WO1989008678A1 - Process and compositions for reinforcing structural members - Google Patents

Process and compositions for reinforcing structural members Download PDF

Info

Publication number
WO1989008678A1
WO1989008678A1 PCT/US1989/000906 US8900906W WO8908678A1 WO 1989008678 A1 WO1989008678 A1 WO 1989008678A1 US 8900906 W US8900906 W US 8900906W WO 8908678 A1 WO8908678 A1 WO 8908678A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural member
reinforcing
dough
composition
kit
Prior art date
Application number
PCT/US1989/000906
Other languages
French (fr)
Inventor
Joseph S. Wycech
Original Assignee
Wycech Joseph S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wycech Joseph S filed Critical Wycech Joseph S
Publication of WO1989008678A1 publication Critical patent/WO1989008678A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/001Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material
    • B62D29/002Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material a foamable synthetic material or metal being added in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/09Means for mounting load bearing surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • this prior art technique may change the dynamic performance of the reinforced structure during a subsequent collision. While, as stated, one goal of the repair procedure is to restore the strength and energy absorption characteristics of the structural member, the insertion of a metal plate in the rail may in fact reduce the energy absorption of the member or change the frame failure mode. This may result in the exertion of forces on vehicle components which were not designed to withstand these forces. Moreover, the repair procedure may not restore the original strength characteristics of the reinforced part. These factors may lead to catastrophic consequences during a subsequent collision.
  • closure plate 32 is shown welded in place on U-shaped stamping 30 at flanges 38 and 40. It can be seen that reinforcement member 34 completely occupies a portion of channel 36 in contact with the surrounding surfaces. Reinforcement member 34 is in its cured state such that it is a solid body comprising a cross-linked epoxy resin matrix 42 in which particles of filler 44 and expanded microspheres 46 are shown. ' It is important to point out that reinforcement member 34 is not shown to scale and that the sizes of the expanded microspheres 46 and filler particles 44 are greatly exaggerated for the purposes of illustration. A more detailed explanation of the compositional characteristics of reinforcement 34 will follow. In this manner, reinforcement member 34 serves to reinforce region 26 of frame side rail 24 such that during a subsequent, second collision, region 26 of frame side rail 24 will respond in a fashion closely similar to that of the original part.
  • the next step of the invention is the packing of the reactive dough into cavity 36 in contact with U-shaped stamping 30 in region 26 to be reinforced.
  • the reactive dough expands, it fills any small cracks, voids, or surface irregularities in region 26 of U-shaped stamping 30 and bonds by adhesion to U-shaped stamping 30 and closure plate 32.
  • the reactive dough has substantially fully cross-linked and the thermally-expandable microspheres have substantially fully expanded such that reinforcement member 34 shown in Figure 2 is formed.
  • the last step of the invention is the attachment of closure plate 32 after which the reactive dough cures to form reinforcement member 34.
  • Reinforcement member 34 has good strength and energy absorption characteristics and in most instances will restore the original characteristics of the damaged part which has been repaired and reinforced by the present invention. Due to the compositional characteristics of reinforcement member 34, arid due to its expansion in channel 36, acoustical dampening is achieved which eliminates any rattle or the like by cover plate 32. A mating section of U-shaped stamping 28 may then be welded onto cover plate 32 if desired. Reinforcement member 34 also provides good corrosion resistance which is a significant problem in prior art metal plate reinforcing techniques. In addition, a heat lamp or the like may be employed to facilitate the cure of the reactive dough and expansion of the microspheres, if desired.

Abstract

A two-part system (48) for reinforcing a hollow structural member (26) and its method for use are provided. Part A of the two-part system is formed by adding a filler and unexpanded, thermally-expandable microspheres to a liquid thermosetting resin, such as an epoxy resin, in a quantity sufficient to produce a dough-like mass which can be readily kneaded. Part B is formed by adding a filler and a colorant, such as carbon black, to a liquid curing agent, again forming a dough-like mass. A hollow structural member (26) is cleared of debris or the like and may be preheated to enhance the rate at which the thermosetting resin cross-links. The two parts are blended together until a reactive third dough of substantially uniform mixture is formed. The blended reactive dough is then packed into the cavity of the cleaned structural member (26). The cavity is then preferably closed with a closure plate (32).

Description

PROCESS AND COMPOSITIONS FOR REINFORCING STRUCTURAL MEMBERS
Technical Field
The present invention relates generally to processes and compositions for reinforcing hollow structural members and more specifically deals with a two-part, resin-based system for reinforcing hollow structural members.
Background Art
Motor vehicle collisions are a common occurrence in today's highly mobile society. Motor vehicle designers and manufacturers go to great lengths to protect the vehicle occupants from injury by providing vehicle structures having good strength and energy absorption characteristics. It is also a goal of designers to fabricate motor vehicle structures which can withstand low-speed impacts without requiring substantial repairs. Although motor vehicle designers and manufacturers have succeeded in providing high-strength, energy-absorbing structural components, the restoration of these desirable attributes to a motor vehicle which has been damaged in a collision is of considerable concern to after-market vehicle repair facilities.
Particularly in the case of metal structural components, the deformation of a structural member during a collision produces a number of unwanted effects in terms of both the relative geometry or shape of the part and with respect to the strength of the metal. It is a goal of the repair facility to restore to the extent possible the original shape of the damaged part so that it can once again carry out its function in the vehicle. It is a further goal, however, of the repair facility to restore the original strength and energy absorption characteristics to the damaged part. While considerable attention has been paid to the restoration of shape in collision damage repair, resulting in numerous metal repair procedures and devices such as frame-straightening machines and the like, the viability of reinforcement techniques in collision repair are less developed. It will be appreciated that the feasibility of reinforcement devices and procedures is determined by a number of factors that go beyond merely restoring strength to the damaged part.
When a metal part is plastically deformed, the internal structure of the metal is changed. Thus» this type of deformation changes the properties of the metal. The original deformation of the metal structure during a collision as well as its restoration by metal repair straightening operations can be considered work-hardening. Work-hardening processes may cause brittleness of the work section due to strain-hardening and generally change the strength and energy absorption properties of the part. In many instances, for example, where frame damage has occurred resulting in a crumpled, bent or collapsed frame member, a new section of frame rail must be spliced into place. The new rail piece is commonly welded in place using arc or mig welding techniques. In order to reinforce the weld joints or to compensate for the altered compositional characteristics of a section of metal produced by cold-working, a metal plate is typically welded into the rail over the joint or worked region. This has been the traditional approach to reinforcing metal structures, and it has numerous drawbacks.
A metal plate must be cut to conform to the shape of the part to be repaired. It will be appreciated by those skilled in the art that in many motor vehicles, the vehicle frame comprises a pair of U-shaped pressings or stampings which are welded together by means of a horizontal longitudinal joint or seam and that each U-shaped pressing defines a channel. Although metal reinforcement plates are at times welded directly to the outside of the hollow rail beam, more often the spot welds connecting the two U-shaped pressings are bored out, and the more damaged stamping is removed to be replaced with a new piece. Having access to the rail channel, the reinforcement plate is usually welded to the rail within this channel. Hence, the. plate must be precisely cut to fit within this designated area. Once the plate has been prepared, it must then be welded in place. There is no assurance that sufficient spot welds will be made to provide a good bond between the reinforcement plate and the rail. Moreover, the welding procedure is- time-consuming and requires the additional skill of arc or ig welding on the part of the repair person. As will be appreciated by those skilled in the art, the welds promote corrosion of the metal parts and thus lead to a reduction in the integrity and life of the repaired members. A closure plate is then typically welded to the flanges of the stamping for further reinforcement which, with the channel, forms a closed space or cavity in which the metal reinforcement plate is housed.
In addition to these drawbacks, this prior art technique may change the dynamic performance of the reinforced structure during a subsequent collision. While, as stated, one goal of the repair procedure is to restore the strength and energy absorption characteristics of the structural member, the insertion of a metal plate in the rail may in fact reduce the energy absorption of the member or change the frame failure mode. This may result in the exertion of forces on vehicle components which were not designed to withstand these forces. Moreover, the repair procedure may not restore the original strength characteristics of the reinforced part. These factors may lead to catastrophic consequences during a subsequent collision.
In order to provide a method and device which compensates for these deficiencies of prior art repair methods, the environment in which these repairs are made must be carefully considered. While metal repair should be performed by skilled metal workers, it is often the case that many repair tasks are delegated to poorly trained personnel in neighborhood "bump shops." A lack of care in implementing any repair procedure can undermine the efficacy of the repair. Thus, a practical repair procedure must be simple to carry out and should reduce the discretion that is exercised by the repair person. Therefore, it is an object of the present invention to provide a system for reinforcing a structural member which is both simple and reliable.
It is a further object of the present invention to provide a kit for performing repairs to structural members which is both economical and which requires minimal preparation for use. It is a further object that such a system restore to the extent possible the original strength and energy absorption characteristics to a damaged structural member. It is still a further object of the present invention to provide a structural reinforcement which is both lightweight and strong. The present invention provides a process and composition which achieves these goals in the form of a two-part, resin-based system which is used to form a reactive dough that expands in place in a hollow structural member to provide a solid, lightweight structural reinforcement.
Disclosure of the Invention
In accordance with the present invention, there is provided a kit for use in repairing a hollow structural member which includes a first composition having a dough-like consistency and a second dough-like composition. The first composition includes a mixture of a thermosetting resin and unexpanded microspheres. A filler material is also preferably included in the first composition in a quantity sufficient to yield the aforementioned dough-like consistency. The second composition includes a curing agent which is effective to cross—link and cure the thermosetting resin present in the first composition. The second composition also preferably contains a filler to impart the dough-like consistency and further preferably contains a quantity of a colorant sufficient to impart a uniform color to the second composition. This uniform color is preferably substantially different than the color of the first composition. The first and second compositions are preferably contained in separate chambers of a container where they remain relatively stable until they are mixed and used to reinforce a structural member.
By combining the first composition with the second composition, a third composition is formed which is chemically reactive by virtue of the effect of the curing agent in promoting the cross-linking or curing of the thermosetting resin. The cross-linking of the thermosetting resin which is promoted by the curing agent is an exothermic reaction, and the heat of reaction which is evolved raises the temperature of the third composition which in turn further catalyzes the cross-linking reaction and causes the unexpanded microspheres to expand. Since the third composition is in a dough-like state when it is first formed by the blending together of the first and second compositions, expansion of the microspheres causes the dough to "rise," thereby increasing the volume of the third composition. As the cross-linking reaction continues, the thermosetting resin forms a cured, solid matrix in which the now-expanded microspheres and the filler are embedded, resulting in a rigid, lightweight reinforcement member. The provision of a colorant facilitates the blending of the first and second compositions together in that blending is complete when a uniform color is attained intermediate between the hues of the first and second compositions.
In another aspect, the present invention provides a process or method for reinforcing a hollow structural member which includes the steps of preparing the aforementioned first composition and preparing the aforementioned second composition which are then blended to form the reactive dough of the third composition. The reactive or, more properly, "reacting" dough is packed into the cavity of a hollow structural member being reinforced. The two-piece metal assembly is then welded together capturing the dough. The generation of heat during the polymerization of the thermosetting resin causes expansion of the unexpanded microspheres with concomitant increase in the volume of the dough. The expansion of the dough serves to further fill the cavity. As the thermosetting resin cures, it bonds to the " surfaces of the structural member forming a uniform, rigid attachment. When the third composition has been transformed from its initial dough-like consistency to a fully-cured, hardened reinforcement member, it provides excellent strength and energy absorption characteristics to the structural member which it reinforces. In a preferred embodiment, the hollow structural member which is reinforced is one which has been damaged in a collision or the like.
In one embodiment, the thermosetting resin of the present invention is an epoxy resin to which unexpanded, thermally-expandable microspheres and a filler are added until a dough-like consistency is achieved. Similarly, a filler is added to a curing agent capable of promoting the cross-linking of an epoxy resin along with carbon black to produce a black dough-like composition. In this embodiment, the two doughs are blended together just prior to the reinforcement procedure to produce a reactive third dough which is gray in color. Where the present invention is used to reinforce a damaged rail member of a motor vehicle, the reactive gray dough is packed into the channel of the rail member, and a closure plate is preferably then welded in place across the channel. As the reactive gray dough expands as a result of the heat generated, which expands the thermally-expandable microspheres, the dough conforms to the shape of the cavity, contacting and bonding to the adjacent structures. Upon curing, a rigid, lightweight reinforcement is formed which is securely bonded in place. The present invention will now be more fully explained in the following description of the preferred embodiments by which those skilled in the art will appreciate the method of making and using the present invention.
These and other meritorious advantages and features of the present invention will be more fully understood with reference to the following description of the preferred embodiments of the invention and in connection with the drawings in which:
Brief Description of the Drawings
Figure 1 is a perspective view of a portion of an automobile in which the front section of a frame side rail is exposed.
Figure 2 is a U-shaped stamping of a side rail showing the composition of the present invention in place in the rail channel with a cover plate shown in exploded view.
Figure 3 is a cross-section along lines 3-3 of Figure 2 with the closure plate in place.
Figure 4 is a flowchart illustrating the steps of the present invention.
Figure 5 is a cross-sectional elevational view of the kit of the present invention showing side A and side B of the reinforcement composition housed in separate cavities.
Detailed Description of the Invention
Referring now to Figure 1 of the drawings, a typical motor vehicle 20 is shown with the front section 22 of frame side rail 24 being exposed. It will be assumed for the purposes of this discussion that motor vehicle 20 has been involved in a low-speed front-end collision and that side rail 24, which is typically formed of steel, sustained damage, for example, a crumpling or collapse of front section 22 in region 26. It will also be assumed that front section 22 has now been straightened using conventional frame-straightening techniques such as a frame machine. It will also be assumed that frame side rail 24 is constructed of two U-shaped stampings 28 and 30 welded together by means of a horizontal longitudinal joint or seam (not shown). Since region 26 has been plastically deformed during the collision and during the straightening process, its strength and energy absorption characteristics have been dramatically altered. It will also be noted that region 26 is a natural bend of frame side rail 24. Hence, reinforcement by the conventional method of attaching a metal plate is rendered even more difficult since a metal reinforcing plate would have to conform to the natural bend of region 26. However, the problems inherent in this prior art technique have been avoided by the repair of region 26 using the method and compositions of the present invention.
Turning now to Figure 2 of the drawings, an isolated view of region 26 of front section 22 is shown with U-shaped stamping removed and closure plate 32 illustrated as exploded from U-shaped stamping 30. Reinforcement member 34 is seen substantially filling a section of channel 36 and rigidly bonded to the inner surfaces of U-shaped channel 30. While closure plate 32 is shown removed from its attachment at flanges 38 and 40 of U-shaped member 30, in actuality, closure plate 32 is attached to U-shaped stamping 30 by spot welds at flanges 38 and 40 by the rigid attachment of reinforcement member 34 to closure plate 32. This relationship is illustrated more clearly in Figure 3 which is a cross-section along lines 3-3 of Figure 2. There, closure plate 32 is shown welded in place on U-shaped stamping 30 at flanges 38 and 40. It can be seen that reinforcement member 34 completely occupies a portion of channel 36 in contact with the surrounding surfaces. Reinforcement member 34 is in its cured state such that it is a solid body comprising a cross-linked epoxy resin matrix 42 in which particles of filler 44 and expanded microspheres 46 are shown. ' It is important to point out that reinforcement member 34 is not shown to scale and that the sizes of the expanded microspheres 46 and filler particles 44 are greatly exaggerated for the purposes of illustration. A more detailed explanation of the compositional characteristics of reinforcement 34 will follow. In this manner, reinforcement member 34 serves to reinforce region 26 of frame side rail 24 such that during a subsequent, second collision, region 26 of frame side rail 24 will respond in a fashion closely similar to that of the original part.
Reinforcement member 34 is preferably formed in the following manner which constitutes the reinforcement repair process of the present invention. Referring now to Figure 4 of the drawings, the first step of the procedure involves the preparation of the first composition or side A of the invention. Side or part A is prepared by slowly adding a filler and unexpanded, thermally-expandable microspheres to a liquid epoxy resin or prepolymer until a dough-like consistency is attained. The ingredients can be mixed in any convenient container using a conventional mixer, although undue shearing should probably be avoided. As will be more fully appreciated hereinafter, in the most preferred embodiment, side A, and side or part B, are provided pre-mixed in the form of a two-part kit. The mixing or blending together of the ingredients to form side A can be carried out at ambient temperature and pressure with no unusual constraints on the process parameters.
The consistency of side A, as stated, is dough-like and can be compared to kneaded bread dough. The consistency of side A should be sufficiently firm, having enough body such that no substantial flow of the material takes place. It should not be in a true liquid or "runny" state. It should, however, be soft enough so that it can be easily kneaded or blended with side B without undue effort by the repair person. Accordingly, it is to be remembered that one of the significant advantages of the present invention is its ease of use.
The concentration or proportion of each ingredient of side A does not appear to be critical and may thus vary somewhat so long as the principles of the present invention are faithfully observed. The thermosetting resin component thus comprises from about 5% to about 99% by weight of side A, preferably from about 20% to about 90% by weight of side A, and most preferably from about 65% to 85% by weight of side A. Any number of thermosetting resins may be suitable for use in the present invention, although epoxy resins are particularly preferred due to their excellent adhesion characteristics, rapid rate of curing, low-temperature curing characteristics, and the high strength exhibited by the fully cured resin. As will be appreciated by those skilled in the art, epoxy resins in the liquid state can be referred to as prepolymers in which the number of repeating units of the polymer is low enough such that the resin.flows readily during preparation of side A. A number of epoxy resins may be suitable for use in formulating side A, including epoxy novolak resin, cycloaliphatic epoxide resin, aliphatic epoxy resin, and other similar epoxy resins. Most preferred is bisphenol A-epichlorohydrine resin. A suitable bisphenol A-epichlorohydrine resin is available under the trademark "Epi-Rez 510" from the Interez Corporation.
In addition to the aforementioned attributes, the preferred thermosetting resins of the present invention are both economical, have a low order of shrinkage on cure, produce no cure byproducts, and have chemical and environmental resistance. The chemistry and polymerization reactions or curing mechanisms of the epoxy resins are well understood and thus their preparation will not be detailed. The unexpanded microspheres used in preparing side A of the present invention are preferably activated or expanded by thermal action. In addition to providing a lightweight reinforcement member due to their low density, the expandable microspheres function in the present invention as an expanding agent which, upon activation, causes the reactive dough of the present invention to "rise" or expand such that it fills the cavity in which it is disposed. By expanding in this manner, the reactive dough makes excellent contact with surrounding structures, filling any small voids and conforming to irregular surfaces. Unexpanded microspheres are generally organic in nature and may be obtained from a number of sources. The preferred unexpanded, thermally-expandable microspheres have an average diameter of approximately 5 microns to about 7 microns which increases to about 40 microns to about 60 microns upon expansion. The preferred beads are thermally activated by the heat generated in the exothermic polymerization reaction in which the thermosetting resin of side or part A thus should expand at temperatures between about 100 degrees C to about 120 degrees C. Two particularly preferred types of unexpanded, thermally-expandable polyvinylidene chloride microspheres are those sold under the trademark "Expancel 551-DU" sold by the Expancel Corporation. Other equivalent expandable microspheres which are suitable for use in the present invention will be known to those skilled in the art. Unexpanded, thermally-expandable microspheres comprise from about .1% by weight to about 20% by weight, preferably from about .5% by weight to about 10% by weight, and most preferably from about 1% by weight to about 3% by weight of side A of the present invention.
In order to add bulk to the first composition, to extend the thermosetting resin, and to give the first composition its dough-like consistency, a filler is added along with the unexpanded, thermally-expanded microspheres. It is to be understood that the exact order in which the three components of part A are blended together is not critical, although it is preferred that the dry constituents, that is, the filler and . unexpanded, thermally-expandable microspheres, be added slowly to the epoxy resin. Also, if the ranges set forth for the three constituents in a given case do not provide the optimum dough-like consistency, the viscosity of the dough is most easily adjusted by adjusting the amount of filler which is used.
A number of fillers are suitable for use herein, alone or in combination with one another, such as calcium carbonate, talc (hydrated magnesium silicate), and kaolinite (hydrated aluminum silicate). Various clays may be suitable. Other fillers which may be useful in the present invention include alumina trihydrate, feldspar (anhydrous alkali alumina silicate), and silica. Solid glass spheres could be used, although they are not necessarily beneficial in terms of density. Most preferred for use herein are hollow glass spheres, also known as glass bubbles or glass balloons, having an average diameter less than about 70 microns. These hollow glass microspheres are preferred due to their low density and high strength. While multicellular hollow microspheres may be suitable, the unicellular type are known to work well. Also, organic hollow microspheres may be a suitable filler. These hollow microspheres may be used in combination with mineral fillers to make up the total concentration of filler. Filler comprises from about .5% to about 90% by weight, preferably from about 5% to about 60% by weight and most preferably from about 20% to 30% by weight of part A.
Referring again to Figure 4 of the drawings, the next step of the present invention is the preparation of the second composition or part B. Eart or side B includes a curing agent or hardener as the active agent which must be compatible with the thermosetting resin which is used to formulate part A. That is, the curing agent in part B must be capable of promoting cross-linking of the thermosetting resin which is used in the first composition. This is critical since the final reactive dough which is prepared by blending together part A and part B must undergo cross-linking to cure the thermosetting resin of part A. A number of curing agents will be known to those skilled in the art for this purpose. Both the nature of the curing agent and the concentration of curing agent used should in the final reactive dough promote a cross-linking reaction which is rapid and moderately exothermic to generate the heat necessary to expand the unexpanded, thermally-expandable microspheres. However, the rate of cure should not be so rapid that the reactive dough hardens before adequate time is allowed for it to be hand-packed into a hollow structural member. Therefore, and although this period may vary widely, it is preferred that the reactive dough which is formed by blending together part A and part B of the present invention should remain fairly dough-like for a period of about thirty minutes after blending. This period will be adequate on most occasions. Substantially full cure should be complete in about twenty-four hours.
Therefore, a curing agent is present in part B at a concentration of about 10% to about 90% by weight, preferably about 30% to about 85% by weight, and most preferably from about 60% to about 75% by weight of part B. Where the thermosetting resin of part A is an epoxy resin as preferred, suitable curing agents include aliphatic amines and aliphatic polyamines such as primary polyamines and secondary polyamines, and polyamides. Diethylenetriamine and triethylenetetramine are particularly preferred. A particularly preferred curing agent for use in part B where part A includes an epόxy resin is that sold under the trademark "Interez 826 Hardener" available from the Interez Corporation. "Interez 826 Hardener" is an aliphatic amine adduct partially reacted with an epoxy resin. Aliphatic amido amines such as "Epicure 856" also available from Interez Corporation may also be suitable. Again, the second composition which is part or side B of the kit has a dough-like consistency similar to the consistency of part A. This is achieved by adding to the curing agent, preferably a liquid or a solution, a quantity of filler which is sufficient to raise the viscosity of part B to a dough-like consistency. The same considerations generally applicable to selecting a filler for part A are equally applicable for part B and the aforementioned list of fillers are acceptable. Due to' their excellent durability and density characteristics, hollow glass microspheres are preferred for use as filler in part B. Particularly preferred are those hollow glass microspheres sold under the trademark "3M C15" by the 3M Company. Filler comprises from about .5% to about 90% by weight, preferably from about 10% to about 70% by weight, and most preferably from about 20% to about 40% by weight of part B. As stated, it is the attainment of the dough-like consistency rather than the specific concentration of filler which is important in formulating part B.
As previously explained, in order to simplify the process of determining when part A and part B have been uniformly mixed or blended together, a colorant is added to either part A or part B. It is preferred that the colorant be added to part B. The addition of the colorant to part B is preferred since, as will be shown, part A and part B are provided in the final reactive dough in a volumetric ratio of about four parts to about one part. That is, about four to five parts of part A are added to about one part of part B. By providing the colorant in the dough of lesser volume, more blending will generally be required to reach a uniform color which gives greater assurance of uniform mixing. The colorants which are preferred for use in the present invention can be either dyes or pigments and preferably comprise inorganic or organic pigment which is easily dispersible in part B. A number of hues are acceptable, but is preferred that black be used. Generally, the constituents of part A when mixed will provide a white dough. Thus, by coloring part B black, uniform blending is achieved when the reactive dough is uniformly gray. Thus, dyes such as nigrosines, for example, solvent black 5 or solvent black 7 may be used, and most preferably carbon black is used as the colorant in part B. Preferred are thermal and furnace blacks which are outstanding colorants and which also protect the final reinforcement structure from ultraviolet degradation. The quantity of colorant which is used is that amount sufficient to uniformly color part B. Typically, from about 0.05% to about 10% by weight, preferably from about .1% to about 3% by weight and most preferably from about .5% to about 1.0% by weight of part B is added to part B as the colorant.
The mixing sequence for part B is not critical, although it will usually include the slow addition of filler and carbon black to a liquid curing agent which is stirred and then kneaded to its dough-like consistency.
A number of other ingredients can be used to further enhance the properties of the present invention. For example, a coupling agent can be added to part A to modify the interface of the thermosetting resin matrix and an inorganic filler such that a more solid structure is attained. A coupling agent where utilized would typically be included in part B, that is, the second composition. Suitable coupling agents include silanes such as gama-chloropropyl-trimethoxysilane or tritanates such as isopropyl-tri(dioctylpyrophosphate)titanate. Certain accelerators may be useful in part B to increase the activity of the curing agent in promoting cross-linking of the thermosetting resin.
Other additives such as anti-oxidants or fibrous reinforcement materials may be useful. Suitable fibrous reinforcements may include chopped aramid fibers, chopped carbon fibers, chopped glass strains and milled glass fibers. The concentrations of these materials may vary so long as the desired durability of the final reinforcement member, workability of the reactive dough and the other objects of the present invention are achieved.
Referring now to Figures 2 and 4 of the drawings, region or section 26 is prepared for reinforcement by the present invention in the following manner. First, cavity or channel 36 is exposed such that reinforcement member 34 can be formed in place. Thus, the next step of the present invention is the preparation of the hollow structural member to receive the reactive dough. As stated, although the present invention is suitable for use in reinforcing plastic structural members, it is anticipated that the primary application of the present invention will be for use in reinforcing metal hollow structural members which have been damaged, such as in a collision. The surfaces of U-shaped stamping 30, which will be in contact with reinforcement member 34, are cleaned for good contact and adhesion by the reactive dough. This cleaning process may include blowing off excess dirt and dust and preferably includes a brief wash with acetone or alcohol. Preferably, rust and any weld scale present should be removed. Once the surface of U-shaped stamping 30 has been prepared, the reactive dough will be used to form reinforcement member 34 as prepared.
As stated, it is contemplated that the present invention will be made available as a kit and, referring now to Figure 5 of the drawings, kit 48 is shown comprising container 50 having receptacles or cavities 52 and 54. Receptacles 50 and 54 are separated by partition 56. Container 50 is constructed of a material which is substantially non-reactive with respect to its contents. Receptacle 54 houses the first composition or part A 58 which is the thermosetting resin dough composition. Receptacle 52 contains part B 60 which is the curing agent dough composition. Substantially air-tight lid 62 is also provided. In order to prepare the reactive dough, part A 58 and part B 60 are blended together uniformly. For the preferred compositions of part A 58 and part B 60, the two parts are blended together in the approximate ratio of between about four parts "part A to about one part B in parts by volume and five parts A to about one part B in parts by volume. That is, the volume of part A 58 which is blended with part B 60 is approximately four times greater than the volume of part B 60. Since part B 60 includes a colorant, preferably carbon black, uniformity of blending of part A and part B can be observed once the combined or blended reactive dough has a uniform gray color. It should be pointed out that it may be desirable to add a pigment to part A such as titanium oxide if the ingredients of part A yield a dough which is not white. Once part A and part B are blended together to form the reactive dough, a number of physical and chemical changes occur. As the curing agent contacts the thermosetting resin, the polymerization or cross-linking of the thermosetting resin is promoted in the process of curing the thermosetting resin. As the thermosetting resin cures, the reactive dough will become even more viscous. The unexpanded, thermally-expandable microspheres, which are now uniformly distributed throughout the reactive dough, will begin to expand in response to the heat generated during the exothermic cross-linking reaction. This expansion of the expandable microspheres causes the reactive dough to rise or expand. Thus, the next step of the invention is the packing of the reactive dough into cavity 36 in contact with U-shaped stamping 30 in region 26 to be reinforced.
Both the blending of part A and part B to form the reactive dough and the packing of the reactive dough into channel 36 are preferably performed by hand, although it may be possible to automate this procedure. When hand-blending and hand-packing, the repair person should use solvent-resistant gloves or the like so that direct contact between the reactive dough and the repair person's hands is not made. As stated, the preferred compositions of the present invention produce a reactive dough which can be easily worked by hand for approximately thirty minutes, during which time the reactive dough continually rises or expands. The reactive dough should be packed into cavity 36 such that the area or region 26 to be reinforced is substantially filled. Once the reactive dough has been packed into cavity 36, it is preferred that closure plate 32 be welded onto U-shaped stamping 30 such that the reactive dough is enclosed in cavity or channel 36. This may be accomplished most readily by spot welding closure plate 32 at flanges 38 and 40. It may be desirable to increase the rate of curing and expansion of the reactive dough by he ting region 26 of U-shaped member 30 with a heat gun or the like prior to packing the reactive dough into channel 36. The heat energy will not only increase the rate of the cross-linking reaction of the thermosetting resin, but also will increase the rate at which the thermally-expandable microspheres expand. Also, the heat generated during the welding, such as mig welding, of closure plate 32 on U-shaped stamping 30 at region 26 generally also heats the reactive dough, enhancing its cure rate. As the reactive dough expands, it fills any small cracks, voids, or surface irregularities in region 26 of U-shaped stamping 30 and bonds by adhesion to U-shaped stamping 30 and closure plate 32. In approximately twenty-four hours, the reactive dough has substantially fully cross-linked and the thermally-expandable microspheres have substantially fully expanded such that reinforcement member 34 shown in Figure 2 is formed. Thus, the last step of the invention is the attachment of closure plate 32 after which the reactive dough cures to form reinforcement member 34.
Reinforcement member 34 has good strength and energy absorption characteristics and in most instances will restore the original characteristics of the damaged part which has been repaired and reinforced by the present invention. Due to the compositional characteristics of reinforcement member 34, arid due to its expansion in channel 36, acoustical dampening is achieved which eliminates any rattle or the like by cover plate 32. A mating section of U-shaped stamping 28 may then be welded onto cover plate 32 if desired. Reinforcement member 34 also provides good corrosion resistance which is a significant problem in prior art metal plate reinforcing techniques. In addition, a heat lamp or the like may be employed to facilitate the cure of the reactive dough and expansion of the microspheres, if desired.
The present invention may be used to reinforce hollow sections other than vehicle frames or the like, including boat hulls or other structures where a lightweight, strong reinforcement is desired or in automotive roof structures such as the pillars. Kit 48 is both convenient and easy to implement and requires no complex mixing of hazardous materials nor does it require exact measurements or temperature ranges to be observed.
While a particular embodiment of this invention is shown and described herein, it will be understood, of course, that the invention is not to be limited thereto since many modifications maybe made, particularly by those skilled in the art, in light of this disclosure. It is contemplated therefore by the appended claims to cover any such modifications as fall within the true spirit and scope of this invention.
The following example further illustrates the method of making and using the present invention and is not intended to in any way limit the scope of this invention.
EXAMPLE
A two-part system was prepared in accordance with the procedures and parameters set forth in the foregoing description of the preferred embodiments as follows. "3M C15" microspheres and "Expancel 551-DU" were added slowly to "Interez 510" epoxy, and the composition was stirred and then kneaded to a dough-like consistency. This was carried out at ambient .temperature and pressure to yield a dough-like composition or part A having the following compositional make-up:
Part A
Interez 510 Epoxy 73.0 parts by weight 3M C15 Microspheres 25.5 parts by weight Expancel 551-DU 1.5 parts by weight
Part A was then placed in a closed container for later use.
Part B was prepared, again at ambient temperature and pressure, by slowly adding 3M C15 microspheres and carbon black to "Interez 826" hardener. The ingredients were mixed and then kneaded to a dough-like consistency. Part B had the following compositional make-up:
Part B
Interez 826 Hardener 69.4 parts by weight 3M C15 Microspheres 30.0 parts by weight Carbon Black 0.6 parts by weight
The dough-like part B was then placed in a closed container for subsequent use.
Four parts by volume of part A were then blended by kneading with one part by volume of part B until the reactive dough so formed had a uniform gray appearance. The kneading process took only a few minutes, and the reactive dough was then packed into a C-section to be reinforced. The channel of the C-section was then closed with a closure plate, and the dough was allowed to rise in place. In approximately twenty—four hours, the reactive dough had fully cured to form a reinforcement member. The reinforced C-section exhibited good strength characteristics.

Claims

89/08678-21- ClaimsWhat is claimed is:
1. " A kit for reinforcing a hollow structural member comprising: a first composition; a second composition; said first composition including a thermosetting resin and unexpanded, thermally-expandable microspheres; and said second composition including a curing agent capable of promoting cross-linking polymerization of said thermosetting resin in an exothermic reaction, whereby the blending of said second composition with said first composition causes said curing agent to combine with said thermosetting resin to bring about said exothermic reaction of said thermosetting resin, and wherein said heat evolved during said exothermic reaction causes said thermally-expandable microspheres to expand as said thermosetting resin cures.
2. The kit for reinforcing a hollow structural member recited in claim 1, wherein said second composition includes a colorant having a first hue and said first composition has a second hue, such that said addition of said second composition to said first composition produces a third composition having a third hue which is intermediate between said first and second hue.
3. The kit for reinforcing a hollow structural member recited in claim 1, wherein said first composition further includes a filler.
4. The kit for reinforcing a hollow structural member recited in claim 1, wherein said second composition further includes a filler.
5. The kit for reinforcing a hollow structural member recited in claim 1, wherein said first and second compositions are doughs.
6. The kit for reinforcing a hollow structural member recited in claim 1, wherein said thermosetting resin is an epoxy resin.
7. The kit for reinforcing a hollow structural member recited in claim 6, wherein said epoxy resin is bisphenol A-epichlorohydrin resin.
8. The kit for reinforcing a hollow structural member recited in claim 6, wherein said epoxy resin i_ an epoxy novolak resin.
9. The kit for reinforcing a hollow structural member recited in claim 6, wherein said epoxy resin is a cycloaliphatic epoxide resin.
10. The kit for reinforcing a hollow structural member recited in claim 6, wherein said epoxy resin is analiphatic epoxy resin.
11. The kit for reinforcing a hollow structural member recited in claim 1, wherein said curing agent is an aliphatic amine.
12. The kit for reinforcing a hollow structural member recited in claim 11, wherein said aliphatic amine is selected from the group consisting of primary polyamines, secondary polyamines, and polyamides.
13. The kit for reinforcing a hollow structural member recited in claim 11, wherein said aliphatic amine is selected from the group consisting of diethylenetriamine and triethylenetetramine.
14. The kit for reinforcing a hollow structural member recited in claim 3, wherein said filler is selected from the group consisting of calcium carbonate, hydrated magnesium* silicate, kaolinite, alumina trihydrate, anhydrous alkali alumina silicate,silica, solid glass spheres, hollow glass spheres, and combinations thereof.
15. The kit for reinforcing a hollow structural member recited in claim 4, wherein said filler is selected from the group consisting of calcium carbonate, hydrated magnesium silicate, kaolinite, alumina trihydrate, anhydrous alkali alumina silicate, silica, solid glass spheres, hollow glass spheres, and combinations thereof.
16. The kit for reinforcing a hollow structural member recited in claim 15, wherein said first composition includes a fibrous reinforcement material selected from the group consisting of chopped aramid fibers, chopped carbon fiber, chopped glass strands, and milled glass fibers and combinations thereof.
17. The kit for reinforcing a hollow structural member recited in claim 1, wherein said second composition includes a fibrous reinforcement material selected from the group consisting of chopped aramid fibers, chopped carbon fiber, chopped glass strands and milled glass fibers and combinations thereof.
18. The kit for reinforcing a hollow structural member recited in claim 1, wherein said second composition includes a coupling agent.
19. The kit for reinforcing a hollow structural member recited in claim 2, wherein said colorant is carbon black.
20. A kit for preparing a composition to be used in reinforcing a hollow structural member comprising: a first dough which includes a thermosetting resin,a first filler and unexp.anded, thermally-expandable* microspheres; a second dough which includes a curing agent, a second filler and a colorant; and a container having at least two chambers, wherein said first dough resides in one of said chambers and said second dough resides in another of said chambers.
21. The kit for preparing a composition to be used in reinforcing a hollow structural member recited in claim 20, wherein said thermosetting resin is an epoxy resin.
22. The kit for preparing a composition to be used in reinforcing a hollow structural member recited, in claim 20, wherein said curing agent includes means for curing an epoxy resin.
23. The kit for preparing a composition to be used in reinforcing a hollow structural member recited in claim 20, wherein said colorant is carbon black.
24. The kit for preparing a composition to be used in reinforcing a hollow structural member recited in claim 20, wherein said first and second fillers are hollow microspheres.
25. The kit for reinforcing a hollow structural member recited in claim 1, wherein said thermosetting resin comprises from about 5 to about 99% by weight of said first composition, said unexpanded, thermally-expandable microspheres comprise from about 0.1 to about 20% by weight of said first composition, and said curing agent comprises from about 10 to about 90% by weight of said first composition.
26. The kit for preparing a composition to be used in reinforcing a hollow structural member recited in claim 20, wherein said thermosetting resin comprises from about 5 to about 99% by weight of said first dough, said first filler comprises from about 0.5% to about 90% by weight of said first dough, said unexpanded, thermally-expandable microspheres comprise from about 0.1% to about 20% by weight of said first dough, said curing agent comprises from about 10% to about 90% by weight of said second dough, said colorant comprises from about 0.5% to about 10% by weight of said second dough, and said second filler comprises from about 0.5% to about 90% by weight of said second dough.
27. The kit for preparing a composition to be used in reinforcing a hollow structural member recited in claim 20, wherein said the volume of said first dough is approximately equal to five to one times the volume of said second dough.
28. A method of preparing a composition for use in reinforcing a hollow structural member comprising the steps of: combining a liquid thermosetting resin, a first filler and unexpanded, thermally-expandable microspheres; blending said combination of said thermosetting resin, said filler and said unexpanded, thermally-expandable microspheres to form a first dough; combining a liquid curing agent, a colorant, and a second filler; and blending said combination of said liquid curing agent, said colorant and said second filler to form a second dough.
29. The method of preparing a composition for use in reinforcing a hollow structural member recited in claim 28, wherein said thermosetting resin is an epoxy resin and said curing agent includes means for curing said epoxy resin.
30. The method of preparing a composition for use in reinforcing a hollow structural member recited in claim 28, wherein said first and second fillers are selected from the group consisting of calcium carbonate, hydrated magnesium silicate, kaolinite, alumina trihydrate, anhydrous alkali alumina silicate, silica, solid glass spheres, hollow glass spheres and combinations thereof.
31. The method of preparing a composition for use in reinforcing a hollow structural member recited in claim 28, wherein said thermosetting resin is bisphenol A-epichlorohydrin resin.
32. The method of preparing a composition for use in reinforcing a hollow structural member recited in claim 28, wherein said colorant is carbon black.
33. The method of preparing a composition for use in reinforcing a hollow structural member recited in claim 28, wherein said curing agent is selected from the group consisting of aliphatic amines and polyamides.
34. A method of reinforcing a structural member having a cavity comprising the steps of: preparing a first dough which includes a thermosetting resin, a first filler and unexpanded, thermally-expandable microspheres; preparing a second dough which includes a curing agent, a colorant and a second filler; blending together said first dough and said second dough to form a reactive third dough; and packing said reactive third dough in said cavity of said structural member; wherein said curing agent promotes the cross-linking of said thermosetting resin in a reaction which releases heat, wherein said heat of said reaction causes said unexpanded, thermally-expandable microspheres to expand such that said reactive dough expands, and wherein said cross-linking of said thermosetting resin continues until said thermosetting resin substantially fully cures to form a rigid body which adheres to and reinforces said structural member.
35. The method of reinforcing a structural member recited in claim 34, wherein said hollow structural member is a motor vehicle component.
36. The method of reinforcing a structural member recited in claim 34, wherein said structural member is a repaired section of a motor vehicle frame.
37. The method of reinforcing a structural member recited in claim 34, further including the step of providing a closure plate and attaching said closure plate to said structural member to enclose said reactive dough in said cavity.
38. The method of reinforcing a structural member recited in claim 34, further including the step of cleaning said structural member in the region where said reactive dough is packed into the cavity of said structural member.
39. The method of reinforcing a structural member recited in claim 34, wherein said thermosetting resin is an epoxy resin and wherein said curing agent includes means for curing said epoxy resin.
40. The method of reinforcing a structural member recited in claim 34, wherein said first and second fillers are selected from the group consisting of calcium carbonate, hydrated magnesium silicate, kaolinite, aluminum trihydrate, anhydrous alkali aluminum silicate, silica, solid glass spheres, hollow glass spheres and combinations thereof.
41. The method of reinforcing a structural member recited in claim 34, further including the step of heating said structural member with heating means before said packing step.
42. The method of reinforcing a structural member recited in claim 34, further including the step of heating said reactive dough and said structural member after said reactive dough has been packed into said structural member to enhance the cure rate of said reactive dough.
PCT/US1989/000906 1988-03-10 1989-03-06 Process and compositions for reinforcing structural members WO1989008678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US166,282 1988-03-10
US07/166,282 US4923902A (en) 1988-03-10 1988-03-10 Process and compositions for reinforcing structural members

Publications (1)

Publication Number Publication Date
WO1989008678A1 true WO1989008678A1 (en) 1989-09-21

Family

ID=22602607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/000906 WO1989008678A1 (en) 1988-03-10 1989-03-06 Process and compositions for reinforcing structural members

Country Status (3)

Country Link
US (1) US4923902A (en)
CA (1) CA1325496C (en)
WO (1) WO1989008678A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017349A1 (en) * 1991-03-28 1992-10-15 Bothwell P W Vehicle and body
WO1995027000A1 (en) * 1994-03-31 1995-10-12 Ppg Industries, Inc. Curable, sprayable compositions for reinforcing thin rigid plates
EP0860348A3 (en) * 1997-02-25 1998-12-30 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Armoured vehicle with a body comprising at least one cavity
EP0982364A1 (en) * 1998-08-25 2000-03-01 Nicolas Bitar Epoxy putty reinforced with aramid fibers and containing a gel coat
DE19909270A1 (en) * 1999-03-03 2000-09-07 Henkel Teroson Gmbh Thermosetting, thermally expandable molded body
WO2003054069A1 (en) 2001-12-21 2003-07-03 Henkel Teroson Gmbh Expandable epoxy resin-based systems modified with thermoplastic polymers
DE102007032631A1 (en) 2007-07-11 2009-01-15 Henkel Ag & Co. Kgaa Vehicle i.e. passenger car, body reinforcing method, involves hardening thermally hardenable mass introduced in some of segments of hollow space, where segments of hollow space filled with mass is reinforced
US7736743B2 (en) 2003-01-22 2010-06-15 Henkel Kgaa Heat curable, thermally expandable composition with high degree of expansion
US8288447B2 (en) 2006-06-07 2012-10-16 Henkel Ag & Co. Kgaa Foamable compositions based on epoxy resins and polyesters

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124186A (en) * 1990-02-05 1992-06-23 Mpa Diversified Products Co. Composite tubular door beam reinforced with a reacted core localized at the mid-span of the tube
US4978562A (en) * 1990-02-05 1990-12-18 Mpa Diversified Products, Inc. Composite tubular door beam reinforced with a syntactic foam core localized at the mid-span of the tube
US5575526A (en) * 1994-05-19 1996-11-19 Novamax Technologies, Inc. Composite laminate beam for radiator support
US6168226B1 (en) 1994-05-19 2001-01-02 Henkel Corporation Composite laminate automotive structures
GB2291426B (en) * 1994-07-19 1998-05-06 Sumitomo Chemical Co Epoxy resin composition process for producing the same and resin-sealed semiconductor device
US6165588A (en) * 1998-09-02 2000-12-26 Henkel Corporation Reinforcement of hollow sections using extrusions and a polymer binding layer
US5755486A (en) * 1995-05-23 1998-05-26 Novamax Technologies Holdings, Inc. Composite structural reinforcement member
US6482496B1 (en) 1996-07-03 2002-11-19 Henkel Corporation Foil backed laminate reinforcement
US6270600B1 (en) 1996-07-03 2001-08-07 Henkel Corporation Reinforced channel-shaped structural member methods
US5888600A (en) * 1996-07-03 1999-03-30 Henkel Corporation Reinforced channel-shaped structural member
US6858260B2 (en) 1997-05-21 2005-02-22 Denovus Llc Curable sealant composition
US6461691B1 (en) * 1997-05-21 2002-10-08 Denovus Llc Curable sealant composition
US6277898B1 (en) * 1997-05-21 2001-08-21 Denovus Llc Curable sealant composition
US6444713B1 (en) * 1997-05-21 2002-09-03 Denovus Llc Foaming compositions and methods for making and using the compositions
US6479560B2 (en) * 1997-05-21 2002-11-12 Denovus Llc Foaming compositions and methods for making and using the composition
US6174932B1 (en) * 1998-05-20 2001-01-16 Denovus Llc Curable sealant composition
US6237304B1 (en) 1997-07-18 2001-05-29 Henkel Corporation Laminate structural bulkhead
US6096403A (en) * 1997-07-21 2000-08-01 Henkel Corporation Reinforced structural members
US6233826B1 (en) 1997-07-21 2001-05-22 Henkel Corp Method for reinforcing structural members
US6451231B1 (en) 1997-08-21 2002-09-17 Henkel Corporation Method of forming a high performance structural foam for stiffening parts
WO1999015582A1 (en) * 1997-09-22 1999-04-01 Siemens Aktiengesellschaft Duro-plastic composite material with expandable hollow microspheres and use of the same for encapsulation
US6103341A (en) 1997-12-08 2000-08-15 L&L Products Self-sealing partition
US6068424A (en) * 1998-02-04 2000-05-30 Henkel Corporation Three dimensional composite joint reinforcement for an automotive vehicle
US20030195268A1 (en) * 1998-05-20 2003-10-16 Freitag James W. Novel foaming compositions and methods for making and using the composition
US5992923A (en) * 1998-05-27 1999-11-30 Henkel Corporation Reinforced beam assembly
US6376564B1 (en) 1998-08-27 2002-04-23 Henkel Corporation Storage-stable compositions useful for the production of structural foams
US6103784A (en) 1998-08-27 2000-08-15 Henkel Corporation Corrosion resistant structural foam
ZA991856B (en) 1998-08-27 1999-09-22 Henkel Corp Storage-stable compositions useful for the production of structural foams.
US6387470B1 (en) 1998-11-05 2002-05-14 Sika Corporation Sound deadening and structural reinforcement compositions and methods of using the same
US7632559B2 (en) * 1998-11-05 2009-12-15 Sika Technology Ag Sound deadening and structural reinforcement compositions and methods of using the same
US6276105B1 (en) 1999-01-11 2001-08-21 Henkel Corporation Laminate reinforced beam with tapered polymer layer
US6110982A (en) * 1999-01-13 2000-08-29 Sandia Corporation Epoxy foams using multiple resins and curing agents
US6189953B1 (en) 1999-01-25 2001-02-20 Henkel Corporation Reinforced structural assembly
US6092864A (en) * 1999-01-25 2000-07-25 Henkel Corporation Oven cured structural foam with designed-in sag positioning
US6149227A (en) * 1999-01-25 2000-11-21 Henkel Corporation Reinforced structural assembly
US6131897A (en) 1999-03-16 2000-10-17 L & L Products, Inc. Structural reinforcements
US6207730B1 (en) 1999-03-18 2001-03-27 Daubert Chemical Company, Inc. Epoxy and microsphere adhesive composition
JP5133482B2 (en) * 1999-07-21 2013-01-30 イムデ ビオマテリオー Adhesive protein foam for surgical and / or therapeutic use, and methods and kits for its production
US6358584B1 (en) 1999-10-27 2002-03-19 L&L Products Tube reinforcement with deflecting wings and structural foam
USH2047H1 (en) 1999-11-10 2002-09-03 Henkel Corporation Reinforcement laminate
US6668457B1 (en) * 1999-12-10 2003-12-30 L&L Products, Inc. Heat-activated structural foam reinforced hydroform
US6263635B1 (en) 1999-12-10 2001-07-24 L&L Products, Inc. Tube reinforcement having displaceable modular components
US6305136B1 (en) 2000-01-31 2001-10-23 Sika Corporation Reinforcing member with beam shaped carrier and thermally expansible reinforcing material
US6199940B1 (en) 2000-01-31 2001-03-13 Sika Corporation Tubular structural reinforcing member with thermally expansible foaming material
US6253524B1 (en) 2000-01-31 2001-07-03 Sika Corporation Reinforcing member with thermally expansible structural reinforcing material and directional shelf
US6475577B1 (en) 2000-02-07 2002-11-05 Sika Corporation Reinforcing member with intersecting support legs
AU2001230965A1 (en) * 2000-02-11 2001-08-20 L And L Products, Inc. Structural reinforcement system for automotive vehicles
US6467834B1 (en) 2000-02-11 2002-10-22 L&L Products Structural reinforcement system for automotive vehicles
US6482486B1 (en) 2000-03-14 2002-11-19 L&L Products Heat activated reinforcing sleeve
US6296298B1 (en) 2000-03-14 2001-10-02 L&L Products, Inc. Structural reinforcement member for wheel well
US6422575B1 (en) 2000-03-14 2002-07-23 L&L Products, Inc. Expandable pre-formed plug
US6321793B1 (en) 2000-06-12 2001-11-27 L&L Products Bladder system for reinforcing a portion of a longitudinal structure
US6820923B1 (en) 2000-08-03 2004-11-23 L&L Products Sound absorption system for automotive vehicles
US6620501B1 (en) 2000-08-07 2003-09-16 L&L Products, Inc. Paintable seal system
US6634698B2 (en) * 2000-08-14 2003-10-21 L&L Products, Inc. Vibrational reduction system for automotive vehicles
US6494525B1 (en) 2000-09-15 2002-12-17 Sika Corporation Side impact reinforcement
US6403222B1 (en) 2000-09-22 2002-06-11 Henkel Corporation Wax-modified thermosettable compositions
US6561571B1 (en) 2000-09-29 2003-05-13 L&L Products, Inc. Structurally enhanced attachment of a reinforcing member
US6471285B1 (en) 2000-09-29 2002-10-29 L&L Products, Inc. Hydroform structural reinforcement system
US6451876B1 (en) 2000-10-10 2002-09-17 Henkel Corporation Two component thermosettable compositions useful for producing structural reinforcing adhesives
US6585202B2 (en) 2001-01-05 2003-07-01 Daimlerchrysler Corporation Multi-tiered carrier structure for a motor vehicle
GB0106911D0 (en) * 2001-03-20 2001-05-09 L & L Products Structural foam
US20030018095A1 (en) * 2001-04-27 2003-01-23 Agarwal Rajat K. Thermosettable compositions useful for producing structural adhesive foams
US7473715B2 (en) * 2001-05-02 2009-01-06 Zephyros, Inc. Two component (epoxy/amine) structural foam-in-place material
US6787579B2 (en) 2001-05-02 2004-09-07 L&L Products, Inc. Two-component (epoxy/amine) structural foam-in-place material
GB2375328A (en) * 2001-05-08 2002-11-13 L & L Products Reinforcing element for hollow structural member
US6502821B2 (en) 2001-05-16 2003-01-07 L&L Products, Inc. Automotive body panel damping system
US6682818B2 (en) 2001-08-24 2004-01-27 L&L Products, Inc. Paintable material
US6855652B2 (en) 2001-08-24 2005-02-15 L&L Products, Inc. Structurally reinforced panels
US20030050352A1 (en) * 2001-09-04 2003-03-13 Symyx Technologies, Inc. Foamed Polymer System employing blowing agent performance enhancer
US6729425B2 (en) 2001-09-05 2004-05-04 L&L Products, Inc. Adjustable reinforced structural assembly and method of use therefor
US6887914B2 (en) * 2001-09-07 2005-05-03 L&L Products, Inc. Structural hot melt material and methods
US6730713B2 (en) * 2001-09-24 2004-05-04 L&L Products, Inc. Creation of epoxy-based foam-in-place material using encapsulated metal carbonate
US6786533B2 (en) * 2001-09-24 2004-09-07 L&L Products, Inc. Structural reinforcement system having modular segmented characteristics
US6890964B2 (en) * 2001-09-24 2005-05-10 L&L Products, Inc. Homopolymerized epoxy-based form-in-place material
US6793274B2 (en) * 2001-11-14 2004-09-21 L&L Products, Inc. Automotive rail/frame energy management system
US7041355B2 (en) 2001-11-29 2006-05-09 Dow Global Technologies Inc. Structural reinforcement parts for automotive assembly
US7043815B2 (en) * 2002-01-25 2006-05-16 L & L Products, Inc. Method for applying flowable materials
US6774171B2 (en) 2002-01-25 2004-08-10 L&L Products, Inc. Magnetic composition
US7318873B2 (en) 2002-03-29 2008-01-15 Zephyros, Inc. Structurally reinforced members
US6846559B2 (en) * 2002-04-01 2005-01-25 L&L Products, Inc. Activatable material
CA2482168A1 (en) * 2002-04-15 2003-10-30 Dow Global Technologies Inc. Improved vehicular structural members and method of making the members
US6969551B2 (en) * 2002-04-17 2005-11-29 L & L Products, Inc. Method and assembly for fastening and reinforcing a structural member
US7169344B2 (en) * 2002-04-26 2007-01-30 L&L Products, Inc. Method of reinforcing at least a portion of a structure
US7077460B2 (en) 2002-04-30 2006-07-18 L&L Products, Inc. Reinforcement system utilizing a hollow carrier
GB0211268D0 (en) * 2002-05-17 2002-06-26 L & L Products Inc Hole plugs
GB0211287D0 (en) * 2002-05-17 2002-06-26 L & L Products Inc Improved baffle precursors
GB0211775D0 (en) * 2002-05-23 2002-07-03 L & L Products Inc Multi segment parts
AUPS323802A0 (en) * 2002-06-27 2002-07-18 University Of Newcastle Research Associates Limited, The Toughening of thermosets
US6864297B2 (en) * 2002-07-22 2005-03-08 University Of Southern California Composite foam made from polymer microspheres reinforced with long fibers
US6920693B2 (en) * 2002-07-24 2005-07-26 L&L Products, Inc. Dynamic self-adjusting assembly for sealing, baffling or structural reinforcement
US7004536B2 (en) * 2002-07-29 2006-02-28 L&L Products, Inc. Attachment system and method of forming same
US20040034982A1 (en) * 2002-07-30 2004-02-26 L&L Products, Inc. System and method for sealing, baffling or reinforcing
US6923499B2 (en) * 2002-08-06 2005-08-02 L & L Products Multiple material assembly for noise reduction
US6811864B2 (en) * 2002-08-13 2004-11-02 L&L Products, Inc. Tacky base material with powder thereon
US20040076831A1 (en) * 2002-10-02 2004-04-22 L&L Products, Inc. Synthetic material and methods of forming and applying same
US6883858B2 (en) * 2002-09-10 2005-04-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
US7105112B2 (en) * 2002-11-05 2006-09-12 L&L Products, Inc. Lightweight member for reinforcing, sealing or baffling
GB0300159D0 (en) * 2003-01-06 2003-02-05 L & L Products Inc Improved reinforcing members
US7313865B2 (en) 2003-01-28 2008-01-01 Zephyros, Inc. Process of forming a baffling, sealing or reinforcement member with thermoset carrier member
US20040204551A1 (en) * 2003-03-04 2004-10-14 L&L Products, Inc. Epoxy/elastomer adduct, method of forming same and materials and articles formed therewith
US7111899B2 (en) * 2003-04-23 2006-09-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
US7125461B2 (en) * 2003-05-07 2006-10-24 L & L Products, Inc. Activatable material for sealing, baffling or reinforcing and method of forming same
GB2401349A (en) * 2003-05-08 2004-11-10 L & L Products Reinforcement for a vehicle panel
US7041193B2 (en) * 2003-05-14 2006-05-09 L & L Products, Inc. Method of adhering members and an assembly formed thereby
US7199165B2 (en) * 2003-06-26 2007-04-03 L & L Products, Inc. Expandable material
US20050016807A1 (en) * 2003-07-21 2005-01-27 L&L Products, Inc. Crash box
US7469459B2 (en) * 2003-09-18 2008-12-30 Zephyros, Inc. System and method employing a porous container for sealing, baffling or reinforcing
US20050102815A1 (en) * 2003-11-03 2005-05-19 L&L Products, Inc. Reinforced members formed with absorbent mediums
US20050127145A1 (en) * 2003-11-20 2005-06-16 L&L Products, Inc. Metallic foam
US20050166532A1 (en) * 2004-01-07 2005-08-04 L&L Products, Inc. Structurally reinforced panels
US20050159531A1 (en) * 2004-01-20 2005-07-21 L&L Products, Inc. Adhesive material and use therefor
US7180027B2 (en) * 2004-03-31 2007-02-20 L & L Products, Inc. Method of applying activatable material to a member
US20050221046A1 (en) * 2004-04-01 2005-10-06 L&L Products, Inc. Sealant material
US20050230027A1 (en) * 2004-04-15 2005-10-20 L&L Products, Inc. Activatable material and method of forming and using same
US20050241756A1 (en) * 2004-04-28 2005-11-03 L&L Products, Inc. Adhesive material and structures formed therewith
US8070994B2 (en) 2004-06-18 2011-12-06 Zephyros, Inc. Panel structure
GB2415658A (en) * 2004-06-21 2006-01-04 L & L Products Inc An overmoulding process
US7838589B2 (en) * 2004-07-21 2010-11-23 Zephyros, Inc. Sealant material
US7521093B2 (en) * 2004-07-21 2009-04-21 Zephyros, Inc. Method of sealing an interface
US20060021697A1 (en) * 2004-07-30 2006-02-02 L&L Products, Inc. Member for reinforcing, sealing or baffling and reinforcement system formed therewith
US20060210736A1 (en) * 2004-08-05 2006-09-21 Wycech Joseph S Method for forming a tangible item and a tangible item which is made by a method which allows the created tangible item to efficiently absorb energy
US7374219B2 (en) * 2004-09-22 2008-05-20 Zephyros, Inc. Structural reinforcement member and method of use therefor
US20060090343A1 (en) * 2004-10-28 2006-05-04 L&L Products, Inc. Member for reinforcing, sealing or baffling and reinforcement system formed therewith
US7503620B2 (en) * 2005-05-12 2009-03-17 Zephyros, Inc. Structural reinforcement member and method of use therefor
US7926179B2 (en) * 2005-08-04 2011-04-19 Zephyros, Inc. Reinforcements, baffles and seals with malleable carriers
US7484946B2 (en) * 2005-08-19 2009-02-03 Zephyros, Inc. Method and assembly for locating material within a structure
US8475694B2 (en) * 2005-10-25 2013-07-02 Zephyros, Inc. Shaped expandable material
GB0600901D0 (en) * 2006-01-17 2006-02-22 L & L Products Inc Improvements in or relating to reinforcement of hollow profiles
US7438782B2 (en) * 2006-06-07 2008-10-21 Zephyros, Inc. Activatable material for sealing, baffling or reinforcing and method of forming same
US7820002B2 (en) * 2006-11-16 2010-10-26 Wycech Joseph S Method for making a reception assembly and an reception assembly
US20080191378A1 (en) * 2007-02-14 2008-08-14 Brian Paul Microsphere reinforcement of composite materials
GB0806434D0 (en) * 2008-04-09 2008-05-14 Zephyros Inc Improvements in or relating to structural adhesives
CN102177013B (en) * 2008-07-29 2014-07-23 陶氏环球技术有限责任公司 Toughened expandable epoxy resins for stiffening and energy dissipation in automotive cavities
GB0916205D0 (en) 2009-09-15 2009-10-28 Zephyros Inc Improvements in or relating to cavity filling
CN103153604B (en) 2010-03-04 2016-04-13 泽菲罗斯公司 Structural composite laminate
GB201016530D0 (en) 2010-09-30 2010-11-17 Zephyros Inc Improvements in or relating to adhesives
GB201207481D0 (en) 2012-04-26 2012-06-13 Zephyros Inc Applying flowable materials to synthetic substrates
WO2015011686A1 (en) 2013-07-26 2015-01-29 Zephyros Inc Improvements in or relating to thermosetting adhesive films
GB201417985D0 (en) 2014-10-10 2014-11-26 Zephyros Inc Improvements in or relating to structural adhesives
DE102016206642A1 (en) * 2016-04-20 2017-10-26 Bayerische Motoren Werke Aktiengesellschaft structural component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959508A (en) * 1956-01-30 1960-11-08 Dow Chemical Co Method for expanding thermoplastic resinous materials and articles thereby obtained
US2958905A (en) * 1959-02-05 1960-11-08 Dow Chemical Co Method of fabricating expandable thermoplastic resinous material
US3322700A (en) * 1964-04-22 1967-05-30 Shell Oil Co Method of foaming a resin composition comprising an epoxy resin, a vapor generating fluid, boron trifluoride catalyst and an ammonium halide
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
US3842020A (en) * 1971-11-08 1974-10-15 Dow Chemical Co Method of expanding a resole resin containing expandable thermoplastic microspheres and product obtained therefrom

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3373121A (en) * 1962-02-12 1968-03-12 Dow Chemical Co Polyepoxide foam
BE621501A (en) * 1964-06-26 1900-01-01
US3864181A (en) * 1972-06-05 1975-02-04 Pratt & Lambert Inc Polymer foam compositions
GB1438703A (en) * 1972-11-29 1976-06-09 Gen Motors Corp Energy-absorbing vehicle body end structure electrostatographic apparatus comprising a movable imaging
US3993608A (en) * 1974-06-27 1976-11-23 Minnesota Mining And Manufacturing Company Poly(urethane-isocyanurate) foams containing hollow glass spheres
US4013810A (en) * 1975-08-22 1977-03-22 The Babcock & Wilcox Company Sandwich panel construction
DE3068776D1 (en) * 1979-04-20 1984-09-06 Secr Defence Brit Resin materials, their use and article thereof
US4433068A (en) * 1982-09-27 1984-02-21 Long John V Process for producing bonded macroballoon structures and resulting product
US4732806A (en) * 1983-09-12 1988-03-22 General Motors Corporation Structural member comprising glass macrospheres

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959508A (en) * 1956-01-30 1960-11-08 Dow Chemical Co Method for expanding thermoplastic resinous materials and articles thereby obtained
US2958905A (en) * 1959-02-05 1960-11-08 Dow Chemical Co Method of fabricating expandable thermoplastic resinous material
US3322700A (en) * 1964-04-22 1967-05-30 Shell Oil Co Method of foaming a resin composition comprising an epoxy resin, a vapor generating fluid, boron trifluoride catalyst and an ammonium halide
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
US3842020A (en) * 1971-11-08 1974-10-15 Dow Chemical Co Method of expanding a resole resin containing expandable thermoplastic microspheres and product obtained therefrom

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017349A1 (en) * 1991-03-28 1992-10-15 Bothwell P W Vehicle and body
WO1995027000A1 (en) * 1994-03-31 1995-10-12 Ppg Industries, Inc. Curable, sprayable compositions for reinforcing thin rigid plates
US5470886A (en) * 1994-03-31 1995-11-28 Ppg Industries, Inc. Curable, sprayable compositions for reinforced thin rigid plates
US5712317A (en) * 1994-03-31 1998-01-27 Ppg Industries, Inc. Curable, sprayable compositions for reinforcing thin rigid plates
EP0860348A3 (en) * 1997-02-25 1998-12-30 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Armoured vehicle with a body comprising at least one cavity
EP0982364A1 (en) * 1998-08-25 2000-03-01 Nicolas Bitar Epoxy putty reinforced with aramid fibers and containing a gel coat
DE19909270A1 (en) * 1999-03-03 2000-09-07 Henkel Teroson Gmbh Thermosetting, thermally expandable molded body
US6573309B1 (en) 1999-03-03 2003-06-03 Henkel Teroson Gmbh Heat-curable, thermally expandable moulded park
WO2003054069A1 (en) 2001-12-21 2003-07-03 Henkel Teroson Gmbh Expandable epoxy resin-based systems modified with thermoplastic polymers
US7473717B2 (en) 2001-12-21 2009-01-06 Henkel Ag & Co. Kgaa Expandable epoxy resin-based systems modified with thermoplastic polymers
US7736743B2 (en) 2003-01-22 2010-06-15 Henkel Kgaa Heat curable, thermally expandable composition with high degree of expansion
US8288447B2 (en) 2006-06-07 2012-10-16 Henkel Ag & Co. Kgaa Foamable compositions based on epoxy resins and polyesters
DE102007032631A1 (en) 2007-07-11 2009-01-15 Henkel Ag & Co. Kgaa Vehicle i.e. passenger car, body reinforcing method, involves hardening thermally hardenable mass introduced in some of segments of hollow space, where segments of hollow space filled with mass is reinforced

Also Published As

Publication number Publication date
US4923902A (en) 1990-05-08
CA1325496C (en) 1993-12-21

Similar Documents

Publication Publication Date Title
US4923902A (en) Process and compositions for reinforcing structural members
US4995545A (en) Method of reinforcing a structure member
EP1328415B1 (en) Side impact reinforcement
US6706772B2 (en) Two component (epoxy/amine) structural foam-in-place material
JP5520830B2 (en) How to make the joint
US4908930A (en) Method of making a torsion bar
EP1334161B1 (en) Structural hot melt material and methods
CA2346952C (en) Method for filling and reinforcing honeycomb sandwich panels
US6174932B1 (en) Curable sealant composition
WO1989010276A1 (en) Filled tubular torsion bar and its method of manufacture
ITTO980631A1 (en) PROCEDURE TO STRENGTHEN STRUCTURAL BODIES.
GB2327387A (en) Reinforced structural members
Kim et al. Collapse characteristics of aluminum extrusions filled with structural foam for space frame vehicles
EP0983320B1 (en) Curable sealant composition
JPH10139981A (en) Epoxy resin composition for reinforcing car body, car body reinforcement structure, and method for reinforcing car body
KR100510579B1 (en) Tacky reinforcing product for reinforcing structures of cars
JP2004168928A (en) Highly rust preventive adhesive composition for structure and method of bonding
Suchar-Buell Structural repair of composites
JPH11216791A (en) Steel structure member and its manufacture
WO1996005240A1 (en) Structural strengthening
JP2000085618A (en) Rigidity improving method for foam filler and box-type member
AU781714B2 (en) Curable sealant composition
JP2003011797A (en) Car body remodeling method and remodeling material used in the same
JP2002370068A (en) Metal surface repairing method and repairing agent
MXPA00007607A (en) Three dimensional composite joint reinforcement for an automotive vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE