WO1987007729A1 - Silicon-integrated pick-up for measuring mechanical magnitudes, and method of fabrication - Google Patents

Silicon-integrated pick-up for measuring mechanical magnitudes, and method of fabrication Download PDF

Info

Publication number
WO1987007729A1
WO1987007729A1 PCT/FR1987/000206 FR8700206W WO8707729A1 WO 1987007729 A1 WO1987007729 A1 WO 1987007729A1 FR 8700206 W FR8700206 W FR 8700206W WO 8707729 A1 WO8707729 A1 WO 8707729A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
blade
doped
flexible
conductive
Prior art date
Application number
PCT/FR1987/000206
Other languages
French (fr)
Inventor
Pierre Andre
François BAILLIEU
Jean-Pierre Brosselard
Alfred Permuy
François-Xavier Pirot
Serge Spirkovitch
Original Assignee
Metravib R.D.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metravib R.D.S. filed Critical Metravib R.D.S.
Priority to AT87903879T priority Critical patent/ATE52342T1/en
Priority to DE8787903879T priority patent/DE3762462D1/en
Publication of WO1987007729A1 publication Critical patent/WO1987007729A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/0005Anti-stiction coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/11Treatments for avoiding stiction of elastic or moving parts of MEMS
    • B81C2201/112Depositing an anti-stiction or passivation coating, e.g. on the elastic or moving parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Definitions

  • the subject of the present invention is a sensor of mechanical quantities integrated on silicon, comprising a monocrystalline silicon substrate having a first type of doping (A), a variable capacitor comprising a first movable armature constituted by the free end of a conductive strip flexibly deformable mounted so as to have a cantilevered part, and a second fixed armature constituted by a conductive zone produced at the level of the fixed free surface of the sensor opposite said first armature and separated from it by a free space whose thickness is of the order of a few microns, and means for detecting a significant electrical signal representative of the variations in position of said flexible blade.
  • A first type of doping
  • the production of a sensor integrated on silicon makes it possible to increase compatibility with the electronic digital processing circuits associated with the sensors.
  • the integrated mechanical effect size sensors known capacitive have drawbacks insofar as the means for detecting variations in the capacitance of the variable capacitor, one of the armatures of which is constituted by a flexible blade, uses structures of the MOS (metal-oxide-semiconductor) type which do not allow sufficiently reliable or precise measurements due to parasitic capacitances, drift over time, relatively high noise and the impossibility of imposing a low cut-off frequency.
  • MOS metal-oxide-semiconductor
  • the present invention aims to remedy the aforementioned drawbacks and to allow the production of a sensor of mechanical quantities integrated on silicon, the manufacture and dimensions of which are compatible with the technology of integrated electronic circuits, which can be manufactured in a precise and safe manner. and whose sensitivity and reliability are improved so as to allow precise measurements even in difficult environmental conditions.
  • a sensor of the type defined at the head of the description characterized in that the substrate is covered on at least part of its surface by a doped layer having a second type of doping (B), in that Said conductive deformable blade has a conductive anchoring part attached to a localized area of said doped layer, - in that the sensor comprises in said doped layer a first doped area with a high concentration of impurities of the first type (A) located in said localized anchor area of La Lame flexible to constitute the gate G of a field effect transistor with JFET junction, of the second and third doped zones with high concentration of impurities of the second type (B ) located on either side of said first doped zone to constitute drain zones D and source S of the JFET transistor, the doped layer defining a zone with low concentration of impurities of said second type (B) located under said first doped zone between said second and third zones to constitute the channel of said JFET transistor the grid G of which is connected directly by the flexible blade to
  • the flexible strip can advantageously be made of doped polysilicon to make it conductive.
  • said underlying conductive zone consists of a fourth doped zone with a high concentration of impurities of the second type (B) produced directly in the substrate.
  • said underlying conductive zone consists of a fourth doped zone with a high concentration of impurities of the first type (A ) produced in the doped layer.
  • the sensor can have a still improved sensitivity if it comprises a JFET transistor produced in a ring with a second drain or source zone which constitutes a central zone, a first gate zone which surrounds in a non-contiguous manner the central drain zone or source, a third source or drain zone which surrounds itself in a non-contiguous manner The first gate zone, a peripheral conductive zone which is disposed non-contiguously outside of the third source or drain zone , a channel zone located in the intervals between the second and first zones, between the first and third zones and below them, and if the flexible blade has a cantilever part which extends radially towards the outside, from the first zone to the conductive zone.
  • the senor can include several blades flexible extending radially outward between an anchoring zone constituted by a crown superimposed on the first zone and conductive zones in number equal to the number of flexible and non-contiguous strips, above which extend respectively the free end end portions of the flexible blades.
  • the flexible blade has a door part overhang constituted by a set of stair treads each having a length less than a critical bonding length, each stair tread cooperates with a doped zone with high concentration of individually polarizable impurities located under said tread, and means are provided to apply successively step by step to each individually polarizable doped zone, from the free end of the flexible blade, a polarization to allow takeoff of the successive steps in the event of accidental sticking of the free part of the blade flexible on the substrate.
  • the invention also applies to sensors with flexible blades without overhangs which are constituted by the symmetrical association of two sensors according to the invention in which the free end parts of the flexible blades are joined together to form a single flexible blade anchored at both ends.
  • the subject of the invention is also a method of manufacturing an integrated mechanical magnitude sensor as defined above, characterized in that the doped layer is first produced, the first, second and third doped zones with high concentration of impurities and the conductive zone, in that a silica layer is then formed which follows the possible production of a passivation layer, in that photogravure releases the silica in the zone anchoring of the flexible blade, in that there is a material conductive in the anchoring zone and on a part of the silica layer to constitute the flexible blade, in that an overload is carried out if necessary at the free end of the flexible blade, in that the Proceed to the opening of contacts through the layer of silica and possibly passivation, then to the deposition of aluminum and to the photoetching of the aluminum to produce conductive connection paths, in that the cutting is carried out.
  • silica is removed, including under the conductive material of the cantilever part of the flexible blade, with hydrofluoric acid gas anhydrous at a temperature between about 50 C and 200 C and preferably between 50 C and 100 C so as to prevent the formation of droplets of liquid on the wafer.
  • FIG. 1 is a schematic sectional view showing a first embodiment of a sensor according to the invention
  • - fig. 2 is a plan view showing a particular embodiment of a sensor with a ring structure
  • - fig. 3 is a symbolic view showing the equivalent diagram of a sensor according to the invention.
  • FIG. 1 a schematic sectional view showing various stages in the manufacture of the sensor structure of FIG. 1,
  • FIG. 8 is a schematic sectional view showing an alternative embodiment of the sensor of FIG. 1,
  • - Fig. 9 is a schematic sectional view showing a second embodiment of the invention
  • - Figs. 10 and 11 are views similar to that of FIG. 9 but show two successive stages of the state of the structure of the sensor of FIG. 9 during a take-off operation of the flexible blade of the sensor relative to the substrate.
  • Fig. 1 shows a first example of a mechanical magnitude sensor, which can constitute, for example, an accelerometer, which is integrated on silicon.
  • the sensor comprises a blade 4 deformable in bending and made of polycrystalline silicon so as to be conductive.
  • the blade 4 has one end 41 attached to the substrate, 2 of monocrystalline silicon to form a conductive anchoring part, a cantilever part 42 which constitutes the deformable part of the blade and a free end part 43 which defines a first movable armature of a capacitor 11 (fig. 3).
  • the movable part 42 43 of the deformable blade 4 is located at a distance from the free surface of the sensor which is of the order of a micron or a few microns.
  • a layer 2 of type N silicon is formed by epitaxy over the entire surface of the actual substrate 1 consisting of p-type monocrystalline silicon.
  • a zone 24 in which impurities doping with silicon have been diffused, so as to form a doped zone P, is located in the epitaxial layer 2 under the free end 43 of the blade 4 and constitutes the fixed armature of the variable capacitor 11 composed of the movable frame 43, the fixed frame 24 and the free space 6 located between the movable frame 43 and the free surface of the sensor.
  • the free surface of the sensor is defined by a passivation layer 32 composed, for example, of silica (Si02) covered with silicon nitride ( Si, N,).
  • This passivation layer is, however, not essential and can be omitted, as in the embodiment of FIG. 8.
  • a bias voltage is applied between the substrate 1, from outside the sensor structure, and the area 24 constituting the fixed armature of the capacitor 11, from a DC voltage source 13 at which can be superimposed, if necessary, a voltage of modulation (fig. 3).
  • the anchoring zone 21 on which the anchoring part 41 of the blade 4 is arranged is constituted by a p-type diffused zone which constitutes the gate of a field effect transistor with JFET junction 12.
  • the JFET transistor 12 comprises a diffused zone 25 of low concentration which is part of the epitaxial layer 2, is of sign N opposite to that of the gate (of type p), and constitutes a channel at each end of which, as well as for any JFET transistor, two drain and source zones 2, 23 have been formed, the N doping of which is of the same sign as that of the channel and to which suitable polarizations are reported from outside (not shown on the symbolic diagram of Fig. 3).
  • the free end 43 of the blade 4 forming a capacitor frame is preferably enlarged relative to the part 42 constituting the flexible part of the blade, and an overload 5, of relatively large mass, produced, for example, also in polycrystalline silicon and which may have a height, for example, of the order of 10 microns, is arranged on the blade 4 in the vicinity of the free end 43 in order to increase the sensitivity of the blade in overhang.
  • the blade 4 deforms and varies the distance of the free space 6 between the free end 43 carrying the overload 5 and the free surface of the sensor.
  • FIG. 2 There is shown in FIG. 2 in top view of an integrated sensor of the type of that of FIG. 1 in which the JFET transistor 12 is produced in a ring configuration which prevents part of the current, between the drain and the source, from being influenced by the gate.
  • a JFET transistor 12 which includes a doped central zone 122, with a high concentration of N-type impurities, which can constitute the drain or the source of the JFET transistor.
  • the central area 122 is surrounded, in a non-contiguous manner, by a gate area 121, doped with p-type impurities.
  • a doped peripheral zone 123, of source or drain, with a high concentration of N-type impurities, itself surrounds in a non-contiguous manner the grid zone 121.
  • a zone of. channel 125 extends between the central zone 122 and the grid zone 121, under the grid zone 121 and between the grid zone 121 and the peripheral zone 123.
  • the central zone 122 can extend on a surface of the order of 100 ⁇ m x 100 ⁇ m while the rings 121, 123, surrounding the central area 122, can have, in the radial direction, a width of the order of 10 microns.
  • a contact can be connected directly to this zone.
  • the contact 173 of the peripheral zone 123 is itself connected to the latter by a conductive path 172.
  • a blade 104 has a flexible overhanging part 142 which ends in a free end part 143 enlarged and surmounted by an overload 105.
  • the anchoring part 141 of the Blade 104 itself has the shape of a ring superimposed on the gate area 121 and surrounding the central drain area 122 or source of the JFET transistor.
  • the sensor with JFET transistor, of the ring type may comprise only one blade 104, in FIG. 2, four flexible blades 104 have been shown, extending radially outwards from the anchor ring 141.
  • each flexible blade 4, 104 can extend in width over a relatively large distance, while being provided with recesses, in order to increase the ratio between the flexibility in the longitudinal direction and the flexibility in the transverse direction.
  • FIG. 2 One of the flexible blades 104 (on the left of the figure) in the form of a set of three parallel tabs 142 ', 142 ", 142"', separated from one another, attached to the crown anchor 141 at separate points and joined at their free ends by a common end portion 143.
  • a sensor according to the invention can also comprise the symmetrical association of two or more sensors in which the end parts 43, 143 of the flexible blades 4, 104 are joined together to form a single flexible blade anchored at several ends.
  • such a single flexible blade sensor could thus have an axis of symmetry corresponding to the axis X1-X2 of FIG. 1.
  • a layer 2 of type N silicon is deposited on a P-type substrate 1, by epitaxy.
  • FIG. 5 shows the state of the silicon wafer at the end of the steps indicated above.
  • a passivation layer 32 deposit a passivation layer 32, then oxidize to form a layer 3 of silica having the desired thickness for the free space 6, and the etching of a well 31 is carried out. above the grid area 21, in order to then allow a anchoring of blade 4 (fig. 6).
  • the final step leading to the structure of fig. 1, that is to say the production of a small cantilevered blade 4, consists of a chemical attack on layer 3, including under part 42 of blade 4, by a current of hydrofluoric acid gas anhydrous at a temperature between about 50 ° C and 200 ° C, and preferably between 50 C and 100 C, under conditions which prevent the formation of droplets of Liquid on the wafer of the sensor.
  • the etching of the oxide layer 3 can be carried out for example at a speed of the order of 1 micron / minute. Taking into account the operating conditions of the latter step (hot attack with a gas flow), The silica layer 3 can be attacked in a dry manner without gelatinous redeposition and the aluminum deposits are themselves practically not attacked and retain all their conductive properties. Naturally, the example of manufacturing process described above can undergo many variants and all the techniques used in the usual way in microelectronics can be used.
  • the doping of the zones 21, 22, 23 and, where appropriate, of the conductive zone 24 can be carried out both by diffusion and by ion implantation.
  • the N-type layer 2 produced on the P-type substrate 1 is not necessarily formed by epitaxy.
  • Layer 2 of type N, surrounding the drain and source zones 22, 23, can form a simple box which does not extend to the conductive zone 24 located opposite the free end 43.
  • the conductive area 24, which constitutes the fixed armature of the capacitor 11 connected to a connection 71 is produced by doping with a high concentration of N-type impurities.
  • the first type of doping A, A can be type P,
  • the second type of doping B, B is the type N, N, but it is possible, In the same way, to consider that The first type of doping A, A is constituted by the type N, N while The second type of doping B, B is constituted by type P, P.
  • FIG. 9 presents a flexible strip 4 in staircase formed by a set of successive sections 4a, 4b, ... 4th in the form of stair treads.
  • the first stair step 4a comprises a first vertical anchoring part 41a to which is attached a horizontal part 42a cantilevered in a manner analogous to the blade 4 of FIGS. 1 and 8.
  • a vertical part 41b is arranged in place of the overload 5 of FIGS. 1 and 8, and constitutes the counter step of the step 4b, the horizontal part 42b of which is located at a greater distance from the free surface of the sensor than the horizontal part 42a of the first step 4a.
  • the flexible blade 4 can thus comprise, for example, five successive steps 4a to 4e with counter steps 41a to 41e and horizontal parts 42a to 42e, the last 42e of which constitutes the free end 43 of the blade forming the movable frame of the capacitor 11 and is situated opposite a conductive zone 24 forming the fixed armature of the variable capacitor 11.
  • the first step 41a forming an anchoring zone itself surmounts a doped zone 21 constituting the gate of the JFET transistor 12, the doped drain and source areas 22, 23 of which surround the gate 21 without contact.
  • Each stair step 4a to 4th cooperates with a doped zone 26 with a high concentration of impurities formed in the substrate 1 or the epitaxial layer 2 surmounting the substrate 1 and located under the corresponding step.
  • the length of the horizontal part 42a to 42e of each step 4a to 4th is less than a critical bonding length while the total length of the blade between the anchoring part 41a and the projection on the substrate of the free end 43 is much greater than this critical bond length.
  • polarization voltages are applied successively to the zones 26, starting with the zone 26 located under the stair step 4d which immediately follows the step 4 next to the free end 43 of The blade (fig. 10).
  • the application of a force on the step 4d by the bias voltage of the source 14 exerted on the corresponding zone 26 makes it possible to increase the length of the bonded part of the part 42d of the step 4d and, consequently, of tend to raise the next step 4th next to the free end 43.
  • the 4th step can thus be unstuck, as shown in FIG. 10, while the steps 4a to 4d remain glued.
  • the different steps 4d, 4c, 4b can be unstuck.
  • the last step the length of which is less than the critical bonding length, can itself peel off automatically when no bias voltage is applied to the zones 26.
  • a polysilicon blade 4 can comprise, for example, four steps each having a length of approximately 40 microns and a thickness of 2 microns.
  • the bias voltage applied successively to the doped areas 26 can be of the order of about 10 volts.
  • the object of the invention is particularly intended to be implemented for the constitution of accelerometers or pressure sensors.

Abstract

The pick-up comprises a conductor strip (4) which is deformable by bending and of which one free extremity (43) forms the first armature of a variable capacitor of which the second fixed armature (24) is comprised of a conducting area provided on the silicon substrate. A structure of the JFET transistor type is formed at the vicinity of the anchoring point (41) of the strip (4) with a grid area (21) situated under the anchoring part (41) and drained and source regions (22, 23) provided on either side of the grid region (21), to amplify a signal representative of the position variations of the flexible strip (4). Application to accelerometers, pressure pick-ups.

Description

CAPTEUR DE GRANDEURS MECANIQUES INTEGRE SUR SILICIUM ET PROCEDE DE FABRICATION.INTEGRATED MECHANICAL SENSOR ON SILICON AND MANUFACTURING METHOD.
DOMAINE TECHNIQUE :TECHNICAL AREA :
La présente invention a pour objet un capteur de grandeurs mécaniques intégré sur silicium, comprenant un substrat de silicium monocristallin présentant un premier type de dopage (A), un condensateur variable comprenant une première armature mobile constituée par l'extrémité libre d'une lame conductrice deformable en flexion montée de manière à présenter une partie en porte-à-faux, et une seconde armature fixe constituée par une zone conductrice réalisée au niveau de la surface libre fixe du capteur en regard de ladite première armature et séparée de celle-ci par un espace libre dont l'épaisseur est de l'ordre de quelques microns, et des moyens de détection d'un signal électrique significatif représentatif des-variations de position de ladite lame flexible.The subject of the present invention is a sensor of mechanical quantities integrated on silicon, comprising a monocrystalline silicon substrate having a first type of doping (A), a variable capacitor comprising a first movable armature constituted by the free end of a conductive strip flexibly deformable mounted so as to have a cantilevered part, and a second fixed armature constituted by a conductive zone produced at the level of the fixed free surface of the sensor opposite said first armature and separated from it by a free space whose thickness is of the order of a few microns, and means for detecting a significant electrical signal representative of the variations in position of said flexible blade.
ART ANTERIEUR :PRIOR ART:
**
On connait déjà des capteurs de grandeurs mécaniques intégrés de ce type, destinés à la mesure de forces, accélérations, ou pressions et comprenant une petite poutre en porte-à-faux formée dans une pastille de silicium, afin de constituer, au sein même d'un circuit intégré, un élément sensible à des accélérations perpendiculaires aux surfaces de la pastille de silicium, pour provoquer des variations de La capacité d'un condensateur variable et permettre, par la détection des variations de capacité, la délivrance d'un signal électrique représentatif de la grandeur mesurée.There are already known integrated mechanical magnitude sensors of this type, intended for the measurement of forces, accelerations, or pressures and comprising a small cantilever beam formed in a silicon wafer, in order to constitute, within '' an integrated circuit, an element sensitive to accelerations perpendicular to the surfaces of the silicon wafer, to cause variations in the capacitance of a variable capacitor and allow, by detecting variations in capacitance, the delivery of an electrical signal representative of the quantity measured.
La réalisation d'un capteur intégré sur du silicium permet d'accroître la compatibilité avec Les circuits électroniques de traitement numérique associés aux capteurs. Toutefois, les capteurs intégrés de grandeurs mécaniques à effet capacitif connus présentent des inconvénients dans la mesure où les moyens de détection des variations de la capacité du condensateur variable dont l'une des armatures est constituée par une lame flexible font appel à des structures du type MOS (métal-oxyde-semi-conducteur) qui ne permettent pas des mesures suffisamment fiables ou précises du fait des capacités parasites, des dérives dans le temps, du bruit relativement important et de L'impossibilité d'imposer une fréquence de coupure basse.The production of a sensor integrated on silicon makes it possible to increase compatibility with the electronic digital processing circuits associated with the sensors. However, the integrated mechanical effect size sensors known capacitive have drawbacks insofar as the means for detecting variations in the capacitance of the variable capacitor, one of the armatures of which is constituted by a flexible blade, uses structures of the MOS (metal-oxide-semiconductor) type which do not allow sufficiently reliable or precise measurements due to parasitic capacitances, drift over time, relatively high noise and the impossibility of imposing a low cut-off frequency.
Par ailleurs, La fabrication de capteurs incorporant une Lame en porte-à-faux située à une très faible distance du substrat, de L'ordre de quelques microns, s'avère délicate et il est souvent difficile d'empêcher ou de faire cesser un collage de La Lame sur Le substrat par suite de l'attraction entre deux zones de dopage différent lorsque la distance entre ces deux zones est très faible.Furthermore, the manufacture of sensors incorporating a cantilevered blade located at a very short distance from the substrate, of the order of a few microns, proves to be delicate and it is often difficult to prevent or stop a bonding of the blade on the substrate as a result of the attraction between two different doping zones when the distance between these two zones is very small.
EXPOSE DE L'INVENTION :*PRESENTATION OF THE INVENTION: *
La présente invention vise à remédier aux inconvénients précités et à permettre la réalisation d'un capteur de grandeurs mécaniques intégré sur silicium, dont la fabrication et les dimensions sont compatibles avec La technologie des circuits électroniques intégrés, qui peut être fabriqué de façon précise et sûre et dont la sensibilité et La fiabilité sont améliorées de manière à permettre des mesures précises même dans des conditions d'environnement difficile.The present invention aims to remedy the aforementioned drawbacks and to allow the production of a sensor of mechanical quantities integrated on silicon, the manufacture and dimensions of which are compatible with the technology of integrated electronic circuits, which can be manufactured in a precise and safe manner. and whose sensitivity and reliability are improved so as to allow precise measurements even in difficult environmental conditions.
Ces buts sont atteints grâce à un capteur du type défini en tête de La description, caractérisé en ce que Le substrat est recouvert sur au moins une partie de sa surface par une couche dopée présentant un second type de dopage (B), en ce que Ladite Lame deformable conductrice présente une partie d'ancrage conductrice rapportée sur une zone localisée de ladite couche dopée,- en ce que le capteur comprend dans ladite couche dopée une première zone dopée à forte concentration d'impuretés du premier type (A ) située dans ladite zone localisée d'ancrage de La Lame flexible pour constituer La grille G d'un transistor à effet de champ à jonction JFET, des seconde et troisième zones dopées à forte concentration d'impuretés du second type (B ) situées de part et d'autre de ladite première zone dopée pour constituer des zones de drain D et de source S du transistor JFET, La couche dopée définissant une zone à faible concentration d'impuretés dudit second type (B) située sous Ladite première zone dopée entre lesdites seconde et troisième zones pour constituer le canal dudit transistor JFET dont la grille G est reliée directement par La lame flexible à l'armature mobile du condensateur variable.These aims are achieved by means of a sensor of the type defined at the head of the description, characterized in that the substrate is covered on at least part of its surface by a doped layer having a second type of doping (B), in that Said conductive deformable blade has a conductive anchoring part attached to a localized area of said doped layer, - in that the sensor comprises in said doped layer a first doped area with a high concentration of impurities of the first type (A) located in said localized anchor area of La Lame flexible to constitute the gate G of a field effect transistor with JFET junction, of the second and third doped zones with high concentration of impurities of the second type (B ) located on either side of said first doped zone to constitute drain zones D and source S of the JFET transistor, the doped layer defining a zone with low concentration of impurities of said second type (B) located under said first doped zone between said second and third zones to constitute the channel of said JFET transistor the grid G of which is connected directly by the flexible blade to the movable frame of the variable capacitor.
La lame flexible peut avantageusement être constituée en polysilicium dopé pour le rendre conducteur.The flexible strip can advantageously be made of doped polysilicon to make it conductive.
Selon un premier mode de réalisation, ladite zone conductrice sous-jacente est constituée par une quatrième zone dopée à forte concentration d'impuretés du second type (B ) réalisée directement dans le substrat. Selon un autre mode de réalisation, ladite zone conductrice sous-jacente est constituée par une quatrième zone dopée à forte concentration d'impuretés du premier type (A ) réalisée dans la couche dopée.According to a first embodiment, said underlying conductive zone consists of a fourth doped zone with a high concentration of impurities of the second type (B) produced directly in the substrate. According to another embodiment, said underlying conductive zone consists of a fourth doped zone with a high concentration of impurities of the first type (A ) produced in the doped layer.
Le capteur peut présenter une sensibilité encore améliorée s'il comprend un transistor JFET réalisé en anneau avec une seconde zone de drain ou de source qui constitue une zone centrale, une première zone de grille qui entoure de façon non contiguë la zone centrale de drain ou de source, une troisième zone de source ou de drain qui entoure elle-même de façon non contiguë La première zone de grille, une zone conductrice périphérique qui est disposée de façon non contiguë à l'extérieur de La troisième zone de source ou de drain, une zone de canal située dans les intervalles entre les seconde et première zones, entre les première et troisième zones et sous celles-ci, et si la Lame flexible présente une partie en porte-à-faux qui s'étend radialement vers L'extérieur, de La première zone vers La zone conductrice. Dans ce cas, le capteur peut comprendre plusieurs Lames flexibles s'étendant radiale ent vers L'extérieur entre une zone d'ancrage constituée par une couronne superposée à La première zone et des zones conductrices en nombre égal au nombre de lames flexibles et non contiguës entre elles, au-dessus desquelles s'étendent respectivement les parties terminales d'extrémité libre des Lames flexibles.The sensor can have a still improved sensitivity if it comprises a JFET transistor produced in a ring with a second drain or source zone which constitutes a central zone, a first gate zone which surrounds in a non-contiguous manner the central drain zone or source, a third source or drain zone which surrounds itself in a non-contiguous manner The first gate zone, a peripheral conductive zone which is disposed non-contiguously outside of the third source or drain zone , a channel zone located in the intervals between the second and first zones, between the first and third zones and below them, and if the flexible blade has a cantilever part which extends radially towards the outside, from the first zone to the conductive zone. In this case, the sensor can include several blades flexible extending radially outward between an anchoring zone constituted by a crown superimposed on the first zone and conductive zones in number equal to the number of flexible and non-contiguous strips, above which extend respectively the free end end portions of the flexible blades.
Selon un mode particulier de réalisation, permettant de rétablir facilement et sans démontage du boîtier l'intégrité du capteur après un choc ayant provoqué un collage sur le substrat de la lame flexible en porte-à-faux, la lame flexible présente une partie en porte-à-faux constituée par un ensemble de marches d'escalier présentant chacune une Longueur inférieure à une longueur critique de collage, chaque marche d'escalier coopère avec une zone dopée à forte concentration d'impuretés polarisable individuellement située sous ladite marche, et des moyens sont prévus pour appliquer successivement de proche en proche sur chaque zone dopée polarisable individuellement, à partir de l'extrémité Libre de La lame flexible, une polarisation pour permettre Le décollage des marches successives en cas de collage accidentel de la partie Libre de La Lame flexible sur le substrat. L'invention s'applique également à des capteurs à lame flexible sans porte-à-faux qui sont constitués par L'association symétrique de deux capteurs selon L'invention dans Lesquels les parties d'extrémité Libre des lames flexibles sont réunies entre elles pour former une lame flexible unique ancrée à ses deux extrémités.According to a particular embodiment, allowing the integrity of the sensor to be easily restored without disassembly of the housing after an impact which has caused the flexible cantilevered blade to stick to the substrate, the flexible blade has a door part overhang constituted by a set of stair treads each having a length less than a critical bonding length, each stair tread cooperates with a doped zone with high concentration of individually polarizable impurities located under said tread, and means are provided to apply successively step by step to each individually polarizable doped zone, from the free end of the flexible blade, a polarization to allow takeoff of the successive steps in the event of accidental sticking of the free part of the blade flexible on the substrate. The invention also applies to sensors with flexible blades without overhangs which are constituted by the symmetrical association of two sensors according to the invention in which the free end parts of the flexible blades are joined together to form a single flexible blade anchored at both ends.
L'invention a encore pour objet un procédé de fabrication d'un capteur de grandeurs mécaniques intégré tel que défini plus haut, caractérisé en ce que l'on réalise dans un premier temps la couche dopée, les première, seconde et troisième zones dopées à forte concentration d'impuretés et La zone conductrice, en ce que l'on forme ensuite une couche de silice qui suit la réalisation éventuelle d'une couche de passivation, en ce que l'on dégage par photogravure La silice dans La zone d'ancrage de La lame flexible, en ce que l'on dispose une matière conductrice dans la zone d'ancrage et sur une partie de La couche de silice pour constituer la lame flexible, en ce que L'on réalise le cas échéant une surcharge à L'extrémité libre de La Lame flexible, en ce que L'on procède à L'ouverture de contacts à travers La couche de silice et éventuellement de passivation, puis au dépôt d'aluminium et à la photogravure de L'aluminium pour réaliser des chemins conducteurs de connexion, en ce que L'on procède à La découpe de plaquettes, à la mise en boîtier et à la soudure de plots et en ce que dans une étape finale on enlève la silice y compris sous la matière conductrice de La partie en porte-à-faux de La lame flexible, par de l'acide fLuorhydrique gazeux anhydre à une température comprise entre environ 50 C et 200 C et, de préférence, comprise entre 50 C et 100 C de manière à empêcher la formation de gouttelettes de liquide sur la plaquette.The subject of the invention is also a method of manufacturing an integrated mechanical magnitude sensor as defined above, characterized in that the doped layer is first produced, the first, second and third doped zones with high concentration of impurities and the conductive zone, in that a silica layer is then formed which follows the possible production of a passivation layer, in that photogravure releases the silica in the zone anchoring of the flexible blade, in that there is a material conductive in the anchoring zone and on a part of the silica layer to constitute the flexible blade, in that an overload is carried out if necessary at the free end of the flexible blade, in that the Proceed to the opening of contacts through the layer of silica and possibly passivation, then to the deposition of aluminum and to the photoetching of the aluminum to produce conductive connection paths, in that the cutting is carried out. of wafers, in the housing and in the soldering of studs and in that in a final step the silica is removed, including under the conductive material of the cantilever part of the flexible blade, with hydrofluoric acid gas anhydrous at a temperature between about 50 C and 200 C and preferably between 50 C and 100 C so as to prevent the formation of droplets of liquid on the wafer.
BREVE DESCRIPTION DES DESSINS :BRIEF DESCRIPTION OF THE DRAWINGS:
D'autres caractéristiques'et avantages de L'invention ressortiront de la description suivante de modes particuliers de réalisation, donnés à titre d'exemples, en référence aux dessins annexés, sur Lesquels :Other features', and advantages of the invention will become apparent from the following description of particular embodiments, given as examples, with reference to the accompanying drawings, in Which:
- la fig. 1 est une vue schématique en coupe montrant un premier mode de réalisation d'un capteur selon l'invention,- fig. 1 is a schematic sectional view showing a first embodiment of a sensor according to the invention,
- la fig. 2 est une vue en plan montrant un mode particulier de réalisation d'un capteur avec une structure en anneau,- fig. 2 is a plan view showing a particular embodiment of a sensor with a ring structure,
- la fig. 3 est une vue symbolique montrant Le schéma équivalent d'un capteur selon l'invention,- fig. 3 is a symbolic view showing the equivalent diagram of a sensor according to the invention,
- Les fig. 4 à 7 sont des vues schématiques en coupe montrant diverses étapes de fabrication de La structure de capteur de La fig. 1,- Figs. 4 to 7 are schematic sectional views showing various stages in the manufacture of the sensor structure of FIG. 1,
- La fig. 8 est une vue schématique en coupe montrant une variante de réalisation du capteur de la fig. 1,- Fig. 8 is a schematic sectional view showing an alternative embodiment of the sensor of FIG. 1,
- La fig. 9 est une vue schématique en coupe montrant un second mode de réalisation de l'invention, et, - Les fig. 10 et 11 sont des vues analogues à celle de la fig. 9 mais montrent deux étapes successives de l'état de la structure du capteur de la figure 9 lors d'une opération de décollage de La Lame flexible du capteur par rapport au substrat.- Fig. 9 is a schematic sectional view showing a second embodiment of the invention, and, - Figs. 10 and 11 are views similar to that of FIG. 9 but show two successive stages of the state of the structure of the sensor of FIG. 9 during a take-off operation of the flexible blade of the sensor relative to the substrate.
La fig. 1 représente un premier exemple de capteur de grandeurs mécaniques, pouvant constituer par exemple un accéléromètre, qui est intégré sur du silicium.Fig. 1 shows a first example of a mechanical magnitude sensor, which can constitute, for example, an accelerometer, which is integrated on silicon.
Le capteur comprend une Lame 4 deformable en flexion et réalisée en silicium polycristallin de manière à être conductrice. La Lame 4 comporte une extrémité 41 rattachée au substrat , 2 en silicium monocristallin pour former une partie d'ancrage conductrice, une partie 42 en porte-à-faux qui constitue la partie deformable de La Lame et une partie d'extrémité Libre 43 qui définit une première armature mobile d'un condensateur 11 (fig. 3). La partie mobile 42 43 de la lame deformable 4 est située à une distance de la surface libre du capteur qui est de l'ordre du micron ou de quelques microns.The sensor comprises a blade 4 deformable in bending and made of polycrystalline silicon so as to be conductive. The blade 4 has one end 41 attached to the substrate, 2 of monocrystalline silicon to form a conductive anchoring part, a cantilever part 42 which constitutes the deformable part of the blade and a free end part 43 which defines a first movable armature of a capacitor 11 (fig. 3). The movable part 42 43 of the deformable blade 4 is located at a distance from the free surface of the sensor which is of the order of a micron or a few microns.
Dans L'exemple de la fig. 1, une couche 2 de silicium de type N est formée par épitaxie sur toute La surface du substrat proprement dit 1 constitué par du silicium monocristallin de type p. Une zone 24 dans laquelle ont été diffusées des impuretés dopant Le silicium, de manière à former une zone dopée P , est située dans La couche epitaxiale 2 sous L'extrémité libre 43 de La Lame 4 et constitue L'armature fixe du condensateur variable 11 composé de L'armature mobile 43, de L'armature fixe 24 et de L'espace Libre 6 situé entre l'armature mobile 43 et la surface libre du capteur. Dans l'exemple de la fig. 1, la surface libre du capteur est définie par une couche de passivation 32 composée, par exemple, de silice (Si02) recouverte de nitrure de silicium (Si,N,). Cette couche de passivation n'est, cependant, pas indispensable et peut être omise, comme dans L'exemple de réalisation de la fig. 8. Une tension de polarisation est appliquée entre le substrat 1, depuis l'extérieur de La structure du capteur, et la zone 24 constituant l'armature fixe du condensateur 11, à partir d'une source de tension continue 13 à Laquelle peut être superposée, le cas échéant, une tension de modulation (fig.3).In the example of fig. 1, a layer 2 of type N silicon is formed by epitaxy over the entire surface of the actual substrate 1 consisting of p-type monocrystalline silicon. A zone 24 in which impurities doping with silicon have been diffused, so as to form a doped zone P, is located in the epitaxial layer 2 under the free end 43 of the blade 4 and constitutes the fixed armature of the variable capacitor 11 composed of the movable frame 43, the fixed frame 24 and the free space 6 located between the movable frame 43 and the free surface of the sensor. In the example of fig. 1, the free surface of the sensor is defined by a passivation layer 32 composed, for example, of silica (Si02) covered with silicon nitride ( Si, N,). This passivation layer is, however, not essential and can be omitted, as in the embodiment of FIG. 8. A bias voltage is applied between the substrate 1, from outside the sensor structure, and the area 24 constituting the fixed armature of the capacitor 11, from a DC voltage source 13 at which can be superimposed, if necessary, a voltage of modulation (fig. 3).
Si L'on se reporte de nouveau à La fig. 1, on voit que la zone d'ancrage 21 sur laquelle est disposée la partie d'ancrage 41 de la lame 4, est constituée par une zone diffusée de type p qui constitue La grille d'un transistor à effet de champ à jonction JFET 12. Le transistor JFET 12 comprend une zone diffusée 25 de faible concentration qui fait partie de la couche épitaxiée 2, est de signe N opposé à celui de la grille (de type p ), et constitue un canal à chaque extrémité duquel, ainsi que pour tout transistor JFET, ont été constituées deux zones 2, 23 de drain et de source, dont Le dopage N est de même signe que celui du canal et auxquelles sont rapportées de l'extérieur des polarisations convenables (non représentées sur le schéma symbolique de La fig. 3). L'extrémité libre 43 de La lame 4 formant armature de condensateur est, de préférence, élargie par rapport à la partie 42 constituant la partie flexible de la lame, et une surcharge 5, de masse relativement importante, réalisée, par exemple, également en silicium polycristallin et pouvant présenter une hauteur, par exemple, de L'ordre de 10 microns, est disposée sur La lame 4 au voisinage de l'extrémité libre 43 afin d'augmenter La sensibilité de La lame en porte-à-faux.If we refer again to FIG. 1, it can be seen that the anchoring zone 21 on which the anchoring part 41 of the blade 4 is arranged, is constituted by a p-type diffused zone which constitutes the gate of a field effect transistor with JFET junction 12. The JFET transistor 12 comprises a diffused zone 25 of low concentration which is part of the epitaxial layer 2, is of sign N opposite to that of the gate (of type p), and constitutes a channel at each end of which, as well as for any JFET transistor, two drain and source zones 2, 23 have been formed, the N doping of which is of the same sign as that of the channel and to which suitable polarizations are reported from outside (not shown on the symbolic diagram of Fig. 3). The free end 43 of the blade 4 forming a capacitor frame is preferably enlarged relative to the part 42 constituting the flexible part of the blade, and an overload 5, of relatively large mass, produced, for example, also in polycrystalline silicon and which may have a height, for example, of the order of 10 microns, is arranged on the blade 4 in the vicinity of the free end 43 in order to increase the sensitivity of the blade in overhang.
Sous l'effet d'une accélération, la lame 4 se déforme et fait varier La distance de L'espace Libre 6 entre L'extrémité libre 43 portant la surcharge 5 et la surface Libre du capteur.Under the effect of an acceleration, the blade 4 deforms and varies the distance of the free space 6 between the free end 43 carrying the overload 5 and the free surface of the sensor.
Il s'ensuit, par variation de La capacité du condensateur variable 11, un transfert de charge vers la grille 21 du transistor JFET 12 qui module donc Le courant drain-source entre Les zones 22 et 23. L'utilisation d'un transistor 12 de type JFET, réalisé au voisinage de La zone d'ancrage 21 de La lame flexible 4, permet de diminuer le bruit inhérent aux dispositifs électroniques comprenant des transistors M0S et de Limiter la dérive du dispositif dans Le temps. La réalisation de La Lame 4 en un matériau conducteur tel que le silicium polycristallin s'avère également plus satisfaisante que l'utilisation de lames métalliques ou constituées à La fois d'un matériau isolant- et d'une armature conductrice comme dans La plupart des capteurs connus.It follows, by variation of the capacity of the variable capacitor 11, a charge transfer to the gate 21 of the JFET transistor 12 which therefore modulates the drain-source current between the zones 22 and 23. The use of a transistor 12 of the JFET type, produced in the vicinity of the anchoring zone 21 of the flexible blade 4, makes it possible to reduce the noise inherent in electronic devices comprising M0S transistors and to limit the drift of the device over time. The production of La Lame 4 in a conductive material such as polycrystalline silicon is also more satisfactory than the use of blades metallic or made up of both an insulating material and a conductive armature as in most known sensors.
On a représenté sur la fig. 2 en vue de dessus un capteur intégré du type de celui de La fig. 1 dans lequel le transistor JFET 12 est réalisé selon une configuration en anneau qui évite qu'une partie du courant, entre le drain et La source, ne soit pas influencé par La grille.There is shown in FIG. 2 in top view of an integrated sensor of the type of that of FIG. 1 in which the JFET transistor 12 is produced in a ring configuration which prevents part of the current, between the drain and the source, from being influenced by the gate.
Sur La fig. 2, on voit ainsi un transistor JFET 12 qui comprend une zone centrale dopée 122, à forte concentration d'impuretés de type N , pouvant constituer le drain ou La source du transistor JFET. La zone centrale 122 est entourée, de façon non contiguë, par une zone de grille 121, dopée avec des impuretés de type p . Une zone périphérique dopée 123, de source ou de drain, à forte concentration d'impuretés de type N , entoure elle-même de façon non contiguë La zone de grille 121. Une zone de. canal 125 s'étend entre La zone centrale 122 et La zone de grille 121, sous la zone de grille 121 et entre La zone de grille 121 et la zone périphérique 123. A titre d'exemple, La zone centrale 122 peut s'étendre sur une surface de l'ordre de 100 μm x 100 um tandis que les couronnes 121, 123, entourant la zone centrale 122, peuvent présenter, dans Le sens radial, une largeur de l'ordre de 10 microns. Lorsque La zone centrale 122 est de dimensions suffisamment importantes, un contact peut être relié directement à cette zone. Le contact 173 de la zone périphérique 123 est lui-même relié à cette dernière par un chemin conducteur 172.In fig. 2, a JFET transistor 12 is thus seen which includes a doped central zone 122, with a high concentration of N-type impurities, which can constitute the drain or the source of the JFET transistor. The central area 122 is surrounded, in a non-contiguous manner, by a gate area 121, doped with p-type impurities. A doped peripheral zone 123, of source or drain, with a high concentration of N-type impurities, itself surrounds in a non-contiguous manner the grid zone 121. A zone of. channel 125 extends between the central zone 122 and the grid zone 121, under the grid zone 121 and between the grid zone 121 and the peripheral zone 123. For example, the central zone 122 can extend on a surface of the order of 100 μm x 100 μm while the rings 121, 123, surrounding the central area 122, can have, in the radial direction, a width of the order of 10 microns. When the central zone 122 is of sufficiently large dimensions, a contact can be connected directly to this zone. The contact 173 of the peripheral zone 123 is itself connected to the latter by a conductive path 172.
Dans Le mode de réalisation de la fig. 2, une lame 104 présente une partie flexible 142 en porte-à-faux qui se termine par une partie d'extrémité libre 143 élargie et surmontée d'une surcharge 105. La partie d'ancrage 141 de la Lame 104 présente elle-même la forme d'un anneau superposé à La zone de grille 121 et entourant La zone centrale 122 de drain ou source du transistor JFET. Une zone conductrice 124, reliée par une piste 171 à un contact non représenté, est disposée sur la surface Libre du substrat en regard de l'extrémité Libre 143 de La Lame 104, sous celle-ci. Bien que le capteur avec transistor JFET, du type en anneau, puisse ne comporter qu'une seule Lame 104, sur La fig. 2, on a représenté quatre Lames flexibles 104 s'étendant radialement vers L'extérieur depuis la couronne d'ancrage 141.In The embodiment of FIG. 2, a blade 104 has a flexible overhanging part 142 which ends in a free end part 143 enlarged and surmounted by an overload 105. The anchoring part 141 of the Blade 104 itself has the shape of a ring superimposed on the gate area 121 and surrounding the central drain area 122 or source of the JFET transistor. A conductive area 124, connected by a track 171 to a contact not shown, is arranged on the Free surface of the substrate opposite the free end 143 of La Lame 104, under the latter. Although the sensor with JFET transistor, of the ring type, may comprise only one blade 104, in FIG. 2, four flexible blades 104 have been shown, extending radially outwards from the anchor ring 141.
La présence de plusieurs Lames flexibles 104, disposées de manière symétrique par rapport à deux plans A..-Ap et A,-A,, perpendiculaires entre eux et perpendiculaires au plan de la fig. 2, permet, en effet, d'améliorer Les performances du capteur qui, du fait des différentes symétries, est rendu plus insensible aux accélérations transversales. L'axe sensible du capteur de la fig. 2, prévu pour être perpendiculaire au plan du dessin, est ainsi d'autant mieux défini que Les lames 104 sont identiques et disposées symétriquement par rapport à des plans passant par ledit axe, car L'exploitation de L'ensemble des signaux, engendrés par les déplacements des différentes lames 103, permet de réaliser une compensation des influences exercées selon des axes différents de l'axe principal de sensibilité du capteur.The presence of several flexible blades 104, arranged symmetrically with respect to two planes A ..- Ap and A, -A ,, perpendicular to each other and perpendicular to the plane of FIG. 2, in fact, improves the performance of the sensor which, because of the different symmetries, is made more insensitive to transverse accelerations. The sensitive axis of the sensor of fig. 2, designed to be perpendicular to the plane of the drawing, is thus all the better defined as the blades 104 are identical and arranged symmetrically with respect to planes passing through said axis, because the exploitation of all the signals generated by the displacements of the various blades 103, makes it possible to compensate for the influences exerted along axes different from the main axis of sensitivity of the sensor.
Par ailleurs, chaque lame flexible 4, 104 peut s'étendre en Largeur sur une distance relativement grande, tout en étant munie d'évidements, afin d'augmenter le rapport entre la flexibilité dans le sens longitudinal et La flexibilité dans le sens transversal. On a ainsi représenté, sur La fig. 2, L'une des Lames flexibles 104 (à gauche de la figure) sous La forme d'un ensemble de trois languettes parallèles 142', 142", 142"', écartées L'une de L'autre, rattachées à la couronne d'ancrage 141 en des points distincts et réunies à leurs extrémités libres par une partie d'extrémité commune 143.Furthermore, each flexible blade 4, 104 can extend in width over a relatively large distance, while being provided with recesses, in order to increase the ratio between the flexibility in the longitudinal direction and the flexibility in the transverse direction. There is thus shown, in FIG. 2, One of the flexible blades 104 (on the left of the figure) in the form of a set of three parallel tabs 142 ', 142 ", 142"', separated from one another, attached to the crown anchor 141 at separate points and joined at their free ends by a common end portion 143.
Dans la description qui précède, on a considéré le cas de Lames 4, 104 en porte-à-faux. Un capteur selon l'invention peut aussi comprendre L'association symétrique de deux ou -plusieurs capteurs dans lesquels les parties d'extrémité 43, 143 des Lames flexibles 4, 104 sont réunies entre elles pour former une lame flexible unique ancrée à plusieurs extrémités. Avec le mode de réalisation de la fig. 1, un tel capteur à lame flexible unique pourrait ainsi présenter un axe de symétrie correspondant à L'axe X1-X2 de la fig. 1.In the above description, we have considered the case of Blades 4, 104 in overhang. A sensor according to the invention can also comprise the symmetrical association of two or more sensors in which the end parts 43, 143 of the flexible blades 4, 104 are joined together to form a single flexible blade anchored at several ends. With the embodiment of FIG. 1, such a single flexible blade sensor could thus have an axis of symmetry corresponding to the axis X1-X2 of FIG. 1.
Dans les capteurs de grandeurs mécaniques comprenant une Lame en porte-à-faux située à une très faible distance de la surface libre du substrat, c'est-à-dire définissant un espace libre 6 de très faible épaisseur, de l'ordre de 1 ou 2 microns, il existe toujours un risque que la partie en porte-à-faux 42, 142 de la lame 4, 104 vienne se coller contre le substrat du fait de L'attraction exercée entre deux zones de dopage de type différent. De plus, la lame en porte-à-faux, qui est de faible épaisseur, par exemple de L'ordre de 0,5 ou 1 micron, présente une fragilité qui rend La fabrication du capteur intégré délicate.In mechanical magnitude sensors comprising a cantilevered blade located at a very short distance from the free surface of the substrate, that is to say defining a free space 6 of very small thickness, of the order of 1 or 2 microns, there is always a risk that the cantilever part 42, 142 of the blade 4, 104 will stick against the substrate due to the attraction exerted between two doping zones of different type. In addition, the cantilever blade, which is thin, for example of the order of 0.5 or 1 micron, has a brittleness which makes the manufacture of the integrated sensor delicate.
MEILLEURE MANIERE DE REALISER L'INVENTIONBEST WAY TO IMPLEMENT THE INVENTION
On décrira en référence aux fig. 1 et 4 à 7 un exemple de procédé de fabrication qui permet de limiter les risques de rupture du capteur au cours de sa fabrication.We will describe with reference to Figs. 1 and 4 to 7 an example of a manufacturing process which makes it possible to limit the risks of rupture of the sensor during its manufacture.
Dans une première étape, représentée sur la fig. 4, et qui reste classique, on dépose sur un substrat 1 de type P, par épitaxie, une couche 2 de silicium de type N.In a first step, shown in FIG. 4, and which remains conventional, a layer 2 of type N silicon is deposited on a P-type substrate 1, by epitaxy.
On procède ensuite à une oxydation en surface et à La photogravure de L'oxyde pour réaliser les zones N 22, 23 de drain et de source du transistor JFET, puis à une oxydation et gravure pour réaliser La zone P 21, constituant la grille du transistorNext, surface oxidation and photo-etching of the oxide are carried out to produce the drain and source zones N 22, 23 of the JFET transistor, then oxidation and etching to produce the zone P 21, constituting the gate of the transistor
JFET, et la zone p 24 constituant l'armature fixe du condensateur variable 11. Ces opérations qui, en soi, sont classiques, ne sont pas décrites de façon plus détaillée et la fig. 5 représente L'état de la plaquette de silicium à la fin des étapes indiquées ci-dessus.JFET, and the zone p 24 constituting the fixed armature of the variable capacitor 11. These operations which, in themselves, are conventional, are not described in more detail and FIG. 5 shows the state of the silicon wafer at the end of the steps indicated above.
Dans une étape suivante, on procède. Le cas échéant, au dépôt d'une couche de passivation 32, puis à une oxydation pour former une couche 3 de silice présentant l'épaisseur souhaitée pour L'espace Libre 6, et on procède à La gravure d'un puits 31 au-dessus de la zone 21 de grille, afin de permettre ensuite un ancrage de La lame 4 (fig. 6).In a next step, we proceed. If necessary, deposit a passivation layer 32, then oxidize to form a layer 3 of silica having the desired thickness for the free space 6, and the etching of a well 31 is carried out. above the grid area 21, in order to then allow a anchoring of blade 4 (fig. 6).
Les étapes représentées sur la fig. 7 consistent,The steps shown in fig. 7 consist,
+ essentiellement, à déposer du polysilicium dopé p dans le puits+ essentially, to deposit p-doped polysilicon in the well
31 et sur la couche 3 de Si02, puis à graver ce polysilicium pour former la lame 4 avec une partie d'ancrage 41 et une partie 42 toujours supportée par La couche 3 de Si02 mais destinée à présenter ensuite un porte-à-faux.31 and on the layer 3 of Si02, then to etch this polysilicon to form the blade 4 with an anchoring part 41 and a part 42 still supported by the layer 3 of Si02 but intended then to present a cantilever.
On procède ensuite à la fabrication éventuelle d'une surcharge 5, et à un certain nombre d'opérations non représentées sur les dessins et comprenant l'ouverture de contacts à travers La couche 3 de Si02 et La couche de passivation 32, Lorsqu'elle existe, le dépôt d'aluminium et La photogravure de l'aluminium pour réaliser des chemins conducteurs de connexion, La découpe des plaquettes, La mise en boîtier et la soudure de plots par des f ls de contact en aluminium ou en or reliant les plots aux contacts macroscopiques.We then proceed to the possible manufacture of an overload 5, and to a certain number of operations not shown in the drawings and comprising the opening of contacts through the layer 3 of SiO 2 and the passivation layer 32, when it exists, the deposition of aluminum and the photoengraving of aluminum to produce conductive connection paths, Cutting of the wafers, Enclosure and soldering of studs by aluminum or gold contact wires connecting the studs macroscopic contacts.
Ces différentes opérations ne présentent pas d'originalité en elles-mêmes mais sont toutes réalisées alors que La lame 42 est toujours supportée par La couche 3 de Si02. On évite ainsi que des débris viennent se coincer sous La Lame 4 lors des différentes opérations de découpe ou que la résistance mécanique de la lame soit affaiblie puisque cette lame reste supportée par une couche d'oxyde de silicium jusqu'à l'étape de soudure des plots. L'étape finale permettant d'aboutir à la structure de la fig. 1, c'est-à-dire à la réalisation d'une petite Lame 4 en porte-à-faux, consiste en une attaque chimique de La couche 3, y compris sous La partie 42 de La lame 4, par un courant d'acide fluorhydrique gazeux anhydre à une température comprise entre environ 50°C et 200°C, et, de préférence, comprise entre 50 C et 100 C, dans des conditions qui empêchent La formation de gouttelettes de Liquide sur La plaquette du capteur. L'attaque de la couche 3 d'oxyde peut s'effectuer par exemple à une vitesse de l'ordre de 1 micron/minute. Compte tenu des conditions opératoires de cette dernière étape (attaque à chaud avec un débit de gaz), La couche 3 de silice peut être attaquée de manière sèche sans redépôt gélatineux et les dépôts d'aluminium ne sont eux-mêmes pratiquement pas attaqués et conservent toutes leurs propriétés conductrices. Naturellement, l'exemple de procédé de fabrication décrit ci-dessus peut subir de nombreuses variantes et toutes les techniques utilisées de manière usuelle en microélectronique peuvent être utilisées.These different operations are not original in themselves but are all carried out while the blade 42 is still supported by the layer 3 of Si02. This prevents debris from getting stuck under the blade 4 during the various cutting operations or that the mechanical resistance of the blade is weakened since this blade remains supported by a layer of silicon oxide until the welding step. studs. The final step leading to the structure of fig. 1, that is to say the production of a small cantilevered blade 4, consists of a chemical attack on layer 3, including under part 42 of blade 4, by a current of hydrofluoric acid gas anhydrous at a temperature between about 50 ° C and 200 ° C, and preferably between 50 C and 100 C, under conditions which prevent the formation of droplets of Liquid on the wafer of the sensor. The etching of the oxide layer 3 can be carried out for example at a speed of the order of 1 micron / minute. Taking into account the operating conditions of the latter step (hot attack with a gas flow), The silica layer 3 can be attacked in a dry manner without gelatinous redeposition and the aluminum deposits are themselves practically not attacked and retain all their conductive properties. Naturally, the example of manufacturing process described above can undergo many variants and all the techniques used in the usual way in microelectronics can be used.
Ainsi, Les dopages des zones 21, 22, 23 et, le cas échéant, de La zone conductrice 24 peuvent être réalisés aussi bien par diffusion que par implantation ionique. La couche 2 de type N réalisée sur le substrat 1 de type P n'est pas nécessairement formée par épitaxie. La couche 2 de type N, entourant les zones de drain et de source 22, 23, peut former un simple caisson qui ne s'étend pas jusqu'à la zone conductrice 24 située en regard de l'extrémité Libre 43.de La Lame 4 (fig. 8). Dans ce cas, la zone conductrice 24, qui constitue l'armature fixe du condensateur 11 reliée à une connexion 71, est réalisée par dopage à forte concentration d'impuretés du type N . Par ailleurs, dans Les exemples de réalisation décrits dans La présente demande de brevet, il est naturellement possible d'inverser Les signes de toutes les zones dopées. Ainsi, dans la description, le premier type de dopage A, A , peut être Le type P,Thus, the doping of the zones 21, 22, 23 and, where appropriate, of the conductive zone 24 can be carried out both by diffusion and by ion implantation. The N-type layer 2 produced on the P-type substrate 1 is not necessarily formed by epitaxy. Layer 2 of type N, surrounding the drain and source zones 22, 23, can form a simple box which does not extend to the conductive zone 24 located opposite the free end 43. Of La Lame 4 (fig. 8). In this case, the conductive area 24, which constitutes the fixed armature of the capacitor 11 connected to a connection 71, is produced by doping with a high concentration of N-type impurities. Furthermore, in the exemplary embodiments described in the present patent application, it is naturally possible to reverse the signs of all the doped zones. Thus, in the description, the first type of doping A, A, can be type P,
+ + ++ + +
P tandis que Le second type de dopage B, B est le type N, N , mais il est possible, de La même façon, de considérer que Le premier type de dopage A, A est constitué par le type N, N tandis que Le second type de dopage B, B est constitué par Le type P, P .P while The second type of doping B, B is the type N, N, but it is possible, In the same way, to consider that The first type of doping A, A is constituted by the type N, N while The second type of doping B, B is constituted by type P, P.
On a déjà indiqué plus haut que la lame en porte-à-faux 4 d'un capteur de grandeurs mécaniques de type capacitif présentant un espace Libre 6 de très faibles dimensions, pouvait accidentellement venir se coller sur la surface libre supérieure du substrat.It has already been indicated above that the cantilever blade 4 of a capacitive type mechanical magnitude sensor having a free space 6 of very small dimensions, could accidentally stick to the upper free surface of the substrate.
Un mode particulier de réalisation représenté sur Les figures 9 à 11 permet de remédier à cet inconvénient et, en cas de collage accidentel de la lame en porte-à-faux 4, par exemple par suite d'un choc sur le capteur, offre La possibilité de ramener Le capteur dans son état initial et donc éviter sa mise hors service, un démontage du capteur n'étant pas envisageable. Le capteur de la fig 9 présente une lame flexible 4 en escalier constituée par un ensemble de tronçons successifs 4a, 4b,...4e en forme de marches d'escalier. La première marche d'escalier 4a comprend une première partie verticale d'ancrage 41a à laquelle est rattachée une partie horizontale 42a en porte-à-faux d'une manière analogue à la lame 4 des fig. 1 et 8.A particular embodiment shown in Figures 9 to 11 overcomes this drawback and, in the event of accidental sticking of the cantilever blade 4, for example as a result of an impact on the sensor, offers the possibility of bringing the sensor back to its initial state and therefore avoiding its decommissioning, dismantling the sensor n ' not being possible. The sensor of FIG. 9 presents a flexible strip 4 in staircase formed by a set of successive sections 4a, 4b, ... 4th in the form of stair treads. The first stair step 4a comprises a first vertical anchoring part 41a to which is attached a horizontal part 42a cantilevered in a manner analogous to the blade 4 of FIGS. 1 and 8.
Une partie verticale 41b est disposée à la place de la surcharge 5 des fig. 1 et 8, et constitue la contre-marche de La marche 4b dont La partie horizontale 42b est située à une distance plus élevée par rapport à la surface libre du capteur que La partie horizontale 42a de la première marche 4a. La lame flexible 4 peut ainsi comprendre, par exemple, cinq marches successives 4a à 4e avec des contre-marches 41a à 41e et des parties horizontales 42a à 42e dont la dernière 42e constitue l'extrémité libre 43 de la Lame formant armature mobile du condensateur 11 et est située en regard d'une zone conductrice 24 formant l'armature fixe du condensateur variable 11.A vertical part 41b is arranged in place of the overload 5 of FIGS. 1 and 8, and constitutes the counter step of the step 4b, the horizontal part 42b of which is located at a greater distance from the free surface of the sensor than the horizontal part 42a of the first step 4a. The flexible blade 4 can thus comprise, for example, five successive steps 4a to 4e with counter steps 41a to 41e and horizontal parts 42a to 42e, the last 42e of which constitutes the free end 43 of the blade forming the movable frame of the capacitor 11 and is situated opposite a conductive zone 24 forming the fixed armature of the variable capacitor 11.
La première contre-marche 41a formant zone d'ancrage surmonte elle-même une zone dopée 21 constituant La grille du transistor JFET 12, dont les zones dopées de drain et de source 22, 23 entourent sans contact la grille 21.The first step 41a forming an anchoring zone itself surmounts a doped zone 21 constituting the gate of the JFET transistor 12, the doped drain and source areas 22, 23 of which surround the gate 21 without contact.
Chaque marche d'escalier 4a à 4e coopère avec une zone dopée 26 à forte concentration d'impuretés formée dans Le substrat 1 ou La couche epitaxiale 2 surmontant Le substrat 1 et située sous La marche correspondante. La Longueur de La partie horizontale 42a à 42e de chaque marche 4a à 4e est inférieure à une longueur critique de collage tandis que la Longueur totale de la lame comprise entre la partie d'ancrage 41a et La projection sur le substrat de l'extrémité libre 43 est très supérieure à cette Longueur critique de collage. On expliquera maintenant en référence aux fig. 10 et 11 la façon dont La Lame en escalier 4, du type représenté sur la fig. 9, peut être décollée facilement du substrat par la simple application successive de tensions de polarisation sur les zones dopées 26 formées sous les différentes marches d'escalier 4a, ...4e.Each stair step 4a to 4th cooperates with a doped zone 26 with a high concentration of impurities formed in the substrate 1 or the epitaxial layer 2 surmounting the substrate 1 and located under the corresponding step. The length of the horizontal part 42a to 42e of each step 4a to 4th is less than a critical bonding length while the total length of the blade between the anchoring part 41a and the projection on the substrate of the free end 43 is much greater than this critical bond length. We will now explain with reference to figs. 10 and 11 the manner in which The Stair Blade 4, of the type shown in FIG. 9, can be easily detached from the substrate by the simple successive application of bias voltages to the doped areas 26 formed under the various stair treads 4a, ... 4th.
Si la Lame 4 a été collée accidentellement, on applique, successivement, des tensions de polarisation sur Les zones 26, en commençant par La zone 26 située sous La marche d'escalier 4d qui suit immédiatement la marche 4e voisine de l'extrémité libre 43 de La lame (fig. 10). L'application d'une force sur la marche 4d par la tension de polarisation de la source 14 exercée sur la zone 26 correspondante permet d'augmenter la longueur de la partie collée de La partie 42d de la marche 4d et, par suite, de tendre à faire remonter La marche suivante 4e voisine de L'extrémité libre 43. La marche 4e peut ainsi être décollée, comme représenté sur La fig. 10, tandis que Les marches 4a à 4d restent collées.If the Blade 4 has been accidentally glued, polarization voltages are applied successively to the zones 26, starting with the zone 26 located under the stair step 4d which immediately follows the step 4 next to the free end 43 of The blade (fig. 10). The application of a force on the step 4d by the bias voltage of the source 14 exerted on the corresponding zone 26 makes it possible to increase the length of the bonded part of the part 42d of the step 4d and, consequently, of tend to raise the next step 4th next to the free end 43. The 4th step can thus be unstuck, as shown in FIG. 10, while the steps 4a to 4d remain glued.
En commutant la source 14 de tension de polarisation de proche en proche sur la marche 4c (figl 11) puis 4b, 4a, on peut faire se décoller les différentes marches 4d, 4c, 4b. La dernière marche dont La Longueur est inférieure à La longueur critique de collage peut elle-même se décoller automatiquement Lorsque L'on n'applique plus aucune tension de polarisation sur les zones 26.By switching the polarization voltage source 14 step by step on the step 4c (figl 11) then 4b, 4a, the different steps 4d, 4c, 4b can be unstuck. The last step, the length of which is less than the critical bonding length, can itself peel off automatically when no bias voltage is applied to the zones 26.
A titre d'exemple, une lame 4 en polysilicium peut comprendre, par exemple, quatre marches présentant chacune une Longueur de 40 microns environ et une épaisseur de 2 microns. La tension de polarisation appliquée successivement sur les zones dopées 26 peut être de l'ordre de 10 volts environ.By way of example, a polysilicon blade 4 can comprise, for example, four steps each having a length of approximately 40 microns and a thickness of 2 microns. The bias voltage applied successively to the doped areas 26 can be of the order of about 10 volts.
APPLICATION INDUSTRIELLE :INDUSTRIAL APPLICATION:
L'objet de l'invention est particulièrement destiné à être mis en oeuvre pour la constitutionn d'accélérométres ou de capteurs de pression. The object of the invention is particularly intended to be implemented for the constitution of accelerometers or pressure sensors.

Claims

REVENDICATIONS :CLAIMS:
1 - Capteur de grandeurs mécaniques intégré sur silicium, comprenant un substrat (1) de silicium monocristallin présentant un premier type de dopage (A), un condensateur variable (11) comprenant une première armature mobile (43) constituée par l'extrémité Libre d'une Lame conductrice (4) deformable en flexion montée de manière à présenter .une partie (42) en porte-à-faux, et une seconde armature fixe (24) constituée par une zone conductrice réalisée au niveau de la surface libre fixe du capteur en regard de ladite première armature (43) et séparée de celle-ci par un espace libre dont l'épaisseur est de l'ordre de quelques microns et des moyens de détection d'un signal électrique significatif représentatif des variations de position de ladite lame flexible (4), caractérisé en ce que le substrat (1) est recouvert sur au moins une partie de sa surface par une couche dopée (2) présentant un second type de dopage (B), en ce que Ladite Lame déformabl'e conductrice (4) présente une partie d'ancrage conductrice (41) rapportée sur une zone Localisée (21) de Ladite couche dopée (2), en ce que Le capteur comprend dans ladite couche dopée (2) une première zone (21) dopée à forte1 - Integrated mechanical magnitude sensor on silicon, comprising a substrate (1) of monocrystalline silicon having a first type of doping (A), a variable capacitor (11) comprising a first movable armature (43) constituted by the free end d '' a conductive blade (4) deformable in bending mounted so as to present a part (42) in cantilever, and a second fixed frame (24 ) constituted by a conductive zone produced at the fixed free surface of the sensor facing said first armature (43) and separated from it by a free space whose thickness is of the order of a few microns and means for detecting a significant electrical signal representative of the position variations of said flexible blade (4), characterized in that the substrate (1) is covered on at least part of its surface by a doped layer (2) having a second type of doping (B), in that said deformable blade conductric e (4) has a conductive anchoring part (41) attached to a localized area ( 21 ) of said doped layer (2), in that the sensor comprises in said doped layer (2) a first doped area ( 21) at strong
+ concentration d'impuretés du premier type (A ) située dans ladite zone localisée (21) d'ancrage de la Lame flexible (4) pour constituer la grille (G) d'un transistor à effet de champ à jonction JFET (12), des seconde et troisième zones (22, 23) dopées+ concentration of impurities of the first type (A) located in said localized zone (21) for anchoring the flexible blade (4) to form the gate (G) of a field effect transistor with JFET junction (12) , second and third doped zones ( 22, 23)
+ à forte concentration d'impuretés du second type (B ) situées de part et d'autre de Ladite première zone dopée (21) pour constituer des zones de drain (D) et de source (S) du transistor JFET (12),+ at a high concentration of impurities of the second type ( B) located on either side of said first doped zone (21) to constitute drain (D) and source (S) zones of the JFET transistor (12),
La couche dopée (2) définissant une zone (25) à faible concentration d'impuretés dudit second type (B) située sous Ladite première zone dopée (21) entre Lesdites seconde et troisième zones (22, 23) pour constituer le canal dudit transistor JFET (12) dont la grille (G) est reliée directement par La lame flexible (4) à l'armature mobile (43) du condensateur variable (11). 2 - Capteur selon La revendication 1, caractérisé en ce que la lame flexible (4) est constituée en polysilicium dopé pour le rendre conducteur.The doped layer (2) defining a zone (25) with a low concentration of impurities of said second type (B) located under said first doped zone (21) between said second and third zones (22, 23) to constitute the channel of said transistor JFET ( 12 ) , the grid (G) of which is connected directly by the flexible blade ( 4) to the movable frame (43) of the variable capacitor ( 11 ) . 2 - Sensor according to claim 1, characterized in that that the flexible strip ( 4) is made of doped polysilicon to make it conductive.
3 - Capteur selon La revendication 1 ou La revendication 2, caractérisé en ce que ladite zone conductrice (24) sous-jacente est constituée par une quatrième zone dopée à forte concentration d'impuretés du second type (B ) réalisée directement dans le substrat (1).3 - Sensor according to claim 1 or claim 2, characterized in that said underlying conductive zone ( 24) is constituted by a fourth doped zone with high concentration of impurities of the second type (B) produced directly in the substrate ( 1).
4 - Capteur selon la revendication 1 ou La revendication 2, caractérisé en ce que Ladite zone conductrice (24) sous-jacente est constituée par une quatrième zone dopée à forte concentration d'impuretés du premier type (A ) réalisée dans La couche dopée (2).4 - Sensor according to claim 1 or claim 2, characterized in that said underlying conductive zone ( 24) is constituted by a fourth doped zone with high concentration of impurities of the first type (A) produced in the doped layer ( 2).
5 - Capteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la lame présente à L'extrémité Libre (43) de La partie flexible (42) en porte-à-faux une partie élargie sur Laquelle peut être disposée une surcharge (5).5 - Sensor according to any one of claims 1 to 4, characterized in that the blade has at the free end (43) of the flexible part (42) in cantilever an enlarged part on which can be arranged an overload (5).
6 -.Capteur selon L'une quelconque des revendications 1 à 5, caractérisé en ce que la Lame flexible (4) présente une Largeur relativement importante et est ajourée pour augmenter Le rapport entre La flexibilité dans le sens longitudinal et La flexibilité dans Le sens transversal.6 -.Sensor according to any one of claims 1 to 5, characterized in that the flexible blade ( 4) has a relatively large width and is perforated to increase the ratio between the flexibility in the longitudinal direction and the flexibility in the direction transverse.
7 - Capteur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la surface libre du capteur en silicium monocristallin est recouverte d'une couche de passivation (32).7 - Sensor according to any one of claims 1 to 6, characterized in that the free surface of the monocrystalline silicon sensor is covered with a passivation layer (32).
8 - Capteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend un transistor JFET (12) réalisé en anneau avec une seconde zone (122) de drain ou de source qui constitue une zone centrale, une première zone (121) de grille qui entoure de façon non contiguë la zone centrale (122) de drain ou de source, une troisième zone (123) de source ou de drain qui entoure elle-même de façon non contiguë la première zone (121) de grille, une zone conductrice périphérique (124) qui est disposée de façon non contiguë à L'extérieur de La troisième zone (123) de source ou de drain, une zone (125) de canal située dans Les intervalles entre les seconde et première zones (122, 121), entre les première et troisième zones (121, 123) et sous ceLLes-ci, et en ce que La Lame flexible (104) présente une partie en porte-à-faux qui s'étend radialement vers L'extérieur, de La première zone (121) vers La zone conductrice (124).8 - Sensor according to any one of claims 1 to 7, characterized in that it comprises a JFET transistor (12) produced in a ring with a second zone (122 ) of drain or source which constitutes a central zone, a first grid zone (121) which non-contiguously surrounds the central drain or source zone (122), a third source or drain zone (123) which itself non-contiguously surrounds the first zone (121) grid, a peripheral conductive zone (124) which is arranged in a non-contiguous manner outside the third source or drain zone (123), a channel zone (125) situated in the intervals between the second and first zones (122, 121), between the first and third zones (121, 123) and under These, and in that the flexible blade (104) has a cantilevered portion which extends radially outwards, from the first zone (121) towards the conductive zone (124).
9 - Capteur selon La revendication 8, caractérisé en ce qu'il comprend plusieurs Lames flexibles (104) s'étendant radialement vers l'extérieur entre une zone d'ancrage constituée par une couronne (141) superposée à La première zone (121) et des zones conductrices (124) en nombre égal au nombre de lames flexibles (104) et non contiguës entre elles, au-dessus desquelles s'étendent respectivement les parties terminales d'extrémité libre (143) des lames flexibles (4).9 - sensor according to claim 8, characterized in that it comprises several flexible blades (104) extending radially outward between an anchoring zone constituted by a crown (141) superimposed on the first zone (121) and conductive zones (124) equal in number to the number of flexible blades (104) and not contiguous with each other, above which the free end end portions (143) of the flexible blades (4) extend respectively.
10 - Capteur selon La revendication 9, caractérisé en ce que Les lames flexibles (104) sont disposées de façon symétrique par rapport à deux plans perpendiculaires entre eux (A..-A-, et A3~A4 ) .10 - Sensor according to claim 9, characterized in that the flexible blades (104) are arranged symmetrically with respect to two planes perpendicular to each other (A ..- A-, and A 3 ~ A 4 ) .
11 - Capteur selon L'une quelconque des revendications 1 à 9, caractérisé en ce que la Lame flexible (4) présente une partie en porte-à-faux (42) constituée par un ensemble de marches d'escalier (4a, 4b, 4c, 4d, 4e) présentant chacune une longueur inférieure à une Longueur critique de collage, en ce que chaque marche d'escalier coopère avec une zone dopée (26) à forte concentration d'impuretés polarisable individuellement située sous ladite marche, et en ce que des moyens sont prévus pour appliquer successivement de proche en proche sur chaque zone dopée (26) polarisable individuellement, à partir de l'extrémité libre (43) de La Lame flexible (4), une polarisation pour permettre Le décollage des marches successives en cas de collage accidentel de la partie Libre de La Lame flexible (4) sur le substrat (2).11 - Sensor according to any one of claims 1 to 9, characterized in that the flexible blade ( 4) has a cantilevered part (42) constituted by a set of stair treads (4a, 4b, 4c, 4d, 4e) each having a length less than a critical bonding length, in that each stair step cooperates with a doped zone (26 ) with a high concentration of individually polarizable impurities located under said step, and in this that means are provided for successively applying step by step to each doped zone (26) which can be polarized individually, from the free end (43) of the flexible blade (4), a polarization to allow takeoff of the successive steps in accidental sticking of the Free part of the flexible blade (4) on the substrate (2).
12 - Capteur de grandeurs mécaniques intégré sur silicium, caractérisé en ce qu'il est constitué par L'association symétrique de deux capteurs selon L'une quelconque des revendications 1 à 9, dans lesquels les parties d'extrémité libre (43) des Lames flexibles (4) sont réunies entre elles pour former une lame flexible unique ancrée à ses deux extrémités. 13 - Procédé de fabrication d'un capteur de grandeurs mécaniques intégré selon l'une quelconque des revendications 1 à 11, caractérisé en ce que L'on réalise dans un premier temps la couche dopée (2), les première, seconde et troisième zones dopées (21, 22, 23) à forte concentration d'impuretés et La zone conductrice (24), en ce que L'on forme ensuite une couche de silice qui suit la réalisation éventuelle d'une couche de passivation, en ce que L'on dégage- par photogravure La silice dans La zone d'ancrage (31) de la lame flexible (4), en ce que l'on dispose une matière conductrice (41, 42, 43) dans La zone d'ancrage et sur une partie de La couche de silice pour constituer la lame flexible (4), en ce que l'on réalise Le cas échéant une surcharge (5) à l'extrémité libre de la lame- flexible (4), en ce que l'on procède à L'ouverture de contacts à travers la couche de silice et éventuellement de passivation, puis au dépôt d'aluminium et à la photogravure de l'aluminium pour réaliser des chemins conducteurs de connexion, en ce que L'on procède à la découpe de plaquettes, à la mise en boîtier et à La soudure de plots et en ce que dans une étape finale on enlève la silice y compris sous La matière conductrice de La partie (42) en porte-à-faux de La Lame flexible (4), par de l'acide fLuorhydrique gazeux anhydre à une température comprise entre environ 50°C et 200 C et, de préférence, comprise entre 50 C et 100 C de manière à empêcher la formation de Liquide sur La plaquette. 12 - Sensor of mechanical quantities integrated on silicon, characterized in that it is constituted by the symmetrical association of two sensors according to any one of claims 1 to 9, in which the free end parts (43) of the blades hoses (4) are joined together to form a single flexible blade anchored at its two ends. 13 - Method of manufacturing a size sensor integrated mechanical system according to any one of claims 1 to 11, characterized in that the doped layer (2) is produced first, the first, second and third doped zones (21, 22, 23) at high concentration impurities and the conductive zone (24), in that a layer of silica is then formed which follows the possible production of a passivation layer, in that it is released by photogravure the silica in the zone anchoring (31) of the flexible blade (4 ) , in that there is a conductive material (41, 42, 43) in the anchoring zone and on part of the silica layer to form the blade flexible (4), in that there is produced if necessary an overload (5) at the free end of the blade - flexible (4), in that one proceeds to the opening of contacts through the layer of silica and optionally passivation, then aluminum deposition and aluminum photo-etching to make conductive paths of connection, in that one proceeds to the cutting of wafers, the packaging and the welding of studs and in that in a final step the silica is removed including under the conductive material of the part ( 42) cantilevered from the flexible blade (4), with anhydrous hydrofluoric acid gas at a temperature between about 50 ° C and 200 C and, preferably, between 50 C and 100 C so as to prevent Liquid formation on the wafer.
PCT/FR1987/000206 1986-06-10 1987-06-10 Silicon-integrated pick-up for measuring mechanical magnitudes, and method of fabrication WO1987007729A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT87903879T ATE52342T1 (en) 1986-06-10 1987-06-10 TRANSMITTER INTEGRATED ON SILICON FOR MECHANICAL QUANTITIES AND ITS MANUFACTURING PROCESS.
DE8787903879T DE3762462D1 (en) 1986-06-10 1987-06-10 SENSOR INTEGRATED ON SILICON FOR MECHANICAL SIZES AND THEIR PRODUCTION PROCESS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR86/08525 1986-06-10
FR8608525A FR2599833B1 (en) 1986-06-10 1986-06-10 INTEGRATED MECHANICAL SENSOR ON SILICON AND MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
WO1987007729A1 true WO1987007729A1 (en) 1987-12-17

Family

ID=9336270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1987/000206 WO1987007729A1 (en) 1986-06-10 1987-06-10 Silicon-integrated pick-up for measuring mechanical magnitudes, and method of fabrication

Country Status (4)

Country Link
US (1) US4873868A (en)
EP (1) EP0270625B1 (en)
FR (1) FR2599833B1 (en)
WO (1) WO1987007729A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225433A (en) * 1988-11-23 1990-05-30 Marelli Autronica Capacitive-effect acceleration transducer
DE4411130A1 (en) * 1994-03-30 1995-10-05 Siemens Ag Sensor unit with at least one acceleration sensor, e.g. B. for automotive airbag deployment, and methods for its manufacture
US5472916A (en) * 1993-04-05 1995-12-05 Siemens Aktiengesellschaft Method for manufacturing tunnel-effect sensors
US5611940A (en) * 1994-04-28 1997-03-18 Siemens Aktiengesellschaft Microsystem with integrated circuit and micromechanical component, and production process
US5700702A (en) * 1994-01-18 1997-12-23 Siemens Aktiengesellschaft Method for manufacturing an acceleration sensor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134881A (en) * 1986-06-22 1992-08-04 Triton Technologies, Inc. Micro-machined accelerometer with composite material springs
DE69113632T2 (en) * 1990-08-17 1996-03-21 Analog Devices Inc MONOLITHIC ACCELERATOR.
US5620931A (en) * 1990-08-17 1997-04-15 Analog Devices, Inc. Methods for fabricating monolithic device containing circuitry and suspended microstructure
US5417111A (en) * 1990-08-17 1995-05-23 Analog Devices, Inc. Monolithic chip containing integrated circuitry and suspended microstructure
US5331658A (en) * 1992-08-26 1994-07-19 Motorola, Inc. Vertical cavity surface emitting laser and sensor
DE4341271B4 (en) * 1993-12-03 2005-11-03 Robert Bosch Gmbh Crystalline material acceleration sensor and method of making this acceleration sensor
GB0206509D0 (en) * 2002-03-20 2002-05-01 Qinetiq Ltd Micro-Electromechanical systems
TWI266877B (en) * 2003-05-28 2006-11-21 Au Optronics Corp Capacitive acceleration sensor
JP5376790B2 (en) * 2006-12-04 2013-12-25 キヤノン株式会社 Sensor and manufacturing method thereof
WO2008069284A1 (en) * 2006-12-04 2008-06-12 Canon Kabushiki Kaisha Sensor and method of manufacturing the same
US20100123686A1 (en) * 2008-11-19 2010-05-20 Sony Ericsson Mobile Communications Ab Piezoresistive force sensor integrated in a display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3013770A1 (en) * 1980-04-10 1981-10-29 Robert Bosch Gmbh, 7000 Stuttgart Knock vibration detector for IC engines - has externally attached FET resonator with damping polarisation voltage
DE3201198A1 (en) * 1981-01-29 1982-09-02 ASEA AB, 72183 Västerås "CAPACITIVE TRANSMITTER TO DISPLAY OR REGISTER MEASURED SIZES"
US4378510A (en) * 1980-07-17 1983-03-29 Motorola Inc. Miniaturized accelerometer with piezoelectric FET
FR2578323A1 (en) * 1985-03-01 1986-09-05 Metravib Sa INTEGRATED SENSOR OF MECHANICAL QUANTITIES WITH CAPACITIVE EFFECT AND MANUFACTURING METHOD.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342227A (en) * 1980-12-24 1982-08-03 International Business Machines Corporation Planar semiconductor three direction acceleration detecting device and method of fabrication
CH642461A5 (en) * 1981-07-02 1984-04-13 Centre Electron Horloger ACCELEROMETER.
JPS5938621A (en) * 1982-08-27 1984-03-02 Nissan Motor Co Ltd Analyzing device for vibration
JPS6055655A (en) * 1983-09-07 1985-03-30 Nissan Motor Co Ltd Semiconductor device having beam structure
JPS61234064A (en) * 1985-04-10 1986-10-18 Nissan Motor Co Ltd Semiconductor vibration detector
US4670092A (en) * 1986-04-18 1987-06-02 Rockwell International Corporation Method of fabricating a cantilever beam for a monolithic accelerometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3013770A1 (en) * 1980-04-10 1981-10-29 Robert Bosch Gmbh, 7000 Stuttgart Knock vibration detector for IC engines - has externally attached FET resonator with damping polarisation voltage
US4378510A (en) * 1980-07-17 1983-03-29 Motorola Inc. Miniaturized accelerometer with piezoelectric FET
DE3201198A1 (en) * 1981-01-29 1982-09-02 ASEA AB, 72183 Västerås "CAPACITIVE TRANSMITTER TO DISPLAY OR REGISTER MEASURED SIZES"
FR2578323A1 (en) * 1985-03-01 1986-09-05 Metravib Sa INTEGRATED SENSOR OF MECHANICAL QUANTITIES WITH CAPACITIVE EFFECT AND MANUFACTURING METHOD.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225433A (en) * 1988-11-23 1990-05-30 Marelli Autronica Capacitive-effect acceleration transducer
GB2225433B (en) * 1988-11-23 1993-01-27 Marelli Autronica A capacitive-effect acceleration transducer
US5472916A (en) * 1993-04-05 1995-12-05 Siemens Aktiengesellschaft Method for manufacturing tunnel-effect sensors
US5700702A (en) * 1994-01-18 1997-12-23 Siemens Aktiengesellschaft Method for manufacturing an acceleration sensor
DE4411130A1 (en) * 1994-03-30 1995-10-05 Siemens Ag Sensor unit with at least one acceleration sensor, e.g. B. for automotive airbag deployment, and methods for its manufacture
US5611940A (en) * 1994-04-28 1997-03-18 Siemens Aktiengesellschaft Microsystem with integrated circuit and micromechanical component, and production process

Also Published As

Publication number Publication date
US4873868A (en) 1989-10-17
EP0270625A1 (en) 1988-06-15
EP0270625B1 (en) 1990-04-25
FR2599833B1 (en) 1992-02-14
FR2599833A1 (en) 1987-12-11

Similar Documents

Publication Publication Date Title
EP0270625B1 (en) Silicon-integrated pick-up for measuring mechanical magnitudes, and method of fabrication
EP0194953B1 (en) Integrated capacitive sensor for mechanical quantities, and manufacturing method
US5549006A (en) Temperature compensated silicon carbide pressure transducer and method for making the same
FR2700003A1 (en) Method for manufacturing a pressure sensor using silicon on insulator technology and sensor obtained.
FR2872281A1 (en) Pressure sensor for detecting fuel pressure in vehicle, has diaphragm inserted into recess portion in substrate, corresponding to area where strain gauges are formed so that substrate insulation layer is bonded to diaphragm
FR2571855A1 (en) ABSOLUTE PRESSURE TRANSDUCER
CN105692543A (en) MEMS Device and Method of Manufacturing a MEMS Device
WO2011048132A1 (en) Sensor for in-plane piezoresistive detection
EP2599745B1 (en) Fabrication of a MEMS device having moving parts of different thicknesses.
CA2866388C (en) Method for producing a pressure sensor and corresponding sensor
EP3009819A1 (en) System for measuring tangential force applied by a fluid with increased sensitivity
US6684699B1 (en) Micromechanical device
JP4579352B2 (en) Optical semiconductor element
FR2707043A1 (en)
US6539798B1 (en) Acceleration threshold sensor
FR2880731A1 (en) COMPONENT, IN PARTICULAR WITH ACTIVE ELEMENTS, AND METHOD FOR PRODUCING SUCH COMPONENT
JP2002501679A (en) Radiation sensing semiconductor device and method of manufacturing the same
EP3728108A1 (en) Use of an uncoupling structure for assembling a component having a casing
EP3234535B1 (en) Pressure sensor suited to measuring pressure in an aggressive environment
EP1279927B1 (en) Method of fabricating a piezoresistive device
JP3744218B2 (en) Manufacturing method of semiconductor pressure sensor
EP3563426B1 (en) Method for producing an optoelectronic device comprising a step of etching the rear face of the growth substrate
EP3803299B1 (en) Sensitive pixel based detection system comprising a thermal detector and a compensation device
JPS63237482A (en) Semiconductor pressure sensor
FR3089016A1 (en) METHOD OF ELECTRICALLY TESTING AT LEAST ONE ELECTRONIC DEVICE TO BE ADHESIVE BY DIRECT BONDING

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987903879

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987903879

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1987903879

Country of ref document: EP