WO1982000413A1 - Improved radiopaque medical tubing - Google Patents

Improved radiopaque medical tubing Download PDF

Info

Publication number
WO1982000413A1
WO1982000413A1 PCT/US1981/000846 US8100846W WO8200413A1 WO 1982000413 A1 WO1982000413 A1 WO 1982000413A1 US 8100846 W US8100846 W US 8100846W WO 8200413 A1 WO8200413 A1 WO 8200413A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubing
stripes
medical tubing
radiopaque
medical
Prior art date
Application number
PCT/US1981/000846
Other languages
French (fr)
Inventor
Lab Abbott
B Chester
Original Assignee
Lab Abbott
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lab Abbott filed Critical Lab Abbott
Priority to AU74141/81A priority Critical patent/AU7414181A/en
Publication of WO1982000413A1 publication Critical patent/WO1982000413A1/en
Priority to DK139482A priority patent/DK139482A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0108Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers

Definitions

  • This invention relates generally to a radio graphic opaque medical tube, and more specifically to catheters cannulae and other similar tubes which are introduced into the body cavity during the medical procedures.
  • Catheters and like cylindrical tubes for introduction to the body cavity are presently manufactured of rubber, vinyl and other thermoplastic materials. Extrusion of such plastic materials is widely employed because of the economies of production.
  • Recently, such tubes have been constructed with an X-ray opaque stripe extending throughout the length of the tube so that by directing a beam of X-rays through the body of the patient, the relative position of the catheter will appear on the fluoroscope or X-ray film.
  • the stripe may include any suitable X-ray opaque pigment such as one of the bismuth salts.
  • the list of following U.S. patents discloses a wide variety of medical tube constructions having radiopaque properties.
  • French Certificate de Utilite No. 2,188,448 describes a multi-layer tubing construction in which one of the materials is. radiopaque.
  • the catheter may have incorporated therein rods or wires.
  • U.S. 3,19072W of Alley, et al discloses a catheter having a X-ray opaque line embedded longitudinally therein with the opaque line being interrupted by openings in the catheter.
  • the prior art does not disclose a catheter in which one or more stripes of radiopaque material are totally encapsulated within the catheter material, so as to prevent a contact between the radiopaque material and either liquid flowing through the catheter or the tissue surrounding the catheter upon insertion into the body of the patient.
  • the present invention is particularly directed to medical tubes formed of a suitable flexible material and including .an integral stripe portion containing radioopaque material.
  • the tubing is coextruded of a physiologically inert flexible waterproof thermoplastic.
  • the material may be transparent, translucent or opaque depending on the application desired.
  • Encapsulated and coextruded within the body of the tubing are one or more stripes of radiopaque material extending longitudinally along the length of the tubing. In an embodiment where more than one stripe is utilized, the stripes are .disposed coaxially from each other. Each stripe, preferably occupies an area not greater than 90° of the circumference of the tubing, in order to minimize the use of radiopaque material.
  • stripes of greater width are encompassed within the scope of the invention, and may extend anywhere up to 160° of the circumference ⁇ f the tubing. In one embodiment, each stripe occupies approximately 90° of the circumference of the tubing, with the stripes disposed approximately 180° from the other.
  • a multiplicity of radiopaque stripes are disposed within the tubing, with each stripe occupying a cross-sectional area of approximately. 45o of the circumference of the tubing.
  • a number of stripes are utilized in order to provide sufficient radiopaque properties to the tubing.
  • a triad of stripes equally spaced from each other and each occupying approximately 90° of the circumference of the tubing are disposed within the tubing.
  • the previously mentioned radiopaque material of which the stripes are composed comprises between 10 and 30 percent bismuth trioxide by weight, mixed with a clear plastic material and coextruded into the wall of the tubing. Equivalent quantities of barium sulphate or bismuth subcarbonate may also be utilized. It is particularly important, however, that a high concentration of" radiopaque material be containedwithin the stripe, in order to make it sufficiently visible under X-ray.
  • the tubing itself may be constructed of polytetrafluoroethylene, polyfluorinated ethylene/propylene, polyvinylchloride, nylon, polyethylene, polyurethane or polypropylene.
  • the plastic material in which the radiopaque material is intermixed may also comprise any one of these materials.
  • the above-listed catheters are preferably made by an extrusion procedure, although other commonly known manufacturing methods may be used.
  • a multi-orifice tubular extrus on d e is f tted to a double screw extrusion machine or similar device equipped with means for blowing air into the resulting extruded tube through a central opening in the die.
  • the tubular die has a major orifice which is substantially circular in cross-section, formed between the inner wall and outer wall and also has one or more minor orifices which may be substantially circular in cross-section or any other desired shape.
  • the plastic material to create the tube is extruded through the.
  • the catheter should have substantially a uniform wall thickness throughout its length.
  • Such uniformity in wall thickness is obtained by extruding plastic material through the die in varying quantities per unit time, and at the same time, coordinating the rate of withdrawing the tube away from the die, and also introducing air through the die opening so that the air blowing and withdrawal is coordinated with the change in rate of- extru- sion of plastic material to maintain a substantially constant wall thickness.
  • FIGURE 1 of the drawings is a side view, partially broken away, of an improved radiopaque medical tubing construction.
  • FIGURE 2 of the drawings is a cross-sectional view of an improved medical tubing showing in particular a stripe of radiopaque material encapsulated within the wall of the tubing.
  • FIGURE 3 of the drawings is a cutaway view of the improved radiopaque medical tubing shown in FIGURE 1 showing in particular a pair of oppositely disposed stripes of radiopaque material each occupying a portion of the circumference of the tubing, of less than 90°.
  • FIGURE 4 of the drawings is a cross-sectional view of an improved radiopaque medical tubing construction showing in particular a triad of radiopaque stripes encapsulated within the wall of the tubing.
  • FIGURE 5 of the drawings is a cross-sectional view of an improved radiopaque medical tubing construction showing in particular a quartet of stripes of radiopaque material radially disposed and encapsulated within the walls of the tubing.
  • FIGURE 6 of the drawings is a cross-sectional view of an improved radiopaque medical tubing construction showing in particular a single stripe of radiopaque material occupying a cross-sectional portion of approximately 160o of the circumference of the tubing and encapsulated within the wall of the tubing.
  • FIGURE 7 of the drawings is a cross-sectional view of an improved radiopaque medical tubing construction showing in particular a sextet of radiopaque stripes, radially disposed and encapsulated within the walls of the tubing.
  • improved medical tubing construction 10 comprises a tubular portion 12 constructed of a physiologically inert flexible waterproof thermoplastic material. Encapsulated within the wall 14 of the tubular portion 12 are stripes 16 and 18 of radiopaque material which extend coaxially along a tubular portion 12, in substantially parallel alignment with axis a-a. As best seen in FIGURES 2 and 3 of the drawings, medical tubing 12 may have a single stripe 16 or a pair of stripes 16 and 18 disposed within the wall 14 of tubing 12.
  • Stripes 16 and 18 occupy a cross-sectional area of less than 90o of the circumference of tubing 12 in order to provide, as best seen in FIGURE 1, visibility through the window portions 20 and 22 of tubing 12, when tubing 12 is constructed of a transparent material. This is particularly important when medical tubing 10 is used as a catheter, in that the flashback of blood may be observed through the wall of tubing 12.
  • a single stripe of less than 90° of the circumference of the tubing 12 may be utilized.
  • a pair of. stripes each occupying 90° or less of the circumference of tubing 12 may be seen in FIGURE 3.
  • a triad of stripes 16, 18 and 24 may be encapsulated coaxially within tubing' 12.
  • stripes 16 and 18 and 24 each occupy less than 45° of the cross-sectional area of tubing 12, but combine to provide the desired degree of radiopacity.
  • Stripes 16, 18 and 24 may be round, square rectangular or any shape required.
  • a quartet of stripes 16, 18, 24 and 26 may be utilized.
  • a sextet of stripes 16, 18, 24, 26, 28 and 30 may be encapsulated within the wall 14 of tubing 12.
  • the prefecred embodiment of the invention may be seen in FIGURES 1 and 3 in which a pair of radiopaque stripes are coaxially positioned 180° apart from each other.
  • radiopaque properties of the stripes themselves are enhanced radiopaque properties of the stripes themselves.
  • an increased degree of loading of radiopaque material must be encapsulated within the tubing.
  • a mixture of between 10 and 30% by weight bismuth trioxide, barium sulphate, or bismuth subcarbonate intermixed with physiologically inert thermoplastic material and encapsulated within the tubing provides the desired degree of radiopacity.
  • between 12% and 24% of the aforementioned radiopaque materials (bismuth trioxide or barium sulphate) by weight pro- vide optimum manufacturing and radiopaque properties.
  • Medical tubing 12 may be constructed of such physiologically inert transparent flexible waterproof thermoplastic materials as polytetrafluoroethylene, polyfluorinated ethylene/propylene, polyvinylchloride, nylon, polyethylene, polyurethane or polypropylene.
  • polytetrafluoroethylene Teflon®

Abstract

An improved coextruded tubing (12) composition comprises a physiologically inert flexible waterproof thermoplastic material having encapsulated within the wall (14) of tubing (12) one or more strips (16) of radiopaque material coaxially disposed along the length of tubing.

Description

IMPROVED RADIOPAQUE MEDICAL TUBING
Background of the invention
This invention relates generally to a radio graphic opaque medical tube, and more specifically to catheters cannulae and other similar tubes which are introduced into the body cavity during the medical procedures. Catheters and like cylindrical tubes for introduction to the body cavity are presently manufactured of rubber, vinyl and other thermoplastic materials. Extrusion of such plastic materials is widely employed because of the economies of production. Recently, such tubes have been constructed with an X-ray opaque stripe extending throughout the length of the tube so that by directing a beam of X-rays through the body of the patient, the relative position of the catheter will appear on the fluoroscope or X-ray film. The stripe may include any suitable X-ray opaque pigment such as one of the bismuth salts. The list of following U.S. patents discloses a wide variety of medical tube constructions having radiopaque properties.
Figure imgf000003_0001
Figure imgf000004_0001
In particular, French Certificate de Utilite No. 2,188,448 describes a multi-layer tubing construction in which one of the materials is. radiopaque. In one embodiment the catheter may have incorporated therein rods or wires. Similarly the U.S. 3,19072W of Alley, et al discloses a catheter having a X-ray opaque line embedded longitudinally therein with the opaque line being interrupted by openings in the catheter. Nevertheless, the prior art does not disclose a catheter in which one or more stripes of radiopaque material are totally encapsulated within the catheter material, so as to prevent a contact between the radiopaque material and either liquid flowing through the catheter or the tissue surrounding the catheter upon insertion into the body of the patient.
Accordingly, it is an advantage of the present invention to provide an improved medical surgical tubing construction having one or more stripes of radiopaque material encapsulated therein. It is an additional advantage of the present invention to provide a tubing construction in which a plurality of radiopaque stripes provides the ability to view the tubing through the x-ray equipment while at the same time permitting viewing of the flow of liquids through the tubing in those areas not occupied by radiopaque stripes.
Summary of the invention
The present invention is particularly directed to medical tubes formed of a suitable flexible material and including .an integral stripe portion containing radioopaque material. Preferably the tubing is coextruded of a physiologically inert flexible waterproof thermoplastic. The material may be transparent, translucent or opaque depending on the application desired. Encapsulated and coextruded within the body of the tubing are one or more stripes of radiopaque material extending longitudinally along the length of the tubing. In an embodiment where more than one stripe is utilized, the stripes are .disposed coaxially from each other. Each stripe, preferably occupies an area not greater than 90° of the circumference of the tubing, in order to minimize the use of radiopaque material. However, stripes of greater width are encompassed within the scope of the invention, and may extend anywhere up to 160° of the circumference αf the tubing. In one embodiment, each stripe occupies approximately 90° of the circumference of the tubing, with the stripes disposed approximately 180° from the other.
In another embodiment of the invention a multiplicity of radiopaque stripes are disposed within the tubing, with each stripe occupying a cross-sectional area of approximately. 45º of the circumference of the tubing. In this case, a number of stripes are utilized in order to provide sufficient radiopaque properties to the tubing. In an additional alternative, a triad of stripes equally spaced from each other and each occupying approximately 90° of the circumference of the tubing, are disposed within the tubing.
In one embodiment, the previously mentioned radiopaque material of which the stripes are composed, comprises between 10 and 30 percent bismuth trioxide by weight, mixed with a clear plastic material and coextruded into the wall of the tubing. Equivalent quantities of barium sulphate or bismuth subcarbonate may also be utilized. It is particularly important, however, that a high concentration of" radiopaque material be containedwithin the stripe, in order to make it sufficiently visible under X-ray. The tubing itself may be constructed of polytetrafluoroethylene, polyfluorinated ethylene/propylene, polyvinylchloride, nylon, polyethylene, polyurethane or polypropylene. Similarly the plastic material in which the radiopaque material is intermixed may also comprise any one of these materials.
The above-listed catheters are preferably made by an extrusion procedure, although other commonly known manufacturing methods may be used. Thus, a multi-orifice tubular extrus on d e is f tted to a double screw extrusion machine or similar device equipped with means for blowing air into the resulting extruded tube through a central opening in the die. The tubular die has a major orifice which is substantially circular in cross-section, formed between the inner wall and outer wall and also has one or more minor orifices which may be substantially circular in cross-section or any other desired shape. In extruding the tube of which the catheter is formed, the plastic material to create the tube is extruded through the. major orifice, while the X-ray opaque pigmented plastic material which form the longitudinal stripe is extruded through the minor orifice. With the possible exception of that part of the catheter which comprises the tip of the catheter, the catheter should have substantially a uniform wall thickness throughout its length. Such uniformity in wall thickness is obtained by extruding plastic material through the die in varying quantities per unit time, and at the same time, coordinating the rate of withdrawing the tube away from the die, and also introducing air through the die opening so that the air blowing and withdrawal is coordinated with the change in rate of- extru- sion of plastic material to maintain a substantially constant wall thickness.
Brief description of the drawings.
FIGURE 1 of the drawings is a side view, partially broken away, of an improved radiopaque medical tubing construction.
FIGURE 2 of the drawings is a cross-sectional view of an improved medical tubing showing in particular a stripe of radiopaque material encapsulated within the wall of the tubing. FIGURE 3 of the drawings is a cutaway view of the improved radiopaque medical tubing shown in FIGURE 1 showing in particular a pair of oppositely disposed stripes of radiopaque material each occupying a portion of the circumference of the tubing, of less than 90°.
FIGURE 4 of the drawings is a cross-sectional view of an improved radiopaque medical tubing construction showing in particular a triad of radiopaque stripes encapsulated within the wall of the tubing.
FIGURE 5 of the drawings is a cross-sectional view of an improved radiopaque medical tubing construction showing in particular a quartet of stripes of radiopaque material radially disposed and encapsulated within the walls of the tubing.
FIGURE 6 of the drawings is a cross-sectional view of an improved radiopaque medical tubing construction showing in particular a single stripe of radiopaque material occupying a cross-sectional portion of approximately 160º of the circumference of the tubing and encapsulated within the wall of the tubing.
FIGURE 7 of the drawings is a cross-sectional view of an improved radiopaque medical tubing construction showing in particular a sextet of radiopaque stripes, radially disposed and encapsulated within the walls of the tubing.
Detailed Description of the preferred embodiment
While this invention is susceptible of embodiment in many different forms, there are shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as exemplification of the principles of the invention and is not intended to limit the invention to the embodiments illustrated.
As best seen in FIGURE 1 of the drawings, improved medical tubing construction 10 comprises a tubular portion 12 constructed of a physiologically inert flexible waterproof thermoplastic material. Encapsulated within the wall 14 of the tubular portion 12 are stripes 16 and 18 of radiopaque material which extend coaxially along a tubular portion 12, in substantially parallel alignment with axis a-a. As best seen in FIGURES 2 and 3 of the drawings, medical tubing 12 may have a single stripe 16 or a pair of stripes 16 and 18 disposed within the wall 14 of tubing 12. Stripes 16 and 18 occupy a cross-sectional area of less than 90º of the circumference of tubing 12 in order to provide, as best seen in FIGURE 1, visibility through the window portions 20 and 22 of tubing 12, when tubing 12 is constructed of a transparent material. This is particularly important when medical tubing 10 is used as a catheter, in that the flashback of blood may be observed through the wall of tubing 12.
While the invention encompasses, the use of a single stripe such as stripe 16 seen in FIGURES 2 and 6, it is preferred, that a number of stripes, such as stripes 16 and 18 as seen in FIGURE 3 be utilized, in order to provide enhanced radiopaque properties no matter the position of the tubing 12 within the body of the patient. At the same time these considerations must be weighed against the cost of increasing the quantity of radiopaque material encapsulated within the walls of the tubing. Accordingly, a wide variety of configurations of radiopaque stripes encapsulated within the walls of tubing 12 may be utilized.
For example, as seen in FIGURE 2, a single stripe of less than 90° of the circumference of the tubing 12 may be utilized. Alternatively, a pair of. stripes each occupying 90° or less of the circumference of tubing 12 may be seen in FIGURE 3. As seen in FIGURE 4, a triad of stripes 16, 18 and 24 may be encapsulated coaxially within tubing' 12. In FIGURE 4, stripes 16 and 18 and 24 each occupy less than 45° of the cross-sectional area of tubing 12, but combine to provide the desired degree of radiopacity. Stripes 16, 18 and 24 may be round, square rectangular or any shape required. As best seen in FIGURE 5* of the drawings, a quartet of stripes 16, 18, 24 and 26 may be utilized. Alternatively, as seen in FIGURE 7, a sextet of stripes 16, 18, 24, 26, 28 and 30 may be encapsulated within the wall 14 of tubing 12. The prefecred embodiment of the invention may be seen in FIGURES 1 and 3 in which a pair of radiopaque stripes are coaxially positioned 180° apart from each other.
Of particular significance in the present invention is the enhanced radiopaque properties of the stripes themselves. In order to reduce the cross-sectional area of the stripe an increased degree of loading of radiopaque material must be encapsulated within the tubing. It has been found that a mixture of between 10 and 30% by weight bismuth trioxide, barium sulphate, or bismuth subcarbonate intermixed with physiologically inert thermoplastic material and encapsulated within the tubing provides the desired degree of radiopacity. It has been further found that between 12% and 24% of the aforementioned radiopaque materials (bismuth trioxide or barium sulphate) by weight pro- vide optimum manufacturing and radiopaque properties.
Medical tubing 12 may be constructed of such physiologically inert transparent flexible waterproof thermoplastic materials as polytetrafluoroethylene, polyfluorinated ethylene/propylene, polyvinylchloride, nylon, polyethylene, polyurethane or polypropylene. However, the preferred material is polytetrafluoroethylene (Teflon®)
The foregoing description and drawings merely explain and illustrate the invention and invention is not so limited thereto except insofar as the appended claims are so limited as those skilled in the art who have the disclosure before them will be able to make modifications and variations therein without departing the scope of the invention.

Claims

I CLAIM:
1. An improved coextruded medical tubing construction comprising a physiologically inert flexible waterproof thermoplastic material having encapsulated therein a plurality of stripes of radiopaque material coaxially disposed about said tubing.
2. The medical tubing as described in Claim 1 in which each of said stripes of radiopaque material is disposed within a cross-sectional area of approximately 90º of the circumference of said tubing, so as to reduce the quantity of radiopaque material required for radiopacity.
3. The medical tubing as described in Claim 1 or 2 in which said thermoplastic material is substantially transparent so as to permit the observation of the flow of liquid through said tubing between said stripes, while retaining the radiopaque properties of said tubing.
4. The medical tubing as described in Claim 1 in which said plurality of stripes comprises a single stripe of between 30 and 160° of the circumference of said tubing.
5. The medical tubing as described in Claim 1 in which said plurality of stripes comprise a pair of stripes each occupying approximately 90° of the circumference of said tubing, said pair of stripes being oppositely disposed on said tubing.
6. The medical tubing as described in Claim 2 in which each of said stripes is separated from the next by a cross-sectional area of the circumference of said tubing substantially equal to or greater than the cross sectional area of said stripe.
7. The medical tubing as described in Claim 6 in which each of said pair of stripes is disposed within a cross-sectional area of approximately 45º of the circumference of said tubing.
8. The medical tubing as described in Claim 6 in which said plurality of stripes comprises a triad, each separated by a substantially equal cross-sectional area of said tubing.
9. The medical tubing as described in Claim 1 in which said plurality of stripes of radiopaque material comprises a mixture of between 6% and 30% by weight of barium sulfate to a physiologically inert filler material.
10. The medical tubing as described in Claim 1 in which said plurality of stripes of radiopaque material comprises a mixture of between 6% and 30% by weight of bismuth trioxide to a physiologically inert filler material.
11. The medical tubing as described in Claim 1 or 2 in which said plurality of stripes of radiopaque material comprises a mixture of between 6% and 30% bismuth subcarbonate by weight to a physiologically inert filler material.
12. The medical tubing as described in Claim 9 or 10 in which said physiologically inert filler material is selected from the group comprising polytetrafluroethylene, polyfluorinated ethylene-propylene polyvinylchloride, nylon, polyethylene, polyurethane or polypropylene.
13. The medical tubing as described in Claim 1 or 2 in which said physiologically inert flexible waterproof thermoplastic material is selected from the group comprising polytetrafluroethylene, polyfluorinated ethylene-propylene, polyvinylchloride, nylon, polyurethane, polyethylene or polypropylene.
PCT/US1981/000846 1980-07-28 1981-06-19 Improved radiopaque medical tubing WO1982000413A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU74141/81A AU7414181A (en) 1980-07-28 1981-06-19 Improved radiopaque medical tubing
DK139482A DK139482A (en) 1980-07-28 1982-03-26 X-RAY-EYE-EFFECTABLE MEDICAL TUBE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17257380A 1980-07-28 1980-07-28
US172573800728 1980-07-28

Publications (1)

Publication Number Publication Date
WO1982000413A1 true WO1982000413A1 (en) 1982-02-18

Family

ID=22628278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1981/000846 WO1982000413A1 (en) 1980-07-28 1981-06-19 Improved radiopaque medical tubing

Country Status (5)

Country Link
EP (1) EP0056394A4 (en)
JP (1) JPS57501165A (en)
DK (1) DK139482A (en)
NO (1) NO821022L (en)
WO (1) WO1982000413A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227907A2 (en) * 1985-10-28 1987-07-08 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Medical instrument-guiding tube and assembly comprising the same
US4834702A (en) * 1986-03-04 1989-05-30 Hoechst Italia Sud Spa Kidney-ureter catheter assembly for evacuation of crumbled calculi
EP0433961A2 (en) * 1989-12-20 1991-06-26 B. Braun Melsungen AG Medical device with oligodynamic active material
EP0452123A1 (en) * 1990-04-11 1991-10-16 Becton, Dickinson and Company Radiopaque, optically transparent medical tubing
WO1999048548A1 (en) * 1998-03-23 1999-09-30 Medtronic, Inc. Catheter having extruded radiopaque stripes embedded in soft tip and method of fabrication
EP1016422A1 (en) * 1998-12-31 2000-07-05 Ethicon, Inc. Enhanched radiopacity of peripheral and central catheter tubing
US6911017B2 (en) 2001-09-19 2005-06-28 Advanced Cardiovascular Systems, Inc. MRI visible catheter balloon
US7472705B2 (en) * 1994-06-17 2009-01-06 Trudell Medical Limited Methods of forming a nebulizing catheter
CN103497463A (en) * 2013-10-23 2014-01-08 北京市塑料研究所 FEP guide tube achieving filling modification with barium sulfate
EP3453410A1 (en) * 2014-04-23 2019-03-13 Becton, Dickinson and Company Catheter tubing with extraluminal antimicrobial coating
US10376686B2 (en) 2014-04-23 2019-08-13 Becton, Dickinson And Company Antimicrobial caps for medical connectors
US10493244B2 (en) 2015-10-28 2019-12-03 Becton, Dickinson And Company Extension tubing strain relief
US10589063B2 (en) 2014-04-23 2020-03-17 Becton, Dickinson And Company Antimicrobial obturator for use with vascular access devices
US10869994B2 (en) 2013-08-28 2020-12-22 Clearstream Technologies Limited Apparatuses and methods for providing radiopaque medical balloons
US20210220625A1 (en) * 2012-03-09 2021-07-22 Clearstream Technologies Limited Medical balloon with coextruded radiopaque portion
US11219705B2 (en) 2014-07-08 2022-01-11 Becton, Dickinson And Company Antimicrobial coating forming kink resistant feature on a vascular access device
US11357962B2 (en) 2013-02-13 2022-06-14 Becton, Dickinson And Company Blood control IV catheter with stationary septum activator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102401A (en) * 1990-08-22 1992-04-07 Becton, Dickinson And Company Expandable catheter having hydrophobic surface

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2447127A (en) * 1944-01-19 1948-08-17 Landauer Fred Electric treatment appliance
US2830578A (en) * 1957-01-31 1958-04-15 Mark E Degroff Electro-sonic apparatus
US2857915A (en) * 1956-04-02 1958-10-28 David S Sheridan X-ray catheter
US3058470A (en) * 1956-04-26 1962-10-16 Siemens Reiniger Werke Ag Apparatus for electrical highfrequency surgery
US3070132A (en) * 1960-04-06 1962-12-25 David S Sheridan Non-sparking medico-surgical tubes
DE1181826B (en) * 1959-11-09 1964-11-19 Dr Med Willy Seuss Electro-therapeutic device for analgesic manipulation of the nerves and treatment of diseases using an electric field
US3219029A (en) * 1963-03-25 1965-11-23 Groff De Remote control medical therapy instrument
US3605750A (en) * 1969-04-07 1971-09-20 David S Sheridan X-ray tip catheter
US3642008A (en) * 1968-09-25 1972-02-15 Medical Plastics Inc Ground electrode and test circuit
US3699389A (en) * 1970-11-19 1972-10-17 Us Health Education & Welfare Patient electrode isolation
US3814105A (en) * 1972-03-01 1974-06-04 Physio Control Corp Portable defibrillators including rotary solenoid relays for energy transfer and dumping
US3894532A (en) * 1974-01-17 1975-07-15 Acupulse Inc Instruments for transcutaneous and subcutaneous investigation and treatment
US3946743A (en) * 1972-01-06 1976-03-30 Medical Research Laboratories, Inc. Defibrillating electrode
US4109223A (en) * 1975-09-29 1978-08-22 Ndm Corporation Multiple choke assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485234A (en) * 1966-04-13 1969-12-23 Cordis Corp Tubular products and method of making same
US3529633A (en) * 1967-10-23 1970-09-22 Bard Inc C R X-ray opaque tubing having a transparent stripe
US4027659A (en) * 1975-11-21 1977-06-07 Krandex Corporation Radiographic opaque and conductive stripped medical tubes
CA1071550A (en) * 1976-09-07 1980-02-12 Harry H. Leveen Flexible tubing
US4196731A (en) * 1978-03-17 1980-04-08 Baxter Travenol Laboratories, Inc. Silicone-containing thermoplastic polymers for medical uses
JPS56119263A (en) * 1980-02-04 1981-09-18 Teleflex Inc Medical and surgical catheter

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2447127A (en) * 1944-01-19 1948-08-17 Landauer Fred Electric treatment appliance
US2857915A (en) * 1956-04-02 1958-10-28 David S Sheridan X-ray catheter
US3058470A (en) * 1956-04-26 1962-10-16 Siemens Reiniger Werke Ag Apparatus for electrical highfrequency surgery
US2830578A (en) * 1957-01-31 1958-04-15 Mark E Degroff Electro-sonic apparatus
DE1181826B (en) * 1959-11-09 1964-11-19 Dr Med Willy Seuss Electro-therapeutic device for analgesic manipulation of the nerves and treatment of diseases using an electric field
US3070132A (en) * 1960-04-06 1962-12-25 David S Sheridan Non-sparking medico-surgical tubes
US3219029A (en) * 1963-03-25 1965-11-23 Groff De Remote control medical therapy instrument
US3642008A (en) * 1968-09-25 1972-02-15 Medical Plastics Inc Ground electrode and test circuit
US3605750A (en) * 1969-04-07 1971-09-20 David S Sheridan X-ray tip catheter
US3699389A (en) * 1970-11-19 1972-10-17 Us Health Education & Welfare Patient electrode isolation
US3946743A (en) * 1972-01-06 1976-03-30 Medical Research Laboratories, Inc. Defibrillating electrode
US3814105A (en) * 1972-03-01 1974-06-04 Physio Control Corp Portable defibrillators including rotary solenoid relays for energy transfer and dumping
US3894532A (en) * 1974-01-17 1975-07-15 Acupulse Inc Instruments for transcutaneous and subcutaneous investigation and treatment
US4109223A (en) * 1975-09-29 1978-08-22 Ndm Corporation Multiple choke assembly

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Electro Cardiology, Vol. 10, No.2, issued 1977 "H.J.L. MARRIOT et al" Improve d ECG. Monitoring During Cardiac Cateterization Using Radio Transparent Electrod es and Chest Leads, pp.119-122 *
Principles of Applied Biomedical Instrumentation, issued 1968, L.A. GEDDES et al, JOHN WILEY + SONS, INC., NY pp. 211-212 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227907A2 (en) * 1985-10-28 1987-07-08 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Medical instrument-guiding tube and assembly comprising the same
EP0227907A3 (en) * 1985-10-28 1988-12-21 Terumo Kabushiki Kaisha Trading As Terumo Corporation Medical instrument-guiding tube and assembly comprising the same
US4834702A (en) * 1986-03-04 1989-05-30 Hoechst Italia Sud Spa Kidney-ureter catheter assembly for evacuation of crumbled calculi
EP0433961A2 (en) * 1989-12-20 1991-06-26 B. Braun Melsungen AG Medical device with oligodynamic active material
EP0433961A3 (en) * 1989-12-20 1992-12-09 B. Braun Melsungen Ag Medical device with oligodynamic active material
EP0452123A1 (en) * 1990-04-11 1991-10-16 Becton, Dickinson and Company Radiopaque, optically transparent medical tubing
US7472705B2 (en) * 1994-06-17 2009-01-06 Trudell Medical Limited Methods of forming a nebulizing catheter
WO1999048548A1 (en) * 1998-03-23 1999-09-30 Medtronic, Inc. Catheter having extruded radiopaque stripes embedded in soft tip and method of fabrication
EP1016422A1 (en) * 1998-12-31 2000-07-05 Ethicon, Inc. Enhanched radiopacity of peripheral and central catheter tubing
SG93852A1 (en) * 1998-12-31 2003-01-21 Ethicon Inc Enhanced radiopacity of peripheral and central catheter tubing
US6911017B2 (en) 2001-09-19 2005-06-28 Advanced Cardiovascular Systems, Inc. MRI visible catheter balloon
US20210220625A1 (en) * 2012-03-09 2021-07-22 Clearstream Technologies Limited Medical balloon with coextruded radiopaque portion
US11357962B2 (en) 2013-02-13 2022-06-14 Becton, Dickinson And Company Blood control IV catheter with stationary septum activator
US10869994B2 (en) 2013-08-28 2020-12-22 Clearstream Technologies Limited Apparatuses and methods for providing radiopaque medical balloons
CN103497463A (en) * 2013-10-23 2014-01-08 北京市塑料研究所 FEP guide tube achieving filling modification with barium sulfate
US10589063B2 (en) 2014-04-23 2020-03-17 Becton, Dickinson And Company Antimicrobial obturator for use with vascular access devices
US10376686B2 (en) 2014-04-23 2019-08-13 Becton, Dickinson And Company Antimicrobial caps for medical connectors
EP3453410A1 (en) * 2014-04-23 2019-03-13 Becton, Dickinson and Company Catheter tubing with extraluminal antimicrobial coating
US11357965B2 (en) 2014-04-23 2022-06-14 Becton, Dickinson And Company Antimicrobial caps for medical connectors
US11219705B2 (en) 2014-07-08 2022-01-11 Becton, Dickinson And Company Antimicrobial coating forming kink resistant feature on a vascular access device
US10493244B2 (en) 2015-10-28 2019-12-03 Becton, Dickinson And Company Extension tubing strain relief
US11904114B2 (en) 2015-10-28 2024-02-20 Becton, Dickinson And Company Extension tubing strain relief

Also Published As

Publication number Publication date
EP0056394A1 (en) 1982-07-28
EP0056394A4 (en) 1984-07-25
DK139482A (en) 1982-03-26
NO821022L (en) 1982-03-26
JPS57501165A (en) 1982-07-08

Similar Documents

Publication Publication Date Title
WO1982000413A1 (en) Improved radiopaque medical tubing
CA1071550A (en) Flexible tubing
EP0289492B1 (en) Flexible tubing
EP0566690B1 (en) Torque resistant tubing
US5045072A (en) Catheter having highly radiopaque, flexible tip
US4657024A (en) Medical-surgical catheter
DE3325797C2 (en)
US4027659A (en) Radiographic opaque and conductive stripped medical tubes
US4283447A (en) Radiopaque polyurethane resin compositions
US7792568B2 (en) MRI-visible medical devices
DE60104186T2 (en) Catheter made of polyamides with reduced friction
US4282876A (en) Radiopaque polyurethane resin compositions
ES2231978T3 (en) CATHETER OF THREE REGIONS OF DIFFERENT FLEXIBILITIES AND ITS PRODUCTION PROCEDURE.
US4250072A (en) Radiopaque polyurethane resin compositions
US3605750A (en) X-ray tip catheter
EP0420993B1 (en) Catheter
DE10238684A1 (en) Medical-surgical devices
JP2000217903A (en) Medical transplantation part with visual transparency and radiation impermeability and its manufacture
IE68886B1 (en) Reinforced medico-surgical tubes
EP0033659A2 (en) Medical-surgical catheter
DE69723130T2 (en) Infusion balloon catheter with wattle
DE3930770A1 (en) IMPLANTABLE CATHETERS MADE FROM MEDICAL COMPATIBLE ELASTIC PLASTIC
WO1995014501A1 (en) Radiopaque balloon catheters
WO2021144123A1 (en) Indwelling venous cannula
DE2927788A1 (en) IMPROVEMENTS ON INTRAVASCULAR CATHETERS

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU DK JP NO

AL Designated countries for regional patents

Designated state(s): AT CH DE FR GB LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1981902089

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1981902089

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1981902089

Country of ref document: EP