers having 29% by weight Aspartame in PVAc that were prepared by the solution blending technique described above and extruded at 150°C. Figs. 6 through 9 are SEPMs of fibers having 17% by weight Aspartame in PVAc that were prepared by the melt blending technique described above and extruded at 140°C. Both samples were extracted with water as the solvent for four hours. The spaces shown in the SEPMs are places from which Aspartame was dissolved. Figs. 8 and 9 show that at 17% loading, the solid particles of Aspartame are isolated in polymer. Thus, Aspartame could not completely dissolve out into the water without further physical breaking of the polymeric structure. At 29% loading, Figs. 4 and 5, however, the solid particles of Aspartame formed a contiguous phase as illustrated in Fig. 1. Thus, channels in the encapsulating structure were opened and the Aspartame was gradually released, until virtually none remained.
This result is demonstrated by chew out data given in Table 2 . Chewing gums having a formulation of:
Ingredient % ; by weiqht
Sorbitol 49.5
Stick Gum Base 25.5
Syrup 9.1
Mannitol 8.0
Glycerine 6.3
Lecithin 0.2
Flavor (Peppermint) 1.4
were prepared with fibers having 17% loading and 29% loading. The syrup in the gum consisted of 67% by weight Lycasin solids, 5.36% by weight water, and 27.14% by weight glycerin. A control gum was prepared using the above formulation with the addition of free Aspartame instead of the fibers. The gums were then chewed by five volunteers. Gum cuds were collected at different chewing times and Aspartame concentration was analyzed by High Performance Liquid Chromatography.
TABLE 2
Type of fiber % Aspartame in Gum After: used in gum 0 min. 5 in. 10 min. 20 min.
Control 0.18 0.11 0.06 0.02
Aspa tame/PVAc
17% by wt. 0.11 0.10 0.11 0.10 Type of fiber % Aspartame in Gum After: used in gum 0 min. 5 min. 10 min. 20 min.
Aspartame/PVAc
29% by wt. 0.18 0.15 0.14 0.12
The control gums contain free Aspartame. The PVAc/Aspartame gums (17% by wt. Aspartame) contained fibers of the type shown in Figs. 6 through 9. The PVAc/ Aspartame gums (29% by wt. Aspartame) contained fibers of the type shown in Figs. 2 through 5. As shown in Table 2 the release rate of Aspartame from the fiber loaded at 17% was much slower than the release rate from the fiber loaded at 29%. The release rate of Aspartame from the fiber loaded at 29% is significantly slower than the control, but faster than the 17% sample.
Liquid Chromatography analysis was carried out on the fibers spun at 140°C and at 150°C in examples 1 through 9 to determine the amount of thermal degradation of Aspartame occurring during the melt spinning process discussed above. At 140°C thermal degradation of Aspartame is less than 10%. At 150°C the percent thermal degradation of Aspartame approached 20%.
The residence time of Aspartame/polymer blend in the Capillary Rheometer used to prepare the above samples was about twenty minutes. In production scale spinning, residence time could be reduced to around 20 seconds to two minutes. This would greatly reduce the degree of Aspartame degradation. At 90° - 100°C using a twin screw extruder at 2 minutes residence time, no degradation is observed.
Twin Screw Extruder
In Examples 10-23 a type LSM 30:34 twin screw extruder from American Leistritz Extruder Corporation was used to produce the fibers. Generally, a homogeneous mixture of wall material and active agent in powdered form were poured into a hopper on the extruder. The hopper feed screws which forced the mixture through heated sections of the extruder, melting the polymer, and then through a die. The die consists of a plurality of holes having a specific diameter and length. Upon leaving the die the fibers were stretched by either drawing them with a winder or by blowing air past them with a venturi.
The twin screw extruder consisted of two sets of eight element screws. These screws can operate in an intermeshing fashion in either a co-rotational or a counter rotational mode. These screws can function as kneading elements or conveying elements. For the following examples four kneading elements alternating with four conveying elements were used. Other configurations are possible and will depend on the process conditions and the types of materials being melt spun and the degree of mixing required.
The twin screw extruder used in the following examples was divided into eight zones. The temperature of each zone was controlled. For example, a mixture of 50 percent by weight PVAc with a molecular weight of about 30,000, 25 percent by weight PVAc with a molecular weight of about 15,000, and 25 percent by Aspartame was melt spun to produce fibers. Operating the extruder with a 1 mm die having 5 holes at 30 rpm, resulted in the production of 5 pounds of fiber per hour. The following temperatures in degrees centigrade were used for each zone: Zone Temp .
Feeding or hopper zone 85
2 95
3 95
4 95
5 95
6 95
7 95
Die or las-t zone 102
Operating the extruder with a 1mm die having 5 holes at 333 rpm, resulted in the production of 50 pounds of fiber per hour. The following temperatures in degrees centigrade were used for each zone:
Zone Temp.
Feeding or hopper zone 85
2 97
3 97
4 97
5 97
6 97
7 97
Die or . ' Last zone 102
In the following examples dies having a diameter of 1 mm and 0.3 mm were used. The 1 mm die had 5 holes and had a diameter to length ratio of about 4. The 0.3 mm die had 34 holes and had a diameter to length ratio of 2.3. The temperatures set out in these examples were taken from an average of all heating zones on the extruder. Example 10. Using a 1 mm die, fibers having 10% by weight Acesulfam-K (a high intensity sweetener purchased from Hoecht, of W. Germany) as the active agent and having PVAc with a molecular weight of about 50,000 - 80,000 as the wall material were extruded at 110-115°C. The fibers were drawn by a winder and had a thickness of 0.2-0.3 mm. The Acesulfam-K particles dispersed very well in the fibers and the fibers exhibited a gradual release of the active agent when chewed alone.
Example 11. Using a 1 mm die, fibers having 25% by weight Acesulfam-K as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extended at 110°C. The fibers were drawn by a winder. The fibers were between 0.3-0.4 mm in thickness. The Acesulfam-K particles dispersed very well in the fibers and the fibers exhibited a gradual release of the active agent when chewed alone.
Example 12. Using a 1 mm die, fibers having 10% by weight Aspartame as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extended at 100°C. The fibers were drawn by a winder and had a thickness of 0.2-0.3 mm. The Aspartame dispersed very well in the fibers and the fibers exhibited a gradual release of the active agent when chewed alone.
Example 13. Using a 1 mm die, fibers having 10% by weight Aspartame as the active agent and having . PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 100°C. The fibers were drawn by the winder and had a thickness of about 0.2 mm. The Aspartame dispersed very well in the fibers and the fibers exhibited an excellent gradual release of the active agent when chewed alone. Example 14. Using a 1 mm die, fibers having 35% by weight Sodium Saccharin as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 100°C. The fibers were drawn at the winder and were 0.4-0.5 mm thick. The Sodium Saccharin dispersed very well in the fibers, although the fibers were softer than those of examples 10-13. The fibers exhibited a gradual release of the active agent when chewed alone.
Example 15. Using a 1 mm die, fibers having 35% by weight Saccharin Acid as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 100°C. The fibers were drawn at the winder and were 0.4-0.5 mm thick. The Saccharin Acid dispersed very well in the fiber, although the fibers were softer than those of examples 10-13. The fibers exhibited a gradual release of the active agent when chewed alone.
Example 16. Using a 1 mm die, fibers having 6.13% by weight NaCl, 3.87% by weight KCl as the active agents and having PVAc with a molecular weight of about 30,000 as the wall material were extruded at 113°C. The fibers were drawn at the winder and were 0.12 mm in thickness. The NaCl and KCl particles were dispersed in the fiber. The fibers exhibited good gradual release of the active agent when chewed alone.
Example 17. Using a 1 mm die, fibers having 6.13% by weight NaCl, 3.87% by weight KCl as the active agents and having PVAc with a molecular weight of about 15,000 as the wall material were extruded at 90°C. The fibers were drawn by air blowing and were 0.12 mm in thickness and were slightly weaker than the fibers of Example 16. The fibers exhibited a gradual release of the active agent when chewed alone.
Example 18. Using a 1 mm die, fibers having 24.52% by weight Na Cl, and 15.48% KCl by weight as the active agents and having Allied Chemical PE 735 as the wall material were extruded at 85-90°C. The fibers were 0.96 mm thick and were drawn by air blowing. The fibers exhibited gradual release of salts.
Example 19. Using a 1 mm die, fibers having 25% by weight Diamonium Phosphate as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 100°C. The fibers were drawn by air blowing and had a thickness of 0.20 - 0.38 mm.
Example 20. Using a 1 mm die, fibers having 25% by weight NaF as the active agent and having PVAc with a molecular weight of 50,000-80,000 were extruded at 90-100°C. The fibers were drawn by air blowing and had a thickness of 0.18 - 0.25 mm.
Example 21. Using a 1 mm die, fibers having 25% by weight Mg (0H)_ as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 90-100°C. The fibers were drawn by air blowing and had a thickness of 0.25 mm.
Example 22. Using a 1 mm die, fibers having 25% by weight Acesulfam-K as the active agent and having PVAc with a molecular weight of about 30,000 as the wall material were extruded at 90-100°C. The fibers were drawn by air blowing and had a thickness of 0.13mm. The fiber exhibited the best release characteristics of the examples.
Example 23. Using a 0.3 mm die, fibers having 25% by weight Aspartame as the active agent and having PVAc with a molecular weight of about 50,000-80,000 as the wall material were extruded at 90-100°C. In making the fibers of this example prior to extrusion the PVAc and Aspartame were premixed in methylene chloride, following the solution blended method described above. The fibers were drawn by a winder and had a thickness of 0.127 mm.
Gradual release fibers having the same formulation as those of example 18 (24.52% NaCl and 15.48% KCl as active agents and PE 735 as the wall material) were incorporated into gum having the following formulation:
Inαredient % by weight
Sugar 54.9
Stick Base 19.3
Corn Syrup 16.8
Dextrose Monohydrate 7.3
Glycerin 0.65
Fruit Flavor 0.8
Fibers 0.25
This gum was chewed by a panel of sensory experts who found that the gum was sweeter in the intermediate chew in addition to longer lasting flavor than a control gum of similar formulation which did not contain gradual release fibers.
Similarly, gradual release fibers made in accordance with the present invention were incorporated into a gum having the following ingredients:
Inαredient % by weight
Stick Base 25.5
Sorbitol 44.7
Manitol 8.0
Syrup 9.1 Ingredient % by weight
Glycerin 6.3
Lecithin 0.2
Brown Color 0.05
Mint Flavor 1.4
Water 4.05
Fibers 0.7
The syrup consisted of 67% by weight Lycasin solids, 5.36% by weight water, and 27.14% by weight glycerin. The active agent in the gradual release fibers was Aspartame loaded at 33% by weight.
This gum was chewed by a panel of sensory experts and found to have superior sweetness lasting when compared to a control gum of similar formulation that did not contain gradual release fibers.
Chewing gums were prepared having the following general formula:
Ingredient J- by weight
Sugar 50.76
Base 20.68
Corn Syrup 16.86
Dextrose 10.15
Glycerin 0.94
Spearmint Flavor 0.56
Brown Color 0.05
To three gums having the above formula 0.3% by weight Aspartame was added. In the first gum, the Aspartame was contained in gradual release fibers having 25% by weight loading of Aspartame and a wall material consisting of PVAc having a molecular weight of about 15,000. In the second gum, the Aspartame was contained in gradual release fibers having 25% by weight loading of Aspartame and a wall material consisting of 50% (by weight of the total fiber) PVAc having a molecular weight of about 30,000 and 25% (by weight of the total fiber) PVAc having a molecular weight of about 100,000. In the third gum the Aspartame was encapsulated by the encapsulation methods disclosed in U.S. Patent Application S.N. 134,948, filed December 18, 1987. A fourth gum of the above formula was prepared to which no Aspartame was added.
Ten expert panelists were asked to chew samples of the above four gums and rate the sweetness of each gum over a 20-minute period. Sweetness ratings were taken after the first half minute of chewing, the first full minute of chewing and each full minute thereafter. This data is depicted graphically in Fig. 10. Analysis of this data shows that chewing gums containing gradual release structures exhibited significantly improved sweetness in the final chew when compared to the other two gums. Particularly, the sweetness levels in the gum containing the gradual release structures began to increase after 9 minutes of chewing while the other gums' sweetness was declining. Accordingly, a gum containing both encapsulated sweeteners and gradual release sweeteners could be made to obtain the benefits of both delivery systems in the same gum. The encapsulated sweetener providing sweetness during the initial and intermediate part of the chew and the gradual release structure providing sweetness during the final chew. Additionally, the data in Fig. 10 illustrates the difference in release rate between fibers having different wall material. Many variations of the invention suggest themselves to those skilled in the art in view of the above disclosure without departing from the spirit and scope of this invention.

Claims

I CLAIM :
1. A chewing gum which comprises: a gradual release structure formed by melt spinning a mixture of active agent and wall material, having more than zero but less than about 55 percent by weight active agent, into a fiber, and cutting the fiber.
2. The chewing gum of claim 1 in which the fiber is stretched.
3. The chewing gum of claim 1 in which the active agent is aspartame.
4. The chewing gum of claim 1 in which the wall material is polyvinylacetate having a molecular weight of about 15,000.
5. The chewing gum of claim 1 in which the.wall material is polyvinylacetate having a molecular weight of about 30,000.
6. The chewing gum of claim 1 in which the wall material is polyvinylacetate having a molecular weight from about 50,000 to about 80,000.
7. The chewing gum of claim 1 in which the wall material is a blend of polyvinylacetates having molecular weights from about 15,000 to about 80,000.
8. The chewing gum of claim 1 in which the gradual release structure can pass through a 60 mesh screen.
9. The chewing gum of claim 1 in which the active agent is a high intensity sweetener.
10. The chewing gum of claim 1 in which the active agent is alitame.
11. The chewing gum of claim 1 in which the active agent is Acesulfam-K.
12. A process for making chewing gum which comprises the steps of: a. preparing a gum base; b. preparing a water soluble bulk portion; c. preparing a gradual release structure which comprises the steps of: i. preparing a mixture of active agent and wall material, having more than zero but less than about 55 percent by weight active agent; ii. melt spinning the mixture into a fiber; and, iii. cutting the fiber; and, d. combining the gradual release structure, the gum base and the water soluble bulk portion.
13. The process of claim 12 in which the active agent Is Aspartame.
14. The process of claim 12 in which the wall material is polyvinylacetate having a molecular weight of about 15,000.
15. The process of claim 12 in which the wall material is polyvinylacetate having a molecular weight of about 30,000.
16. The process of claim 12 in which the wall material is polyvinylacetate having a molecular weight from about 50,000 to about 80,000.
17. The process of claim 12 in which the gradual release structure can pass through a 60 mesh screen.
18. The process of claim 12 in which the wall material is a blend of polyvinylacetates having molecular weights from about 15,000 to about 80,000.
19. The process of claim 12 in which the active agent is a high intensity sweetener.
20. The process of claim 12 in which the active agent is alitame.
21. The process of claim 12 in which the active agent is Acesulfam-K.
22. A process for making a chewing gum having a gradual release structure which comprises the steps of: preparing a gum base; preparing a water soluble bulk portion; preparing a mixture of Aspartame and wall material, having from about 10 percent by weight to about 25 percent by weight Aspartame; melt spinning the mixture to form a fiber; stretching the fiber; cutting the fiber; and, combining the gum base, water soluble bulk portion and gradual release structure.
23. The process of claim 22 in which the wall material is polyvinylacetate having a molecular weight of about 15,000.
24. The process of claim 22 in which the wall material is polyvinylacetate having a molecular weight of about 30,000.
25. The process of claim 22 in which the wall material is polyvinylacetate having a molecular weight from about 50,000 to about 80,000.
26. The process of claim 22 in which the wall material is a blend of polyvinylacetates having molecular weights from about 15,000 to about 80,000.
27. The process of claim 22 in which the gradual release structure can pass through a 60 mesh screen.
PCT/US1990/000430 1989-04-19 1990-01-26 Gradual release structures for chewing gum WO1990012511A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT90902500T ATE95983T1 (en) 1989-04-19 1990-01-26 GRADUAL ADMINISTRATION STRUCTURES FOR CHEWING GUM.
JP2502900A JPH0751049B2 (en) 1989-04-19 1990-01-26 Sustained release structure for chewing gum
FI906250A FI906250A0 (en) 1989-04-19 1990-12-18 GRADVIS AVGIVANDE STRUKTURER FOER TUGGUMMI.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/340,384 US4978537A (en) 1989-04-19 1989-04-19 Gradual release structures for chewing gum
US340,384 1989-04-19

Publications (1)

Publication Number Publication Date
WO1990012511A1 true WO1990012511A1 (en) 1990-11-01

Family

ID=23333138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/000430 WO1990012511A1 (en) 1989-04-19 1990-01-26 Gradual release structures for chewing gum

Country Status (14)

Country Link
US (1) US4978537A (en)
EP (1) EP0423255B1 (en)
JP (1) JPH0751049B2 (en)
CN (1) CN1054884A (en)
AT (1) ATE95983T1 (en)
AU (1) AU619152B2 (en)
CA (1) CA1335763C (en)
DE (1) DE69004047T2 (en)
DK (1) DK0423255T3 (en)
ES (1) ES2045906T3 (en)
FI (1) FI906250A0 (en)
NZ (1) NZ232236A (en)
PH (1) PH26002A (en)
WO (1) WO1990012511A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484124A1 (en) * 1990-10-30 1992-05-06 Wm. Wrigley Jr. Company Gradual release structures for chewing gum
US5154939A (en) * 1989-04-19 1992-10-13 Wm. Wrigley Jr. Company Use of salt to improve extrusion encapsulation of chewing gum ingredients
US5198251A (en) * 1989-04-19 1993-03-30 Wm. Wrigley Jr. Company Gradual release structures for chewing gum
US5229148A (en) * 1989-04-19 1993-07-20 Wm. Wrigley Jr. Company Method of combining active ingredients with polyvinyl acetates
US5364627A (en) * 1989-10-10 1994-11-15 Wm. Wrigley Jr. Company Gradual release structures made from fiber spinning techniques

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286513A (en) * 1987-04-20 1994-02-15 Fuisz Technologies Ltd. Proteinaceous food product containing a melt spun oleaginous matrix
US5370881A (en) * 1987-04-20 1994-12-06 Fuisz Technologies Ltd. Water-soluble delivery systems for hydrophobic liquids
US5387431A (en) 1991-10-25 1995-02-07 Fuisz Technologies Ltd. Saccharide-based matrix
US5422136A (en) * 1987-04-20 1995-06-06 Fuisz Technologies Ltd. Starch-based food enhancing ingredient
US5236734A (en) * 1987-04-20 1993-08-17 Fuisz Technologies Ltd. Method of preparing a proteinaceous food product containing a melt spun oleaginous matrix
US5516537A (en) * 1987-04-20 1996-05-14 Fuisz Technologies Ltd. Frozen comestibles
US5456932A (en) * 1987-04-20 1995-10-10 Fuisz Technologies Ltd. Method of converting a feedstock to a shearform product and product thereof
US5139794A (en) * 1989-04-19 1992-08-18 Wm. Wrigley Jr. Company Use of encapsulated salts in chewing gum
US5169658A (en) * 1989-04-19 1992-12-08 Wm. Wrigley Jr. Company Polyvinyl acetate encapsulation of crystalline sucralose for use in chewing gum
US5165944A (en) * 1989-04-19 1992-11-24 Wm. Wrigley Jr. Company Gradual release structures for chewing gum
US5139798A (en) * 1990-11-21 1992-08-18 Wm. Wrigley Jr. Company Polyvinyl acetate encapsulation of codried sucralose for use in chewing gum
US5196199A (en) * 1990-12-14 1993-03-23 Fuisz Technologies Ltd. Hydrophilic form of perfluoro compounds and method of manufacture
US5154938A (en) * 1990-12-20 1992-10-13 Wm. Wrigley Jr. Company Gum composition having dispersed porous beads containing plasticizers
US5128155A (en) * 1990-12-20 1992-07-07 Wm. Wrigley Jr. Company Flavor releasing structures for chewing gum
US5116627A (en) * 1991-03-07 1992-05-26 International Flavors & Fragrances Inc. Chewing gum containing compositions for controlled release of flavor bearing substances and process for producing same
DK0584228T3 (en) * 1991-05-17 2000-09-18 Biovail Tech Ltd Process for making thermoplastic polymer material
US5169657A (en) * 1991-07-17 1992-12-08 Wm. Wrigley Jr. Company Polyvinyl acetate encapsulation of sucralose from solutions for use in chewing gum
US5227182A (en) * 1991-07-17 1993-07-13 Wm. Wrigley Jr. Company Method of controlling release of sucralose in chewing gum using cellulose derivatives and gum produced thereby
NZ243667A (en) * 1991-08-02 1995-02-24 Kurihara Yoshie Chewing gum containing coated curculin derivative or fruit containing curculin
US5192561A (en) * 1991-09-19 1993-03-09 Wm. Wrigley Jr. Company Aspartame stability in chewing gum using an acid gelatin system
US5576042A (en) 1991-10-25 1996-11-19 Fuisz Technologies Ltd. High intensity particulate polysaccharide based liquids
JP3802555B2 (en) * 1991-12-17 2006-07-26 フイズ テクノロジーズ リミテッド Ulcer prevention and treatment composition and method
US5218020A (en) * 1992-02-12 1993-06-08 The Goodyear Tire & Rubber Company Chitosan reinforced tires and method of incorporating chitosan into an elastomer
US5654003A (en) * 1992-03-05 1997-08-05 Fuisz Technologies Ltd. Process and apparatus for making tablets and tablets made therefrom
US5288508A (en) * 1992-03-20 1994-02-22 Fuisz Technologies, Ltd. Delivery systems containing elastomer solvents subjected to flash flow
US5286502A (en) * 1992-04-21 1994-02-15 Wm. Wrigley Jr. Company Use of edible film to prolong chewing gum shelf life
US5728397A (en) * 1992-05-12 1998-03-17 Fuisz Technologies Ltd. Polydextrose product and process
CA2095776C (en) * 1992-05-12 2007-07-10 Richard C. Fuisz Rapidly dispersable compositions containing polydextrose
US5279849A (en) * 1992-05-12 1994-01-18 Fuisz Technologies Ltd. Dispersible polydextrose, compositions containing same and method for the preparation thereof
US5334397A (en) * 1992-07-14 1994-08-02 Amurol Products Company Bubble gum formulation
US5348758A (en) * 1992-10-20 1994-09-20 Fuisz Technologies Ltd. Controlled melting point matrix formed with admixtures of a shearform matrix material and an oleaginous material
US5380473A (en) * 1992-10-23 1995-01-10 Fuisz Technologies Ltd. Process for making shearform matrix
US5338809A (en) * 1993-01-19 1994-08-16 Nabisco, Inc. Chewing gum or confection containing flavorant adsorbed on silica
US5851553A (en) * 1993-09-10 1998-12-22 Fuisz Technologies, Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5597416A (en) * 1993-10-07 1997-01-28 Fuisz Technologies Ltd. Method of making crystalline sugar and products resulting therefrom
US5518551A (en) * 1993-09-10 1996-05-21 Fuisz Technologies Ltd. Spheroidal crystal sugar and method of making
US5622719A (en) * 1993-09-10 1997-04-22 Fuisz Technologies Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5895664A (en) * 1993-09-10 1999-04-20 Fuisz Technologies Ltd. Process for forming quickly dispersing comestible unit and product therefrom
US5346377A (en) * 1993-10-07 1994-09-13 Fuisz Technologies Ltd. Apparatus for flash flow processing having feed rate control
US5626892A (en) * 1993-11-24 1997-05-06 Nabisco, Inc. Method for production of multi-flavored and multi-colored chewing gum
US5567439A (en) * 1994-06-14 1996-10-22 Fuisz Technologies Ltd. Delivery of controlled-release systems(s)
US6020002A (en) * 1994-06-14 2000-02-01 Fuisz Technologies Ltd. Delivery of controlled-release system(s)
US5445769A (en) * 1994-06-27 1995-08-29 Fuisz Technologies Ltd. Spinner head for flash flow processing
US5582855A (en) * 1994-07-01 1996-12-10 Fuisz Technologies Ltd. Flash flow formed solloid delivery systems
US5843922A (en) * 1994-07-29 1998-12-01 Fuisz Technologies Ltd. Preparation of oligosaccharides and products therefrom
US5556652A (en) 1994-08-05 1996-09-17 Fuisz Technologies Ltd. Comestibles containing stabilized highly odorous flavor component delivery systems
US5587198A (en) 1995-05-31 1996-12-24 Fuisz Technologies Ltd. Positive hydration method of preparing confectionery and product therefrom
WO2000035296A1 (en) * 1996-11-27 2000-06-22 Wm. Wrigley Jr. Company Improved release of medicament active agents from a chewing gum coating
WO1998023165A1 (en) * 1996-11-27 1998-06-04 Wm. Wrigley Jr. Company Method of controlling release of caffeine in chewing gum and gum produced thereby
US6949264B1 (en) 1996-11-27 2005-09-27 Wm. Wrigley Jr. Company Nutraceuticals or nutritional supplements and method of making
US6165516A (en) * 1996-11-27 2000-12-26 Wm. Wrigley Jr. Company Method of controlling release of caffeine in chewing gum
US6472000B1 (en) 1996-12-23 2002-10-29 Wm. Wrigley Jr. Co. Method of controlling release of bitterness inhibitors in chewing gum and gum produced thereby
US20030180414A1 (en) * 1996-11-27 2003-09-25 Gudas Victor V. Method of controlling release of bitterness inhibitors in chewing gum and gum produced thereby
US6080432A (en) * 1996-12-23 2000-06-27 Wm. Wrigley Jr. Company Chewing gum composition containing sodium glycinate and method of making a chewing gum product therefrom
US6627233B1 (en) 1997-09-18 2003-09-30 Wm. Wrigley Jr. Company Chewing gum containing physiological cooling agents
AU4428197A (en) * 1997-09-18 1999-04-05 Wm. Wrigley Jr. Company Chewing gum containing physiological cooling agents
US6455080B1 (en) 1997-12-29 2002-09-24 Wm. Wrigley Jr., Company Chewing gum containing controlled release acyclic carboxamide and method of making
AU5726098A (en) * 1997-12-30 1999-07-19 Wm. Wrigley Jr. Company Method of controlling release of antimicrobial agents in chewing gum and gum produced thereby
US6592912B1 (en) * 1997-12-30 2003-07-15 Wm. Wrigley Jr. Company Method of controlling release of antimicrobial agents from chewing gum and gum produced thereby
AU2002318866B2 (en) * 1997-12-30 2005-12-22 Wm. Wrigley Jr. Company Method of Controlling Release of Antimicrobial Agents in Chewing Gum and Gum Produced Thereby
US6692778B2 (en) * 1998-06-05 2004-02-17 Wm. Wrigley Jr. Company Method of controlling release of N-substituted derivatives of aspartame in chewing gum
AU2006203624B2 (en) * 1998-06-05 2008-07-10 Wm. Wrigley Jr. Company Method of controlling release of N-substituted derivatives of aspartame in chewing gum and gum produced thereby
CA2334385C (en) * 1998-06-05 2005-11-15 Wm. Wrigley Jr. Company Method of controlling release of n-substituted derivatives of aspartame in chewing gum and gum produced thereby
US6627234B1 (en) 1998-12-15 2003-09-30 Wm. Wrigley Jr. Company Method of producing active agent coated chewing gum products
US6586023B1 (en) * 1998-12-15 2003-07-01 Wm. Wrigley Jr. Company Process for controlling release of active agents from a chewing gum coating and product thereof
US7163705B2 (en) 1998-12-15 2007-01-16 Wm. Wrigley Jr. Company Coated chewing gum product and method of making
US6531114B1 (en) 1999-04-06 2003-03-11 Wm. Wrigley Jr. Company Sildenafil citrate chewing gum formulations and methods of using the same
EP1139773A4 (en) * 1998-12-15 2002-06-12 Wrigley W M Jun Co Controlling release of active agents from a chewing gum coating
DE60037799D1 (en) 1999-04-01 2008-03-06 Wrigley W M Jun Co STRUCTURES WITH LONG-LASTING FLAVOR FOR CHEESE
US7935362B2 (en) 1999-04-06 2011-05-03 Wm. Wrigley Jr. Company Over-coated product including consumable center and medicament
US6355265B1 (en) 1999-04-06 2002-03-12 Wm. Wrigley Jr. Company Over-coated chewing gum formulations
US6773716B2 (en) 1999-04-06 2004-08-10 Wm. Wrigley Jr. Company Over-coated chewing gum formulations
US6322806B1 (en) 1999-04-06 2001-11-27 Wm. Wrigley Jr. Company Over-coated chewing gum formulations including tableted center
US6541048B2 (en) 1999-09-02 2003-04-01 Wm. Wrigley Jr. Company Coated chewing gum products containing an acid blocker and process of preparing
US6569472B1 (en) 2000-09-01 2003-05-27 Wm. Wrigley Jr. Company Coated chewing gum products containing antacid and method of making
US6645535B2 (en) 1999-09-02 2003-11-11 Wm. Wrigley Jr. Company Method of making coated chewing gum products containing various antacids
US6663849B1 (en) 2000-09-01 2003-12-16 Wm. Wrigley Jr. Company Antacid chewing gum products coated with high viscosity materials
US9253991B2 (en) 1999-09-20 2016-02-09 Jack Barreca Chewing gum with B vitamins
US9387168B2 (en) 1999-09-20 2016-07-12 Jack Barreca Chewing gum with tomatidine
US6491540B1 (en) 1999-09-20 2002-12-10 Jack Barreca Center-filled supplement gum
PL200826B1 (en) * 1999-12-30 2009-02-27 Wrigley W M Jun Co Release of lipophilic active agents from chewing gum
US7115288B2 (en) 2000-06-09 2006-10-03 Wm. Wrigley Jr. Company Method for making coated chewing gum products with a coating including an aldehyde flavor and a dipeptide sweetener
US6572900B1 (en) 2000-06-09 2003-06-03 Wm. Wrigley, Jr. Company Method for making coated chewing gum products including a high-intensity sweetener
US6444241B1 (en) 2000-08-30 2002-09-03 Wm. Wrigley Jr. Company Caffeine coated chewing gum product and process of making
AU1996802A (en) 2000-12-15 2002-06-24 Wrigley W M Jun Co Encapsulated acid mixtures and products including same
US6579545B2 (en) 2000-12-22 2003-06-17 Wm. Wrigley Jr. Company Coated chewing gum products containing an antigas agent
US6673383B2 (en) * 2001-03-26 2004-01-06 Unilever Patent Holdings Bv Method for improving the performance of a food product
US6773733B2 (en) * 2001-03-26 2004-08-10 Loders Croklaan Usa Llc Structured particulate systems
US7445769B2 (en) 2002-10-31 2008-11-04 Cadbury Adams Usa Llc Compositions for removing stains from dental surfaces and methods of making and using the same
US8367047B2 (en) * 2002-12-20 2013-02-05 L'oreal Hair compositions
US20050008747A1 (en) * 2003-07-11 2005-01-13 Barkalow David G. Method of forming a sugarless coating on chewing gum
US7390518B2 (en) 2003-07-11 2008-06-24 Cadbury Adams Usa, Llc Stain removing chewing gum composition
US8591973B2 (en) 2005-05-23 2013-11-26 Kraft Foods Global Brands Llc Delivery system for active components and a material having preselected hydrophobicity as part of an edible composition
US8389031B2 (en) 2005-05-23 2013-03-05 Kraft Foods Global Brands Llc Coated delivery system for active components as part of an edible composition
US9271904B2 (en) 2003-11-21 2016-03-01 Intercontinental Great Brands Llc Controlled release oral delivery systems
US8389032B2 (en) 2005-05-23 2013-03-05 Kraft Foods Global Brands Llc Delivery system for active components as part of an edible composition having selected particle size
US8591972B2 (en) 2005-05-23 2013-11-26 Kraft Foods Global Brands Llc Delivery system for coated active components as part of an edible composition
US20050112236A1 (en) 2003-11-21 2005-05-26 Navroz Boghani Delivery system for active components as part of an edible composition having preselected tensile strength
US8591974B2 (en) * 2003-11-21 2013-11-26 Kraft Foods Global Brands Llc Delivery system for two or more active components as part of an edible composition
US8591968B2 (en) 2005-05-23 2013-11-26 Kraft Foods Global Brands Llc Edible composition including a delivery system for active components
US8597703B2 (en) 2005-05-23 2013-12-03 Kraft Foods Global Brands Llc Delivery system for active components as part of an edible composition including a ratio of encapsulating material and active component
US7641892B2 (en) 2004-07-29 2010-01-05 Cadburry Adams USA, LLC Tooth whitening compositions and delivery systems therefor
US7955630B2 (en) 2004-09-30 2011-06-07 Kraft Foods Global Brands Llc Thermally stable, high tensile strength encapsulated actives
US20060068058A1 (en) * 2004-09-30 2006-03-30 Cadbury Adams Usa Llc Thermally stable, high tensile strength encapsulation compositions for actives
US7727565B2 (en) 2004-08-25 2010-06-01 Cadbury Adams Usa Llc Liquid-filled chewing gum composition
US20080274183A1 (en) * 2005-02-04 2008-11-06 Phillip Michael Cook Thermoplastic articles containing a medicament
US9198448B2 (en) 2005-02-07 2015-12-01 Intercontinental Great Brands Llc Stable tooth whitening gum with reactive ingredients
US20060204613A1 (en) * 2005-02-18 2006-09-14 Castro Armando J Chewing gum containing flavor delivery systems
US20060286200A1 (en) * 2005-04-18 2006-12-21 Castro Armando J Confections containing flavor delivery systems
US7851005B2 (en) 2005-05-23 2010-12-14 Cadbury Adams Usa Llc Taste potentiator compositions and beverages containing same
WO2006127935A1 (en) 2005-05-23 2006-11-30 Cadbury Adams Usa Llc Taste potentiator compositions and beverages containing same
US7851006B2 (en) 2005-05-23 2010-12-14 Cadbury Adams Usa Llc Taste potentiator compositions and beverages containing same
US20070042078A1 (en) * 2005-08-22 2007-02-22 Cadbury Adams Usa Llc Biodegradable chewing gum
CN101410022B (en) * 2006-02-03 2013-06-12 Wm.雷格利Jr.公司 Calcium phosphate salts in oral compositions suitable as a tooth remineralizing agent
US20070218165A1 (en) * 2006-03-15 2007-09-20 Wm. Wrigley Jr. Company Confectionery compositions using nanomaterials
EP2003983B1 (en) * 2006-03-31 2013-01-23 Wm. Wrigley Jr. Company Long-duration encapsulated flavors and chewing gum using same
RU2008146197A (en) * 2006-05-25 2010-06-27 Вм. Ригли Дж. Компани (Us) COMPOSITION FOR CARE OF THE ORAL CAVITY, ENSURING AN IMPROVED REMOVAL OF THE DYE WITH THE DENTAL SURFACE
EP1862793A1 (en) * 2006-05-29 2007-12-05 Biotest AG High throughput particle counter
RU2453143C2 (en) * 2006-10-31 2012-06-20 Вм. Ригли, Дж. Компани Method for production of structure providing for flavouring agent release and such structure
US9120963B2 (en) * 2006-11-08 2015-09-01 Schlumberger Technology Corporation Delayed water-swelling materials and methods of use
AU2008329845B2 (en) * 2007-11-29 2012-08-23 Intercontinental Great Brands Llc Multi-region chewing gum with actives
CA2716186C (en) * 2008-02-27 2014-09-16 Schlumberger Canada Limited Slip-layer fluid placement
MX347664B (en) 2010-07-30 2017-05-08 Intercontinental Great Brands Llc A delivery system for active components as part of an edible composition.
EP2701532B1 (en) 2011-04-29 2017-11-15 Intercontinental Great Brands LLC Encapsulated acid, method for the preparation thereof, and chewing gum comprising same
CN102754907B (en) 2012-01-20 2015-06-24 奥驰亚客户服务公司 Oral product
CN103039688B (en) 2012-01-20 2016-01-06 奥驰亚客户服务公司 Oral product
CN103040090B (en) 2012-01-20 2016-03-30 奥驰亚客户服务公司 Remove the oral product of tobacco
US9854831B2 (en) 2012-01-20 2018-01-02 Altria Client Services Llc Oral product
CN102754908B (en) 2012-01-20 2015-06-10 奥驰亚客户服务公司 Oral tobacco product
CA2934476A1 (en) * 2013-12-20 2015-06-25 Philip Morris Products S.A. Wax encapsulated zeolite flavour delivery system for tobacco
EP3250045B1 (en) 2015-01-29 2021-11-10 Intercontinental Great Brands LLC Method for preparing a delivery system of one or more active ingredients in a chewing gum
DE102016203008A1 (en) * 2016-02-25 2017-08-31 Wacker Chemie Ag Encapsulated sweeteners and methods for their preparation

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737521A (en) * 1970-12-09 1973-06-05 Goodrich Co B F Formulation for sustained release of a biological agent
US3795744A (en) * 1970-10-21 1974-03-05 Lotte Co Ltd Flavor variable chewing gum and methods of preparing the same
US3818107A (en) * 1972-09-28 1974-06-18 Brook D Chewing gum with sustained flavor release compositions
US3923939A (en) * 1974-06-07 1975-12-02 Alza Corp Process for improving release kinetics of a monolithic drug delivery device
US3951821A (en) * 1972-07-14 1976-04-20 The Dow Chemical Company Disintegrating agent for tablets
US4122195A (en) * 1977-01-24 1978-10-24 General Foods Corporation Fixation of APM in chewing gum
US4496592A (en) * 1982-10-05 1985-01-29 Meiji Seika Kaisha, Ltd. Process for producing chewing gum in the form of composite fibers
US4590075A (en) * 1984-08-27 1986-05-20 Warner-Lambert Company Elastomer encapsulation of flavors and sweeteners, long lasting flavored chewing gum compositions based thereon and process of preparation
US4673565A (en) * 1985-05-03 1987-06-16 E. I. Du Pont De Nemours And Company Pharmaceutical compositions containing hollow fine tubular drug delivery systems
US4690825A (en) * 1985-10-04 1987-09-01 Advanced Polymer Systems, Inc. Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen
US4711784A (en) * 1986-01-07 1987-12-08 Warner-Lambert Company Encapsulation composition for use with chewing gum and edible products
EP0252374A1 (en) * 1986-06-25 1988-01-13 Nabisco Brands, Inc. Encapsulated actice ingredients, process for preparing them and their use in ingested products
US4720384A (en) * 1985-05-03 1988-01-19 E. I. Du Pont De Nemours And Company Manufacture of hollow fine tubular drug delivery systems
US4740376A (en) * 1986-01-07 1988-04-26 Warner-Lambert Company Encapsulation composition for use with chewing gum and edible products
EP0273009A2 (en) * 1986-12-23 1988-06-29 Warner-Lambert Company Sweetener delivery systems containing polyvinyl acetate
US4766036A (en) * 1985-09-16 1988-08-23 The Dow Chemical Company Process for producing porous fibers from orientable olefin polymers having cation-containing, pendent reactive side-groups and the resultant product
EP0288909A1 (en) * 1987-04-21 1988-11-02 Nabisco Brands, Inc. Elastomer encased active ingredients

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL125158C (en) * 1959-10-01
US3201353A (en) * 1960-06-14 1965-08-17 American Agricultural Chem Co Micro-inclusions and method of making same
US3329574A (en) * 1965-04-12 1967-07-04 Schwarz Biores Inc Method and material for selective diffusion
US3435110A (en) * 1966-03-21 1969-03-25 Ethicon Inc Collagen fibril matrix pharmaceuticals
AT319191B (en) * 1969-08-01 1974-12-10 Bush Boake Allen Ltd Double-walled water-insoluble microcapsules for the delivery of flavoring substances
US4206301A (en) * 1972-09-28 1980-06-03 Seymour Yolles Sustained flavor release composition
US3928633A (en) * 1973-12-03 1975-12-23 Gen Foods Corp Sweetening composition and process therefor
US4125519A (en) * 1976-10-13 1978-11-14 Murray Goodman Polypeptides containing 3,4-dihydroxyphenylalanine
US4230687A (en) * 1978-05-30 1980-10-28 Griffith Laboratories U.S.A., Inc. Encapsulation of active agents as microdispersions in homogeneous natural polymeric matrices
US4374858A (en) * 1979-10-04 1983-02-22 Warner-Lambert Company Aspartame sweetened chewing gum of improved sweetness stability
PT72939B (en) * 1980-05-08 1983-01-13 Merck & Co Inc Process for preparing calcium alginate fibres
US4384005A (en) * 1980-09-26 1983-05-17 General Foods Corporation Non-friable, readily-soluble, compressed tablets and process for preparing same
US4447475A (en) * 1980-12-03 1984-05-08 Ici Australia Limited Process for composite polymer beads
US4496596A (en) * 1980-12-29 1985-01-29 General Foods Corporation Aromatizing method
US4384004A (en) * 1981-06-02 1983-05-17 Warner-Lambert Company Encapsulated APM and method of preparation
US4388328A (en) * 1981-10-15 1983-06-14 Warner-Lambert Company Sorbitol containing mixture encapsulated flavor
US4515769A (en) * 1981-12-01 1985-05-07 Borden, Inc. Encapsulated flavorant material, method for its preparation, and food and other compositions incorporating same
US4386106A (en) * 1981-12-01 1983-05-31 Borden, Inc. Process for preparing a time delayed release flavorant and an improved flavored chewing gum composition
US4673577A (en) * 1983-02-18 1987-06-16 Wm. Wrigley Jr. Company Shellac encapsulant for high-potency sweeteners in chewing gum
US4485118A (en) * 1983-04-21 1984-11-27 Warner-Lambert Company Gum composition with plural time releasing flavors and method of preparation
US4568560A (en) * 1984-03-16 1986-02-04 Warner-Lambert Company Encapsulated fragrances and flavors and process therefor
US4752485A (en) * 1984-10-05 1988-06-21 Warner-Lambert Company Novel sweetener delivery systems
US4606940A (en) * 1984-12-21 1986-08-19 The Ohio State University Research Foundation Small particle formation and encapsulation
US4695463A (en) * 1985-05-24 1987-09-22 Warner-Lambert Company Delivery system for active ingredients and preparation thereof
US4634593A (en) * 1985-07-31 1987-01-06 Nabisco Brands, Inc. Composition and method for providing controlled release of sweetener in confections
US4726953A (en) * 1986-10-01 1988-02-23 Nabisco Brands, Inc. Sweet flavorful soft flexible sugarless chewing gum
US4722845A (en) * 1986-12-23 1988-02-02 Warner-Lambert Company Stable cinnamon-flavored chewing gum composition
US4855326A (en) * 1987-04-20 1989-08-08 Fuisz Pharmaceutical Ltd. Rapidly dissoluble medicinal dosage unit and method of manufacture
AU3542089A (en) * 1989-03-28 1990-06-26 Wm. Wrigley Jr. Company Method of controlling release of alitame in chewing gum and gum produced thereby
AU3056389A (en) * 1989-12-09 1989-05-02 Wm. Wrigley Jr. Company Method of controlling release of acesulfame k in chewing gum and gum produced thereby

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795744A (en) * 1970-10-21 1974-03-05 Lotte Co Ltd Flavor variable chewing gum and methods of preparing the same
US3737521A (en) * 1970-12-09 1973-06-05 Goodrich Co B F Formulation for sustained release of a biological agent
US3951821A (en) * 1972-07-14 1976-04-20 The Dow Chemical Company Disintegrating agent for tablets
US3818107A (en) * 1972-09-28 1974-06-18 Brook D Chewing gum with sustained flavor release compositions
US3923939A (en) * 1974-06-07 1975-12-02 Alza Corp Process for improving release kinetics of a monolithic drug delivery device
US4122195A (en) * 1977-01-24 1978-10-24 General Foods Corporation Fixation of APM in chewing gum
US4139639A (en) * 1977-01-24 1979-02-13 General Foods Corporation Fixation of APM in chewing gum
US4496592A (en) * 1982-10-05 1985-01-29 Meiji Seika Kaisha, Ltd. Process for producing chewing gum in the form of composite fibers
US4590075A (en) * 1984-08-27 1986-05-20 Warner-Lambert Company Elastomer encapsulation of flavors and sweeteners, long lasting flavored chewing gum compositions based thereon and process of preparation
US4673565A (en) * 1985-05-03 1987-06-16 E. I. Du Pont De Nemours And Company Pharmaceutical compositions containing hollow fine tubular drug delivery systems
US4720384A (en) * 1985-05-03 1988-01-19 E. I. Du Pont De Nemours And Company Manufacture of hollow fine tubular drug delivery systems
US4766036A (en) * 1985-09-16 1988-08-23 The Dow Chemical Company Process for producing porous fibers from orientable olefin polymers having cation-containing, pendent reactive side-groups and the resultant product
US4690825A (en) * 1985-10-04 1987-09-01 Advanced Polymer Systems, Inc. Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen
US4711784A (en) * 1986-01-07 1987-12-08 Warner-Lambert Company Encapsulation composition for use with chewing gum and edible products
US4740376A (en) * 1986-01-07 1988-04-26 Warner-Lambert Company Encapsulation composition for use with chewing gum and edible products
EP0252374A1 (en) * 1986-06-25 1988-01-13 Nabisco Brands, Inc. Encapsulated actice ingredients, process for preparing them and their use in ingested products
EP0273009A2 (en) * 1986-12-23 1988-06-29 Warner-Lambert Company Sweetener delivery systems containing polyvinyl acetate
EP0288909A1 (en) * 1987-04-21 1988-11-02 Nabisco Brands, Inc. Elastomer encased active ingredients

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0423255A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154939A (en) * 1989-04-19 1992-10-13 Wm. Wrigley Jr. Company Use of salt to improve extrusion encapsulation of chewing gum ingredients
US5198251A (en) * 1989-04-19 1993-03-30 Wm. Wrigley Jr. Company Gradual release structures for chewing gum
US5229148A (en) * 1989-04-19 1993-07-20 Wm. Wrigley Jr. Company Method of combining active ingredients with polyvinyl acetates
US5364627A (en) * 1989-10-10 1994-11-15 Wm. Wrigley Jr. Company Gradual release structures made from fiber spinning techniques
EP0484124A1 (en) * 1990-10-30 1992-05-06 Wm. Wrigley Jr. Company Gradual release structures for chewing gum
EP0537919A1 (en) * 1991-10-18 1993-04-21 Wm. Wrigley Jr. Company Gradual release structures for chewing gum

Also Published As

Publication number Publication date
CA1335763C (en) 1995-06-06
JPH03505282A (en) 1991-11-21
CN1054884A (en) 1991-10-02
ES2045906T3 (en) 1994-01-16
US4978537A (en) 1990-12-18
NZ232236A (en) 1991-10-25
PH26002A (en) 1992-01-29
DE69004047T2 (en) 1994-02-10
EP0423255A1 (en) 1991-04-24
DK0423255T3 (en) 1993-12-13
DE69004047D1 (en) 1993-11-25
JPH0751049B2 (en) 1995-06-05
FI906250A0 (en) 1990-12-18
EP0423255B1 (en) 1993-10-20
EP0423255A4 (en) 1991-10-02
ATE95983T1 (en) 1993-11-15
AU619152B2 (en) 1992-01-16
AU5021490A (en) 1990-11-16

Similar Documents

Publication Publication Date Title
US4978537A (en) Gradual release structures for chewing gum
US5198251A (en) Gradual release structures for chewing gum
US5165944A (en) Gradual release structures for chewing gum
US5108762A (en) Gradual release structures for chewing gum
EP0454832B1 (en) Polyvinyl acetate encapsulation of codried sucralose for use in chewing gum
EP0422820B1 (en) Gradual release structures made from fibre spinning techniques
EP0492981B1 (en) Flavor releasing structures for chewing gum
US5169658A (en) Polyvinyl acetate encapsulation of crystalline sucralose for use in chewing gum
EP0650329B1 (en) Bubble gum formulation
WO1994014330A1 (en) Flavor releasing structures modified with plasticizer for chewing gum

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU FI JP NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 906250

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 1990902500

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990902500

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990902500

Country of ref document: EP