USRE43750E1 - Method for navigating a catheter probe - Google Patents

Method for navigating a catheter probe Download PDF

Info

Publication number
USRE43750E1
USRE43750E1 US12/502,066 US50206609A USRE43750E US RE43750 E1 USRE43750 E1 US RE43750E1 US 50206609 A US50206609 A US 50206609A US RE43750 E USRE43750 E US RE43750E
Authority
US
United States
Prior art keywords
coil
sensing coil
orientation
signal
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12/502,066
Inventor
Michael A. Martinelli
Wayne C. Haase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Navigation Inc
Original Assignee
Medtronic Navigation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Navigation Inc filed Critical Medtronic Navigation Inc
Priority to US12/502,066 priority Critical patent/USRE43750E1/en
Application granted granted Critical
Publication of USRE43750E1 publication Critical patent/USRE43750E1/en
Assigned to MEDTRONIC, INC. reassignment MEDTRONIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WINCHESTER DEVELOPMENT ASSOCIATES, MICHAEL MARTINELLI, AND ENTERPRISE MEDICAL TECHNOLOGY AND DEHON, INC.
Assigned to WINCHESTER DEVELOPMENT ASSOCIATES, MARTINELLI, MICHAEL A. reassignment WINCHESTER DEVELOPMENT ASSOCIATES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEDTRONIC, INC.
Assigned to MARTINELLI, MICHAEL A. reassignment MARTINELLI, MICHAEL A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAASE, WAYNE C.
Assigned to SURGICAL NAVIGATION TECHNOLOGIES, INC. reassignment SURGICAL NAVIGATION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENTERPRISE MEDICAL TECHNOLOGY AND DEHON, INC., MARTINELLI, MICHAEL A., WINCHESTER DEVELOPMENT ASSOCIATES
Assigned to MEDTRONIC NAVIGATION, INC. reassignment MEDTRONIC NAVIGATION, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SURGICAL NAVIGATION TECHNOLOGIES, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • A61B2034/256User interfaces for surgical systems having a database of accessory information, e.g. including context sensitive help or scientific articles

Definitions

  • the present invention relates to catheter navigation systems and, more particularly, to a method and system for determining the position and orientation of a catheter probe being used during a surgical procedure.
  • U.S. Pat. No. 4,905,698 to Strohl, Jr. et al. discloses a locator device external to a subject for generating an electromagnetic field that projects into the subject.
  • a catheter inserted into the subject is fitted with a sensing coil at its distal end.
  • the phase of the voltage that is induced in the coil in response to the field is compared to the phase of the generated field.
  • an in-phase condition occurs, this is an indication that the locator is behind the coil; alternatively, an out-of-phase condition indicates that the locator is beyond the coil.
  • Positions intermediate these two rough approximations of the coil position are not determined other than by a beeping indicator that signifies that this intermediate positioning has been reached.
  • U.S. Pat. No. 4,821,731 to Martinelli et al. discloses an electroacoustical transducer means secured to the distal end of a catheter that is inserted into a subject for generating acoustical pulses that propagate along an imaging axis and reflect from an anatomical area of interest.
  • the acoustic echoes are converted by the transducer means into electrical signals representative of an image of the anatomical area under reflection and the relative position of the transducer means and angular orientation of the sensing/imaging axis.
  • U.S. Pat. No. 4,642,786 to Hansen discloses a magnetic position and orientation measurement system that determines the location of an object in space with various configurations, each characterized by the attachment of a retransmitter to the object consisting of passive resonant circuits.
  • the retransmitter is in a predetermined position and orientation with respect to the object.
  • a magnetic field is generated at a resonant frequency of the retransmitter which then retransmits a magnetic field for subsequent reception.
  • the position and orientation of the object may be calculated based upon the induced signals as developed by the reception of the retransmitted magnetic field.
  • the original transmission and reception may be implemented with an integrated transceiver, separate transmitter and receiver elements, or a single transmitter and an array of receiver coils.
  • U.S. Pat. No. 4,317,078 to Weed et al. discloses how the location of a magnetically sensitive element may be determined by moving a magnetic field source along specified reference axes to induce signals in the sensor so as to identify a set of null points representative of certain flux linkage values. The null point locations are used to calculate the sensor position.
  • U.S. Pat. No. 3,868,565 describes a system where a magnetic field is generated which rotates about a known pointing vector.
  • the generated field is sensed along at least two axes by a sensor attached to the object to be located or tracked. Based upon the relationship between the sensed magnetic field components, the position of the object relative to the pointing vector can be computed.
  • U.S. Pat. No. 4,173,228 to Van Steenwyk et al. discloses a catheter locating system that includes a sensor attached to the distal end of the catheter. An electromagnetic field is projected into the body cavity with magnetic probe coils. The field is detected by the sensor, which generates an induced signal whose magnitude and phase are representative of field strength, separation of sensor and probe coils, and relative orientation of sensor and probe coils. The probe coil undergoes linear and rotational movement to identify orientations and locations of the probe coil where minima and maxima occur in the measured signal induced in the sensor. This information is representative of the position and orientation of the sensor.
  • U.S. Pat. No. 5,211,165 to Dumoulin et al. discloses a modified catheter device that includes a small RF transmit coil attached to its distal end.
  • the transmit coil is driven by an RF source to create an electromagnetic field that induces electrical signals in an array of receive coils distributed around a region of interest.
  • the receive coils can be placed on the invasive device and the transmit coils are distributed outside the patient.
  • a minimum of one transmit coil and three receive coils is necessary to precisely determine the location of the invasive device.
  • a series of equations is developed to solve for the unknowns x-y-z- ⁇ - ⁇ .
  • PCT Application No. WO94/04938 to Bladen et al. describes how the location and orientation of a single sensing coil may be determined from induced signals developed in response to a sequence of applied magnetic fields emanating from three groups of field generators each including three mutually orthogonal coils.
  • the positioning methodology developed by Bladen et al. involves calculating the distance from the sensing coil to each group of field generators as a function of the induced voltage developed in the sensing coil by the field generator.
  • the distance calculation is used to define the radius of a sphere centered on the respective field generator.
  • the intersection (i.e., overlap) of the spheres is used to calculate an estimate of the sensor position, using the spherical radius extending from the known location of the field generators as the estimate for each generator.
  • the orientation algorithm of Bladen et al. develops general equations for induced voltage including the entire set of unknown variables (x-y-z location and ⁇ - ⁇ orientation).
  • the algorithm specifically solves for the orientation parameters by substituting the measured induced voltage and the computed x-y-z coordinates into the general induced voltage equation, and then reduces the equations to the unknown variables ⁇ - ⁇ .
  • the induced voltage is treated as a vector quantity, allowing the angle between the magnetic field at the generator and the radial vector joining the sensor to the generator to be calculated with a dot product computation.
  • the angle between the radial vector and the sensor axis can be determined from the computed field angle using the dipole equations that define the generator fields.
  • This sensor angle and the radial position as determined by the position algorithm together define the sensor position for use in the alternative orientation algorithm. These values are used to compute the angular orientation ⁇ and ⁇ .
  • an improved method of determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain comprises the steps of:
  • an improved system for determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain comprises:
  • an improved method of determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain comprises the steps of:
  • FIG. 1 schematically illustrates a perspective view of a patient-supporting examination deck in accordance with a preferred embodiment of the present invention
  • FIGS. 2A-C schematically illustrate a series of magnetic coil sets for generating uniform fields in the x-, y-, and z-directions, respectively, in accordance with a preferred embodiment of the present invention, and which are configured within the deck of FIG. 1 ;
  • FIGS. 3 schematically illustrates a magnetic coil assembly for determining the positional coordinates of the sensing coil in accordance with a preferred embodiment of the present invention, and which is configured within the deck of FIG. 1 ;
  • FIG. 4 is a flow diagram describing the location algorithm in accordance with the present invention.
  • FIG. 5 schematically depicts the magnetic coil assembly of FIG. 3 to illustrate representative field patterns generated during an excitation period
  • FIG. 6 is a trace representatively illustrating surfaces of constant signal from the sensing coil, as generated by the magnetic assembly of FIG. 3 ;
  • FIG. 7 shows an upper plan schematic view of the magnetic assembly of FIG. 3 ;
  • FIG. 8 schematically illustrates a perspective view of a patient-supporting examination deck in accordance with another embodiment of the present invention.
  • FIGS. 9A-D schematically illustrate a series of magnetic coil assemblies configured in the deck and rails of FIG. 8 for determining the orientation and position of the sensing coil in accordance with another embodiment of the present invention.
  • the present invention is directed to a method and system for determining the location of a catheter or endoscopic probe inserted into a selected body cavity of a patient undergoing a surgical procedure.
  • the location data is obtained from electrical measurements of voltage signals that are induced within a sensing coil affixed to the distal end of the catheter probe. These induced voltage signals are generated by the sensing coil in response to prespecified electromagnetic fields that project into the anatomical region of interest which contains all prospective locations of the catheters probe.
  • the electrical measurements of the induced signals provide sufficient information to compute the angular orientation and the positional coordinates of the sensing coil, and hence the catheter probe, which collectively define the location of the sensing coil.
  • the present invention is operative as the patient is disposed on a patient-supporting examination deck.
  • sensing coil refers to an electrically conductive, magnetically sensitive element that is responsive to time-dependent magnetic fields for generating induced voltage signals as a function of and representative of the applied time-dependent magnetic field.
  • the sensing coil is adaptable for secure engagement to the distal end of a catheter probe.
  • navigational domain refers to a fully enclosed spatial region whose internal volume substantially encloses the complete prospective range of movement of the sensing coil.
  • the navigational domain may be defined by any geometrical space but preferably takes the form of a spherical volume. Under surgical operating conditions, the navigational domain will correspond to an anatomical region of the recumbent patient where surgical viewing or investigation is desired (e.g., a diseased area of tissue or an organ).
  • last navigational point refers to the most recently determined location of the sensing coil before another iteration of the location algorithm is performed.
  • uniform field refers to a magnetic field having a large magnetic field component in a specified axial dimension and relatively smaller magnetic field components in the other axial dimensions, and characterized by substantially uniform field values throughout the navigational domain.
  • the uniform fields of interest are the x-directed, y-directed, and z-directed fields
  • the induced voltage signals developed by such fields in the sensing coil are designated V x , V y and V z , respectively.
  • the term “undirectional field” is used interchangeably with “uniform field” when appropriate.
  • undirectional coils refer to a magnetic assembly that is operative to generate a uniform field (as defined above) within the navigational domain. A distinct magnetic assembly is employed for each uniform field.
  • the unidirectional coils described herein are preferably implemented with a collection of appropriately designed magnetic coils, this implementation should not be construed as a limitation of the present invention. Rather, the unidirectional coils may be constructed from any magnetic configuration that is sufficient to generate the uniform fields.
  • gradient field refers to a time-dependent magnetic field having non-zero field components (i.e., components with a high spatial gradient) in two of the three axial dimensions for the coordinate system of interest (e.g., x-y-z system), and a substantially zero component in the remaining axial dimension.
  • non-zero field components i.e., components with a high spatial gradient
  • substantially zero component is generated when its value is small compared to the net vector resulting from the other two field components.
  • constant signal surface or “constant voltage surface” refers to a surface contour along which at every possible point of location for the sensing coil the same induced voltage is developed in the sensing coil.
  • delta coils refer to a magnetic assembly for generating a gradient field (as defined above) within the navigational domain.
  • the delta coils will typically be described in the context of delta coil pairs including a long coil set and a short coil set each generating gradient fields with components in the same axial dimensions but whose magnetic field patterns are different.
  • Each of the long and short coil sets may be considered to generate a family of constant signal or constant voltage surfaces from the sensing coil within the navigational domain.
  • the delta coils are preferably implemented with an array of appropriately designed magnetic coils (discussed below), this preferred implementation should not serve as a limitation of the present invention as it should be apparent to those skilled in the art that other magnetic configurations may be used to adequately generate the gradient fields.
  • magnetic look-up-table refers to a database including the magnetic field values at every x-y-z coordinate position within the navigational domain for the unidirectional coils and delta coils used by the present invention. Accordingly, input data consisting of an x-y-z coordinate and a magnetic field identifier, which designates a selected magnetic coil assembly, is indexed within the database to a corresponding set of magnetic field values constituting the output data.
  • the output data is represented by the magnetic field variables H x H y H z where the subscript indicates the axial dimension along which the magnetic field value is being reported.
  • the database is created through a computational analysis of the magnetic field patterns generated by the magnetic coil configurations used herein.
  • the mathematical model to develop the necessary formulae defining the field patterns may be developed, for example, from near field electromagnetic theory.
  • An instructive text for facilitating such an analysis is “Field and Wave Electromagnetics” 2nd edition Addison Wesley (1989) by D. K. Cheng, herein incorporated by reference.
  • the database may be stored in any type of facility including, inter alia, read-only memory, firmware, optical storage, or other types of computer storage. Additionally, the database information may be organized into any type of format such as a spreadsheet. It should be apparent to those skilled in the art that any suitable technique may be used to ascertain or record the magnetic field values for the magnetic coil assemblies used herein.
  • the mathematical construct underlying the present invention is a methodology termed separation of variables.
  • appropriate equations are developed to isolate unknown variables in such a manner that renders the equations uniquely soluble.
  • ⁇ - ⁇ -x-y-z unknown variables
  • a typical approach to solving for these variables would be to develop a series of coupled non-linear equations expressing the relationship among the variables.
  • these equations are generally not uniquely soluble, i.e., multiple solutions are possible.
  • the mathematical approach used herein and predicated on the separation of variables concept is directed to the development of a series of signal expression statements functionally relating induced voltage values to certain ones of the unknown location parameters.
  • the relationships defined by these expression statements i.e., induced voltage equations
  • a class of special magnetic fields is generated with characteristic spatial structuring and shaping that is sufficient to cause the variables (i.e., the location parameters) to separate within these induced voltage equations so as to permit resolution of the parameters x-y-z- ⁇ - ⁇ when the equations are sequentially solved.
  • a series of substantially uniform fields is successively generated in the x-, y-, and z-directions with the group of unidirectional coils, thereby developing induced voltage expressions (discussed below) involving only the variables ⁇ and ⁇ independent of the unknown positional variables x-y-z.
  • This uncoupling of the variables ⁇ - ⁇ from the variables x-y-z as accomplished by the substantially uniform fields is specifically evident in the three induced voltage equations expressed in two unknowns (i.e., ⁇ and ⁇ ), which are easily soluble.
  • each gradient field generates a family of constant signal surfaces from the sensing coil, from which a constant signal surface is identified for each gradient field that produces the measured induced voltage in the sensing coil.
  • the intersection of two such constant signal surfaces is a line along which the catheter is located.
  • This intersection line is defined by an expression in two of the unknown positional coordinates, wherein the other equation parameters are known, i.e., the measured induced voltage values, the magnetic field values at every x-y-z coordinate for the coil groups (as supplied by the LUT), and the as-computed ⁇ - ⁇ orientation. If an appropriate delta coil configuration is used (e.g., three delta coil pairs), an appropriate number of such intersection lines (e.g., three) may be produced to sufficiently and uniquely resolve the x-y-z coordinates (e.g., by calculating the intersection of such three intersection lines).
  • a location algorithm was developed for determining the location of a sensing coil affixed to the distal end of a catheter probe that is navigated through an anatomical region of interest within a recumbent patient.
  • the location of the sensing coil is defined by an angular orientation and positional coordinates.
  • the angular orientation is represented by an angle ⁇ corresponding to the angle of departure from the z-axis and an angle ⁇ corresponding to the angle between the x-axis and the projection onto the x-y plane of the vector coincident with the longitudinal axis of the coil.
  • the z-axis coincides with the longitudinal dimension extending from the patient's head to foot.
  • the x-axis coincides with a lateral dimension across the patient's body, and the y-axis is perpendicular to the planar top of the pallet or examination deck. These dimensions are identified as the patient is disposed in the recumbent position on the pallet.
  • the angular orientation is determined from signals induced in the sensing coil in response to a sequence of substantially uniform, unidirectional fields generated successively within the navigational domain.
  • the positional coordinates are determined from signals induced in the sensing coil in response to the gradient magnetic fields.
  • the time-dependent magnetic fields projected into the navigational domain induce voltages in the coil that are representative of the orientation of the coil axis relative to the lines of magnetic flux.
  • the development of an induced voltage in an electrical conductor in response to a changing magnetic field is defined by Faraday's law. If one considers any closed stationary path in space which is linked by a changing magnetic field, it is found that the induced voltage V ind around this path is equal to the negative time rate of change of the total magnetic flux through the closed path. Denoting a closed path with the variable C, the magnetic flux through C is given by,
  • V ind - ⁇ ⁇ t ⁇ ⁇ S ⁇ B ⁇ ⁇ d S
  • a changing magnetic field will induce an electric field which exists in space regardless of whether a conducting wire is present. If a conducting wire is present in the electric field, an induced voltage will develop in the conductor.
  • B B o sin ⁇ t
  • the induced voltage measured between the two open ends of the coil is expressed as:
  • V ind ⁇ d 2 B o cos ⁇ cos ⁇ t
  • a useful reference frame for spatially conceptualizing the interaction between the sensing coil and the magnetic fields is the Cartesian coordinate system defined by mutually perpendicular axes x-y-z.
  • a nonzero vector â is selected to coincide with the axis through the sensing coil of the present invention (hereinafter “coil axis”).
  • angles ⁇ , ⁇ , and ⁇ that the vector â makes with the unit coordinate vectors î, ⁇ , and ⁇ circumflex over (k) ⁇ , respectively, are called the direction angles of â; the trigonometric terms cos ⁇ , cos ⁇ , and cos ⁇ represent direction cosine values.
  • these angles ⁇ , ⁇ and ⁇ correspond to the angular displacement of the coil axis with respect to uniform fields generated along the x-axis, y-axis, and z-axis directions, respectively.
  • the correspondence between direction cosine expressions is as follows:
  • FIG. 4 is a flowchart detailing the location algorithm according to the present invention and should be referenced in connection with the discussion below.
  • the last navigation point refers to the x-y-z positional coordinates of the sensing coil as determined by the immediately previous computation cycle of the algorithm.
  • the LNP is the center of the viewing field.
  • a magnetic assembly of nine individual coil sets are used to generate the magnetic fields sufficient to develop a corresponding set of nine induced voltage signals that are fully representative of the location of the sensing coil.
  • the nine coil sets correspond to a group of three unidirectional coil sets for generating uniform fields in the x, y, and z-directions; a first delta coil group including a short coil set at 0° and a long coil set at 0°; a second delta coil group including a short coil set at 120° and a long coil set at 120°; and a third delta coil group including a short coil set at 240° and a long coil set at 240°.
  • the angular designations associated with the delta coil groups indicate the angle with respect to the z-axis of the coil dimension that is perpendicular to the direction of elongation of the delta coils. Accordingly, the three delta coil groups are arranged pair-wise in a circular orientation about the y-axis at angles of 0°, 120°, and 240°.
  • the look-up-table consists of a database containing the magnetic field values (H x H y H z ) at every x-y-z coordinate location within the navigational domain for five coil sets: the unidirectional coil sets for generating the uniform fields in the x, y, and z-directions; the short coil (SC) set at 0°; and the long coil (LC) set at 0°.
  • the magnetic field value data for the short and long coil sets at 120° and 240° may be obtained from the LUT by rotating the field vectors for the long and short coil sets at 0° by the angle (i.e., ⁇ 120°) appropriate for the given coil set.
  • the input data for the LUT consists of the x-y-z coordinates and a designation of which coil set is being used to generate the magnetic fields.
  • the LUT supplies the magnetic field values H x H y H z at the selected x-y-z coordinates for the designated coil set.
  • the LUT is present to speed up the operational sequence of the location algorithm. Otherwise, an undesirable computational delay exists if the required magnetic fields from the nine coil sets must be individually calculated during each iteration of the algorithm.
  • the location algorithm need only access the LUT to retrieve the appropriate field value without endeavoring into any complex field analysis.
  • an interpolation procedure is employed to calculate the field value.
  • the location algorithm of the present invention initially undertakes a procedure to determine the angular orientation of the sensing coil. An assumption is first made that the coil orientation does not appreciably change during the period between cycle computations. Accordingly, the magnetic field values corresponding to the uniform field pattern at the LNP are used as an approximation for the magnetic field values at the current but as yet undetermined location.
  • the unidirectional coils are activated in succession, each generating a substantially uniform field that projects into the navigational domain and induces a corresponding voltage signal in the sensing coil.
  • the induced voltage signals are measured by an appropriate detection unit coupled to a proximal end of the catheter device where an electrical connection to the sensing coil is established via suitable connection means extending along the body of the catheter device.
  • the LUT is then accessed three times to acquire the magnetic field values at the LNP for each of the three unidirectional coils. These values and the measured voltage signals are then substituted into the appropriate equations set forth below to solve for the unknown variables ⁇ and ⁇ that define the coil orientation.
  • the voltage induced within the sensing coil may be resolved into components along each of the axial dimensions as determined by the extent to which the magnetic flux density is developed along these axial dimensions.
  • the first subscript in the field intensity term indicates the axial dimension along which the magnetic field value was determined by accessing the LUT for the given coil set at the LNP, while the second subscript indicates the field-generating coil set.
  • H yz and H zx are small compared to H xx .
  • H xy and H zy in the equation for V y and the terms H xz and H yz in the equation for V z are small compared to H yy and H zz , respectively.
  • the equations are simultaneously solved to determine the unknown variables ⁇ and ⁇ defining the orientation of the sensing coil.
  • the procedure for determining the positional coordinates of the sensing coil in accordance with the present invention first involves activating each delta coil in succession and measuring the induced voltage thereby developed in the sensing coil.
  • the LUT is accessed to obtain the magnetic field values at the LNP for each specified delta coil.
  • These magnetic field values and the as-computed values for the orientation angles ⁇ and ⁇ are then substituted into the appropriate induced voltage equations to calculate for each delta coil the expected value of the voltage signal induced in the sensing coil.
  • This expected value of the induced signal corresponds to a specific and unique member of the family of constant signal surfaces of the delta coils.
  • a gradient is calculated (representative of the rate of change of the induced signal) that permits identification of the specific constant signal surface that is responsible for generating the measured value of the induced signal. This procedure is repeated for each delta coil.
  • each delta coil group (comprised of one long coil set and one short coil set)
  • the intersection of the three such lines from the three delta coil groups uniquely provides the x-y-z coordinates of the sensing coil. Although two such lines are sufficient to describe the position of the sensing coil, greater accuracy and more reliable performance in determining the catheter position is achieved with three lines.
  • the magnetic field pattern generated by the entire assembly of short coil and long coil sets is characterized by a family of surfaces of constant signal or constant voltage developed by the sensing coil, each having non-zero components in two of the axis directions and a small component in the remaining axis direction.
  • the magnetic field surfaces generated by the short and long coil sets oriented at 0° relative to the x-axis have a small value in the x-direction.
  • the short coil positioned at 0° (i.e., SC(0°)) and long coil positioned at 0° (i.e., LC(0°)) are each independently activated.
  • the induced voltage in the sensing coil is measured for each coil set.
  • the LUT is then accessed to determine the magnetic field values for the SC(0°) and LC(0°) coil set at the LNP.
  • H x small and non-zero H y H z components
  • H x small and non-zero H y H z components
  • the coil sets SC(120°) and LC(120°) are sequentially activated to induce corresponding catheter signals in the sensing coil.
  • a modified LNP is calculated that is equivalent to the original LNP rotationally displaced by 120°.
  • the LUT is then accessed with the modified LNP to determine the magnetic field values generated by the SC(120°) and LC(120°) coil sets at the modified LNP.
  • the field vectors produced by the LUT for both the long coil and short coil are then rotated ( ⁇ 120°) to go from the modified LNP to the actual LNP.
  • a pair of induced catheter signals are calculated that correspond to the expected signal values arising from the magnetic field values for the SC(120°) and LC(120°) coil sets.
  • the difference between the measured and expected induced catheter signals is used to identify the magnetic constant signal surface for each of the SC(120°) and LC(120°) coil sets that could produce the measured catheter signal.
  • the intersection of these identified magnetic constant signal surfaces is a line oriented at 120° to the x-axis.
  • a similar procedure is used involving a modified LNP that is rotationally displaced 240° to simulate the magnetic field patterns for the SC(240°) and LC(240°) coil sets using the SC(0°) and LC(0°) field data.
  • a line oriented at 240° to the x-axis is then identified along which the catheter is located.
  • Each of the field lines oriented at 0°, 120° and 240° to the x-axis is weighted according to the strength of the measured catheter signals. For example, a weak measurement indicates a relatively imprecise identification of the intersection line, resulting in a weaker weighting. This weighting reflects the accuracy of the estimation used to determine the location of the catheter with the specified coil set.
  • An averaging technique is used to compute a weighted estimate of the intersection of the lines L(0°), L(120°) and L(240°). The intersection is the new value for x-y-z and will replace the x-y-z of the old LNP to become the next LNP.
  • the algorithm iteratively repeats the aforementioned operations using the updated LNP to arrive at the location of the sensing coil after each computation cycle (e.g., every 0.1 s).
  • FIG. 1 schematically illustrates a perspective view of an examination deck that facilitates implementation of the location algorithm in accordance with a preferred embodiment of the present invention, and which employs a magnetic coil assembly arranged in a flat configuration.
  • the examination deck includes a planar top platform 10 suitable for accommodating a recumbent patient disposed lengthwise on the planar top.
  • the navigational domain is illustratively depicted as the spherical volume 12 enclosing a sensing coil 14 attached via suitable connection means 16 to an external signal detection apparatus (not shown).
  • the coil sets embedded in platform 10 (and described in connection with FIGS. 2A-C and 3 ) are activated by a signal drive unit (not shown) connected via line 18 .
  • the examination deck is preferably constructed from a suitable magnetically-permeable material to facilitate magnetic coupling between the embedded coil sets and the overlying sensing coil.
  • FIG. 2A schematically illustrates the unidirectional coil set for generating a substantially uniform x-directed field throughout the navigational domain 12 .
  • the coil set includes a first coil pair with elements 20 and 24 and a second coil pair with elements 22 and 26 , where the current flow as supplied by drive unit 28 is indicated by the arrow symbol.
  • Coil elements 20 and 22 are disposed in the major surface of platform 10
  • elements 24 and 26 are disposed in the lateral walls of platform 10 .
  • Elements 24 and 26 are preferably used as compensation coils to substantially cancel undesirable field components generated by elements 20 and 22 in the y- and z-directions.
  • the coils cumulatively generate a substantially uniform x-directed field as indicated by representative field line 27 .
  • FIG. 2B schematically illustrates the unidirectional coil set for generating a substantially uniform y-directed field throughout the navigational domain 12 .
  • the coil set includes a coil pair with elements 30 and 32 disposed in spaced-apart and parallel relationship within platform 10 , with the indicated current flow as supplied by drive unit 34 .
  • the coils generate a substantially uniform y-directed field as indicated by representative field line 33 .
  • FIG. 2C schematically illustrates the unidirectional coil set for generating a substantially uniform z-directed field throughout the navigational domain 12 .
  • the coil set includes a first coil pair with elements 36 and 40 and a second coil pair with elements 38 and 42 , with the indicated current flow as supplied by drive unit 44 .
  • Coil elements 36 and 38 are disposed in the major surface of platform 10
  • elements 40 and 42 are disposed in the lateral walls of platform 10 .
  • Elements 40 and 42 are preferably used as compensation coils (e.g., Cunard coils) to substantially cancel undesirable field components generated by elements 36 and 38 in the x- and y-directions.
  • the coils cumulatively generate a substantially uniform z-directed field as indicated by representative field line 43 .
  • a suitable connection means couples the sensing coil 14 to a signal measuring device.
  • FIGS. 3 and 5 show the coil configuration used to determine the positional coordinates of the sensing coil in accordance with a preferred embodiment of the present invention.
  • the configuration includes six coils grouped into three pairs of long and short delta coils ( 50 - 52 , 54 - 56 , 58 - 60 ).
  • the delta coils are mutually coplanar and are disposed in the planar top of the examination deck immediately beneath the recumbent patient.
  • Interconnection means between a signal drive unit (not shown) and the delta coil groups is shown representatively for only coils 50 - 52 .
  • the coils are preferably arranged in a circular orientation about the y-axis such that there is an axis perpendicular to the direction of elongation of the coils at 0°, 120° and 240° relative to the z-axis.
  • the magnetic field generated by the first group of long ( 50 ) and short delta coils ( 52 ) is shown representatively by the field lines extending from the upper region of the coils.
  • the field lines from this delta coil group form the family of constant signal surfaces shown within the navigational domain 12 .
  • Superposition of the constant signal surfaces generated by the long and short coils of a delta coil group produces a fishnet pattern as shown in FIG. 6 .
  • the intersection of two such constant signal surfaces generated by a short and long coil pair is a single line represented by the dotted line 70 .
  • a constant signal surface ( 72 and 74 ) is identified for each short coil and long coil activation of a delta coil pair by determining the surface that matches the induced signals developed in the sensing coil. This procedure is repeated for the other two delta coil pairs to produce two other lines comparable to line 70 . The intersection of these three lines determines the position of the catheter.
  • FIG. 7 shows an upper plan schematic view of the entire delta coil arrangement relative to an inner circular space representing the projection of the navigational domain into the plane of the delta coils. It is an object of the present invention to design coils having high spatial gradience in two of the axis dimensions and a substantially zero field value in the remaining axial dimension. This particular design is accomplished by modifying the termination points of the coils with compensation coils such that the modified coil is effectively operative as an infinitely long coil. The long coil sets are further compensated by a central “sucker” coil 88 .
  • each of the long coils and short coils is modified by representative compensation coils 80 - 82 , 84 - 86 , 88 and 90 - 94 , 92 - 96 respectively, disposed at the indicated endpoints and center of the corresponding delta coil.
  • the long coil and short coil configurations are shown schematically for only sets 50 - 52 , but similar configurations likewise exist for the coil sets 54 - 56 and 58 - 60 shown representatively as the indicated lines.
  • the quality of the coils determines the size of the navigational domain over which the variable separation technique for navigating the catheter will converge and therefore be capable of initially finding the catheter, and hence be of functional utility.
  • FIG. 8 schematically depicts an examination deck in accordance with another embodiment of the present invention.
  • the deck includes a first rail member 100 and a second rail member 102 in opposed spaced-apart relationship and attached to the platform along respective supporting edges.
  • the navigational domain is illustratively depicted as the spherical volume 12 .
  • the deck includes an apertured opening 104 .
  • Each rail member has an inner wall and an outer wall. The railed configuration is characterized by the embedding of coil sets in both the planar top and in the rail members.
  • the examination deck is preferably constructed from a magnetically permeable material.
  • FIGS. 9A-C schematically illustrate the unidirectional coils for implementing the railed configuration used in conjunction with the examination deck of FIG. 8 .
  • the magnet assembly for the x-directed unidirectional coil set is shown in FIG. 9A and includes two coil elements 110 and 112 each embedded in a respective rail member. Each coil pair is designed to project a substantially uniform field in the x-direction throughout the navigational domain.
  • FIG. 9B schematically depicts the y-directed unidirected coils including coil elements 114 and 116 each embedded in respective rail members, and further including coil elements 118 and 120 embedded in the planar top of the examination deck.
  • FIG. 9A schematically illustrate the unidirectional coils for implementing the railed configuration used in conjunction with the examination deck of FIG. 8 .
  • the magnet assembly for the x-directed unidirectional coil set is shown in FIG. 9A and includes two coil elements 110 and 112 each embedded in a respective rail member. Each coil pair is designed to project a substantially uniform field in the x-direction
  • FIG. 9C schematically depicts the z-directed unidirected coils including coil elements 122 - 124 in one rail member and elements 126 - 128 in the other rail member.
  • the current flow through each coil configuration is indicated by the arrows.
  • FIG. 9D shows the delta coil arrangement used in the railed configuration. This arrangement is the same as used in the flat configuration described above.
  • a second sensing coil is used for stabilization purposes. Inaccurate readings of the catheter probe location may occur from motion artifacts due to breathing action, heart motion, or patient movement.
  • the stabilized location coordinates may be determined by placing a second sensing coil on the sternum of the patient at a known location within the navigational domain. The incremental movement experienced by the second sensing coil due to motion artifacts is detected and subtracted from the measured location value of the probe to arrive at the actual location coordinates of the probe. Further extensions of the present invention are possible to facilitate multi-catheter applications by attaching an additional sensing coil to the distal end of each additional catheter.

Abstract

A system for navigating a catheter probe through a body cavity includes a sensing coil affixed to a distal end of the probe. Magnetic fields are projected into the body cavity to induce voltage signals in the sensing coil that are sufficient to describe the orientation and position of the probe. A set of magnetic coils each generates a substantially uniform field in a single respective dimension. The orientation angles of the sensing coil may be determined from known values of the unidirectional fields and the measured induced voltage signals. Gradient magnetic fields with components in two dimensions are projected into the body cavity to induce another group of voltage signals. The geometrical intersection of constant voltage surfaces developed by certain gradient fields that produce the measured induced voltage signals is a set of lines on which the catheter is located. The point of intersection of such lines yields the positional coordinates.

Description

This application is a reissue of U.S. Pat. No. 5,592,939 issued on Jan. 14, 1997 and also claims benefit under 35 U.S.C. §120 as a continuation of U.S. patent application Ser. No. 09/494,213 filed on Jan. 24, 2000; which is now U.S. Pat. No. Re. 40,852, Issued on Jul. 14, 2009; which is a reissue of U.S. Pat. No. 5,592,939 issued on Jan. 14, 1997; U.S. patent application Ser. No. 09/494,213, also claims benefit under 35 U.S.C. §120 as a continuation of U.S. patent application Ser. No. 09/231,854 filed on Jan. 14, 1999, which is now U.S. Pat. No. Re. 41,066, Issued on Dec. 29, 2009; which is a reissue of U.S. Pat. No. 5,592,939 issued on Jan. 14, 1997. The disclosures of the above applications are incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates to catheter navigation systems and, more particularly, to a method and system for determining the position and orientation of a catheter probe being used during a surgical procedure.
BACKGROUND OF THE INVENTION
Various configurations have been proposed to guide and detect a catheter probe through the internal spaces of a patient undergoing a surgical procedure. These proposed configurations are characterized by several alternative approaches including, inter alia, procedures for solving equations to determine unknown location parameters, the generation and detection of magnetic fields, and the use of sensing devices affixed to the catheter probe.
U.S. Pat. No. 4,905,698 to Strohl, Jr. et al. discloses a locator device external to a subject for generating an electromagnetic field that projects into the subject. A catheter inserted into the subject is fitted with a sensing coil at its distal end. The phase of the voltage that is induced in the coil in response to the field is compared to the phase of the generated field. When an in-phase condition occurs, this is an indication that the locator is behind the coil; alternatively, an out-of-phase condition indicates that the locator is beyond the coil. Positions intermediate these two rough approximations of the coil position are not determined other than by a beeping indicator that signifies that this intermediate positioning has been reached.
U.S. Pat. No. 4,821,731 to Martinelli et al. discloses an electroacoustical transducer means secured to the distal end of a catheter that is inserted into a subject for generating acoustical pulses that propagate along an imaging axis and reflect from an anatomical area of interest. The acoustic echoes are converted by the transducer means into electrical signals representative of an image of the anatomical area under reflection and the relative position of the transducer means and angular orientation of the sensing/imaging axis.
U.S. Pat. No. 4,642,786 to Hansen discloses a magnetic position and orientation measurement system that determines the location of an object in space with various configurations, each characterized by the attachment of a retransmitter to the object consisting of passive resonant circuits. The retransmitter is in a predetermined position and orientation with respect to the object. A magnetic field is generated at a resonant frequency of the retransmitter which then retransmits a magnetic field for subsequent reception. The position and orientation of the object may be calculated based upon the induced signals as developed by the reception of the retransmitted magnetic field. The original transmission and reception may be implemented with an integrated transceiver, separate transmitter and receiver elements, or a single transmitter and an array of receiver coils.
U.S. Pat. No. 4,317,078 to Weed et al. discloses how the location of a magnetically sensitive element may be determined by moving a magnetic field source along specified reference axes to induce signals in the sensor so as to identify a set of null points representative of certain flux linkage values. The null point locations are used to calculate the sensor position.
U.S. Pat. No. 3,868,565 describes a system where a magnetic field is generated which rotates about a known pointing vector. The generated field is sensed along at least two axes by a sensor attached to the object to be located or tracked. Based upon the relationship between the sensed magnetic field components, the position of the object relative to the pointing vector can be computed.
U.S. Pat. No. 4,173,228 to Van Steenwyk et al. discloses a catheter locating system that includes a sensor attached to the distal end of the catheter. An electromagnetic field is projected into the body cavity with magnetic probe coils. The field is detected by the sensor, which generates an induced signal whose magnitude and phase are representative of field strength, separation of sensor and probe coils, and relative orientation of sensor and probe coils. The probe coil undergoes linear and rotational movement to identify orientations and locations of the probe coil where minima and maxima occur in the measured signal induced in the sensor. This information is representative of the position and orientation of the sensor.
U.S. Pat. No. 5,211,165 to Dumoulin et al. discloses a modified catheter device that includes a small RF transmit coil attached to its distal end. The transmit coil is driven by an RF source to create an electromagnetic field that induces electrical signals in an array of receive coils distributed around a region of interest. Alternatively, the receive coils can be placed on the invasive device and the transmit coils are distributed outside the patient. A minimum of one transmit coil and three receive coils is necessary to precisely determine the location of the invasive device. A series of equations is developed to solve for the unknowns x-y-z-φ-θ.
PCT Application No. WO94/04938 to Bladen et al. describes how the location and orientation of a single sensing coil may be determined from induced signals developed in response to a sequence of applied magnetic fields emanating from three groups of field generators each including three mutually orthogonal coils.
The positioning methodology developed by Bladen et al. involves calculating the distance from the sensing coil to each group of field generators as a function of the induced voltage developed in the sensing coil by the field generator. The distance calculation is used to define the radius of a sphere centered on the respective field generator. The intersection (i.e., overlap) of the spheres is used to calculate an estimate of the sensor position, using the spherical radius extending from the known location of the field generators as the estimate for each generator.
The orientation algorithm of Bladen et al. develops general equations for induced voltage including the entire set of unknown variables (x-y-z location and φ-θ orientation). The algorithm specifically solves for the orientation parameters by substituting the measured induced voltage and the computed x-y-z coordinates into the general induced voltage equation, and then reduces the equations to the unknown variables φ-θ.
In an alternative orientation algorithm described by Bladen et al., the induced voltage is treated as a vector quantity, allowing the angle between the magnetic field at the generator and the radial vector joining the sensor to the generator to be calculated with a dot product computation. The angle between the radial vector and the sensor axis can be determined from the computed field angle using the dipole equations that define the generator fields. This sensor angle and the radial position as determined by the position algorithm together define the sensor position for use in the alternative orientation algorithm. These values are used to compute the angular orientation φ and θ.
OBJECTS OF THE INVENTION
It is a general object of the present invention to obviate the above-noted and other disadvantages of the prior art.
It is a more specific object of the present invention to provide a catheter navigation system capable of determining the location of a catheter probe.
It is a further object of the present invention to develop a catheter navigation system employing a sensing coil affixed to the end of a catheter probe for generating induced voltage signals that are sufficient to describe the position and orientation of the sensing coil.
It is a further object of the present invention to develop a methodology for generating magnetic fields that are sufficient to create a series of soluble mathematical expressions describing the position and orientation of the sensing coil.
SUMMARY OF THE INVENTION
In one aspect of the present invention, an improved method of determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain comprises the steps of:
    • inducing within said sensing coil a set of orientation signal values each representative of an orientation of said sensing coil and independent of a position of said sensing coil;
    • determining the orientation of said sensing coil using said induced orientation signal values;
    • inducing within said sensing coil a set of positional signal values each representative of the position of said sensing coil; and
    • determining the position of said sensing coil using said positional signal values and said determined orientation.
In another aspect of the present invention, an improved system for determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain comprises:
    • first transmit means for projecting into said navigational domain magnetic energy that is sufficient to induce signal values within said sensing coil representative of an orientation of said sensing coil and independent of the position of said sensing coil;
    • second transmit means for projecting into said navigational domain magnetic energy that is sufficient to induce signal values within said sensing coil representative of the position of said sensing coil; and
    • analysis means, coupled to said first transmit means and said second transmit means, for determining the position and orientation of said sensing coil from said induced signal values.
In another aspect of the present invention, an improved method of determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain comprises the steps of:
    • defining the location of said sensing coil with a set of independent location parameters; and
    • sequentially generating within said navigational domain a sequence of magnetic fields for inducing within said sensing coil a corresponding sequence of induced signals each defined by an induced signal expression that functionally relates said induced signal to certain ones of said location parameters, such that said set of location parameters is determinable by sequentially solving individual signal expression groups each including certain ones of said induced signal expressions and sufficient to represent a subset of said location parameters.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 schematically illustrates a perspective view of a patient-supporting examination deck in accordance with a preferred embodiment of the present invention;
FIGS. 2A-C schematically illustrate a series of magnetic coil sets for generating uniform fields in the x-, y-, and z-directions, respectively, in accordance with a preferred embodiment of the present invention, and which are configured within the deck of FIG. 1;
FIGS. 3 schematically illustrates a magnetic coil assembly for determining the positional coordinates of the sensing coil in accordance with a preferred embodiment of the present invention, and which is configured within the deck of FIG. 1;
FIG. 4 is a flow diagram describing the location algorithm in accordance with the present invention;
FIG. 5 schematically depicts the magnetic coil assembly of FIG. 3 to illustrate representative field patterns generated during an excitation period;
FIG. 6 is a trace representatively illustrating surfaces of constant signal from the sensing coil, as generated by the magnetic assembly of FIG. 3;
FIG. 7 shows an upper plan schematic view of the magnetic assembly of FIG. 3;
FIG. 8 schematically illustrates a perspective view of a patient-supporting examination deck in accordance with another embodiment of the present invention; and
FIGS. 9A-D schematically illustrate a series of magnetic coil assemblies configured in the deck and rails of FIG. 8 for determining the orientation and position of the sensing coil in accordance with another embodiment of the present invention.
Throughout the drawings the same or similar elements are identified by the same reference numeral.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is directed to a method and system for determining the location of a catheter or endoscopic probe inserted into a selected body cavity of a patient undergoing a surgical procedure. The location data is obtained from electrical measurements of voltage signals that are induced within a sensing coil affixed to the distal end of the catheter probe. These induced voltage signals are generated by the sensing coil in response to prespecified electromagnetic fields that project into the anatomical region of interest which contains all prospective locations of the catheters probe. The electrical measurements of the induced signals provide sufficient information to compute the angular orientation and the positional coordinates of the sensing coil, and hence the catheter probe, which collectively define the location of the sensing coil. The present invention is operative as the patient is disposed on a patient-supporting examination deck.
As used herein, “sensing coil” refers to an electrically conductive, magnetically sensitive element that is responsive to time-dependent magnetic fields for generating induced voltage signals as a function of and representative of the applied time-dependent magnetic field. The sensing coil is adaptable for secure engagement to the distal end of a catheter probe.
As used herein, “navigational domain” refers to a fully enclosed spatial region whose internal volume substantially encloses the complete prospective range of movement of the sensing coil. The navigational domain may be defined by any geometrical space but preferably takes the form of a spherical volume. Under surgical operating conditions, the navigational domain will correspond to an anatomical region of the recumbent patient where surgical viewing or investigation is desired (e.g., a diseased area of tissue or an organ).
As used herein, “last navigational point” (hereinafter “the LNP”) refers to the most recently determined location of the sensing coil before another iteration of the location algorithm is performed.
As used herein, “uniform field” refers to a magnetic field having a large magnetic field component in a specified axial dimension and relatively smaller magnetic field components in the other axial dimensions, and characterized by substantially uniform field values throughout the navigational domain. In the x-y-z coordinate system used herein, where the uniform fields of interest are the x-directed, y-directed, and z-directed fields, the induced voltage signals developed by such fields in the sensing coil are designated Vx, Vy and Vz, respectively. The term “undirectional field” is used interchangeably with “uniform field” when appropriate.
As used herein, “undirectional coils” refer to a magnetic assembly that is operative to generate a uniform field (as defined above) within the navigational domain. A distinct magnetic assembly is employed for each uniform field. Although the unidirectional coils described herein are preferably implemented with a collection of appropriately designed magnetic coils, this implementation should not be construed as a limitation of the present invention. Rather, the unidirectional coils may be constructed from any magnetic configuration that is sufficient to generate the uniform fields.
As used herein, “gradient field” refers to a time-dependent magnetic field having non-zero field components (i.e., components with a high spatial gradient) in two of the three axial dimensions for the coordinate system of interest (e.g., x-y-z system), and a substantially zero component in the remaining axial dimension. For mathematical purposes, a substantially zero component is generated when its value is small compared to the net vector resulting from the other two field components.
As used herein, “constant signal surface” or “constant voltage surface” refers to a surface contour along which at every possible point of location for the sensing coil the same induced voltage is developed in the sensing coil.
As used herein, “delta coils” refer to a magnetic assembly for generating a gradient field (as defined above) within the navigational domain. As will become more apparent hereinafter, the delta coils will typically be described in the context of delta coil pairs including a long coil set and a short coil set each generating gradient fields with components in the same axial dimensions but whose magnetic field patterns are different. Each of the long and short coil sets may be considered to generate a family of constant signal or constant voltage surfaces from the sensing coil within the navigational domain. Although the delta coils are preferably implemented with an array of appropriately designed magnetic coils (discussed below), this preferred implementation should not serve as a limitation of the present invention as it should be apparent to those skilled in the art that other magnetic configurations may be used to adequately generate the gradient fields.
As used herein, “magnetic look-up-table” (alternatively referenced as “the LUT”) refers to a database including the magnetic field values at every x-y-z coordinate position within the navigational domain for the unidirectional coils and delta coils used by the present invention. Accordingly, input data consisting of an x-y-z coordinate and a magnetic field identifier, which designates a selected magnetic coil assembly, is indexed within the database to a corresponding set of magnetic field values constituting the output data. For the x-y-z coordinate system, the output data is represented by the magnetic field variables Hx Hy Hz where the subscript indicates the axial dimension along which the magnetic field value is being reported. The database is created through a computational analysis of the magnetic field patterns generated by the magnetic coil configurations used herein. The mathematical model to develop the necessary formulae defining the field patterns may be developed, for example, from near field electromagnetic theory. An instructive text for facilitating such an analysis is “Field and Wave Electromagnetics” 2nd edition Addison Wesley (1989) by D. K. Cheng, herein incorporated by reference. The database may be stored in any type of facility including, inter alia, read-only memory, firmware, optical storage, or other types of computer storage. Additionally, the database information may be organized into any type of format such as a spreadsheet. It should be apparent to those skilled in the art that any suitable technique may be used to ascertain or record the magnetic field values for the magnetic coil assemblies used herein.
Separation of Variables Methodology
The mathematical construct underlying the present invention is a methodology termed separation of variables. In accordance with this methodology, appropriate equations are developed to isolate unknown variables in such a manner that renders the equations uniquely soluble. There are five unknown variables (φ-θ-x-y-z) that define the location and orientation of the sensing coil. A typical approach to solving for these variables would be to develop a series of coupled non-linear equations expressing the relationship among the variables. However, these equations are generally not uniquely soluble, i.e., multiple solutions are possible.
The mathematical approach used herein and predicated on the separation of variables concept is directed to the development of a series of signal expression statements functionally relating induced voltage values to certain ones of the unknown location parameters. The relationships defined by these expression statements (i.e., induced voltage equations) are such that the unknown variables are determinable by sequentially solving the expression statements. In accordance with one aspect of the present invention, a class of special magnetic fields is generated with characteristic spatial structuring and shaping that is sufficient to cause the variables (i.e., the location parameters) to separate within these induced voltage equations so as to permit resolution of the parameters x-y-z-φ-θ when the equations are sequentially solved.
In particular, a series of substantially uniform fields is successively generated in the x-, y-, and z-directions with the group of unidirectional coils, thereby developing induced voltage expressions (discussed below) involving only the variables φ and θ independent of the unknown positional variables x-y-z. This uncoupling of the variables φ-θ from the variables x-y-z as accomplished by the substantially uniform fields is specifically evident in the three induced voltage equations expressed in two unknowns (i.e., φ and θ), which are easily soluble.
The separation of variables methodology as applied to the determination of the unknown positional coordinates x-y-z is implemented with a sequence of gradient fields as generated by an appropriate group of delta coils. Since the gradient fields have components in only two of the axial dimensions, these fields induce voltages in the sensing coil that are dependent upon the magnetic field values in only these two dimensions at the sensing coil position. As a result, each gradient field generates a family of constant signal surfaces from the sensing coil, from which a constant signal surface is identified for each gradient field that produces the measured induced voltage in the sensing coil. The intersection of two such constant signal surfaces is a line along which the catheter is located. This intersection line is defined by an expression in two of the unknown positional coordinates, wherein the other equation parameters are known, i.e., the measured induced voltage values, the magnetic field values at every x-y-z coordinate for the coil groups (as supplied by the LUT), and the as-computed φ-θ orientation. If an appropriate delta coil configuration is used (e.g., three delta coil pairs), an appropriate number of such intersection lines (e.g., three) may be produced to sufficiently and uniquely resolve the x-y-z coordinates (e.g., by calculating the intersection of such three intersection lines).
Since there are five unknown variables to completely define the catheter probe location, an equal number of independent equations are needed to sufficiently describe its location. These unknowns may be determined using one coil and five magnetic fields (as described herein), two coils and three magnetic fields, or three coils and two magnetic fields.
Overview of Location Algorithm
In accordance with the present invention, a location algorithm was developed for determining the location of a sensing coil affixed to the distal end of a catheter probe that is navigated through an anatomical region of interest within a recumbent patient. The location of the sensing coil is defined by an angular orientation and positional coordinates. The angular orientation is represented by an angle φ corresponding to the angle of departure from the z-axis and an angle θ corresponding to the angle between the x-axis and the projection onto the x-y plane of the vector coincident with the longitudinal axis of the coil. In the coordinate system for describing the present invention, the z-axis coincides with the longitudinal dimension extending from the patient's head to foot. The x-axis coincides with a lateral dimension across the patient's body, and the y-axis is perpendicular to the planar top of the pallet or examination deck. These dimensions are identified as the patient is disposed in the recumbent position on the pallet. As discussed below, the angular orientation is determined from signals induced in the sensing coil in response to a sequence of substantially uniform, unidirectional fields generated successively within the navigational domain. The positional coordinates are determined from signals induced in the sensing coil in response to the gradient magnetic fields.
By way of background, the time-dependent magnetic fields projected into the navigational domain induce voltages in the coil that are representative of the orientation of the coil axis relative to the lines of magnetic flux. The development of an induced voltage in an electrical conductor in response to a changing magnetic field is defined by Faraday's law. If one considers any closed stationary path in space which is linked by a changing magnetic field, it is found that the induced voltage Vind around this path is equal to the negative time rate of change of the total magnetic flux through the closed path. Denoting a closed path with the variable C, the magnetic flux through C is given by,
Ψ = S B · S
where S is any surface bounded by the closed path C. Thus, the mathematical statement of Faraday's law is
V ind = - δ δt S B · S
Basically, the law states that a changing magnetic field will induce an electric field which exists in space regardless of whether a conducting wire is present. If a conducting wire is present in the electric field, an induced voltage will develop in the conductor. For a single-turn coil of wire of radius d located in a uniform magnetic field B=Bo sinωt, where the axis of the sensing coil is displaced at an angle θ with respect to the lines of magnetic flux, the induced voltage measured between the two open ends of the coil is expressed as:
V ind = - t S B · S = - t ( πd 2 B o cos θsin ωt )
Vind=−ωπd2Bocosθcosωt
This relationship for a single coil may be used to determine the induced voltage within a coil of N turns. Assuming that each turn of the coil is separately and equally linked by the magnetic flux (e.g., in tightly wound coils), the induced voltage within the entire coil assembly may be approximated as the summation of the induced voltages developed in each turn. Accordingly, the total voltage across the entire coil assembly is N times the induced voltage for a single turn; hence, the induced voltage Vind is equivalent to
Vind=−Nωπd2Bo cosθcosωt
Clearly, the induced voltage in the sensing coil will vary with changes in the angular orientation between the coil axis and the direction of the magnetic field lines.
A useful reference frame for spatially conceptualizing the interaction between the sensing coil and the magnetic fields is the Cartesian coordinate system defined by mutually perpendicular axes x-y-z. For purposes of illustration, a nonzero vector â is selected to coincide with the axis through the sensing coil of the present invention (hereinafter “coil axis”).
The angles α, β, and γ that the vector â makes with the unit coordinate vectors î, ĵ, and {circumflex over (k)}, respectively, are called the direction angles of â; the trigonometric terms cosα, cosβ, and cosγ represent direction cosine values. Employing vector product notation, the following expressions are developed: â·î=∥â∥cosα; â·ĵ=∥â∥cosβ; and â·k=∥â∥cosγ. Referencing the induced voltage equations set forth above, these angles α, β and γ correspond to the angular displacement of the coil axis with respect to uniform fields generated along the x-axis, y-axis, and z-axis directions, respectively. Thus, the correspondence between direction cosine expressions is as follows:
    • cosα corresponds to sinφcosθ;
    • cosβ corresponds to sinθsinφ; and
    • cosγ corresponds to cosφ.
      Accordingly, the following relationships illustrate the dependence of induced voltage on the orientation parameters φ and θ:
  • Vx≈sinφcosθ;
    • Vy≈sinθsinφ; and
    • Vz≈cosφ,
      where the subscript indicates the direction of the magnetic field that produced the measured induced voltage.
FIG. 4 is a flowchart detailing the location algorithm according to the present invention and should be referenced in connection with the discussion below.
As noted above, the last navigation point (LNP) refers to the x-y-z positional coordinates of the sensing coil as determined by the immediately previous computation cycle of the algorithm. For the first cycle, the LNP is the center of the viewing field.
In accordance with a preferred embodiment of the present invention for implementing the location algorithm, a magnetic assembly of nine individual coil sets are used to generate the magnetic fields sufficient to develop a corresponding set of nine induced voltage signals that are fully representative of the location of the sensing coil. The nine coil sets correspond to a group of three unidirectional coil sets for generating uniform fields in the x, y, and z-directions; a first delta coil group including a short coil set at 0° and a long coil set at 0°; a second delta coil group including a short coil set at 120° and a long coil set at 120°; and a third delta coil group including a short coil set at 240° and a long coil set at 240°. The angular designations associated with the delta coil groups indicate the angle with respect to the z-axis of the coil dimension that is perpendicular to the direction of elongation of the delta coils. Accordingly, the three delta coil groups are arranged pair-wise in a circular orientation about the y-axis at angles of 0°, 120°, and 240°.
The look-up-table (LUT) consists of a database containing the magnetic field values (Hx Hy Hz) at every x-y-z coordinate location within the navigational domain for five coil sets: the unidirectional coil sets for generating the uniform fields in the x, y, and z-directions; the short coil (SC) set at 0°; and the long coil (LC) set at 0°. The magnetic field value data for the short and long coil sets at 120° and 240° may be obtained from the LUT by rotating the field vectors for the long and short coil sets at 0° by the angle (i.e., ±120°) appropriate for the given coil set. The input data for the LUT consists of the x-y-z coordinates and a designation of which coil set is being used to generate the magnetic fields. In response to this input data, the LUT supplies the magnetic field values Hx Hy Hz at the selected x-y-z coordinates for the designated coil set.
The LUT is present to speed up the operational sequence of the location algorithm. Otherwise, an undesirable computational delay exists if the required magnetic fields from the nine coil sets must be individually calculated during each iteration of the algorithm. By predetermining the magnetic field values and storing them in LUT, the location algorithm need only access the LUT to retrieve the appropriate field value without endeavoring into any complex field analysis. At x-y-z coordinates other than those for which magnetic field values are determined in the LUT, an interpolation procedure is employed to calculate the field value.
Determining Angular Orientation of the Sensing Coil
The location algorithm of the present invention initially undertakes a procedure to determine the angular orientation of the sensing coil. An assumption is first made that the coil orientation does not appreciably change during the period between cycle computations. Accordingly, the magnetic field values corresponding to the uniform field pattern at the LNP are used as an approximation for the magnetic field values at the current but as yet undetermined location.
The unidirectional coils are activated in succession, each generating a substantially uniform field that projects into the navigational domain and induces a corresponding voltage signal in the sensing coil. The induced voltage signals are measured by an appropriate detection unit coupled to a proximal end of the catheter device where an electrical connection to the sensing coil is established via suitable connection means extending along the body of the catheter device.
The LUT is then accessed three times to acquire the magnetic field values at the LNP for each of the three unidirectional coils. These values and the measured voltage signals are then substituted into the appropriate equations set forth below to solve for the unknown variables φ and θ that define the coil orientation.
As a general principle, the voltage induced within the sensing coil may be resolved into components along each of the axial dimensions as determined by the extent to which the magnetic flux density is developed along these axial dimensions. For example, a general formula for the induced voltage produced by the unidirectional coil which generates a substantially uniform field in the x-direction is as follows:
Vx=HxxK sinφcosθ+HyxK sinφsinθ+HzxK cosφ
where magnetic field intensity H is related to magnetic flux density by B=μH and K=μo ωNπd2. The first subscript in the field intensity term indicates the axial dimension along which the magnetic field value was determined by accessing the LUT for the given coil set at the LNP, while the second subscript indicates the field-generating coil set. For an x-directed substantially uniform field, the terms Hyz and Hzx are small compared to Hxx. Similar equations are developed below for the induced voltages produced by the unidirectional coils successively generating a y-directed and z-directed substantially uniform field:
Vy=HxyK sinφcosθ+HyyK sinφsinθ+HzyK cosφ,
and
Vz=HxzK sinφcosθ+HyzK sinφsinθ+HzzK cosφ.
The terms Hxy and Hzy in the equation for Vy and the terms Hxz and Hyz in the equation for Vz are small compared to Hyy and Hzz, respectively. After substituting the measured values for the induced voltage signals, the equations are simultaneously solved to determine the unknown variables φ and θ defining the orientation of the sensing coil.
Determining Positional Coordinates of the Sensing Coil
By way of summary, the procedure for determining the positional coordinates of the sensing coil in accordance with the present invention first involves activating each delta coil in succession and measuring the induced voltage thereby developed in the sensing coil. Next, the LUT is accessed to obtain the magnetic field values at the LNP for each specified delta coil. These magnetic field values and the as-computed values for the orientation angles φ and θ are then substituted into the appropriate induced voltage equations to calculate for each delta coil the expected value of the voltage signal induced in the sensing coil. This expected value of the induced signal corresponds to a specific and unique member of the family of constant signal surfaces of the delta coils.
Based on the difference between the measured and expected values for the induced voltage signals, a gradient is calculated (representative of the rate of change of the induced signal) that permits identification of the specific constant signal surface that is responsible for generating the measured value of the induced signal. This procedure is repeated for each delta coil.
For the activation of each delta coil group (comprised of one long coil set and one short coil set), there is an intersection line defined by the intersection of the two constant signal surfaces (which were identified as developing the measured induced signal) on which the sensing coil is located. The intersection of the three such lines from the three delta coil groups uniquely provides the x-y-z coordinates of the sensing coil. Although two such lines are sufficient to describe the position of the sensing coil, greater accuracy and more reliable performance in determining the catheter position is achieved with three lines.
The following is a more detailed discussion of the procedure summarized above for determining the positional coordinates.
The magnetic field pattern generated by the entire assembly of short coil and long coil sets is characterized by a family of surfaces of constant signal or constant voltage developed by the sensing coil, each having non-zero components in two of the axis directions and a small component in the remaining axis direction. For example, the magnetic field surfaces generated by the short and long coil sets oriented at 0° relative to the x-axis have a small value in the x-direction. The short coil positioned at 0° (i.e., SC(0°)) and long coil positioned at 0° (i.e., LC(0°)) are each independently activated. The induced voltage in the sensing coil is measured for each coil set. The LUT is then accessed to determine the magnetic field values for the SC(0°) and LC(0°) coil set at the LNP.
These magnetic field values (i.e., Hx=small and non-zero Hy Hz components) are used in conjunction with the as-computed orientation angles φ and θ to calculate the values of the induced catheter signals that would be expected from such magnetic field values. The expected and measured induced voltage values are compared, and the difference is used to identify the constant signal surface from each of the SC(0°) and LC(0°) coil sets that would have produced the measured induced signals. The intersection of these identified magnetic constant signal surfaces is a line parallel to the x-axis (thereby resolving the y-z coordinates).
The aforementioned procedure involving the long and short coils oriented at 0° is iteratively repeated for a long and short coil set oriented at 120° (i.e., SC(120°) and LC(120°)) and 240° (i.e., SC(240°) and LC(240°)).
More specifically, the coil sets SC(120°) and LC(120°) are sequentially activated to induce corresponding catheter signals in the sensing coil. In order to utilize the LUT data on the coil sets oriented at 0° for determining the magnetic field components at the LNP generated by the coil sets SC(120°) and LC(120°), a modified LNP is calculated that is equivalent to the original LNP rotationally displaced by 120°. The LUT is then accessed with the modified LNP to determine the magnetic field values generated by the SC(120°) and LC(120°) coil sets at the modified LNP. The field vectors produced by the LUT for both the long coil and short coil are then rotated (−120°) to go from the modified LNP to the actual LNP. Based upon these field values, a pair of induced catheter signals are calculated that correspond to the expected signal values arising from the magnetic field values for the SC(120°) and LC(120°) coil sets. The difference between the measured and expected induced catheter signals is used to identify the magnetic constant signal surface for each of the SC(120°) and LC(120°) coil sets that could produce the measured catheter signal. The intersection of these identified magnetic constant signal surfaces is a line oriented at 120° to the x-axis.
A similar procedure is used involving a modified LNP that is rotationally displaced 240° to simulate the magnetic field patterns for the SC(240°) and LC(240°) coil sets using the SC(0°) and LC(0°) field data. A line oriented at 240° to the x-axis is then identified along which the catheter is located.
Each of the field lines oriented at 0°, 120° and 240° to the x-axis is weighted according to the strength of the measured catheter signals. For example, a weak measurement indicates a relatively imprecise identification of the intersection line, resulting in a weaker weighting. This weighting reflects the accuracy of the estimation used to determine the location of the catheter with the specified coil set. An averaging technique is used to compute a weighted estimate of the intersection of the lines L(0°), L(120°) and L(240°). The intersection is the new value for x-y-z and will replace the x-y-z of the old LNP to become the next LNP. The algorithm iteratively repeats the aforementioned operations using the updated LNP to arrive at the location of the sensing coil after each computation cycle (e.g., every 0.1 s).
Magnetic Assembly for Determining Angular Orientation of Sensing Coil
FIG. 1 schematically illustrates a perspective view of an examination deck that facilitates implementation of the location algorithm in accordance with a preferred embodiment of the present invention, and which employs a magnetic coil assembly arranged in a flat configuration. The examination deck includes a planar top platform 10 suitable for accommodating a recumbent patient disposed lengthwise on the planar top. The navigational domain is illustratively depicted as the spherical volume 12 enclosing a sensing coil 14 attached via suitable connection means 16 to an external signal detection apparatus (not shown). The coil sets embedded in platform 10 (and described in connection with FIGS. 2A-C and 3) are activated by a signal drive unit (not shown) connected via line 18. The examination deck is preferably constructed from a suitable magnetically-permeable material to facilitate magnetic coupling between the embedded coil sets and the overlying sensing coil.
Coil Set for Generating X-Directed Field
FIG. 2A schematically illustrates the unidirectional coil set for generating a substantially uniform x-directed field throughout the navigational domain 12. The coil set includes a first coil pair with elements 20 and 24 and a second coil pair with elements 22 and 26, where the current flow as supplied by drive unit 28 is indicated by the arrow symbol. Coil elements 20 and 22 are disposed in the major surface of platform 10, while elements 24 and 26 are disposed in the lateral walls of platform 10. Elements 24 and 26 are preferably used as compensation coils to substantially cancel undesirable field components generated by elements 20 and 22 in the y- and z-directions. The coils cumulatively generate a substantially uniform x-directed field as indicated by representative field line 27.
Coil Set for Generating Y-Directed Field
FIG. 2B schematically illustrates the unidirectional coil set for generating a substantially uniform y-directed field throughout the navigational domain 12. The coil set includes a coil pair with elements 30 and 32 disposed in spaced-apart and parallel relationship within platform 10, with the indicated current flow as supplied by drive unit 34. The coils generate a substantially uniform y-directed field as indicated by representative field line 33.
Coil Set for Generating Z-Directed Field
FIG. 2C schematically illustrates the unidirectional coil set for generating a substantially uniform z-directed field throughout the navigational domain 12. The coil set includes a first coil pair with elements 36 and 40 and a second coil pair with elements 38 and 42, with the indicated current flow as supplied by drive unit 44. Coil elements 36 and 38 are disposed in the major surface of platform 10, while elements 40 and 42 are disposed in the lateral walls of platform 10. Elements 40 and 42 are preferably used as compensation coils (e.g., Cunard coils) to substantially cancel undesirable field components generated by elements 36 and 38 in the x- and y-directions. The coils cumulatively generate a substantially uniform z-directed field as indicated by representative field line 43.
The coil configurations shown in the Figures are only illustrative and should not be construed as a limitation of the present invention, as it should be apparent to those skilled in the art that other coil configurations are possible within the scope of the present invention provided such other configurations produce the desired magnetic field patterns. A suitable connection means (not shown) couples the sensing coil 14 to a signal measuring device.
Magnetic Assembly for Determining Positional Coordinates of Sensing Coil
FIGS. 3 and 5 show the coil configuration used to determine the positional coordinates of the sensing coil in accordance with a preferred embodiment of the present invention. The configuration includes six coils grouped into three pairs of long and short delta coils (50-52, 54-56, 58-60). The delta coils are mutually coplanar and are disposed in the planar top of the examination deck immediately beneath the recumbent patient. Interconnection means between a signal drive unit (not shown) and the delta coil groups is shown representatively for only coils 50-52.
The coils are preferably arranged in a circular orientation about the y-axis such that there is an axis perpendicular to the direction of elongation of the coils at 0°, 120° and 240° relative to the z-axis. The magnetic field generated by the first group of long (50) and short delta coils (52) is shown representatively by the field lines extending from the upper region of the coils. The field lines from this delta coil group form the family of constant signal surfaces shown within the navigational domain 12. Superposition of the constant signal surfaces generated by the long and short coils of a delta coil group produces a fishnet pattern as shown in FIG. 6. The intersection of two such constant signal surfaces generated by a short and long coil pair is a single line represented by the dotted line 70.
A constant signal surface (72 and 74) is identified for each short coil and long coil activation of a delta coil pair by determining the surface that matches the induced signals developed in the sensing coil. This procedure is repeated for the other two delta coil pairs to produce two other lines comparable to line 70. The intersection of these three lines determines the position of the catheter.
FIG. 7 shows an upper plan schematic view of the entire delta coil arrangement relative to an inner circular space representing the projection of the navigational domain into the plane of the delta coils. It is an object of the present invention to design coils having high spatial gradience in two of the axis dimensions and a substantially zero field value in the remaining axial dimension. This particular design is accomplished by modifying the termination points of the coils with compensation coils such that the modified coil is effectively operative as an infinitely long coil. The long coil sets are further compensated by a central “sucker” coil 88. Accordingly, each of the long coils and short coils is modified by representative compensation coils 80-82, 84-86, 88 and 90-94, 92-96 respectively, disposed at the indicated endpoints and center of the corresponding delta coil. The long coil and short coil configurations are shown schematically for only sets 50-52, but similar configurations likewise exist for the coil sets 54-56 and 58-60 shown representatively as the indicated lines.
The quality of the coils, as measured by the degree of uniformity of the uniform field coils or how close to zero is the field in the non-gradient direction for the delta coils, determines the size of the navigational domain over which the variable separation technique for navigating the catheter will converge and therefore be capable of initially finding the catheter, and hence be of functional utility.
FIG. 8 schematically depicts an examination deck in accordance with another embodiment of the present invention. The deck includes a first rail member 100 and a second rail member 102 in opposed spaced-apart relationship and attached to the platform along respective supporting edges. The navigational domain is illustratively depicted as the spherical volume 12. The deck includes an apertured opening 104. Each rail member has an inner wall and an outer wall. The railed configuration is characterized by the embedding of coil sets in both the planar top and in the rail members. The examination deck is preferably constructed from a magnetically permeable material.
FIGS. 9A-C schematically illustrate the unidirectional coils for implementing the railed configuration used in conjunction with the examination deck of FIG. 8. The magnet assembly for the x-directed unidirectional coil set is shown in FIG. 9A and includes two coil elements 110 and 112 each embedded in a respective rail member. Each coil pair is designed to project a substantially uniform field in the x-direction throughout the navigational domain. FIG. 9B schematically depicts the y-directed unidirected coils including coil elements 114 and 116 each embedded in respective rail members, and further including coil elements 118 and 120 embedded in the planar top of the examination deck. FIG. 9C schematically depicts the z-directed unidirected coils including coil elements 122-124 in one rail member and elements 126-128 in the other rail member. The current flow through each coil configuration is indicated by the arrows. FIG. 9D shows the delta coil arrangement used in the railed configuration. This arrangement is the same as used in the flat configuration described above.
In accordance with another embodiment of the present invention, a second sensing coil is used for stabilization purposes. Inaccurate readings of the catheter probe location may occur from motion artifacts due to breathing action, heart motion, or patient movement. The stabilized location coordinates may be determined by placing a second sensing coil on the sternum of the patient at a known location within the navigational domain. The incremental movement experienced by the second sensing coil due to motion artifacts is detected and subtracted from the measured location value of the probe to arrive at the actual location coordinates of the probe. Further extensions of the present invention are possible to facilitate multi-catheter applications by attaching an additional sensing coil to the distal end of each additional catheter.
Since certain changes may be made in the above apparatus and method without departing from the scope of the invention herein described, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted in an illustrative and not in a limiting sense.

Claims (32)

1. A method of determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain, comprising the steps of:
inducing within said sensing coil a set of orientation signal values each representative of an orientation of said sensing coil and independent of a position of said sensing coil;
determining the orientation of said sensing coil using said induced orientation signal values;
inducing within said sensing coil a set of positional signal values each representative of the position of said sensing coil; and
determining the position of said sensing coil using said positional signal values and said determined orientation.
2. The method as recited in claim 1, wherein the step of inducing said set of orientation signal values comprises the steps of:
generating from outside said body a series of magnetic fields each penetrating at least said navigational domain and characterized substantially by a principal magnetic component in one axial dimension and relatively smaller magnetic components in two other axial dimensions.
3. The method as recited in claim 1, wherein the step of inducing said set of positional signal values comprises the steps of:
generating from outside said body a series of magnetic fields each penetrating at least said navigational domain and characterized substantially by two principal gradient magnetic components in respective axial dimensions and a relatively smaller magnetic components in a third axial dimension.
4. The method as recited in claim 3, wherein said generating step further includes the steps of:
generating said fields to provide a plurality of constant signal surfaces for the sensing coil such that an intersection between two such surfaces with components in the same axial dimensions produces a line along which said sensing coil is located;
wherein said two such surfaces are identified from among said plurality of constant signal surfaces by their ability to induce one of said positional signal values.
5. The method as recited in claim 4, further comprises the steps of:
weighting each line in accordance with a signal strength of said corresponding constant signal surface; and
determining an intersection of said weighted lines.
6. The method as recited in claim 5, wherein six constant signal surfaces are generated to produce three intersection lines.
7. A system for determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain, comprising:
first transmit means for projecting into said navigational domain magnetic energy that is sufficient to induce signal values within said sensing coil representative of an orientation of said sensing coil and independent of the position of said sensing coil;
second transmit means for projecting into said navigational domain magnetic energy that is sufficient to induce signal values within said sensing coil representative of the position of said sensing coil; and
analysis means, coupled to said first transmit means and said second transmit means, for determining the position and orientation of said sensing coil from said induced signal values.
8. A system for determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain, comprising:
first signal-inducing means for inducing within said sensing coil orientation signals that are representative of the orientation of said sensing coil;
analysis means, coupled to said first signal-inducing means, for determining the orientation of said sensing coil using said induced orientation signals and independent from a position of said sensing coil;
second signal-inducing means for inducing within said sensing coil position signals that are representative of the position of said sensing coil; and
analysis means, coupled to said second signal-inducing means, for determining the position of said sensing coil using said determined orientation and said induced position signals.
9. The system as recited in claim 8, wherein the first signal-inducing means comprises:
field generation means for successively generating magnetic field patterns projected into said navigational domain, each characterized substantially by a principal magnetic field component in one direction and relatively smaller magnetic components in two other directions.
10. The system as recited in claim 9, wherein said field generation means comprises a set of magnetic coils.
11. The system as recited in claim 10, wherein said magnetic coils are disposed in a planar top of an examination deck upon which a patient is disposed during a surgical procedure.
12. The system as recited in claim 10, wherein said magnetic coils are disposed in a planar top and in rail members edge supported by said planar top for an examination deck upon which a patient is disposed during a surgical procedure.
13. The system as recited in claim 8, wherein the second signal-inducing means comprises:
field generation means for successively generating magnetic field patterns each characterized by a first and second gradient field component in respective directions and a relatively smaller third component in another direction.
14. The system as recited in claim 13, wherein the field generation means comprises a magnetic coil assembly.
15. A method of determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain, comprising the steps of:
defining the location of said sensing coil with a set of independent location parameters; and
sequentially generating within said navigational domain a sequence of magnetic fields for inducing within said sensing coil a corresponding sequence of induced signals each defined by an induced signal expression that functionally relates said induced signal to certain ones of said location parameters, such that said set of location parameters is determinable by sequentially solving individual signal expression groups each including certain ones of said induced signal expressions and sufficient to represent a subset of said location parameters.
16. The method as recited in claim 15, wherein said sequence of magnetic fields comprises:
a series of unidirectional magnetic fields each characterized substantially by a principal magnetic field component in one direction and relatively smaller magnetic components in two other directions; and
a series of gradient magnetic fields each characterized by a first and second gradient field component in respective directions and a relatively smaller third component in another direction.
17. The method as recited in claim 16, wherein said signal expression groups include:
an orientation group including induced signal expressions each functionally related to a respective one of said unidirectional magnetic fields and an orientation of said sensing coil, and independent of a position of said sensing coil; and
a position group including induced signal expressions each functionally related to a respective one of said gradient magnetic fields, the orientation of said sensing coil, and the position of said sensing coil.
18. The method as recited in claim 17, wherein the step of sequentially solving said individual signal expression groups includes the steps of:
initially solving the induced signal expressions of said orientation group; and
next solving the induced signal expressions of said position group.
19. A system for determining the location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe partially inserted into a body cavity within a navigational domain, comprising:
means for defining the location of said sensing coil with a set of independent location parameters; and
field generation means for sequentially generating within said navigational domain a sequence of magnetic fields for inducing within said sensing coil a corresponding sequence of induced signals each defined by an induced signal expression that functionally relates said induced signal to certain ones of said location parameters, such that said set of location parameters is determinable by sequentially solving individual signal expression groups each including certain ones of said induced signal expressions and sufficient to represent a subset of said location parameters.
20. The system as recited in claim 19, wherein said sequence of magnetic fields comprises:
a series of unidirectional magnetic fields each characterized substantially by a principal magnetic field component in one direction and relatively smaller magnetic components in two other directions; and
a series of gradient magnetic fields each characterized by a first and second gradient field component in respective directions and a relatively smaller third component in another direction.
21. The system as recited in claim 20, wherein said signal expression groups include:
an orientation group including induced signal expressions each functionally related to a respective one of said unidirectional magnetic fields and an orientation of said sensing coil, and independent of a position of said sensing coil; and
a position group including induced signal expressions each functionally related to a respective one of said gradient magnetic fields, the orientation of said sensing coil, and the position of said sensing coil.
22. The system as recited in claim 21, wherein said field generation means comprises:
analysis means for solving the induced signal expressions of said orientation group; and
analysis means for solving the induced signal expressions of said position group.
23. A method of determining a location of a magnetically-sensitive, electrically conductive sensing coil affixed to a distal end of a catheter probe inserted into a body cavity within a navigational domain, comprising the steps of:
inducing within said sensing coil a set of orientation signal values each representative of an orientation of said sensing coil and independent of a position of said sensing coil;
determining the orientation of said sensing coil using said induced orientation signal values;
inducing within said sensing coil a set of positional signal values each representative of the position of said sensing coil; and
determining the position of said sensing coil using said positional signal values and said determined orientation.
24. The method as recited in claim 23, wherein the step of inducing said set of orientation signal values comprises the steps of:
generating from outside said body a series of magnetic fields each penetrating at least said navigational domain and characterized substantially by a principal magnetic component in one axial dimension and relatively smaller magnetic components in two other axial dimensions;
wherein the step of inducing said set of positional signal values comprises the steps of:
generating from outside said body a series of magnetic fields each penetrating at least said navigational domain and characterized substantially by two principal gradient magnetic components in respective axial dimensions and a relatively smaller magnetic components in a third axial dimension.
25. The method of claim 23, further comprising:
generating a field within the navigational domain within the body cavity with a delta coil.
26. The method of claim 25 further comprising:
providing the delta coil as a set of delta coils including a long coil and a short coil;
modifying a termination point of the long coil with a compensation coil so that the long coil effectively operates as an infinitely long coil; and
modifying the termination point of the short coil with a compensation coil so that the short coil effectively operates as an infinitely long coil.
27. The method of claim 26, further comprising:
modifying two terminal ends of the long coil and the short coil with the compensation coils.
28. The method of claim 26, further comprising:
compensating the long coil with a central sucker coil positioned near a center of the long coil.
29. The method of claim 28, wherein providing the set of delta coils includes providing a plurality of delta coil sets positioned angularly offset from each other around a central axis.
30. The method of claim 28, wherein providing the set of delta coils includes positioning three delta coil sets offset 120 degrees from one another around a central axis.
31. The method of claim 30 further comprising:
generating a look-up table that includes a database containing magnetic field values for a selected X coordinate, Y coordinate, and Z coordinate in the navigational domain and one of the delta coil sets.
32. The method of claim 31, further comprising:
obtaining a magnetic field value for the other of the two delta coil sets by rotating field vectors of the long and short coil sets by the angle of offset from the delta coil set saved in the look-up table database.
US12/502,066 1995-06-14 2009-07-13 Method for navigating a catheter probe Expired - Lifetime USRE43750E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/502,066 USRE43750E1 (en) 1995-06-14 2009-07-13 Method for navigating a catheter probe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/490,342 US5592939A (en) 1995-06-14 1995-06-14 Method and system for navigating a catheter probe
US09/231,854 USRE41066E1 (en) 1995-06-14 1999-01-14 Method and system for navigating a catheter probe
US09/494,213 USRE40852E1 (en) 1995-06-14 2000-01-24 Method and system for navigating a catheter probe
US12/502,066 USRE43750E1 (en) 1995-06-14 2009-07-13 Method for navigating a catheter probe

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/490,342 Reissue US5592939A (en) 1995-06-14 1995-06-14 Method and system for navigating a catheter probe

Publications (1)

Publication Number Publication Date
USRE43750E1 true USRE43750E1 (en) 2012-10-16

Family

ID=23947644

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/490,342 Ceased US5592939A (en) 1995-06-14 1995-06-14 Method and system for navigating a catheter probe
US09/231,854 Expired - Lifetime USRE41066E1 (en) 1995-06-14 1999-01-14 Method and system for navigating a catheter probe
US09/494,213 Ceased USRE40852E1 (en) 1995-06-14 2000-01-24 Method and system for navigating a catheter probe
US12/502,066 Expired - Lifetime USRE43750E1 (en) 1995-06-14 2009-07-13 Method for navigating a catheter probe

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/490,342 Ceased US5592939A (en) 1995-06-14 1995-06-14 Method and system for navigating a catheter probe
US09/231,854 Expired - Lifetime USRE41066E1 (en) 1995-06-14 1999-01-14 Method and system for navigating a catheter probe
US09/494,213 Ceased USRE40852E1 (en) 1995-06-14 2000-01-24 Method and system for navigating a catheter probe

Country Status (5)

Country Link
US (4) US5592939A (en)
EP (2) EP0836413B1 (en)
JP (1) JPH11510406A (en)
DE (1) DE69637662D1 (en)
WO (1) WO1997000043A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10188831B2 (en) 2013-03-14 2019-01-29 Angiodynamics, Inc. Systems and methods for catheter tip placement using ECG
US10646201B2 (en) 2014-11-18 2020-05-12 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US10905396B2 (en) 2014-11-18 2021-02-02 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US20210052201A1 (en) * 2019-08-22 2021-02-25 Biosense Webster (Israel) Ltd. Brain clot characterization using optical fibers having diffusive elements
US11607150B2 (en) 2014-04-08 2023-03-21 Angiodynamics Va Llc Medical device placement system and a method for its use

Families Citing this family (416)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652928B1 (en) 1989-10-05 1994-07-29 Diadix Sa INTERACTIVE LOCAL INTERVENTION SYSTEM WITHIN A AREA OF A NON-HOMOGENEOUS STRUCTURE.
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
JP3432825B2 (en) * 1992-08-14 2003-08-04 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Positioning system
US6757557B1 (en) * 1992-08-14 2004-06-29 British Telecommunications Position location system
US6285898B1 (en) 1993-07-20 2001-09-04 Biosense, Inc. Cardiac electromechanics
US5738096A (en) * 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US6983179B2 (en) 1993-07-20 2006-01-03 Biosense, Inc. Method for mapping a heart using catheters having ultrasonic position sensors
DE69531994T2 (en) 1994-09-15 2004-07-22 OEC Medical Systems, Inc., Boston SYSTEM FOR POSITION DETECTION BY MEANS OF A REFERENCE UNIT ATTACHED TO A PATIENT'S HEAD FOR USE IN THE MEDICAL AREA
US6690963B2 (en) * 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US6915149B2 (en) 1996-01-08 2005-07-05 Biosense, Inc. Method of pacing a heart using implantable device
US5711299A (en) * 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
US5769843A (en) * 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
AU3794297A (en) * 1996-07-03 1998-01-21 Dilip Bobra Implantation and measuring system and method for repairing vesicular aberrations
US6122538A (en) * 1997-01-16 2000-09-19 Acuson Corporation Motion--Monitoring method and system for medical devices
US6226548B1 (en) 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6304769B1 (en) * 1997-10-16 2001-10-16 The Regents Of The University Of California Magnetically directable remote guidance systems, and methods of use thereof
US6104944A (en) * 1997-11-17 2000-08-15 Martinelli; Michael A. System and method for navigating a multiple electrode catheter
US6021343A (en) 1997-11-20 2000-02-01 Surgical Navigation Technologies Image guided awl/tap/screwdriver
US6348058B1 (en) * 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6073043A (en) * 1997-12-22 2000-06-06 Cormedica Corporation Measuring position and orientation using magnetic fields
US6052610A (en) * 1998-01-09 2000-04-18 International Business Machines Corporation Magnetic catheter tracker and method therefor
ES2253882T3 (en) * 1998-03-30 2006-06-01 Biosense Webster, Inc. THREE AXLE COIL SENSOR.
US6477400B1 (en) 1998-08-20 2002-11-05 Sofamor Danek Holdings, Inc. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6185448B1 (en) * 1998-09-29 2001-02-06 Simcha Borovsky Apparatus and method for locating and mapping a catheter in intracardiac operations
US6241671B1 (en) * 1998-11-03 2001-06-05 Stereotaxis, Inc. Open field system for magnetic surgery
US20050004642A1 (en) * 1998-11-09 2005-01-06 Medtronic, Inc. Implantable medical lead including overlay
EP1873545A3 (en) * 1998-12-23 2008-02-13 Peter D. Jakab Magnetic resonance scanner with electromagnetic position and orientation tracking device
EP1650576A1 (en) * 1998-12-23 2006-04-26 Peter D. Jakab Magnetic resonance scanner with electromagnetic position and orientation tracking device
IL143909A0 (en) 1998-12-23 2002-04-21 Jakab Peter D Magnetic resonance scanner with electromagnetic position and orientation tracking device
US6148823A (en) * 1999-03-17 2000-11-21 Stereotaxis, Inc. Method of and system for controlling magnetic elements in the body using a gapped toroid magnet
US6470207B1 (en) * 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
US6911026B1 (en) * 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy
US6491699B1 (en) * 1999-04-20 2002-12-10 Surgical Navigation Technologies, Inc. Instrument guidance method and system for image guided surgery
US6427079B1 (en) 1999-08-09 2002-07-30 Cormedica Corporation Position and orientation measuring with magnetic fields
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8239001B2 (en) * 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6493573B1 (en) * 1999-10-28 2002-12-10 Winchester Development Associates Method and system for navigating a catheter probe in the presence of field-influencing objects
US6235038B1 (en) 1999-10-28 2001-05-22 Medtronic Surgical Navigation Technologies System for translation of electromagnetic and optical localization systems
US6379302B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies Inc. Navigation information overlay onto ultrasound imagery
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
WO2001031466A1 (en) * 1999-10-28 2001-05-03 Winchester Development Associates Coil structures and methods for generating magnetic fields
US6747539B1 (en) 1999-10-28 2004-06-08 Michael A. Martinelli Patient-shielding and coil system
US6499488B1 (en) 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US6474341B1 (en) * 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
US7366562B2 (en) 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6381485B1 (en) * 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
WO2001064124A1 (en) * 2000-03-01 2001-09-07 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US6535756B1 (en) * 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
DE10027782A1 (en) * 2000-06-07 2001-12-13 Biotronik Mess & Therapieg System for determining the intracorporeal position of a working catheter
US7085400B1 (en) * 2000-06-14 2006-08-01 Surgical Navigation Technologies, Inc. System and method for image based sensor calibration
JP4527273B2 (en) * 2000-12-13 2010-08-18 株式会社レイディック Orientation measurement method
EP1311226A4 (en) 2000-08-23 2008-12-17 Micronix Pty Ltd Catheter locator apparatus and method of use
IL140136A (en) * 2000-12-06 2010-06-16 Intumed Ltd Apparatus for self-guided intubation
GB0031287D0 (en) * 2000-12-21 2001-01-31 Oxford Instr Ltd Magnetic field generating system and method
US20020103430A1 (en) * 2001-01-29 2002-08-01 Hastings Roger N. Catheter navigation within an MR imaging device
US6691074B1 (en) 2001-02-08 2004-02-10 Netmore Ltd. System for three dimensional positioning and tracking
US6636757B1 (en) 2001-06-04 2003-10-21 Surgical Navigation Technologies, Inc. Method and apparatus for electromagnetic navigation of a surgical probe near a metal object
US6625563B2 (en) * 2001-06-26 2003-09-23 Northern Digital Inc. Gain factor and position determination system
US6947786B2 (en) * 2002-02-28 2005-09-20 Surgical Navigation Technologies, Inc. Method and apparatus for perspective inversion
US6968846B2 (en) * 2002-03-07 2005-11-29 Stereotaxis, Inc. Method and apparatus for refinably accurate localization of devices and instruments in scattering environments
US6990368B2 (en) * 2002-04-04 2006-01-24 Surgical Navigation Technologies, Inc. Method and apparatus for virtual digital subtraction angiography
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US8892189B2 (en) * 2002-05-30 2014-11-18 Alcatel Lucent Apparatus and method for heart size measurement using microwave doppler radar
US6892090B2 (en) * 2002-08-19 2005-05-10 Surgical Navigation Technologies, Inc. Method and apparatus for virtual endoscopy
US7697972B2 (en) * 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7130700B2 (en) 2002-11-19 2006-10-31 Medtronic, Inc. Multilumen body for an implantable medical device
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7945309B2 (en) 2002-11-22 2011-05-17 Biosense, Inc. Dynamic metal immunity
AU2003303387A1 (en) * 2002-12-23 2004-07-22 Medtronic, Inc. Multiple infusion section catheters, systems, and methods
US8246602B2 (en) * 2002-12-23 2012-08-21 Medtronic, Inc. Catheters with tracking elements and permeable membranes
US8043281B2 (en) * 2002-12-23 2011-10-25 Medtronic, Inc. Catheters incorporating valves and permeable membranes
US9248003B2 (en) * 2002-12-30 2016-02-02 Varian Medical Systems, Inc. Receiver used in marker localization sensing system and tunable to marker frequency
EP1437601B1 (en) * 2003-01-10 2007-06-20 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Apparatus for detecting the position and the orientation of an invasive device
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7542791B2 (en) * 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US20040199072A1 (en) * 2003-04-01 2004-10-07 Stacy Sprouse Integrated electromagnetic navigation and patient positioning device
US7570791B2 (en) * 2003-04-25 2009-08-04 Medtronic Navigation, Inc. Method and apparatus for performing 2D to 3D registration
WO2004103182A1 (en) * 2003-05-21 2004-12-02 Philips Intellectual Property & Standards Gmbh Apparatus and method for navigating a catheter
EP1628574A1 (en) * 2003-05-21 2006-03-01 Philips Intellectual Property & Standards GmbH Apparatus and method for navigating a catheter
US7158754B2 (en) * 2003-07-01 2007-01-02 Ge Medical Systems Global Technology Company, Llc Electromagnetic tracking system and method using a single-coil transmitter
US20050012597A1 (en) * 2003-07-02 2005-01-20 Anderson Peter Traneus Wireless electromagnetic tracking system using a nonlinear passive transponder
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
EP2316328B1 (en) 2003-09-15 2012-05-09 Super Dimension Ltd. Wrap-around holding device for use with bronchoscopes
JP2007519425A (en) 2003-09-15 2007-07-19 スーパー ディメンション リミテッド Bronchoscope accessories and systems
US8354837B2 (en) 2003-09-24 2013-01-15 Ge Medical Systems Global Technology Company Llc System and method for electromagnetic tracking operable with multiple coil architectures
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7840253B2 (en) * 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7015859B2 (en) * 2003-11-14 2006-03-21 General Electric Company Electromagnetic tracking system and method using a three-coil wireless transmitter
US20050137579A1 (en) * 2003-12-23 2005-06-23 Medtronic, Inc. Permeable membrane catheters, systems, and methods
JP4286127B2 (en) * 2003-12-25 2009-06-24 オリンパス株式会社 In-subject position detection system
JP2005192632A (en) * 2003-12-26 2005-07-21 Olympus Corp Subject interior moving state detecting system
US8764725B2 (en) * 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US8046050B2 (en) * 2004-03-05 2011-10-25 Biosense Webster, Inc. Position sensing system for orthopedic applications
US20070135713A1 (en) * 2004-02-18 2007-06-14 Koninklijke Philips Electronic, N.V. Catheter system and method for fine navigation in a vascular system
JP4755638B2 (en) 2004-03-05 2011-08-24 ハンセン メディカル,インク. Robotic guide catheter system
US7567834B2 (en) * 2004-05-03 2009-07-28 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
JP5030392B2 (en) * 2004-06-14 2012-09-19 オリンパス株式会社 Medical device position detection system and medical device guidance system
US8131342B2 (en) * 2004-08-24 2012-03-06 General Electric Company Method and system for field mapping using integral methodology
US8321173B2 (en) * 2004-08-25 2012-11-27 Wallance Daniel I System and method for using magnetic sensors to track the position of an object
US7373271B1 (en) 2004-09-20 2008-05-13 Ascension Technology Corporation System and method for measuring position and orientation using distortion-compensated magnetic fields
US7660622B2 (en) * 2004-10-07 2010-02-09 General Electric Company Method and system for positioning a tracking sensor for optimal accuracy
US7636595B2 (en) 2004-10-28 2009-12-22 Medtronic Navigation, Inc. Method and apparatus for calibrating non-linear instruments
US8014867B2 (en) 2004-12-17 2011-09-06 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
CN101940474B (en) * 2004-12-17 2013-06-12 奥林巴斯株式会社 Medical equipment and magnetic-induction and position-detection system of medical device
JP4679200B2 (en) * 2005-03-28 2011-04-27 オリンパス株式会社 Capsule type medical device position detection system, capsule type medical device guidance system, and capsule type medical device position detection method
US7930014B2 (en) 2005-01-11 2011-04-19 Volcano Corporation Vascular image co-registration
US7976518B2 (en) 2005-01-13 2011-07-12 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US7775966B2 (en) * 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US8066629B2 (en) * 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US7775215B2 (en) * 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7658196B2 (en) * 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US7699770B2 (en) * 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
US8016744B2 (en) * 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
EP1903944B1 (en) 2005-06-24 2017-04-19 Volcano Corporation Co-registration of graphical image data representing three-dimensional vascular features
JP2007007074A (en) * 2005-06-29 2007-01-18 Nagaoka Univ Of Technology Thermotherapy apparatus
US8186358B2 (en) * 2005-07-29 2012-05-29 Codman Neuro Sciences Sárl System and method for locating an internal device in a closed system
CN101238353B (en) * 2005-08-04 2015-07-22 皇家飞利浦电子股份有限公司 System and method for magnetic tracking of a sensor for interventional device localization
JP4763439B2 (en) * 2005-08-08 2011-08-31 オリンパス株式会社 Medical device magnetic guidance and position detection system
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US7835784B2 (en) * 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US7981038B2 (en) 2005-10-11 2011-07-19 Carnegie Mellon University Sensor guided catheter navigation system
US20070129629A1 (en) * 2005-11-23 2007-06-07 Beauregard Gerald L System and method for surgical navigation
US20070167744A1 (en) * 2005-11-23 2007-07-19 General Electric Company System and method for surgical navigation cross-reference to related applications
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US20070208251A1 (en) * 2006-03-02 2007-09-06 General Electric Company Transformer-coupled guidewire system and method of use
US7471202B2 (en) 2006-03-29 2008-12-30 General Electric Co. Conformal coil array for a medical tracking system
US8152710B2 (en) * 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8870742B2 (en) * 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US20080250341A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. Gui With Trend Analysis for an Implantable Restriction Device and a Data Logger
US7532997B2 (en) 2006-04-17 2009-05-12 General Electric Company Electromagnetic tracking using a discretized numerical field model
US8112292B2 (en) * 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US20070265526A1 (en) 2006-05-11 2007-11-15 Assaf Govari Low-profile location pad
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US8197494B2 (en) 2006-09-08 2012-06-12 Corpak Medsystems, Inc. Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device
US8150497B2 (en) 2006-09-08 2012-04-03 Medtronic, Inc. System for navigating a planned procedure within a body
EP2063801A1 (en) 2006-09-08 2009-06-03 Medtronic, Inc. System for identification of anatomical landmarks
US8160677B2 (en) * 2006-09-08 2012-04-17 Medtronic, Inc. Method for identification of anatomical landmarks
US8160676B2 (en) * 2006-09-08 2012-04-17 Medtronic, Inc. Method for planning a surgical procedure
US8150498B2 (en) * 2006-09-08 2012-04-03 Medtronic, Inc. System for identification of anatomical landmarks
US8532741B2 (en) * 2006-09-08 2013-09-10 Medtronic, Inc. Method and apparatus to optimize electrode placement for neurological stimulation
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7835557B2 (en) * 2006-11-28 2010-11-16 Medtronic Navigation, Inc. System and method for detecting status of imaging device
US8320991B2 (en) 2006-12-01 2012-11-27 Medtronic Navigation Inc. Portable electromagnetic navigation system
US20080139915A1 (en) 2006-12-07 2008-06-12 Medtronic Vascular, Inc. Vascular Position Locating and/or Mapping Apparatus and Methods
US20080140180A1 (en) 2006-12-07 2008-06-12 Medtronic Vascular, Inc. Vascular Position Locating Apparatus and Method
US20080147173A1 (en) * 2006-12-18 2008-06-19 Medtronic Vascular, Inc. Prosthesis Deployment Apparatus and Methods
US20080177203A1 (en) * 2006-12-22 2008-07-24 General Electric Company Surgical navigation planning system and method for placement of percutaneous instrumentation and implants
US20080154120A1 (en) * 2006-12-22 2008-06-26 General Electric Company Systems and methods for intraoperative measurements on navigated placements of implants
US20080172119A1 (en) 2007-01-12 2008-07-17 Medtronic Vascular, Inc. Prosthesis Deployment Apparatus and Methods
US8473030B2 (en) * 2007-01-12 2013-06-25 Medtronic Vascular, Inc. Vessel position and configuration imaging apparatus and methods
US7573258B2 (en) * 2007-01-18 2009-08-11 General Electric Company Coil arrangement for electromagnetic tracker method and system
US7508195B2 (en) * 2007-01-18 2009-03-24 General Electric Company Anti-distortion electromagnetic sensor method and system
US20080188921A1 (en) * 2007-02-02 2008-08-07 Medtronic Vascular, Inc. Prosthesis Deployment Apparatus and Methods
US7782046B2 (en) * 2007-02-05 2010-08-24 General Electric Company Electromagnetic tracking method and system
US8814874B2 (en) 2007-02-13 2014-08-26 Medtronic Navigation, Inc. Navigated cut guide for total knee reconstruction
US8233963B2 (en) 2007-02-19 2012-07-31 Medtronic Navigation, Inc. Automatic identification of tracked surgical devices using an electromagnetic localization system
US8600478B2 (en) 2007-02-19 2013-12-03 Medtronic Navigation, Inc. Automatic identification of instruments used with a surgical navigation system
US8249689B2 (en) * 2007-02-23 2012-08-21 General Electric Company Coil arrangement for electromagnetic tracking method and system
US10039613B2 (en) * 2007-03-01 2018-08-07 Surgical Navigation Technologies, Inc. Method for localizing an imaging device with a surgical navigation system
US7902817B2 (en) * 2007-03-26 2011-03-08 General Electric Company Electromagnetic tracking method and system
US8150494B2 (en) 2007-03-29 2012-04-03 Medtronic Navigation, Inc. Apparatus for registering a physical space to image space
WO2008126074A2 (en) * 2007-04-11 2008-10-23 Elcam Medical Agricultural Cooperative Association Ltd. System and method for accurate placement of a catheter tip in a patient
WO2008133831A2 (en) 2007-04-23 2008-11-06 Medtronic Navigation, Inc. Method and apparatus for electromagnetic navigation of a magnetic stimulation probe
US8311611B2 (en) * 2007-04-24 2012-11-13 Medtronic, Inc. Method for performing multiple registrations in a navigated procedure
US8301226B2 (en) * 2007-04-24 2012-10-30 Medtronic, Inc. Method and apparatus for performing a navigated procedure
WO2008130354A1 (en) 2007-04-24 2008-10-30 Medtronic, Inc. Intraoperative image registration
US20090012509A1 (en) * 2007-04-24 2009-01-08 Medtronic, Inc. Navigated Soft Tissue Penetrating Laser System
US8010177B2 (en) * 2007-04-24 2011-08-30 Medtronic, Inc. Intraoperative image registration
US8734466B2 (en) * 2007-04-25 2014-05-27 Medtronic, Inc. Method and apparatus for controlled insertion and withdrawal of electrodes
US9289270B2 (en) * 2007-04-24 2016-03-22 Medtronic, Inc. Method and apparatus for performing a navigated procedure
US8108025B2 (en) * 2007-04-24 2012-01-31 Medtronic, Inc. Flexible array for use in navigated surgery
ATE476934T1 (en) 2007-04-24 2010-08-15 Medtronic Inc FLEXIBLE ARRANGEMENT FOR USE IN NAVIGATED SURGERY
US8428690B2 (en) 2007-05-16 2013-04-23 General Electric Company Intracardiac echocardiography image reconstruction in combination with position tracking system
US8989842B2 (en) 2007-05-16 2015-03-24 General Electric Company System and method to register a tracking system with intracardiac echocardiography (ICE) imaging system
US8527032B2 (en) 2007-05-16 2013-09-03 General Electric Company Imaging system and method of delivery of an instrument to an imaged subject
US8364242B2 (en) 2007-05-17 2013-01-29 General Electric Company System and method of combining ultrasound image acquisition with fluoroscopic image acquisition
US9622706B2 (en) 2007-07-12 2017-04-18 Volcano Corporation Catheter for in vivo imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009802A1 (en) * 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US20090062739A1 (en) * 2007-08-31 2009-03-05 General Electric Company Catheter Guidewire Tracking System and Method
US8573228B2 (en) 2007-09-20 2013-11-05 Medtronic, Inc. Needle to port trajectory indicator
US7834621B2 (en) * 2007-09-25 2010-11-16 General Electric Company Electromagnetic tracking employing scalar-magnetometer
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US8038629B2 (en) * 2007-10-02 2011-10-18 Board Of Regents, The University Of Texas System Digital endotracheal tube sound acquisition and localization device
US20090125078A1 (en) * 2007-10-03 2009-05-14 Medtronic, Inc. Selecting cardiac pacing sites
US8180428B2 (en) * 2007-10-03 2012-05-15 Medtronic, Inc. Methods and systems for use in selecting cardiac pacing sites
US8391952B2 (en) * 2007-10-11 2013-03-05 General Electric Company Coil arrangement for an electromagnetic tracking system
US9265589B2 (en) * 2007-11-06 2016-02-23 Medtronic Navigation, Inc. System and method for navigated drill guide
ES2651898T3 (en) 2007-11-26 2018-01-30 C.R. Bard Inc. Integrated system for intravascular catheter placement
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9649048B2 (en) * 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US8086321B2 (en) 2007-12-06 2011-12-27 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
US8032228B2 (en) 2007-12-06 2011-10-04 Cardiac Pacemakers, Inc. Method and apparatus for disconnecting the tip electrode during MRI
US8478382B2 (en) * 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US8311637B2 (en) 2008-02-11 2012-11-13 Cardiac Pacemakers, Inc. Magnetic core flux canceling of ferrites in MRI
US8160717B2 (en) 2008-02-19 2012-04-17 Cardiac Pacemakers, Inc. Model reference identification and cancellation of magnetically-induced voltages in a gradient magnetic field
US8340376B2 (en) * 2008-03-12 2012-12-25 Medtronic Navigation, Inc. Diffusion tensor imaging confidence analysis
US9575140B2 (en) * 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US20090259296A1 (en) * 2008-04-10 2009-10-15 Medtronic Vascular, Inc. Gate Cannulation Apparatus and Methods
US20090259284A1 (en) * 2008-04-10 2009-10-15 Medtronic Vascular, Inc. Resonating Stent or Stent Element
US9002076B2 (en) * 2008-04-15 2015-04-07 Medtronic, Inc. Method and apparatus for optimal trajectory planning
US9345875B2 (en) * 2008-04-17 2016-05-24 Medtronic, Inc. Method and apparatus for cannula fixation for an array insertion tube set
US8839798B2 (en) * 2008-04-18 2014-09-23 Medtronic, Inc. System and method for determining sheath location
US8494608B2 (en) 2008-04-18 2013-07-23 Medtronic, Inc. Method and apparatus for mapping a structure
US8457371B2 (en) 2008-04-18 2013-06-04 Regents Of The University Of Minnesota Method and apparatus for mapping a structure
US9579161B2 (en) * 2008-05-06 2017-02-28 Medtronic Navigation, Inc. Method and apparatus for tracking a patient
EP2297673B1 (en) 2008-06-03 2020-04-22 Covidien LP Feature-based registration method
US8218847B2 (en) 2008-06-06 2012-07-10 Superdimension, Ltd. Hybrid registration method
US9002435B2 (en) * 2008-06-30 2015-04-07 General Electric Company System and method for integrating electromagnetic microsensors in guidewires
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US20100030061A1 (en) 2008-07-31 2010-02-04 Canfield Monte R Navigation system for cardiac therapies using gating
US9901714B2 (en) * 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US8244013B2 (en) * 2008-09-10 2012-08-14 Siemens Medical Solutions Usa, Inc. Medical image data processing and interventional instrument identification system
US8165658B2 (en) * 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US8571661B2 (en) 2008-10-02 2013-10-29 Cardiac Pacemakers, Inc. Implantable medical device responsive to MRI induced capture threshold changes
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
WO2010059375A2 (en) * 2008-10-30 2010-05-27 Payner Troy D Systems and methods for guiding a medical instrument
US9642555B2 (en) * 2008-11-20 2017-05-09 Medtronic, Inc. Subcutaneous lead guidance
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US8639331B2 (en) 2009-02-19 2014-01-28 Cardiac Pacemakers, Inc. Systems and methods for providing arrhythmia therapy in MRI environments
US9737235B2 (en) * 2009-03-09 2017-08-22 Medtronic Navigation, Inc. System and method for image-guided navigation
US9226689B2 (en) 2009-03-10 2016-01-05 Medtronic Xomed, Inc. Flexible circuit sheet
US8504139B2 (en) * 2009-03-10 2013-08-06 Medtronic Xomed, Inc. Navigating a surgical instrument
US9226688B2 (en) 2009-03-10 2016-01-05 Medtronic Xomed, Inc. Flexible circuit assemblies
US8335552B2 (en) * 2009-03-20 2012-12-18 Medtronic, Inc. Method and apparatus for instrument placement
US8611984B2 (en) * 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US8737708B2 (en) 2009-05-13 2014-05-27 Medtronic Navigation, Inc. System and method for automatic registration between an image and a subject
US8238631B2 (en) 2009-05-13 2012-08-07 Medtronic Navigation, Inc. System and method for automatic registration between an image and a subject
US8503745B2 (en) * 2009-05-13 2013-08-06 Medtronic Navigation, Inc. System and method for automatic registration between an image and a subject
US20100298695A1 (en) 2009-05-19 2010-11-25 Medtronic, Inc. System and Method for Cardiac Lead Placement
US9895135B2 (en) * 2009-05-20 2018-02-20 Analogic Canada Corporation Freehand ultrasound imaging systems and methods providing position quality feedback
US10039527B2 (en) * 2009-05-20 2018-08-07 Analogic Canada Corporation Ultrasound systems incorporating spatial position sensors and associated methods
ES2745861T3 (en) 2009-06-12 2020-03-03 Bard Access Systems Inc Apparatus, computer-aided data-processing algorithm, and computer storage medium for positioning an endovascular device in or near the heart
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9125578B2 (en) 2009-06-12 2015-09-08 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
EP2464407A4 (en) 2009-08-10 2014-04-02 Bard Access Systems Inc Devices and methods for endovascular electrography
US8494614B2 (en) * 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US8494613B2 (en) * 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
DE102009039484A1 (en) * 2009-08-31 2011-03-03 Siemens Aktiengesellschaft Coil system for a magnetically guided capsule endoscopy
WO2011041450A1 (en) 2009-09-29 2011-04-07 C. R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US11103213B2 (en) * 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8409098B2 (en) * 2009-10-14 2013-04-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for collection of cardiac geometry based on optical or magnetic tracking
US20110118590A1 (en) * 2009-11-18 2011-05-19 Siemens Medical Solutions Usa, Inc. System For Continuous Cardiac Imaging And Mapping
WO2011071597A1 (en) 2009-12-08 2011-06-16 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in mri environments
US9320571B2 (en) 2009-12-30 2016-04-26 Medtronic, Inc. Lead tracking and positioning system and method
US9486162B2 (en) 2010-01-08 2016-11-08 Ultrasonix Medical Corporation Spatial needle guidance system and associated methods
US8717430B2 (en) 2010-04-26 2014-05-06 Medtronic Navigation, Inc. System and method for radio-frequency imaging, registration, and localization
WO2011137301A2 (en) 2010-04-30 2011-11-03 Medtronic Xomed, Inc. Navigated malleable surgical instrument
US8842893B2 (en) 2010-04-30 2014-09-23 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
EP3662827B1 (en) 2010-05-28 2021-03-03 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
KR101999078B1 (en) * 2010-06-09 2019-07-10 리전츠 오브 더 유니버스티 오브 미네소타 Dual mode ultrasound transducer (dmut) system and method for controlling delivery of ultrasound therapy
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
CN103228219B (en) 2010-08-09 2016-04-27 C·R·巴德股份有限公司 For support and the covered structure of ultrasound probe head
KR101856267B1 (en) 2010-08-20 2018-05-09 씨. 알. 바드, 인크. Reconfirmation of ecg-assisted catheter tip placement
US8753292B2 (en) 2010-10-01 2014-06-17 Angiodynamics, Inc. Method for locating a catheter tip using audio detection
WO2012058461A1 (en) 2010-10-29 2012-05-03 C.R.Bard, Inc. Bioimpedance-assisted placement of a medical device
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
CN103607946A (en) * 2011-01-20 2014-02-26 埃纳威医疗有限公司 System and method to estimate location and orientation of object
US10492868B2 (en) 2011-01-28 2019-12-03 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
US9974501B2 (en) 2011-01-28 2018-05-22 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
US10617374B2 (en) 2011-01-28 2020-04-14 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
US8768019B2 (en) 2011-02-03 2014-07-01 Medtronic, Inc. Display of an acquired cine loop for procedure navigation
US9138204B2 (en) 2011-04-29 2015-09-22 Medtronic Navigation, Inc. Method and apparatus for calibrating and re-aligning an ultrasound image plane to a navigation tracker
US8811662B2 (en) 2011-04-29 2014-08-19 Medtronic Navigation, Inc. Method and apparatus for calibrating and re-aligning an ultrasound image plane to a navigation tracker
US8971495B2 (en) 2011-06-02 2015-03-03 Medtronic Navigation, Inc. Method and apparatus for power control in an image-based navigation system
US10849574B2 (en) 2011-06-22 2020-12-01 Medtronic Navigation, Inc. Interventional imaging
RU2609203C2 (en) 2011-07-06 2017-01-30 Си.Ар. Бард, Инк. Determination and calibration of needle length for needle guidance system
EP2739336A2 (en) 2011-08-04 2014-06-11 Kings College London Continuum manipulator
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US9028441B2 (en) 2011-09-08 2015-05-12 Corpak Medsystems, Inc. Apparatus and method used with guidance system for feeding and suctioning
US9008414B2 (en) 2011-10-04 2015-04-14 Medtronic Navigation, Inc. Method and apparatus for assisted trajectory planning
US9750486B2 (en) 2011-10-25 2017-09-05 Medtronic Navigation, Inc. Trackable biopsy needle
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
DE102011086773A1 (en) * 2011-11-22 2013-05-23 Robert Bosch Gmbh METAL SENSOR
US8663116B2 (en) 2012-01-11 2014-03-04 Angiodynamics, Inc. Methods, assemblies, and devices for positioning a catheter tip using an ultrasonic imaging system
US9295449B2 (en) 2012-01-23 2016-03-29 Ultrasonix Medical Corporation Landmarks for ultrasound imaging
US10249036B2 (en) 2012-02-22 2019-04-02 Veran Medical Technologies, Inc. Surgical catheter having side exiting medical instrument and related systems and methods for four dimensional soft tissue navigation
EP2676627B1 (en) 2012-04-18 2021-07-28 Medtronic Navigation, Inc. System and method for automatic registration between an image and a subject
US10820885B2 (en) 2012-06-15 2020-11-03 C. R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
US9498290B2 (en) 2012-07-19 2016-11-22 MRI Interventions, Inc. Surgical navigation devices and methods
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
EP2904671B1 (en) 2012-10-05 2022-05-04 David Welford Systems and methods for amplifying light
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
WO2014093374A1 (en) 2012-12-13 2014-06-19 Volcano Corporation Devices, systems, and methods for targeted cannulation
JP6785554B2 (en) 2012-12-20 2020-11-18 ボルケーノ コーポレイション Smooth transition catheter
CA2895770A1 (en) 2012-12-20 2014-07-24 Jeremy Stigall Locating intravascular images
EP2934310A4 (en) 2012-12-20 2016-10-12 Nathaniel J Kemp Optical coherence tomography system that is reconfigurable between different imaging modes
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
CA2895769A1 (en) 2012-12-21 2014-06-26 Douglas Meyer Rotational ultrasound imaging catheter with extended catheter body telescope
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9463307B2 (en) 2012-12-21 2016-10-11 Medtronic Xomed, Inc. Sinus dilation system and method
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
WO2014099672A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
CA2895993A1 (en) 2012-12-21 2014-06-26 Jason Spencer System and method for graphical processing of medical data
EP2936626A4 (en) 2012-12-21 2016-08-17 David Welford Systems and methods for narrowing a wavelength emission of light
CA2896004A1 (en) 2012-12-21 2014-06-26 Nathaniel J. Kemp Power-efficient optical buffering using optical switch
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
JP6246236B2 (en) 2013-01-23 2017-12-13 メドトロニック・ゾーメド・インコーポレーテッド Flexible circuit sheet
CA2898636C (en) 2013-01-25 2021-02-16 Medtronic Xomed, Inc. Surgical instrument with tracking device connected via a flexible circuit
US9775539B2 (en) * 2013-02-08 2017-10-03 Cochlear Limited Medical device implantation imaging
EP2965263B1 (en) 2013-03-07 2022-07-20 Bernhard Sturm Multimodal segmentation in intravascular images
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
EP3895604A1 (en) 2013-03-12 2021-10-20 Collins, Donna Systems and methods for diagnosing coronary microvascular disease
US20140276923A1 (en) 2013-03-12 2014-09-18 Volcano Corporation Vibrating catheter and methods of use
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
JP6342984B2 (en) 2013-03-14 2018-06-13 ボルケーノ コーポレイション Filter with echogenic properties
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US9854991B2 (en) 2013-03-15 2018-01-02 Medtronic Navigation, Inc. Integrated navigation array
US9717442B2 (en) 2013-03-15 2017-08-01 Medtronic Navigation, Inc. Method and system for navigating an instrument
US10278729B2 (en) 2013-04-26 2019-05-07 Medtronic Xomed, Inc. Medical device and its construction
US10531814B2 (en) 2013-07-25 2020-01-14 Medtronic Navigation, Inc. Method and apparatus for moving a reference device
ES2811323T3 (en) 2014-02-06 2021-03-11 Bard Inc C R Systems for the guidance and placement of an intravascular device
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
WO2016004310A2 (en) 2014-07-02 2016-01-07 Covidien Lp Real-time automatic registration feedback
US9603668B2 (en) 2014-07-02 2017-03-28 Covidien Lp Dynamic 3D lung map view for tool navigation inside the lung
US20160000414A1 (en) 2014-07-02 2016-01-07 Covidien Lp Methods for marking biopsy location
CA2946615A1 (en) 2014-07-02 2016-01-07 Covidien Lp System and method for detecting trachea
CA2953146A1 (en) 2014-07-02 2016-01-07 Covidien Lp System and method for segmentation of lung
US9754367B2 (en) 2014-07-02 2017-09-05 Covidien Lp Trachea marking
US9770216B2 (en) 2014-07-02 2017-09-26 Covidien Lp System and method for navigating within the lung
CN104224089B (en) * 2014-09-15 2017-05-31 天津大学 A kind of endoscopic system with surgical navigational function for possessing antijamming capability
CN106999732B (en) 2014-12-10 2020-09-29 皇家飞利浦有限公司 Tracking shape reconstruction for interventional procedure guidance
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10413377B2 (en) 2015-03-19 2019-09-17 Medtronic Navigation, Inc. Flexible skin based patient tracker for optical navigation
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
WO2016210325A1 (en) 2015-06-26 2016-12-29 C.R. Bard, Inc. Connector interface for ecg-based catheter positioning system
US10986990B2 (en) 2015-09-24 2021-04-27 Covidien Lp Marker placement
US10709352B2 (en) 2015-10-27 2020-07-14 Covidien Lp Method of using lung airway carina locations to improve ENB registration
US9962134B2 (en) 2015-10-28 2018-05-08 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing X-ray dosage of a patient
CN108463179B (en) * 2016-01-08 2021-04-27 波士顿科学医学有限公司 Surgical guiding apparatus, system and method
USD824027S1 (en) 2016-01-13 2018-07-24 MRI Interventions, Inc. Fins for a support column for a surgical trajectory frame
USD829904S1 (en) 2016-01-13 2018-10-02 MRI Interventions, Inc. Curved bracket for surgical navigation systems
US10376333B2 (en) 2016-01-14 2019-08-13 MRI Interventions, Inc. Devices for surgical navigation systems
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US10191615B2 (en) 2016-04-28 2019-01-29 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
US11172821B2 (en) 2016-04-28 2021-11-16 Medtronic Navigation, Inc. Navigation and local thermometry
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US10709508B2 (en) 2016-07-28 2020-07-14 Medtronics Ps Medical, Inc. Tracked powered drill assembly
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10667923B2 (en) 2016-10-31 2020-06-02 Warsaw Orthopedic, Inc. Sacro-iliac joint implant system and method
US11842030B2 (en) 2017-01-31 2023-12-12 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
JP6256962B1 (en) * 2017-06-21 2018-01-10 朝日インテック株式会社 Magnetic orientation / position measuring device
US10463404B2 (en) 2017-07-27 2019-11-05 Warsaw Orthopedic, Inc. Spinal implant system and method
DE102017008148A1 (en) * 2017-08-29 2019-02-28 Joimax Gmbh Sensor unit, intraoperative navigation system and method for detecting a surgical instrument
US11399784B2 (en) 2017-09-29 2022-08-02 Medtronic Navigation, Inc. System and method for mobile imaging
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
US11224392B2 (en) 2018-02-01 2022-01-18 Covidien Lp Mapping disease spread
US11138768B2 (en) 2018-04-06 2021-10-05 Medtronic Navigation, Inc. System and method for artifact reduction in an image
WO2020081373A1 (en) 2018-10-16 2020-04-23 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11135025B2 (en) 2019-01-10 2021-10-05 Medtronic Navigation, Inc. System and method for registration between coordinate systems and navigation
EP3908221B1 (en) 2019-01-10 2023-11-15 Medtronic Navigation, Inc. Method for registration between coordinate systems and navigation
US11426242B2 (en) 2019-01-30 2022-08-30 Medtronic Navigation, Inc. System and method for registration between coordinate systems and navigation of selected members
US11911110B2 (en) 2019-01-30 2024-02-27 Medtronic Navigation, Inc. System and method for registration between coordinate systems and navigation of selected members
US11276174B2 (en) 2019-02-21 2022-03-15 Medtronic Navigation, Inc. Method and apparatus for magnetic resonance imaging thermometry
US11403760B2 (en) 2019-02-21 2022-08-02 Medtronic Navigation, Inc. Method and apparatus for magnetic resonance imaging thermometry
US11426229B2 (en) 2019-02-21 2022-08-30 Medtronic Navigation, Inc. Method and apparatus for magnetic resonance imaging thermometry
US11065065B2 (en) 2019-02-22 2021-07-20 Warsaw Orthopedic, Inc. Spinal implant system and methods of use
US11285022B2 (en) 2019-04-15 2022-03-29 Warsaw Orthopedic, Inc. Spinal implant system and method
US11446094B2 (en) 2019-05-02 2022-09-20 Medtronic Navigation, Inc. Nasal patient tracking device and method of using the same
US11547491B2 (en) 2019-05-02 2023-01-10 Medtronic Navigation, Inc. Oral patient tracking device and method of using the same
US11672607B2 (en) 2019-08-14 2023-06-13 Warsaw Orthopedic, Inc. Systems, devices, and methods for surgical navigation with anatomical tracking
US11576685B2 (en) 2019-10-25 2023-02-14 Medtronic Ps Medical, Inc. Drill guide assembly and method
US11890205B2 (en) 2019-12-13 2024-02-06 Warsaw Orthopedic, Inc. Spinal implant system and methods of use
US20210330390A1 (en) 2020-04-22 2021-10-28 Medtronic Navigation, Inc. System and method for navigation
US11857267B2 (en) 2020-04-22 2024-01-02 Medtronic Navigation, Inc. System and method for navigation
US11571261B2 (en) 2020-04-22 2023-02-07 Medtronic Navigation, Inc. System and method for navigation
US20210346093A1 (en) 2020-05-06 2021-11-11 Warsaw Orthopedic, Inc. Spinal surgery system and methods of use
CN112204560A (en) * 2020-05-07 2021-01-08 株式会社Jsol Computer program, simulation method, and simulation device
US11364130B2 (en) 2020-09-01 2022-06-21 Warsaw Orthopedic, Inc. Spinal implant system and method
EP4210580A1 (en) 2020-09-14 2023-07-19 Medtronic Navigation, Inc. System and method for imaging
US11813094B2 (en) 2020-09-14 2023-11-14 Medtronic Navigation, Inc. System and method for imaging
US11801149B2 (en) 2020-10-09 2023-10-31 Warsaw Orthopedic, Inc. Surgical instrument and method
WO2022140509A1 (en) 2020-12-23 2022-06-30 Medtronic Navigation, Inc. Powered drill assembly
US11769261B2 (en) 2021-03-18 2023-09-26 Medtronic Navigation, Inc. Imaging system
EP4309127A1 (en) 2021-03-18 2024-01-24 Medtronic Navigation, Inc. Imaging system
US20220313340A1 (en) 2021-04-06 2022-10-06 Medtronic Navigation, Inc. Energizable instrument assembly
US20220313374A1 (en) 2021-04-06 2022-10-06 Medtronic Navigation, Inc. Powered Drill Assembly
US11742959B2 (en) 2021-08-25 2023-08-29 Medtronic, Inc. System and method for wireless communications
US20230240632A1 (en) 2022-02-01 2023-08-03 Medtronic Navigation, Inc. Long axis imaging system and method
US20230255775A1 (en) 2022-02-14 2023-08-17 Warsaw Orthopedic, Inc. Devices and methods for bone harvesting
US20230363626A1 (en) 2022-05-16 2023-11-16 Medtronic Navigation, Inc. Manual Hexapod Locking Mechanism

Citations (335)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1576781A (en) 1924-04-22 1926-03-16 Herman B Philips Fluoroscopic fracture apparatus
US1735726A (en) 1929-11-12 bornhardt
US2407845A (en) 1943-01-16 1946-09-17 California Inst Res Found Aligning device for tools
US2650588A (en) 1950-12-29 1953-09-01 Drew Harry Guy Radcliffe Artificial femoral head having an x-ray marker
US2697433A (en) 1951-12-04 1954-12-21 Max A Zehnder Device for accurately positioning and guiding guide wires used in the nailing of thefemoral neck
US3016899A (en) 1958-11-03 1962-01-16 Carl B Stenvall Surgical instrument
US3017887A (en) 1960-01-19 1962-01-23 William T Heyer Stereotaxy device
US3061936A (en) 1959-03-07 1962-11-06 Univ Catholique Louvain Stereotaxical methods and apparatus
US3073310A (en) 1957-08-05 1963-01-15 Zenon R Mocarski Surgical instrument positioning device
US3294083A (en) 1963-08-26 1966-12-27 Alderson Res Lab Inc Dosimetry system for penetrating radiation
US3367326A (en) 1965-06-15 1968-02-06 Calvin H. Frazier Intra spinal fixation rod
US3439256A (en) 1966-02-23 1969-04-15 Merckle Flugzeugwerke Gmbh Inductive angular position transmitter
US3577160A (en) 1968-01-10 1971-05-04 James E White X-ray gauging apparatus with x-ray opaque markers in the x-ray path to indicate alignment of x-ray tube, subject and film
US3674014A (en) 1969-10-28 1972-07-04 Astra Meditec Ab Magnetically guidable catheter-tip and method
US3702935A (en) 1971-10-13 1972-11-14 Litton Medical Products Mobile fluoroscopic unit for bedside catheter placement
US3704707A (en) 1971-04-06 1972-12-05 William X Halloran Orthopedic drill guide apparatus
US3868565A (en) 1973-07-30 1975-02-25 Jack Kuipers Object tracking and orientation determination means, system and process
US3941127A (en) 1974-10-03 1976-03-02 Froning Edward C Apparatus and method for stereotaxic lateral extradural disc puncture
US4037592A (en) 1976-05-04 1977-07-26 Kronner Richard F Guide pin locating tool and method
US4052620A (en) 1975-11-28 1977-10-04 Picker Corporation Method and apparatus for improved radiation detection in radiation scanning systems
US4054881A (en) 1976-04-26 1977-10-18 The Austin Company Remote object position locater
US4117337A (en) 1977-11-03 1978-09-26 General Electric Company Patient positioning indication arrangement for a computed tomography system
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4202349A (en) 1978-04-24 1980-05-13 Jones James W Radiopaque vessel markers
US4262306A (en) 1977-04-27 1981-04-14 Karlheinz Renner Method and apparatus for monitoring of positions of patients and/or radiation units
US4287809A (en) 1979-08-20 1981-09-08 Honeywell Inc. Helmet-mounted sighting system
US4314251A (en) 1979-07-30 1982-02-02 The Austin Company Remote object position and orientation locater
US4317078A (en) 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
US4328813A (en) 1980-10-20 1982-05-11 Medtronic, Inc. Brain lead anchoring system
DE3042343A1 (en) 1980-11-10 1982-06-09 Philips Patentverwaltung Gmbh, 2000 Hamburg Synthetic formation of defect-free images - by superimposed blurring images of defect on reconstituted multiple perspective images
US4339953A (en) 1980-08-29 1982-07-20 Aisin Seiki Company, Ltd. Position sensor
US4358856A (en) 1980-10-31 1982-11-09 General Electric Company Multiaxial x-ray apparatus
US4368536A (en) 1979-12-17 1983-01-11 Siemens Aktiengesellschaft Diagnostic radiology apparatus for producing layer images
US4396885A (en) 1979-06-06 1983-08-02 Thomson-Csf Device applicable to direction finding for measuring the relative orientation of two bodies
US4403321A (en) 1980-06-14 1983-09-06 U.S. Philips Corporation Switching network
US4418422A (en) 1978-02-22 1983-11-29 Howmedica International, Inc. Aiming device for setting nails in bones
US4422041A (en) 1981-07-30 1983-12-20 The United States Of America As Represented By The Secretary Of The Army Magnet position sensing system
US4431005A (en) 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
US4485815A (en) 1982-08-30 1984-12-04 Kurt Amplatz Device and method for fluoroscope-monitored percutaneous puncture treatment
US4543959A (en) 1981-06-04 1985-10-01 Instrumentarium Oy Diagnosis apparatus and the determination of tissue structure and quality
US4548208A (en) 1984-06-27 1985-10-22 Medtronic, Inc. Automatic adjusting induction coil treatment device
US4572198A (en) 1984-06-18 1986-02-25 Varian Associates, Inc. Catheter for use with NMR imaging systems
US4584577A (en) 1982-10-20 1986-04-22 Brookes & Gatehouse Limited Angular position sensor
US4613866A (en) 1983-05-13 1986-09-23 Mcdonnell Douglas Corporation Three dimensional digitizer with electromagnetic coupling
US4617925A (en) 1984-10-01 1986-10-21 Laitinen Lauri V Adapter for definition of the position of brain structures
US4618978A (en) 1983-10-21 1986-10-21 Cosman Eric R Means for localizing target coordinates in a body relative to a guidance system reference frame in any arbitrary plane as viewed by a tomographic image through the body
US4621628A (en) 1983-09-09 1986-11-11 Ortopedia Gmbh Apparatus for locating transverse holes of intramedullary implantates
US4625718A (en) 1984-06-08 1986-12-02 Howmedica International, Inc. Aiming apparatus
US4642786A (en) 1984-05-25 1987-02-10 Position Orientation Systems, Ltd. Method and apparatus for position and orientation measurement using a magnetic field and retransmission
US4645343A (en) 1981-11-11 1987-02-24 U.S. Philips Corporation Atomic resonance line source lamps and spectrophotometers for use with such lamps
US4649504A (en) 1984-05-22 1987-03-10 Cae Electronics, Ltd. Optical position and orientation measurement techniques
US4651732A (en) 1983-03-17 1987-03-24 Frederick Philip R Three-dimensional light guidance system for invasive procedures
US4653509A (en) 1985-07-03 1987-03-31 The United States Of America As Represented By The Secretary Of The Air Force Guided trephine samples for skeletal bone studies
US4673352A (en) 1985-01-10 1987-06-16 Markus Hansen Device for measuring relative jaw positions and movements
US4706665A (en) 1984-12-17 1987-11-17 Gouda Kasim I Frame for stereotactic surgery
US4719419A (en) 1985-07-15 1988-01-12 Harris Graphics Corporation Apparatus for detecting a rotary position of a shaft
US4722056A (en) 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4722336A (en) 1985-01-25 1988-02-02 Michael Kim Placement guide
US4727565A (en) 1983-11-14 1988-02-23 Ericson Bjoern E Method of localization
US4737921A (en) 1985-06-03 1988-04-12 Dynamic Digital Displays, Inc. Three dimensional medical image display system
US4737794A (en) 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4750487A (en) 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
US4771787A (en) 1985-12-12 1988-09-20 Richard Wolf Gmbh Ultrasonic scanner and shock wave generator
WO1988009151A1 (en) 1987-05-27 1988-12-01 Schloendorff Georg Process and device for optical representation of surgical operations
US4791934A (en) 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4793355A (en) 1987-04-17 1988-12-27 Biomagnetic Technologies, Inc. Apparatus for process for making biomagnetic measurements
US4797907A (en) 1987-08-07 1989-01-10 Diasonics Inc. Battery enhanced power generation for mobile X-ray machine
US4803976A (en) 1985-10-03 1989-02-14 Synthes Sighting instrument
DE3831278A1 (en) 1987-09-14 1989-03-23 Toshiba Kawasaki Kk STEREOTACTICAL DEVICE
US4821206A (en) 1984-11-27 1989-04-11 Photo Acoustic Technology, Inc. Ultrasonic apparatus for positioning a robot hand
US4821731A (en) 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US4836778A (en) 1987-05-26 1989-06-06 Vexcel Corporation Mandibular motion monitoring system
US4845771A (en) 1987-06-29 1989-07-04 Picker International, Inc. Exposure monitoring in radiation imaging
US4849692A (en) 1986-10-09 1989-07-18 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4862893A (en) 1987-12-08 1989-09-05 Intra-Sonix, Inc. Ultrasonic transducer
US4889526A (en) 1984-08-27 1989-12-26 Magtech Laboratories, Inc. Non-invasive method and apparatus for modulating brain signals through an external magnetic or electric field to reduce pain
EP0350996A1 (en) 1988-07-11 1990-01-17 Koninklijke Philips Electronics N.V. X-ray Examination apparatus comprising a balanced supporting arm
US4905698A (en) 1988-09-13 1990-03-06 Pharmacia Deltec Inc. Method and apparatus for catheter location determination
US4931056A (en) 1987-09-04 1990-06-05 Neurodynamics, Inc. Catheter guide apparatus for perpendicular insertion into a cranium orifice
US4945305A (en) 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4945914A (en) 1987-11-10 1990-08-07 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using at least four fiducial implants
US4951653A (en) 1988-03-02 1990-08-28 Laboratory Equipment, Corp. Ultrasound brain lesioning system
US4977655A (en) 1986-04-25 1990-12-18 Intra-Sonix, Inc. Method of making a transducer
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US5002058A (en) 1986-04-25 1991-03-26 Intra-Sonix, Inc. Ultrasonic transducer
EP0419729A1 (en) 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Position finding of a catheter by means of non-ionising fields
WO1991003982A1 (en) 1989-09-13 1991-04-04 Isis Innovation Limited Apparatus and method for aligning drilling apparatus in surgical procedures
US5005592A (en) 1989-10-27 1991-04-09 Becton Dickinson And Company Method and apparatus for tracking catheters
WO1991004711A1 (en) 1989-10-05 1991-04-18 Diadix S.A. Local intervention interactive system inside a region of a non homogeneous structure
US5013317A (en) 1990-02-07 1991-05-07 Smith & Nephew Richards Inc. Medical drill assembly transparent to X-rays and targeting drill bit
WO1991007726A1 (en) 1989-11-21 1991-05-30 I.S.G. Technologies Inc. Probe-correlated viewing of anatomical image data
US5027818A (en) 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
US5030196A (en) 1980-04-23 1991-07-09 Inoue-Japax Research Incorporated Magnetic treatment device
US5030222A (en) 1990-05-09 1991-07-09 James Calandruccio Radiolucent orthopedic chuck
US5031203A (en) 1990-02-09 1991-07-09 Trecha Randal R Coaxial laser targeting device for use with x-ray equipment and surgical drill equipment during surgical procedures
US5050608A (en) 1988-07-12 1991-09-24 Medirand, Inc. System for indicating a position to be operated in a patient's body
US5054492A (en) 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US5057095A (en) 1989-11-16 1991-10-15 Fabian Carl E Surgical implement detector utilizing a resonant marker
US5059789A (en) 1990-10-22 1991-10-22 International Business Machines Corp. Optical position and orientation sensor
US5079699A (en) 1987-11-27 1992-01-07 Picker International, Inc. Quick three-dimensional display
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
WO1992003090A1 (en) 1990-08-24 1992-03-05 Imperial College Of Science, Technology & Medicine Probe system
US5099845A (en) 1989-05-24 1992-03-31 Micronix Pty Ltd. Medical instrument location means
US5105829A (en) 1989-11-16 1992-04-21 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5107839A (en) 1990-05-04 1992-04-28 Pavel V. Houdek Computer controlled stereotaxic radiotherapy system and method
US5109194A (en) 1989-12-01 1992-04-28 Sextant Avionique Electromagnetic position and orientation detector for a pilot's helmet
US5107843A (en) 1990-04-06 1992-04-28 Orion-Yhtyma Oy Method and apparatus for thin needle biopsy in connection with mammography
US5107862A (en) 1991-05-06 1992-04-28 Fabian Carl E Surgical implement detector utilizing a powered marker
WO1992006645A1 (en) 1990-10-19 1992-04-30 St. Louis University Surgical probe locating system for head use
US5142930A (en) 1987-11-10 1992-09-01 Allen George S Interactive image-guided surgical system
US5152288A (en) 1988-09-23 1992-10-06 Siemens Aktiengesellschaft Apparatus and method for measuring weak, location-dependent and time-dependent magnetic fields
US5160337A (en) 1990-09-24 1992-11-03 Cosman Eric R Curved-shaped floor stand for use with a linear accelerator in radiosurgery
US5161536A (en) 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
US5178621A (en) 1991-12-10 1993-01-12 Zimmer, Inc. Two-piece radio-transparent proximal targeting device for a locking intramedullary nail
US5187475A (en) 1991-06-10 1993-02-16 Honeywell Inc. Apparatus for determining the position of an object
US5188126A (en) 1989-11-16 1993-02-23 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5190059A (en) 1989-11-16 1993-03-02 Fabian Carl E Surgical implement detector utilizing a powered marker
US5197965A (en) 1992-07-29 1993-03-30 Codman & Shurtleff, Inc. Skull clamp pin assembly
US5198877A (en) 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
US5197476A (en) 1989-03-16 1993-03-30 Christopher Nowacki Locating target in human body
US5198768A (en) 1989-09-27 1993-03-30 Elscint, Ltd. Quadrature surface coil array
US5211165A (en) 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5211176A (en) 1990-11-30 1993-05-18 Fuji Photo Optical Co., Ltd. Ultrasound examination system
US5212720A (en) 1992-01-29 1993-05-18 Research Foundation-State University Of N.Y. Dual radiation targeting system
US5214615A (en) 1990-02-26 1993-05-25 Will Bauer Three-dimensional displacement of a body with computer interface
US5219351A (en) 1990-10-24 1993-06-15 General Electric Cgr S.A. Mammograph provided with an improved needle carrier
US5222499A (en) 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
US5228442A (en) 1991-02-15 1993-07-20 Cardiac Pathways Corporation Method for mapping, ablation, and stimulation using an endocardial catheter
US5233990A (en) 1992-01-13 1993-08-10 Gideon Barnea Method and apparatus for diagnostic imaging in radiation therapy
US5237996A (en) 1992-02-11 1993-08-24 Waldman Lewis K Endocardial electrical mapping catheter
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5249581A (en) 1991-07-15 1993-10-05 Horbal Mark T Precision bone alignment
US5251635A (en) 1991-09-03 1993-10-12 General Electric Company Stereoscopic X-ray fluoroscopy system using radiofrequency fields
US5253647A (en) 1990-04-13 1993-10-19 Olympus Optical Co., Ltd. Insertion position and orientation state pickup for endoscope
US5255680A (en) 1991-09-03 1993-10-26 General Electric Company Automatic gantry positioning for imaging systems
US5257636A (en) 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
US5265611A (en) 1988-09-23 1993-11-30 Siemens Aktiengellschaft Apparatus for measuring weak, location-dependent and time-dependent magnetic field
US5265610A (en) 1991-09-03 1993-11-30 General Electric Company Multi-planar X-ray fluoroscopy system using radiofrequency fields
US5269759A (en) 1992-07-28 1993-12-14 Cordis Corporation Magnetic guidewire coupling for vascular dilatation apparatus
US5271400A (en) 1992-04-01 1993-12-21 General Electric Company Tracking system to monitor the position and orientation of a device using magnetic resonance detection of a sample contained within the device
US5273025A (en) 1990-04-13 1993-12-28 Olympus Optical Co., Ltd. Apparatus for detecting insertion condition of endoscope
US5274551A (en) 1991-11-29 1993-12-28 General Electric Company Method and apparatus for real-time navigation assist in interventional radiological procedures
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5291199A (en) 1977-01-06 1994-03-01 Westinghouse Electric Corp. Threat signal detection system
WO1994004938A1 (en) 1992-08-14 1994-03-03 British Telecommunications Public Limited Company Position location system
US5295483A (en) 1990-05-11 1994-03-22 Christopher Nowacki Locating target in human body
US5297549A (en) 1992-09-23 1994-03-29 Endocardial Therapeutics, Inc. Endocardial mapping system
US5299254A (en) 1989-11-24 1994-03-29 Technomed International Method and apparatus for determining the position of a target relative to a reference of known co-ordinates and without a priori knowledge of the position of a source of radiation
US5305091A (en) 1992-12-07 1994-04-19 Oreo Products Inc. Optical coordinate measuring system for large objects
US5305203A (en) 1988-02-01 1994-04-19 Faro Medical Technologies Inc. Computer-aided surgery apparatus
DE4233978C1 (en) 1992-10-08 1994-04-21 Leibinger Gmbh Body marking device for medical examinations
US5309913A (en) 1992-11-30 1994-05-10 The Cleveland Clinic Foundation Frameless stereotaxy system
US5315630A (en) 1992-03-11 1994-05-24 Bodenseewerk Geratetechnik Gmbh Positioning device in medical apparatus
US5316024A (en) 1992-07-23 1994-05-31 Abbott Laboratories Tube placement verifier system
US5318025A (en) 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
US5320111A (en) 1992-02-07 1994-06-14 Livingston Products, Inc. Light beam locator and guide for a biopsy needle
US5325728A (en) 1993-06-22 1994-07-05 Medtronic, Inc. Electromagnetic flow meter
US5329944A (en) 1989-11-16 1994-07-19 Fabian Carl E Surgical implement detector utilizing an acoustic marker
US5333168A (en) 1993-01-29 1994-07-26 Oec Medical Systems, Inc. Time-based attenuation compensation
US5353800A (en) 1992-12-11 1994-10-11 Medtronic, Inc. Implantable pressure sensor lead
US5353807A (en) 1992-12-07 1994-10-11 Demarco Thomas J Magnetically guidable intubation device
US5353795A (en) 1992-12-10 1994-10-11 General Electric Company Tracking system to monitor the position of a device using multiplexed magnetic resonance detection
WO1994023647A1 (en) 1993-04-22 1994-10-27 Pixsys, Inc. System for locating relative positions of objects
WO1994024933A1 (en) 1993-04-26 1994-11-10 St. Louis University Indicating the position of a surgical probe
US5368030A (en) 1992-09-09 1994-11-29 Izi Corporation Non-invasive multi-modality radiographic surface markers
EP0319844B1 (en) 1987-12-04 1994-11-30 Ad-Tech Medical Instrument Corporation Electrical connectors for brain-contact devices
US5375596A (en) 1992-09-29 1994-12-27 Hdc Corporation Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue
US5377678A (en) 1991-09-03 1995-01-03 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency fields
US5385148A (en) 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5385146A (en) 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5386828A (en) 1991-12-23 1995-02-07 Sims Deltec, Inc. Guide wire apparatus with location sensing member
US5389101A (en) 1992-04-21 1995-02-14 University Of Utah Apparatus and method for photogrammetric surgical localization
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5399146A (en) 1993-12-13 1995-03-21 Nowacki; Christopher Isocentric lithotripter
US5403321A (en) 1993-12-15 1995-04-04 Smith & Nephew Richards Inc. Radiolucent drill guide
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5419325A (en) 1994-06-23 1995-05-30 General Electric Company Magnetic resonance (MR) angiography using a faraday catheter
US5423334A (en) 1993-02-01 1995-06-13 C. R. Bard, Inc. Implantable medical device characterization system
US5425367A (en) 1991-09-04 1995-06-20 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5425382A (en) 1993-09-14 1995-06-20 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US5426683A (en) 1994-03-14 1995-06-20 Oec Medical Systems, Inc. One piece C-arm for X-ray diagnostic equipment
US5426687A (en) 1992-07-07 1995-06-20 Innovative Care Ltd. Laser targeting device for use with image intensifiers in surgery
US5427097A (en) 1992-12-10 1995-06-27 Accuray, Inc. Apparatus for and method of carrying out stereotaxic radiosurgery and radiotherapy
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5437277A (en) 1991-11-18 1995-08-01 General Electric Company Inductively coupled RF tracking system for use in invasive imaging of a living body
US5443066A (en) 1991-11-18 1995-08-22 General Electric Company Invasive system employing a radiofrequency tracking system
US5444756A (en) 1994-02-09 1995-08-22 Minnesota Mining And Manufacturing Company X-ray machine, solid state radiation detector and method for reading radiation detection information
US5446548A (en) 1993-10-08 1995-08-29 Siemens Medical Systems, Inc. Patient positioning and monitoring system
US5445144A (en) 1993-12-16 1995-08-29 Purdue Research Foundation Apparatus and method for acoustically guiding, positioning, and monitoring a tube within a body
US5448610A (en) 1993-02-09 1995-09-05 Hitachi Medical Corporation Digital X-ray photography device
US5447154A (en) 1992-07-31 1995-09-05 Universite Joseph Fourier Method for determining the position of an organ
US5453686A (en) 1993-04-08 1995-09-26 Polhemus Incorporated Pulsed-DC position and orientation measurement system
US5456718A (en) 1992-11-17 1995-10-10 Szymaitis; Dennis W. Apparatus for detecting surgical objects within the human body
US5458718A (en) 1993-03-19 1995-10-17 Vip Industries Limited Heat sealing method for making a luggage case
US5464446A (en) 1993-10-12 1995-11-07 Medtronic, Inc. Brain lead anchoring system
US5478341A (en) 1991-12-23 1995-12-26 Zimmer, Inc. Ratchet lock for an intramedullary nail locking bolt
US5478343A (en) 1991-06-13 1995-12-26 Howmedica International, Inc. Targeting device for bone nails
US5483961A (en) 1993-03-19 1996-01-16 Kelly; Patrick J. Magnetic field digitizer for stereotactic surgery
US5485849A (en) 1994-01-31 1996-01-23 Ep Technologies, Inc. System and methods for matching electrical characteristics and propagation velocities in cardiac tissue
US5487391A (en) 1994-01-28 1996-01-30 Ep Technologies, Inc. Systems and methods for deriving and displaying the propagation velocities of electrical events in the heart
US5487757A (en) 1993-07-20 1996-01-30 Medtronic Cardiorhythm Multicurve deflectable catheter
US5490196A (en) 1994-03-18 1996-02-06 Metorex International Oy Multi energy system for x-ray imaging applications
US5494034A (en) 1987-05-27 1996-02-27 Georg Schlondorff Process and device for the reproducible optical representation of a surgical operation
US5503416A (en) 1994-03-10 1996-04-02 Oec Medical Systems, Inc. Undercarriage for X-ray diagnostic equipment
US5515160A (en) 1992-03-12 1996-05-07 Aesculap Ag Method and apparatus for representing a work area in a three-dimensional structure
US5517990A (en) 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5531520A (en) 1994-09-01 1996-07-02 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets including anatomical body data
US5531227A (en) 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
WO1996011624A3 (en) 1994-10-07 1996-07-18 Univ St Louis Surgical navigation systems including reference and localization frames
US5543951A (en) 1994-03-15 1996-08-06 Siemens Aktiengesellschaft Method for receive-side clock supply for video signals digitally transmitted with ATM in fiber/coaxial subscriber line networks
US5546949A (en) 1994-04-26 1996-08-20 Frazin; Leon Method and apparatus of logicalizing and determining orientation of an insertion end of a probe within a biotic structure
US5546940A (en) 1994-01-28 1996-08-20 Ep Technologies, Inc. System and method for matching electrical characteristics and propagation velocities in cardiac tissue to locate potential ablation sites
US5551429A (en) 1993-02-12 1996-09-03 Fitzpatrick; J. Michael Method for relating the data of an image space to physical space
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5573533A (en) 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5575794A (en) 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
US5583909A (en) 1994-12-20 1996-12-10 Oec Medical Systems, Inc. C-arm mounting structure for mobile X-ray imaging system
WO1996041119A1 (en) 1995-06-07 1996-12-19 Biosense, Inc. Magnetic location system with adaptive feedback control
US5588430A (en) 1995-02-14 1996-12-31 University Of Florida Research Foundation, Inc. Repeat fixation for frameless stereotactic procedure
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US5596228A (en) 1994-03-10 1997-01-21 Oec Medical Systems, Inc. Apparatus for cooling charge coupled device imaging systems
EP0651968B1 (en) 1989-08-17 1997-01-29 Critikon, Inc. Epidural oxygen sensor
US5600330A (en) 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5617462A (en) 1995-08-07 1997-04-01 Oec Medical Systems, Inc. Automatic X-ray exposure control system and method of use
US5619261A (en) 1994-07-25 1997-04-08 Oec Medical Systems, Inc. Pixel artifact/blemish filter for use in CCD video camera
US5617857A (en) 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
US5627873A (en) 1995-08-04 1997-05-06 Oec Medical Systems, Inc. Mini C-arm assembly for mobile X-ray imaging system
US5628315A (en) 1994-09-15 1997-05-13 Brainlab Med. Computersysteme Gmbh Device for detecting the position of radiation target points
US5636644A (en) 1995-03-17 1997-06-10 Applied Medical Resources Corporation Method and apparatus for endoconduit targeting
US5640170A (en) 1995-06-05 1997-06-17 Polhemus Incorporated Position and orientation measuring system having anti-distortion source configuration
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5642395A (en) 1995-08-07 1997-06-24 Oec Medical Systems, Inc. Imaging chain with miniaturized C-arm assembly for mobile X-ray imaging system
US5643268A (en) 1994-09-27 1997-07-01 Brainlab Med. Computersysteme Gmbh Fixation pin for fixing a reference system to bony structures
US5645065A (en) 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
US5664001A (en) 1995-03-24 1997-09-02 J. Morita Manufacturing Corporation Medical X-ray imaging apparatus
US5662111A (en) 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US5676673A (en) 1994-09-15 1997-10-14 Visualization Technology, Inc. Position tracking and imaging system with error detection for use in medical applications
US5681260A (en) 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US5690108A (en) 1994-11-28 1997-11-25 Chakeres; Donald W. Interventional medicine apparatus
US5695501A (en) 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
US5702406A (en) 1994-09-15 1997-12-30 Brainlab Med. Computersysteme Gmbb Device for noninvasive stereotactic immobilization in reproducible position
US5711299A (en) 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
US5715836A (en) 1993-02-16 1998-02-10 Kliegis; Ulrich Method and apparatus for planning and monitoring a surgical operation
US5715822A (en) 1995-09-28 1998-02-10 General Electric Company Magnetic resonance devices suitable for both tracking and imaging
US5718241A (en) 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
WO1998008554A1 (en) 1996-08-29 1998-03-05 Medtronic, Inc. Brain stimulation system having an improved anchor for a lead or catheter
US5727552A (en) 1996-01-11 1998-03-17 Medtronic, Inc. Catheter and electrical lead location system
US5727553A (en) 1996-03-25 1998-03-17 Saad; Saad A. Catheter with integral electromagnetic location identification device
US5730129A (en) 1995-04-03 1998-03-24 General Electric Company Imaging of interventional devices in a non-stationary subject
US5732703A (en) 1992-11-30 1998-03-31 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5735278A (en) 1996-03-15 1998-04-07 National Research Council Of Canada Surgical procedure with magnetic resonance imaging
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5741214A (en) 1993-12-20 1998-04-21 Terumo Kabushiki Kaisha Accessory pathway detecting/cauterizing apparatus
US5742394A (en) 1996-06-14 1998-04-21 Ascension Technology Corporation Optical 6D measurement system with two fan shaped beams rotating around one axis
US5744953A (en) 1996-08-29 1998-04-28 Ascension Technology Corporation Magnetic motion tracker with transmitter placed on tracked object
EP0655138B1 (en) 1992-08-14 1998-04-29 BRITISH TELECOMMUNICATIONS public limited company Position location system
US5749835A (en) 1994-09-06 1998-05-12 Sims Deltec, Inc. Method and apparatus for location of a catheter tip
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US5755725A (en) 1993-09-07 1998-05-26 Deemed International, S.A. Computer-assisted microsurgery methods and equipment
US5758667A (en) 1995-01-26 1998-06-02 Siemens Elema Ab Device for locating a port on a medical implant
US5762064A (en) 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
US5767669A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Magnetic field position and orientation measurement system with dynamic eddy current rejection
US5769789A (en) 1993-02-12 1998-06-23 George S. Allen Automatic technique for localizing externally attached fiducial markers in volume images of the head
US5769861A (en) 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument
US5772594A (en) 1995-10-17 1998-06-30 Barrick; Earl F. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US5775322A (en) 1996-06-27 1998-07-07 Lucent Medical Systems, Inc. Tracheal tube and methods related thereto
US5782765A (en) 1996-04-25 1998-07-21 Medtronic, Inc. Medical positioning system
US5787886A (en) 1993-03-19 1998-08-04 Compass International Incorporated Magnetic field digitizer for stereotatic surgery
US5792055A (en) 1994-03-18 1998-08-11 Schneider (Usa) Inc. Guidewire antenna
US5795294A (en) 1994-05-21 1998-08-18 Carl-Zeiss-Stiftung Procedure for the correlation of different coordinate systems in computer-supported, stereotactic surgery
US5797849A (en) 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5799055A (en) 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
US5800535A (en) 1994-02-09 1998-09-01 The University Of Iowa Research Foundation Wireless prosthetic electrode for the brain
WO1998038908A1 (en) 1997-03-03 1998-09-11 Schneider Medical Technologies, Inc. Imaging device and method
US5807252A (en) 1995-02-23 1998-09-15 Aesculap Ag Method and apparatus for determining the position of a body part
US5810728A (en) 1993-04-03 1998-09-22 U.S. Philips Corporation MR imaging method and apparatus for guiding a catheter
US5810735A (en) 1995-02-27 1998-09-22 Medtronic, Inc. External patient reference sensors
US5823192A (en) 1996-07-31 1998-10-20 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for automatically positioning a patient for treatment/diagnoses
US5823958A (en) 1990-11-26 1998-10-20 Truppe; Michael System and method for displaying a structural data image in real-time correlation with moveable body
US5828725A (en) 1996-07-03 1998-10-27 Eliav Medical Imaging Systems Ltd Processing images for removal of artifacts
US5831260A (en) 1996-09-10 1998-11-03 Ascension Technology Corporation Hybrid motion tracker
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5834759A (en) 1997-05-22 1998-11-10 Glossop; Neil David Tracking device having emitter groups with different emitting directions
US5840024A (en) 1993-10-18 1998-11-24 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US5843076A (en) 1995-06-12 1998-12-01 Cordis Webster, Inc. Catheter with an electromagnetic guidance sensor
EP0894473A2 (en) 1994-08-19 1999-02-03 Biosense, Inc. Medical diagnosis, treatment and imaging systems
US5868674A (en) 1995-11-24 1999-02-09 U.S. Philips Corporation MRI-system and catheter for interventional procedures
US5871455A (en) 1996-04-30 1999-02-16 Nikon Corporation Ophthalmic apparatus
US5871487A (en) 1994-06-24 1999-02-16 Cytotherpeutics, Inc. Microdrive for use in stereotactic surgery
US5884410A (en) 1995-12-21 1999-03-23 Carl-Zeiss-Stiftung Sensing system for coordinate measuring equipment
US5891157A (en) 1994-09-30 1999-04-06 Ohio Medical Instrument Company, Inc. Apparatus for surgical stereotactic procedures
US5904691A (en) 1996-09-30 1999-05-18 Picker International, Inc. Trackable guide block
US5907395A (en) 1997-06-06 1999-05-25 Image Guided Technologies, Inc. Optical fiber probe for position measurement
US5923727A (en) 1997-09-30 1999-07-13 Siemens Corporate Research, Inc. Method and apparatus for calibrating an intra-operative X-ray system
US5921992A (en) 1997-04-11 1999-07-13 Radionics, Inc. Method and system for frameless tool calibration
US5928248A (en) 1997-02-14 1999-07-27 Biosense, Inc. Guided deployment of stents
US5938694A (en) 1993-11-10 1999-08-17 Medtronic Cardiorhythm Electrode array catheter
US5938603A (en) 1997-12-01 1999-08-17 Cordis Webster, Inc. Steerable catheter with electromagnetic sensor
US5947981A (en) 1995-01-31 1999-09-07 Cosman; Eric R. Head and neck localizer
US5951475A (en) 1997-09-25 1999-09-14 International Business Machines Corporation Methods and apparatus for registering CT-scan data to multiple fluoroscopic images
US5964796A (en) 1993-09-24 1999-10-12 Cardiac Pathways Corporation Catheter assembly, catheter and multi-port introducer for use therewith
US5968047A (en) 1996-04-05 1999-10-19 Reed; Thomas Mills Fixation devices
US5971997A (en) 1995-02-03 1999-10-26 Radionics, Inc. Intraoperative recalibration apparatus for stereotactic navigators
US5987960A (en) 1997-09-26 1999-11-23 Picker International, Inc. Tool calibrator
WO1999060939A1 (en) 1998-05-28 1999-12-02 Orthosoft, Inc. Interactive computer-assisted surgical system and method thereof
US5999837A (en) 1997-09-26 1999-12-07 Picker International, Inc. Localizing and orienting probe for view devices
US5999840A (en) 1994-09-01 1999-12-07 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US6016439A (en) 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
US6019725A (en) 1997-03-07 2000-02-01 Sonometrics Corporation Three-dimensional tracking and imaging system
US6050724A (en) 1997-01-31 2000-04-18 U. S. Philips Corporation Method of and device for position detection in X-ray imaging
US6059718A (en) 1993-10-18 2000-05-09 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6063022A (en) 1997-01-03 2000-05-16 Biosense, Inc. Conformal catheter
US6073043A (en) 1997-12-22 2000-06-06 Cormedica Corporation Measuring position and orientation using magnetic fields
US6104944A (en) 1997-11-17 2000-08-15 Martinelli; Michael A. System and method for navigating a multiple electrode catheter
US6118845A (en) 1998-06-29 2000-09-12 Surgical Navigation Technologies, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers
US6122538A (en) 1997-01-16 2000-09-19 Acuson Corporation Motion--Monitoring method and system for medical devices
US6131396A (en) 1996-09-27 2000-10-17 Siemens Aktiengesellschaft Heat radiation shield, and dewar employing same
US6139183A (en) 1997-10-17 2000-10-31 Siemens Aktiengesellschaft X-ray exposure system for 3D imaging
US6149592A (en) 1997-11-26 2000-11-21 Picker International, Inc. Integrated fluoroscopic projection image data, volumetric image data, and surgical device position data
US6223067B1 (en) 1997-04-11 2001-04-24 Brainlab Med. Computersysteme Gmbh Referencing device including mouthpiece
WO2001030437A1 (en) 1999-10-28 2001-05-03 Winchester Development Associates Patient-shielding and coil system
US6273896B1 (en) 1998-04-21 2001-08-14 Neutar, Llc Removable frames for stereotactic localization
US6298262B1 (en) 1998-04-21 2001-10-02 Neutar, Llc Instrument guidance for stereotactic surgery
US6332089B1 (en) 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US6434415B1 (en) 1990-10-19 2002-08-13 St. Louis University System for use in displaying images of a body part
US6498944B1 (en) 1996-02-01 2002-12-24 Biosense, Inc. Intrabody measurement
US6701179B1 (en) 1999-10-28 2004-03-02 Michael A. Martinelli Coil structures and methods for generating magnetic fields
DE10085137B4 (en) 1999-10-28 2010-07-08 Surgical Navigation Technologies, Inc., Louisville Integrated surgical anchor / localization sensor assembly

Patent Citations (418)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1735726A (en) 1929-11-12 bornhardt
US1576781A (en) 1924-04-22 1926-03-16 Herman B Philips Fluoroscopic fracture apparatus
US2407845A (en) 1943-01-16 1946-09-17 California Inst Res Found Aligning device for tools
US2650588A (en) 1950-12-29 1953-09-01 Drew Harry Guy Radcliffe Artificial femoral head having an x-ray marker
US2697433A (en) 1951-12-04 1954-12-21 Max A Zehnder Device for accurately positioning and guiding guide wires used in the nailing of thefemoral neck
US3073310A (en) 1957-08-05 1963-01-15 Zenon R Mocarski Surgical instrument positioning device
US3016899A (en) 1958-11-03 1962-01-16 Carl B Stenvall Surgical instrument
US3061936A (en) 1959-03-07 1962-11-06 Univ Catholique Louvain Stereotaxical methods and apparatus
US3017887A (en) 1960-01-19 1962-01-23 William T Heyer Stereotaxy device
US3294083A (en) 1963-08-26 1966-12-27 Alderson Res Lab Inc Dosimetry system for penetrating radiation
US3367326A (en) 1965-06-15 1968-02-06 Calvin H. Frazier Intra spinal fixation rod
US3439256A (en) 1966-02-23 1969-04-15 Merckle Flugzeugwerke Gmbh Inductive angular position transmitter
US3577160A (en) 1968-01-10 1971-05-04 James E White X-ray gauging apparatus with x-ray opaque markers in the x-ray path to indicate alignment of x-ray tube, subject and film
US3674014A (en) 1969-10-28 1972-07-04 Astra Meditec Ab Magnetically guidable catheter-tip and method
US3704707A (en) 1971-04-06 1972-12-05 William X Halloran Orthopedic drill guide apparatus
CA964149A (en) 1971-04-06 1975-03-11 William X. Halloran Orthopedic drill guide apparatus
US3702935A (en) 1971-10-13 1972-11-14 Litton Medical Products Mobile fluoroscopic unit for bedside catheter placement
US3868565A (en) 1973-07-30 1975-02-25 Jack Kuipers Object tracking and orientation determination means, system and process
US3941127A (en) 1974-10-03 1976-03-02 Froning Edward C Apparatus and method for stereotaxic lateral extradural disc puncture
US4052620A (en) 1975-11-28 1977-10-04 Picker Corporation Method and apparatus for improved radiation detection in radiation scanning systems
US4054881A (en) 1976-04-26 1977-10-18 The Austin Company Remote object position locater
US4037592A (en) 1976-05-04 1977-07-26 Kronner Richard F Guide pin locating tool and method
US5291199A (en) 1977-01-06 1994-03-01 Westinghouse Electric Corp. Threat signal detection system
US4262306A (en) 1977-04-27 1981-04-14 Karlheinz Renner Method and apparatus for monitoring of positions of patients and/or radiation units
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4117337A (en) 1977-11-03 1978-09-26 General Electric Company Patient positioning indication arrangement for a computed tomography system
US4418422A (en) 1978-02-22 1983-11-29 Howmedica International, Inc. Aiming device for setting nails in bones
FR2417970B1 (en) 1978-02-22 1983-12-16 Howmedica
US4202349A (en) 1978-04-24 1980-05-13 Jones James W Radiopaque vessel markers
US4396885A (en) 1979-06-06 1983-08-02 Thomson-Csf Device applicable to direction finding for measuring the relative orientation of two bodies
US4314251A (en) 1979-07-30 1982-02-02 The Austin Company Remote object position and orientation locater
US4287809A (en) 1979-08-20 1981-09-08 Honeywell Inc. Helmet-mounted sighting system
US4317078A (en) 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
US4368536A (en) 1979-12-17 1983-01-11 Siemens Aktiengesellschaft Diagnostic radiology apparatus for producing layer images
US5030196A (en) 1980-04-23 1991-07-09 Inoue-Japax Research Incorporated Magnetic treatment device
US4403321A (en) 1980-06-14 1983-09-06 U.S. Philips Corporation Switching network
US4339953A (en) 1980-08-29 1982-07-20 Aisin Seiki Company, Ltd. Position sensor
US4328813A (en) 1980-10-20 1982-05-11 Medtronic, Inc. Brain lead anchoring system
US4358856A (en) 1980-10-31 1982-11-09 General Electric Company Multiaxial x-ray apparatus
DE3042343A1 (en) 1980-11-10 1982-06-09 Philips Patentverwaltung Gmbh, 2000 Hamburg Synthetic formation of defect-free images - by superimposed blurring images of defect on reconstituted multiple perspective images
US4431005A (en) 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
US4543959A (en) 1981-06-04 1985-10-01 Instrumentarium Oy Diagnosis apparatus and the determination of tissue structure and quality
US4422041A (en) 1981-07-30 1983-12-20 The United States Of America As Represented By The Secretary Of The Army Magnet position sensing system
US4645343A (en) 1981-11-11 1987-02-24 U.S. Philips Corporation Atomic resonance line source lamps and spectrophotometers for use with such lamps
US4485815A (en) 1982-08-30 1984-12-04 Kurt Amplatz Device and method for fluoroscope-monitored percutaneous puncture treatment
US4584577A (en) 1982-10-20 1986-04-22 Brookes & Gatehouse Limited Angular position sensor
US4651732A (en) 1983-03-17 1987-03-24 Frederick Philip R Three-dimensional light guidance system for invasive procedures
US4613866A (en) 1983-05-13 1986-09-23 Mcdonnell Douglas Corporation Three dimensional digitizer with electromagnetic coupling
US4621628A (en) 1983-09-09 1986-11-11 Ortopedia Gmbh Apparatus for locating transverse holes of intramedullary implantates
US4618978A (en) 1983-10-21 1986-10-21 Cosman Eric R Means for localizing target coordinates in a body relative to a guidance system reference frame in any arbitrary plane as viewed by a tomographic image through the body
US4727565A (en) 1983-11-14 1988-02-23 Ericson Bjoern E Method of localization
US4649504A (en) 1984-05-22 1987-03-10 Cae Electronics, Ltd. Optical position and orientation measurement techniques
US4642786A (en) 1984-05-25 1987-02-10 Position Orientation Systems, Ltd. Method and apparatus for position and orientation measurement using a magnetic field and retransmission
US4625718A (en) 1984-06-08 1986-12-02 Howmedica International, Inc. Aiming apparatus
US4572198A (en) 1984-06-18 1986-02-25 Varian Associates, Inc. Catheter for use with NMR imaging systems
US4548208A (en) 1984-06-27 1985-10-22 Medtronic, Inc. Automatic adjusting induction coil treatment device
US4889526A (en) 1984-08-27 1989-12-26 Magtech Laboratories, Inc. Non-invasive method and apparatus for modulating brain signals through an external magnetic or electric field to reduce pain
US4617925A (en) 1984-10-01 1986-10-21 Laitinen Lauri V Adapter for definition of the position of brain structures
US4821206A (en) 1984-11-27 1989-04-11 Photo Acoustic Technology, Inc. Ultrasonic apparatus for positioning a robot hand
US4706665A (en) 1984-12-17 1987-11-17 Gouda Kasim I Frame for stereotactic surgery
US4673352A (en) 1985-01-10 1987-06-16 Markus Hansen Device for measuring relative jaw positions and movements
US4722336A (en) 1985-01-25 1988-02-02 Michael Kim Placement guide
US4737921A (en) 1985-06-03 1988-04-12 Dynamic Digital Displays, Inc. Three dimensional medical image display system
US4653509A (en) 1985-07-03 1987-03-31 The United States Of America As Represented By The Secretary Of The Air Force Guided trephine samples for skeletal bone studies
US4719419A (en) 1985-07-15 1988-01-12 Harris Graphics Corporation Apparatus for detecting a rotary position of a shaft
US4803976A (en) 1985-10-03 1989-02-14 Synthes Sighting instrument
US4737794A (en) 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4771787A (en) 1985-12-12 1988-09-20 Richard Wolf Gmbh Ultrasonic scanner and shock wave generator
US4722056A (en) 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4821731A (en) 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US5002058A (en) 1986-04-25 1991-03-26 Intra-Sonix, Inc. Ultrasonic transducer
US4977655A (en) 1986-04-25 1990-12-18 Intra-Sonix, Inc. Method of making a transducer
US4791934A (en) 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4849692A (en) 1986-10-09 1989-07-18 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4945305A (en) 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4750487A (en) 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
US4793355A (en) 1987-04-17 1988-12-27 Biomagnetic Technologies, Inc. Apparatus for process for making biomagnetic measurements
US5186174A (en) 1987-05-21 1993-02-16 G. M. Piaff Process and device for the reproducible optical representation of a surgical operation
US4836778A (en) 1987-05-26 1989-06-06 Vexcel Corporation Mandibular motion monitoring system
US5494034A (en) 1987-05-27 1996-02-27 Georg Schlondorff Process and device for the reproducible optical representation of a surgical operation
WO1988009151A1 (en) 1987-05-27 1988-12-01 Schloendorff Georg Process and device for optical representation of surgical operations
US4845771A (en) 1987-06-29 1989-07-04 Picker International, Inc. Exposure monitoring in radiation imaging
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US4797907A (en) 1987-08-07 1989-01-10 Diasonics Inc. Battery enhanced power generation for mobile X-ray machine
USRE35025E (en) 1987-08-07 1995-08-22 Oec Medical Systems Battery enhanced power generation for mobile X-ray machine
US4931056A (en) 1987-09-04 1990-06-05 Neurodynamics, Inc. Catheter guide apparatus for perpendicular insertion into a cranium orifice
US4923459A (en) 1987-09-14 1990-05-08 Kabushiki Kaisha Toshiba Stereotactics apparatus
DE3831278A1 (en) 1987-09-14 1989-03-23 Toshiba Kawasaki Kk STEREOTACTICAL DEVICE
US5397329A (en) 1987-11-10 1995-03-14 Allen; George S. Fiducial implant and system of such implants
US5097839A (en) 1987-11-10 1992-03-24 Allen George S Apparatus for imaging the anatomy
US5142930A (en) 1987-11-10 1992-09-01 Allen George S Interactive image-guided surgical system
US5119817A (en) 1987-11-10 1992-06-09 Allen George S Apparatus for imaging the anatomy
US5094241A (en) 1987-11-10 1992-03-10 Allen George S Apparatus for imaging the anatomy
US4945914A (en) 1987-11-10 1990-08-07 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using at least four fiducial implants
US5178164A (en) 1987-11-10 1993-01-12 Allen George S Method for implanting a fiducial implant into a patient
US5016639A (en) 1987-11-10 1991-05-21 Allen George S Method and apparatus for imaging the anatomy
US5211164A (en) 1987-11-10 1993-05-18 Allen George S Method of locating a target on a portion of anatomy
US4991579A (en) 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US5079699A (en) 1987-11-27 1992-01-07 Picker International, Inc. Quick three-dimensional display
US5027818A (en) 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
EP0319844B1 (en) 1987-12-04 1994-11-30 Ad-Tech Medical Instrument Corporation Electrical connectors for brain-contact devices
WO1989005123A1 (en) 1987-12-08 1989-06-15 Intra-Sonix, Inc. Acoustic image system and method
US4862893A (en) 1987-12-08 1989-09-05 Intra-Sonix, Inc. Ultrasonic transducer
JP2765738B2 (en) 1987-12-08 1998-06-18 エンタープライズ メディカル テクノロジーズ,インコーポレーテッド Acoustic imaging system and method
US5748767A (en) 1988-02-01 1998-05-05 Faro Technology, Inc. Computer-aided surgery apparatus
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5305203A (en) 1988-02-01 1994-04-19 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4951653A (en) 1988-03-02 1990-08-28 Laboratory Equipment, Corp. Ultrasound brain lesioning system
EP0350996A1 (en) 1988-07-11 1990-01-17 Koninklijke Philips Electronics N.V. X-ray Examination apparatus comprising a balanced supporting arm
US5050608A (en) 1988-07-12 1991-09-24 Medirand, Inc. System for indicating a position to be operated in a patient's body
US4905698B1 (en) 1988-09-13 1991-10-01 Pharmacia Deltec Inc
US4905698A (en) 1988-09-13 1990-03-06 Pharmacia Deltec Inc. Method and apparatus for catheter location determination
US5152288A (en) 1988-09-23 1992-10-06 Siemens Aktiengesellschaft Apparatus and method for measuring weak, location-dependent and time-dependent magnetic fields
US5265611A (en) 1988-09-23 1993-11-30 Siemens Aktiengellschaft Apparatus for measuring weak, location-dependent and time-dependent magnetic field
US5197476A (en) 1989-03-16 1993-03-30 Christopher Nowacki Locating target in human body
US5099845A (en) 1989-05-24 1992-03-31 Micronix Pty Ltd. Medical instrument location means
EP0651968B1 (en) 1989-08-17 1997-01-29 Critikon, Inc. Epidural oxygen sensor
WO1991003982A1 (en) 1989-09-13 1991-04-04 Isis Innovation Limited Apparatus and method for aligning drilling apparatus in surgical procedures
US5681260A (en) 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
US5198768A (en) 1989-09-27 1993-03-30 Elscint, Ltd. Quadrature surface coil array
EP0419729A1 (en) 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Position finding of a catheter by means of non-ionising fields
US5042486A (en) 1989-09-29 1991-08-27 Siemens Aktiengesellschaft Catheter locatable with non-ionizing field and method for locating same
WO1991004711A1 (en) 1989-10-05 1991-04-18 Diadix S.A. Local intervention interactive system inside a region of a non homogeneous structure
US5868675A (en) 1989-10-05 1999-02-09 Elekta Igs S.A. Interactive system for local intervention inside a nonhumogeneous structure
US5005592A (en) 1989-10-27 1991-04-09 Becton Dickinson And Company Method and apparatus for tracking catheters
US5222499A (en) 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
US5057095A (en) 1989-11-16 1991-10-15 Fabian Carl E Surgical implement detector utilizing a resonant marker
US5105829A (en) 1989-11-16 1992-04-21 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5188126A (en) 1989-11-16 1993-02-23 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5190059A (en) 1989-11-16 1993-03-02 Fabian Carl E Surgical implement detector utilizing a powered marker
US5329944A (en) 1989-11-16 1994-07-19 Fabian Carl E Surgical implement detector utilizing an acoustic marker
WO1991007726A1 (en) 1989-11-21 1991-05-30 I.S.G. Technologies Inc. Probe-correlated viewing of anatomical image data
US5299254A (en) 1989-11-24 1994-03-29 Technomed International Method and apparatus for determining the position of a target relative to a reference of known co-ordinates and without a priori knowledge of the position of a source of radiation
US5109194A (en) 1989-12-01 1992-04-28 Sextant Avionique Electromagnetic position and orientation detector for a pilot's helmet
US5013317A (en) 1990-02-07 1991-05-07 Smith & Nephew Richards Inc. Medical drill assembly transparent to X-rays and targeting drill bit
US5031203A (en) 1990-02-09 1991-07-09 Trecha Randal R Coaxial laser targeting device for use with x-ray equipment and surgical drill equipment during surgical procedures
US5214615A (en) 1990-02-26 1993-05-25 Will Bauer Three-dimensional displacement of a body with computer interface
US5107843A (en) 1990-04-06 1992-04-28 Orion-Yhtyma Oy Method and apparatus for thin needle biopsy in connection with mammography
US5273025A (en) 1990-04-13 1993-12-28 Olympus Optical Co., Ltd. Apparatus for detecting insertion condition of endoscope
US5253647A (en) 1990-04-13 1993-10-19 Olympus Optical Co., Ltd. Insertion position and orientation state pickup for endoscope
US5107839A (en) 1990-05-04 1992-04-28 Pavel V. Houdek Computer controlled stereotaxic radiotherapy system and method
US5030222A (en) 1990-05-09 1991-07-09 James Calandruccio Radiolucent orthopedic chuck
US5408409A (en) 1990-05-11 1995-04-18 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5299288A (en) 1990-05-11 1994-03-29 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5295483A (en) 1990-05-11 1994-03-22 Christopher Nowacki Locating target in human body
WO1992003090A1 (en) 1990-08-24 1992-03-05 Imperial College Of Science, Technology & Medicine Probe system
US5429132A (en) 1990-08-24 1995-07-04 Imperial College Of Science Technology And Medicine Probe system
US5160337A (en) 1990-09-24 1992-11-03 Cosman Eric R Curved-shaped floor stand for use with a linear accelerator in radiosurgery
US5198877A (en) 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
USRE35816E (en) 1990-10-15 1998-06-02 Image Guided Technologies Inc. Method and apparatus for three-dimensional non-contact shape sensing
WO1992006645A1 (en) 1990-10-19 1992-04-30 St. Louis University Surgical probe locating system for head use
US6434415B1 (en) 1990-10-19 2002-08-13 St. Louis University System for use in displaying images of a body part
US5891034A (en) 1990-10-19 1999-04-06 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5622170A (en) 1990-10-19 1997-04-22 Image Guided Technologies, Inc. Apparatus for determining the position and orientation of an invasive portion of a probe inside a three-dimensional body
US5383454A (en) 1990-10-19 1995-01-24 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5851183A (en) 1990-10-19 1998-12-22 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5383454B1 (en) 1990-10-19 1996-12-31 Univ St Louis System for indicating the position of a surgical probe within a head on an image of the head
US5987349A (en) 1990-10-19 1999-11-16 Image Guided Technologies, Inc. Method for determining the position and orientation of two moveable objects in three-dimensional space
US5059789A (en) 1990-10-22 1991-10-22 International Business Machines Corp. Optical position and orientation sensor
US5219351A (en) 1990-10-24 1993-06-15 General Electric Cgr S.A. Mammograph provided with an improved needle carrier
US5823958A (en) 1990-11-26 1998-10-20 Truppe; Michael System and method for displaying a structural data image in real-time correlation with moveable body
US5211176A (en) 1990-11-30 1993-05-18 Fuji Photo Optical Co., Ltd. Ultrasound examination system
US5054492A (en) 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US5848967A (en) 1991-01-28 1998-12-15 Cosman; Eric R. Optically coupled frameless stereotactic system and method
US5662111A (en) 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US5228442A (en) 1991-02-15 1993-07-20 Cardiac Pathways Corporation Method for mapping, ablation, and stimulation using an endocardial catheter
US5161536A (en) 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
US5257636A (en) 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
US5107862A (en) 1991-05-06 1992-04-28 Fabian Carl E Surgical implement detector utilizing a powered marker
US5187475A (en) 1991-06-10 1993-02-16 Honeywell Inc. Apparatus for determining the position of an object
US5950629A (en) 1991-06-13 1999-09-14 International Business Machines Corporation System for assisting a surgeon during surgery
US5630431A (en) 1991-06-13 1997-05-20 International Business Machines Corporation System and method for augmentation of surgery
US6024695A (en) 1991-06-13 2000-02-15 International Business Machines Corporation System and method for augmentation of surgery
US5695500A (en) 1991-06-13 1997-12-09 International Business Machines Corporation System for manipulating movement of a surgical instrument with computer controlled brake
US5402801A (en) 1991-06-13 1995-04-04 International Business Machines Corporation System and method for augmentation of surgery
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5976156A (en) 1991-06-13 1999-11-02 International Business Machines Corporation Stereotaxic apparatus and method for moving an end effector
US5478343A (en) 1991-06-13 1995-12-26 Howmedica International, Inc. Targeting device for bone nails
US5445166A (en) 1991-06-13 1995-08-29 International Business Machines Corporation System for advising a surgeon
US5249581A (en) 1991-07-15 1993-10-05 Horbal Mark T Precision bone alignment
US5255680A (en) 1991-09-03 1993-10-26 General Electric Company Automatic gantry positioning for imaging systems
US5377678A (en) 1991-09-03 1995-01-03 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency fields
US5265610A (en) 1991-09-03 1993-11-30 General Electric Company Multi-planar X-ray fluoroscopy system using radiofrequency fields
US5251635A (en) 1991-09-03 1993-10-12 General Electric Company Stereoscopic X-ray fluoroscopy system using radiofrequency fields
US5211165A (en) 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5425367A (en) 1991-09-04 1995-06-20 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5645065A (en) 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5437277A (en) 1991-11-18 1995-08-01 General Electric Company Inductively coupled RF tracking system for use in invasive imaging of a living body
US5443066A (en) 1991-11-18 1995-08-22 General Electric Company Invasive system employing a radiofrequency tracking system
US5445150A (en) 1991-11-18 1995-08-29 General Electric Company Invasive system employing a radiofrequency tracking system
US5274551A (en) 1991-11-29 1993-12-28 General Electric Company Method and apparatus for real-time navigation assist in interventional radiological procedures
US5178621A (en) 1991-12-10 1993-01-12 Zimmer, Inc. Two-piece radio-transparent proximal targeting device for a locking intramedullary nail
US5386828A (en) 1991-12-23 1995-02-07 Sims Deltec, Inc. Guide wire apparatus with location sensing member
US5478341A (en) 1991-12-23 1995-12-26 Zimmer, Inc. Ratchet lock for an intramedullary nail locking bolt
US5233990A (en) 1992-01-13 1993-08-10 Gideon Barnea Method and apparatus for diagnostic imaging in radiation therapy
US5212720A (en) 1992-01-29 1993-05-18 Research Foundation-State University Of N.Y. Dual radiation targeting system
US5320111A (en) 1992-02-07 1994-06-14 Livingston Products, Inc. Light beam locator and guide for a biopsy needle
US5237996A (en) 1992-02-11 1993-08-24 Waldman Lewis K Endocardial electrical mapping catheter
US5315630A (en) 1992-03-11 1994-05-24 Bodenseewerk Geratetechnik Gmbh Positioning device in medical apparatus
US5515160A (en) 1992-03-12 1996-05-07 Aesculap Ag Method and apparatus for representing a work area in a three-dimensional structure
US5318025A (en) 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
US5271400A (en) 1992-04-01 1993-12-21 General Electric Company Tracking system to monitor the position and orientation of a device using magnetic resonance detection of a sample contained within the device
US5573533A (en) 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5389101A (en) 1992-04-21 1995-02-14 University Of Utah Apparatus and method for photogrammetric surgical localization
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5836954A (en) 1992-04-21 1998-11-17 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5749362A (en) 1992-05-27 1998-05-12 International Business Machines Corporation Method of creating an image of an anatomical feature where the feature is within a patient's body
US5572999A (en) 1992-05-27 1996-11-12 International Business Machines Corporation Robotic system for positioning a surgical instrument relative to a patient's body
US5426687A (en) 1992-07-07 1995-06-20 Innovative Care Ltd. Laser targeting device for use with image intensifiers in surgery
US5316024A (en) 1992-07-23 1994-05-31 Abbott Laboratories Tube placement verifier system
US5325873A (en) 1992-07-23 1994-07-05 Abbott Laboratories Tube placement verifier system
US5269759A (en) 1992-07-28 1993-12-14 Cordis Corporation Magnetic guidewire coupling for vascular dilatation apparatus
US5542938A (en) 1992-07-28 1996-08-06 Cordis Corporation Magnetic guidewire coupling for catheter exchange
US5487729A (en) 1992-07-28 1996-01-30 Cordis Corporation Magnetic guidewire coupling for catheter exchange
US5197965A (en) 1992-07-29 1993-03-30 Codman & Shurtleff, Inc. Skull clamp pin assembly
US5447154A (en) 1992-07-31 1995-09-05 Universite Joseph Fourier Method for determining the position of an organ
EP0581704B1 (en) 1992-07-31 2001-01-24 Universite Joseph Fourier Method for determining the position of an organ
EP0655138B1 (en) 1992-08-14 1998-04-29 BRITISH TELECOMMUNICATIONS public limited company Position location system
WO1994004938A1 (en) 1992-08-14 1994-03-03 British Telecommunications Public Limited Company Position location system
US5913820A (en) 1992-08-14 1999-06-22 British Telecommunications Public Limited Company Position location system
US5368030A (en) 1992-09-09 1994-11-29 Izi Corporation Non-invasive multi-modality radiographic surface markers
US5297549A (en) 1992-09-23 1994-03-29 Endocardial Therapeutics, Inc. Endocardial mapping system
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
US5513637A (en) 1992-09-29 1996-05-07 Hdc Corporation Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue
US5375596A (en) 1992-09-29 1994-12-27 Hdc Corporation Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue
US5394457A (en) 1992-10-08 1995-02-28 Leibinger Gmbh Device for marking body sites for medical examinations
DE4233978C1 (en) 1992-10-08 1994-04-21 Leibinger Gmbh Body marking device for medical examinations
US5456718A (en) 1992-11-17 1995-10-10 Szymaitis; Dennis W. Apparatus for detecting surgical objects within the human body
US5309913A (en) 1992-11-30 1994-05-10 The Cleveland Clinic Foundation Frameless stereotaxy system
US5776064A (en) 1992-11-30 1998-07-07 The Cleveland Clinic Foundation Frameless stereotaxy system for indicating the position and axis of a surgical probe
US5517990A (en) 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5732703A (en) 1992-11-30 1998-03-31 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5305091A (en) 1992-12-07 1994-04-19 Oreo Products Inc. Optical coordinate measuring system for large objects
US5353807A (en) 1992-12-07 1994-10-11 Demarco Thomas J Magnetically guidable intubation device
US5353795A (en) 1992-12-10 1994-10-11 General Electric Company Tracking system to monitor the position of a device using multiplexed magnetic resonance detection
US5427097A (en) 1992-12-10 1995-06-27 Accuray, Inc. Apparatus for and method of carrying out stereotaxic radiosurgery and radiotherapy
US5353800A (en) 1992-12-11 1994-10-11 Medtronic, Inc. Implantable pressure sensor lead
US5385146A (en) 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5333168A (en) 1993-01-29 1994-07-26 Oec Medical Systems, Inc. Time-based attenuation compensation
US5400384A (en) 1993-01-29 1995-03-21 Oec Medical Systems, Inc. Time-based attenuation compensation
US5423334A (en) 1993-02-01 1995-06-13 C. R. Bard, Inc. Implantable medical device characterization system
US5448610A (en) 1993-02-09 1995-09-05 Hitachi Medical Corporation Digital X-ray photography device
US5769789A (en) 1993-02-12 1998-06-23 George S. Allen Automatic technique for localizing externally attached fiducial markers in volume images of the head
US5595193A (en) 1993-02-12 1997-01-21 Walus; Richard L. Tool for implanting a fiducial marker
US5730130A (en) 1993-02-12 1998-03-24 Johnson & Johnson Professional, Inc. Localization cap for fiducial markers
US5799099A (en) 1993-02-12 1998-08-25 George S. Allen Automatic technique for localizing externally attached fiducial markers in volume images of the head
US5551429A (en) 1993-02-12 1996-09-03 Fitzpatrick; J. Michael Method for relating the data of an image space to physical space
US5575794A (en) 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
US5715836A (en) 1993-02-16 1998-02-10 Kliegis; Ulrich Method and apparatus for planning and monitoring a surgical operation
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5787886A (en) 1993-03-19 1998-08-04 Compass International Incorporated Magnetic field digitizer for stereotatic surgery
US5458718A (en) 1993-03-19 1995-10-17 Vip Industries Limited Heat sealing method for making a luggage case
US5483961A (en) 1993-03-19 1996-01-16 Kelly; Patrick J. Magnetic field digitizer for stereotactic surgery
US5810728A (en) 1993-04-03 1998-09-22 U.S. Philips Corporation MR imaging method and apparatus for guiding a catheter
US5453686A (en) 1993-04-08 1995-09-26 Polhemus Incorporated Pulsed-DC position and orientation measurement system
US5920395A (en) 1993-04-22 1999-07-06 Image Guided Technologies, Inc. System for locating relative positions of objects in three dimensional space
WO1994023647A1 (en) 1993-04-22 1994-10-27 Pixsys, Inc. System for locating relative positions of objects
US5871445A (en) 1993-04-26 1999-02-16 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
WO1994024933A1 (en) 1993-04-26 1994-11-10 St. Louis University Indicating the position of a surgical probe
US5325728A (en) 1993-06-22 1994-07-05 Medtronic, Inc. Electromagnetic flow meter
US5443489A (en) 1993-07-20 1995-08-22 Biosense, Inc. Apparatus and method for ablation
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5694945A (en) 1993-07-20 1997-12-09 Biosense, Inc. Apparatus and method for intrabody mapping
US5840025A (en) 1993-07-20 1998-11-24 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5713946A (en) 1993-07-20 1998-02-03 Biosense, Inc. Apparatus and method for intrabody mapping
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5568809A (en) 1993-07-20 1996-10-29 Biosense, Inc. Apparatus and method for intrabody mapping
US5480422A (en) 1993-07-20 1996-01-02 Biosense, Inc. Apparatus for treating cardiac arrhythmias
US5487757A (en) 1993-07-20 1996-01-30 Medtronic Cardiorhythm Multicurve deflectable catheter
US5546951A (en) 1993-07-20 1996-08-20 Biosense, Inc. Method and apparatus for studying cardiac arrhythmias
US5385148A (en) 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5755725A (en) 1993-09-07 1998-05-26 Deemed International, S.A. Computer-assisted microsurgery methods and equipment
US5425382A (en) 1993-09-14 1995-06-20 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US5622169A (en) 1993-09-14 1997-04-22 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US5964796A (en) 1993-09-24 1999-10-12 Cardiac Pathways Corporation Catheter assembly, catheter and multi-port introducer for use therewith
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5833608A (en) 1993-10-06 1998-11-10 Biosense, Inc. Magnetic determination of position and orientation
US5446548A (en) 1993-10-08 1995-08-29 Siemens Medical Systems, Inc. Patient positioning and monitoring system
US5464446A (en) 1993-10-12 1995-11-07 Medtronic, Inc. Brain lead anchoring system
US5840024A (en) 1993-10-18 1998-11-24 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6059718A (en) 1993-10-18 2000-05-09 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US5938694A (en) 1993-11-10 1999-08-17 Medtronic Cardiorhythm Electrode array catheter
US5399146A (en) 1993-12-13 1995-03-21 Nowacki; Christopher Isocentric lithotripter
US5403321A (en) 1993-12-15 1995-04-04 Smith & Nephew Richards Inc. Radiolucent drill guide
US5445144A (en) 1993-12-16 1995-08-29 Purdue Research Foundation Apparatus and method for acoustically guiding, positioning, and monitoring a tube within a body
US5741214A (en) 1993-12-20 1998-04-21 Terumo Kabushiki Kaisha Accessory pathway detecting/cauterizing apparatus
US5531227A (en) 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
US5487391A (en) 1994-01-28 1996-01-30 Ep Technologies, Inc. Systems and methods for deriving and displaying the propagation velocities of electrical events in the heart
US5546940A (en) 1994-01-28 1996-08-20 Ep Technologies, Inc. System and method for matching electrical characteristics and propagation velocities in cardiac tissue to locate potential ablation sites
US5485849A (en) 1994-01-31 1996-01-23 Ep Technologies, Inc. System and methods for matching electrical characteristics and propagation velocities in cardiac tissue
US5800535A (en) 1994-02-09 1998-09-01 The University Of Iowa Research Foundation Wireless prosthetic electrode for the brain
US5444756A (en) 1994-02-09 1995-08-22 Minnesota Mining And Manufacturing Company X-ray machine, solid state radiation detector and method for reading radiation detection information
US5596228A (en) 1994-03-10 1997-01-21 Oec Medical Systems, Inc. Apparatus for cooling charge coupled device imaging systems
US5503416A (en) 1994-03-10 1996-04-02 Oec Medical Systems, Inc. Undercarriage for X-ray diagnostic equipment
US5802719A (en) 1994-03-14 1998-09-08 Oec Medical Systems, Inc. One piece C-arm for X-ray diagnostic equipment
US5426683A (en) 1994-03-14 1995-06-20 Oec Medical Systems, Inc. One piece C-arm for X-ray diagnostic equipment
US5543951A (en) 1994-03-15 1996-08-06 Siemens Aktiengesellschaft Method for receive-side clock supply for video signals digitally transmitted with ATM in fiber/coaxial subscriber line networks
US5792055A (en) 1994-03-18 1998-08-11 Schneider (Usa) Inc. Guidewire antenna
US5490196A (en) 1994-03-18 1996-02-06 Metorex International Oy Multi energy system for x-ray imaging applications
US5546949A (en) 1994-04-26 1996-08-20 Frazin; Leon Method and apparatus of logicalizing and determining orientation of an insertion end of a probe within a biotic structure
US5795294A (en) 1994-05-21 1998-08-18 Carl-Zeiss-Stiftung Procedure for the correlation of different coordinate systems in computer-supported, stereotactic surgery
US5419325A (en) 1994-06-23 1995-05-30 General Electric Company Magnetic resonance (MR) angiography using a faraday catheter
US5871487A (en) 1994-06-24 1999-02-16 Cytotherpeutics, Inc. Microdrive for use in stereotactic surgery
US5600330A (en) 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
US5619261A (en) 1994-07-25 1997-04-08 Oec Medical Systems, Inc. Pixel artifact/blemish filter for use in CCD video camera
EP0894473A2 (en) 1994-08-19 1999-02-03 Biosense, Inc. Medical diagnosis, treatment and imaging systems
US5531520A (en) 1994-09-01 1996-07-02 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets including anatomical body data
US5999840A (en) 1994-09-01 1999-12-07 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets
US5749835A (en) 1994-09-06 1998-05-12 Sims Deltec, Inc. Method and apparatus for location of a catheter tip
US6341231B1 (en) 1994-09-15 2002-01-22 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5702406A (en) 1994-09-15 1997-12-30 Brainlab Med. Computersysteme Gmbb Device for noninvasive stereotactic immobilization in reproducible position
US5967980A (en) 1994-09-15 1999-10-19 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5800352A (en) 1994-09-15 1998-09-01 Visualization Technology, Inc. Registration system for use with position tracking and imaging system for use in medical applications
US5676673A (en) 1994-09-15 1997-10-14 Visualization Technology, Inc. Position tracking and imaging system with error detection for use in medical applications
US6445943B1 (en) 1994-09-15 2002-09-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5628315A (en) 1994-09-15 1997-05-13 Brainlab Med. Computersysteme Gmbh Device for detecting the position of radiation target points
US5803089A (en) 1994-09-15 1998-09-08 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US6175756B1 (en) 1994-09-15 2001-01-16 Visualization Technology Inc. Position tracking and imaging system for use in medical applications
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5873822A (en) 1994-09-15 1999-02-23 Visualization Technology, Inc. Automatic registration system for use with position tracking and imaging system for use in medical applications
US5643268A (en) 1994-09-27 1997-07-01 Brainlab Med. Computersysteme Gmbh Fixation pin for fixing a reference system to bony structures
US5695501A (en) 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US5891157A (en) 1994-09-30 1999-04-06 Ohio Medical Instrument Company, Inc. Apparatus for surgical stereotactic procedures
WO1996011624A3 (en) 1994-10-07 1996-07-18 Univ St Louis Surgical navigation systems including reference and localization frames
US6001130A (en) 1994-11-14 1999-12-14 Bryan; Vincent Human spinal disc prosthesis with hinges
US5865846A (en) 1994-11-14 1999-02-02 Bryan; Vincent Human spinal disc prosthesis
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US6156067A (en) 1994-11-14 2000-12-05 Spinal Dynamics Corporation Human spinal disc prosthesis
US5690108A (en) 1994-11-28 1997-11-25 Chakeres; Donald W. Interventional medicine apparatus
US5583909A (en) 1994-12-20 1996-12-10 Oec Medical Systems, Inc. C-arm mounting structure for mobile X-ray imaging system
US5583909C1 (en) 1994-12-20 2001-03-27 Oec Medical Systems Inc C-arm mounting structure for mobile x-ray imaging system
US5762064A (en) 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
US5758667A (en) 1995-01-26 1998-06-02 Siemens Elema Ab Device for locating a port on a medical implant
US5947981A (en) 1995-01-31 1999-09-07 Cosman; Eric R. Head and neck localizer
US5971997A (en) 1995-02-03 1999-10-26 Radionics, Inc. Intraoperative recalibration apparatus for stereotactic navigators
US5588430A (en) 1995-02-14 1996-12-31 University Of Florida Research Foundation, Inc. Repeat fixation for frameless stereotactic procedure
US5954647A (en) 1995-02-14 1999-09-21 University Of Florida Research Foundation, Inc. Marker system and related stereotactic procedure
US5807252A (en) 1995-02-23 1998-09-15 Aesculap Ag Method and apparatus for determining the position of a body part
US5810735A (en) 1995-02-27 1998-09-22 Medtronic, Inc. External patient reference sensors
US5636644A (en) 1995-03-17 1997-06-10 Applied Medical Resources Corporation Method and apparatus for endoconduit targeting
US5664001A (en) 1995-03-24 1997-09-02 J. Morita Manufacturing Corporation Medical X-ray imaging apparatus
US5797849A (en) 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5730129A (en) 1995-04-03 1998-03-24 General Electric Company Imaging of interventional devices in a non-stationary subject
US5640170A (en) 1995-06-05 1997-06-17 Polhemus Incorporated Position and orientation measuring system having anti-distortion source configuration
US5617857A (en) 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
US5718241A (en) 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
WO1996041119A1 (en) 1995-06-07 1996-12-19 Biosense, Inc. Magnetic location system with adaptive feedback control
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5843076A (en) 1995-06-12 1998-12-01 Cordis Webster, Inc. Catheter with an electromagnetic guidance sensor
USRE40852E1 (en) 1995-06-14 2009-07-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe
USRE41066E1 (en) 1995-06-14 2009-12-29 Metronic Navigation, Inc. Method and system for navigating a catheter probe
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US5627873B1 (en) 1995-08-04 2000-03-14 Oec Medical Systems Mini c-arm assembly for mobile x-ray imaging system
US5627873A (en) 1995-08-04 1997-05-06 Oec Medical Systems, Inc. Mini C-arm assembly for mobile X-ray imaging system
US5642395A (en) 1995-08-07 1997-06-24 Oec Medical Systems, Inc. Imaging chain with miniaturized C-arm assembly for mobile X-ray imaging system
US5617462A (en) 1995-08-07 1997-04-01 Oec Medical Systems, Inc. Automatic X-ray exposure control system and method of use
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5769861A (en) 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument
US5715822A (en) 1995-09-28 1998-02-10 General Electric Company Magnetic resonance devices suitable for both tracking and imaging
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US5772594A (en) 1995-10-17 1998-06-30 Barrick; Earl F. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
US5983126A (en) 1995-11-22 1999-11-09 Medtronic, Inc. Catheter location system and method
US5868674A (en) 1995-11-24 1999-02-09 U.S. Philips Corporation MRI-system and catheter for interventional procedures
US5884410A (en) 1995-12-21 1999-03-23 Carl-Zeiss-Stiftung Sensing system for coordinate measuring equipment
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US5727552A (en) 1996-01-11 1998-03-17 Medtronic, Inc. Catheter and electrical lead location system
US5711299A (en) 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
US6498944B1 (en) 1996-02-01 2002-12-24 Biosense, Inc. Intrabody measurement
US6332089B1 (en) 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US5735278A (en) 1996-03-15 1998-04-07 National Research Council Of Canada Surgical procedure with magnetic resonance imaging
US5727553A (en) 1996-03-25 1998-03-17 Saad; Saad A. Catheter with integral electromagnetic location identification device
US5968047A (en) 1996-04-05 1999-10-19 Reed; Thomas Mills Fixation devices
US5782765A (en) 1996-04-25 1998-07-21 Medtronic, Inc. Medical positioning system
US5871455A (en) 1996-04-30 1999-02-16 Nikon Corporation Ophthalmic apparatus
US5799055A (en) 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
US5742394A (en) 1996-06-14 1998-04-21 Ascension Technology Corporation Optical 6D measurement system with two fan shaped beams rotating around one axis
US5767669A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Magnetic field position and orientation measurement system with dynamic eddy current rejection
US5775322A (en) 1996-06-27 1998-07-07 Lucent Medical Systems, Inc. Tracheal tube and methods related thereto
US5828725A (en) 1996-07-03 1998-10-27 Eliav Medical Imaging Systems Ltd Processing images for removal of artifacts
US5823192A (en) 1996-07-31 1998-10-20 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for automatically positioning a patient for treatment/diagnoses
US5744953A (en) 1996-08-29 1998-04-28 Ascension Technology Corporation Magnetic motion tracker with transmitter placed on tracked object
WO1998008554A1 (en) 1996-08-29 1998-03-05 Medtronic, Inc. Brain stimulation system having an improved anchor for a lead or catheter
US5831260A (en) 1996-09-10 1998-11-03 Ascension Technology Corporation Hybrid motion tracker
US6131396A (en) 1996-09-27 2000-10-17 Siemens Aktiengesellschaft Heat radiation shield, and dewar employing same
US5904691A (en) 1996-09-30 1999-05-18 Picker International, Inc. Trackable guide block
US5980535A (en) 1996-09-30 1999-11-09 Picker International, Inc. Apparatus for anatomical tracking
US6016439A (en) 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
US6063022A (en) 1997-01-03 2000-05-16 Biosense, Inc. Conformal catheter
US6122538A (en) 1997-01-16 2000-09-19 Acuson Corporation Motion--Monitoring method and system for medical devices
US6050724A (en) 1997-01-31 2000-04-18 U. S. Philips Corporation Method of and device for position detection in X-ray imaging
US5928248A (en) 1997-02-14 1999-07-27 Biosense, Inc. Guided deployment of stents
WO1998038908A1 (en) 1997-03-03 1998-09-11 Schneider Medical Technologies, Inc. Imaging device and method
US6019725A (en) 1997-03-07 2000-02-01 Sonometrics Corporation Three-dimensional tracking and imaging system
US5921992A (en) 1997-04-11 1999-07-13 Radionics, Inc. Method and system for frameless tool calibration
US6223067B1 (en) 1997-04-11 2001-04-24 Brainlab Med. Computersysteme Gmbh Referencing device including mouthpiece
US5834759A (en) 1997-05-22 1998-11-10 Glossop; Neil David Tracking device having emitter groups with different emitting directions
US5907395A (en) 1997-06-06 1999-05-25 Image Guided Technologies, Inc. Optical fiber probe for position measurement
US5951475A (en) 1997-09-25 1999-09-14 International Business Machines Corporation Methods and apparatus for registering CT-scan data to multiple fluoroscopic images
US5987960A (en) 1997-09-26 1999-11-23 Picker International, Inc. Tool calibrator
US5999837A (en) 1997-09-26 1999-12-07 Picker International, Inc. Localizing and orienting probe for view devices
US5923727A (en) 1997-09-30 1999-07-13 Siemens Corporate Research, Inc. Method and apparatus for calibrating an intra-operative X-ray system
US6139183A (en) 1997-10-17 2000-10-31 Siemens Aktiengesellschaft X-ray exposure system for 3D imaging
US6104944A (en) 1997-11-17 2000-08-15 Martinelli; Michael A. System and method for navigating a multiple electrode catheter
US6149592A (en) 1997-11-26 2000-11-21 Picker International, Inc. Integrated fluoroscopic projection image data, volumetric image data, and surgical device position data
US5938603A (en) 1997-12-01 1999-08-17 Cordis Webster, Inc. Steerable catheter with electromagnetic sensor
US6073043A (en) 1997-12-22 2000-06-06 Cormedica Corporation Measuring position and orientation using magnetic fields
US6298262B1 (en) 1998-04-21 2001-10-02 Neutar, Llc Instrument guidance for stereotactic surgery
US6273896B1 (en) 1998-04-21 2001-08-14 Neutar, Llc Removable frames for stereotactic localization
WO1999060939A1 (en) 1998-05-28 1999-12-02 Orthosoft, Inc. Interactive computer-assisted surgical system and method thereof
US6118845A (en) 1998-06-29 2000-09-12 Surgical Navigation Technologies, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers
US6701179B1 (en) 1999-10-28 2004-03-02 Michael A. Martinelli Coil structures and methods for generating magnetic fields
WO2001030437A1 (en) 1999-10-28 2001-05-03 Winchester Development Associates Patient-shielding and coil system
DE10085137B4 (en) 1999-10-28 2010-07-08 Surgical Navigation Technologies, Inc., Louisville Integrated surgical anchor / localization sensor assembly

Non-Patent Citations (71)

* Cited by examiner, † Cited by third party
Title
Adams et al., "Orientation Aid for Head and Neck Surgeons," Innov. Tech. Biol. Med., vol. 13, No. 4, 1992, pp. 409-424.
Barrick et al., "Prophylactic Intramedullary Fixation of the Tibia for Stress Fracture in a Professional Athlete," Journal of Orthopaedic Trauma, vol. 6, No. 2, pp. 241-244 (1992).
Barrick et al., "Technical Difficulties with the Brooker-Wills Nail in Acute Fractures of the Femur," Journal of Orthopaedic Trauma, vol. 6, No. 2, pp. 144-150 (1990).
Barrick, "Distal Locking Screw Insertion Using a Cannulated Drill Bit: Technical Note," Journal of Orthopaedic Trauma, vol. 7, No. 3, 1993, pp. 248-251.
Batnitzky et al., "Three-Dimensinal Computer Reconstructions of Brain Lesions from Surface Contours Provided by Computed Tomography: A Prospectus," Neurosurgery, vol. 11, No. 1, Part 1, 1982, pp. 73-84.
Bouazza-Marouf et al.; "Robotic-Assisted Internal Fixation of Femoral Fractures", IMECHE., pp. 51-58 (1995).
Brack et al., "Accurate X-ray Based Navigation in Computer-Assisted Orthopedic Surgery," CAR '98, pp. 716-722.
Bryan, "Bryan Cervical Disc System Single Level Surgical Technique", Spinal Dynamics, 2002, pp. 1-33.
Bucholz et al., "Variables affecting the accuracy of stereotactic localizationusing computerized tomography," Journal of Neurosurgery, vol. 79, Nov. 1993, pp. 667-673.
Champleboux et al., "Accurate Calibration of Cameras and Range Imaging Sensors: the NPBS Method," IEEE International Conference on Robotics and Automation, Nice, France, May 1992.
Champleboux, "Utilisation de Fonctions Splines pour la Mise au Point D'un Capteur Tridimensionnel sans Contact," Quelques Applications Medicales, Jul. 1991.
Cinquin et al., "Computer Assisted Medical Interventions," IEEE Engineering in Medicine and Biology, May/Jun. 1995, pp. 254-263.
Cinquin et al., "Computer Assisted Medical Interventions," International Advanced Robotics Programme, Sep. 1989, pp. 63-65.
Clarysse et al., "A Computer-Assisted System for 3-D Frameless Localization in Sterotaxic MRI," IEEE Transactions on Medical Imaging, vol. 10, No. 4, Dec. 1991, pp. 523-529.
Edward C. Benzel et al., "Magnetic Source Imaging: a Review of the Magnes System of Biomagnetic Technologies Incorporated," Nurosurgery, vol. 33, No. 2 (Aug. 1993), p. 252-259.
European Search Report for EP08015069 mailed Oct. 7, 2008, which is a divisional of EPSN 96919360.6, filed Jun. 11, 1996; which is a national phase of PCT/US1996/010050, filed Jun. 11, 1996; which claims priority to USSN 08/490342, filed Jun. 14, 1995.
Feldmar et al., "3D-2D Projective Registration of Free-Form Curves and Surfaces," Rapport de recherche (Inria Sophia Antipolis), 1994, pp. 1-44.
Foley et al., "Fundamentals of Interactive Computer Graphics," The Systems Programming Series, Chapter 7, Jul. 1984, pp. 245-266.
Foley et al., "Image-guided Intraoperative Spinal Localization," Intraoperative Neuroprotection, Chapter 19, 1996, pp. 325-340.
Foley, "The StealthStation: Three-Dimensional Image-Interactive Guidance for the Spine Surgeon," Spinal Frontiers, Apr. 1996, pp. 7-9.
Germano, "Instrumentation, Technique and Technology", Neurosurgery, vol. 37, No. 2, Aug. 1995, pp. 348-350.
Gildenberg et al., "Calculation of Stereotactic Coordinates from the Computed Tomographic Scan," Neurosurgery, vol. 10, No. 5, May 1982, pp. 580-586.
Gonzalez, "Digital Image Fundamentals," Digital Image processing, Second Edition, 1987, pp. 52-54.
Gottesfeld Brown et al., "Registration of Planar Film Radiographs with Computer Tomography," Proceedings of MMBIA, Jun. 1996, pp. 42-51.
Gueziec et al., "Registration of Computed Tomography Data to a Surgical Robot Using Fluoroscopy: A Feasibility Study," Computer Science/Mathematics, Sep. 27, 1996, 6 pages.
Hamadeh et al., "Automated 3-Dimensional Computed Tomographic and Fluoroscopic Image Registration," Computer Aided Surgery (1998), 3:11-19.
Hamadeh et al., "Towards Automatic Registration Between CT and X-ray Images: Cooperation Between 3D/2D Registration and 2D Edge Detection," MRCAS '95, pp. 39-46.
Hatch, "Reference-Display System for the Integration of CT Scanning and the Operating Microscope," Thesis, Thayer School of Engineering, Oct. 1984, pp. 1-189.
Hatch, et al., "Reference-Display System for the Integration of CT Scanning and the Operating Microscope", Proceedings of the Eleventh Annual Northeast Bioengineering Conference, May 1985, pp. 252-254.
Heilbrun et al., "Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system," Journal of Neurosurgery, vol. 59, Aug. 1983, pp. 217-222.
Henderson et al., "An Accurate and Ergonomic Method of Registration for Image-guided Neurosurgery," Computerized Medical Imaging and Graphics, vol. 18, No. 4, Jul.-Aug. 1994, pp. 273-277.
Hoerenz, "The Operating Microscope I. Optical Principles, Illumination Systems, and Support Systems, " Journal of Microsurgery, vol. 1, 1980, pp. 364-369.
Hofstetter et al., "Fluoroscopy Based Surgical Navigation-Concept and Clinical Applications," Computer Assisted Radiology and Surgery, 1997, pp. 956-960.
Horner et al., "A Comparison of CT-Stereotaxic Brain Biopsy Techniques," Investigative Radiology, Sep.-Oct. 1984, pp. 367-373.
Hounsfield, "Computerized transverse axial scanning (tomography): Part 1. Description of system," British Journal of Radiology, vol. 46, No. 552, Dec. 1973, pp. 1016-1022.
Jacques et al., "A Computerized Microstereotactic Method to Approach, 3-Dimensionally Reconstruct, Remove and Adjuvantly Treat Small CNS Lesions," Applied Neurophysiology, vol. 43, 1980, pp. 176-182.
Jacques et al., "Computerized three-dimensional stereotaxic removal of small central nervous system lesion in patients," J. Neurosurg., vol. 53, Dec. 1980, pp. 816-820.
Joskowicz et al., "Computer-Aided Image-Guided Bone Fracture Surgery: Concept and Implementation," CAR '98, pp. 710-715.
Kelly et al., "Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms," Journal of Neurosurgery, vol. 64, Mar. 1986, pp. 427-439.
Kelly et al., "Precision Resection of Intra-Axial CNS Lesions by CT-Based Stereotactic Craniotomy and Computer Monitored CO2 Laser," Acta Neurochirurgica, vol. 68, 1983, pp. 1-9.
Laitinen et al., "An Adapter for Computed Tomography-Guided, Stereotaxis," Surg. Neurol., 1985, pp. 559-566.
Laitinen, "Noninvasive multipurpose stereoadapter," Neurological Research, Jun. 1987, pp. 137-141.
Lavallee et al, "Matching 3-D Smooth Surfaces with their 2-D Projections using 3-D Distance Maps," SPIE, vol. 1570, Geometric Methods in Computer Vision, 1991, pp. 322-336.
Lavallee et al., "Computer Assisted Driving of a Needle into the Brain," Proceedings of the International Symposium CAR '89, Computer Assisted Radiology, 1989, pp. 416-420.
Lavallee et al., "Computer Assisted Interventionist Imaging: The Instance of Stereotactic Brain Surgery," North-Holland MEDINFO 89, Part 1, 1989, pp. 613-617.
Lavallee et al., "Image guided operating robot: a clinical application in stereotactic neurosurgery," Proceedings of the 1992 IEEE Internation Conference on Robotics and Automation, May 1992, pp. 618-624.
Lavallee et al., "Matching of Medical Images for Computed and Robot Assisted Surgery," IEEE EMBS, Orlando, 1991.
Lavallee, "A New System for Computer Assisted Neurosurgery," IEEE Engineering in Medicine & Biology Society 11th Annual International Conference, 1989, pp. 0926-0927.
Leksell et al., "Stereotaxis and Tomography-A Technical Note," ACTA Neurochirurgica, vol. 52, 1980, pp. 1-7.
Lemieux et al., "A Patient-to-Computed-Tomography Image Registration Method Based on Digitally Reconstructed Radiographs," Med. Phys. 21 (11), Nov. 1994, pp. 1749-1760.
Levin et al., "The Brain: Integrated Three-dimensional Display of MR and PET Images," Radiology, vol. 172, No. 3, Sep. 1989, pp. 783-789.
Mazier et al., "Computer-Assisted Interventionist Imaging: Application to the Vertebral Column Surgery," Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, No. 1, 1990, pp. 0430-0431.
Mazier et al., Chirurgie de la Colonne Vertebrate Assistee par Ordinateur: Appication au Vissage Pediculaire, Innov. Tech. Biol. Med., vol. 11, No. 5, 1990, pp. 559-566.
Pelizzari et al., "Accurate Three-Dimensional Registration of CT, PET, and/or MR Images of the Brain," Journal of Computer Assisted Tomography, Jan./Feb. 1989, pp. 20-26.
Pelizzari et al., "Interactive 3D Patient-Image Registration," Information Processing in Medical Imaging, 12th International Conference, IPMI '91, Jul. 7-12, 136-141 (A.C.F. Colchester et al. eds. 1991).
Pelizzari et al., No. 528-"Three Dimensional Correlation of PET, CT and MRI Images," The Journal of Nuclear Medicine, vol. 28, No. 4, Apr. 1987, p. 682.
Phillips et al., "Image Guided Orthopaedic Surgery Design and Analysis," Trans Inst. MC, vol. 17, No. 5, 1995, pp. 251-264.
Potamianos et al., "Intra-Operative Imaging Guidance for Keyhole Surgery Methodology and Calibration," First International Symposium on Medical Robotics and Computer Assisted Surgery, Sep. 22-24, 1994, pp. 98-104.
Reinhardt et al., "CT-Guided 'Real Time' Stereotaxy," ACTA Neurochirurgica, 1989.
Roberts et al., "A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope," J. Neurosurg., vol. 65, Oct. 1986, pp. 545-549.
Rosenbaum et al., "Computerized Tomography Guided Stereotaxis: A New Approach," Applied Neurophysiology, vol. 43, No. 3-5, 1980, pp. 172-173.
Sautot, "Vissage Pediculaire Assiste Par Ordinateur," Sep. 20, 1994.
Schueler et al., "Correction of Image Intensifier Distortion for Three-Dimensional X-Ray Angiography," SPIE Medical Imaging 1995, vol. 2432, pp. 272-279.
Selvik et al., "A Roentgen Stereophotogrammetric System," Acta Radiologica Diagnosis, 1983, pp. 343-352.
Shelden et al., "Development of a computerized microsteroetaxic method for localization and removal of minute CNS lesions under direct 3-D vision," J. Neurosurg., vol. 52, 1980, pp. 21-27.
Smith et al., "Computer Methods for Improved Diagnostic Image Display Applied to Stereotactic Neurosurgery," Automedical, vol. 14, 1992, pp. 371-382.
Smith et al., "The Neurostation.(TM)-A Highly Accurate, Minimally Invasive Solution to Frameless Stereotactic Neurosurgery," Computerized Medical Imaging and Graphics, vol. 18, Jul.-Aug. 1994, pp. 247-256.
Smith et al., "The Neurostation.™—A Highly Accurate, Minimally Invasive Solution to Frameless Stereotactic Neurosurgery," Computerized Medical Imaging and Graphics, vol. 18, Jul.-Aug. 1994, pp. 247-256.
Viant et al., "A Computer Assisted Orthopaedic System for Distal Locking of Intramedullary Nails," Proc. of MediMEC '95, Bristol, 1995, pp. 86-91.
Watanabe et al., "Three-Dimensional Digitizer (Neuronavigator): New Equipment for Computed Tomography-Guided Stereotaxic Surgery," Surgical Neurology, vol. 27, No. 6, Jun. 1987, pp. 543-547.
Watanabe, "Neuronavigator," Igaku-no-Ayumi, vol. 137, No. 6, May 10, 1986, pp. 1-4.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10188831B2 (en) 2013-03-14 2019-01-29 Angiodynamics, Inc. Systems and methods for catheter tip placement using ECG
US11607150B2 (en) 2014-04-08 2023-03-21 Angiodynamics Va Llc Medical device placement system and a method for its use
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10646201B2 (en) 2014-11-18 2020-05-12 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US10905396B2 (en) 2014-11-18 2021-02-02 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US11696746B2 (en) 2014-11-18 2023-07-11 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US20210052201A1 (en) * 2019-08-22 2021-02-25 Biosense Webster (Israel) Ltd. Brain clot characterization using optical fibers having diffusive elements

Also Published As

Publication number Publication date
EP1990000B1 (en) 2013-05-29
DE69637662D1 (en) 2008-10-09
USRE41066E1 (en) 2009-12-29
EP0836413A1 (en) 1998-04-22
US5592939A (en) 1997-01-14
USRE40852E1 (en) 2009-07-14
WO1997000043A1 (en) 1997-01-03
EP0836413B1 (en) 2008-08-27
JPH11510406A (en) 1999-09-14
EP1990000A1 (en) 2008-11-12
EP0836413A4 (en) 1999-06-16

Similar Documents

Publication Publication Date Title
USRE43750E1 (en) Method for navigating a catheter probe
US7797032B2 (en) Method and system for navigating a catheter probe in the presence of field-influencing objects
US8249689B2 (en) Coil arrangement for electromagnetic tracking method and system
EP0722290B1 (en) Magnetic determination of position and orientation
US6484118B1 (en) Electromagnetic position single axis system
JP5581042B2 (en) Object tracking system
US7809421B1 (en) Medical system calibration with static metal compensation
US6516213B1 (en) Method and apparatus to estimate location and orientation of objects during magnetic resonance imaging
US20090115406A1 (en) System and method for minimizing mutual inductance coupling between coils in an electromagnetic tracking system
KR20080017275A (en) Distortion-immune position tracking using frequency extrapolation
EP1112025B1 (en) Method and apparatus to estimate location and orientation of objects during magnetic resonance imaging
KR20040045363A (en) Dynamic metal immunity
Schneider Electromagnetic tracking for catheter localization
AU6442199A (en) Magnetic determination of position and orientation

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WINCHESTER DEVELOPMENT ASSOCIATES, MICHAEL MARTINELLI, AND ENTERPRISE MEDICAL TECHNOLOGY AND DEHON, INC.;REEL/FRAME:029225/0663

Effective date: 19961029

Owner name: SURGICAL NAVIGATION TECHNOLOGIES, INC., COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTINELLI, MICHAEL A.;WINCHESTER DEVELOPMENT ASSOCIATES;ENTERPRISE MEDICAL TECHNOLOGY AND DEHON, INC.;SIGNING DATES FROM 20030731 TO 20041222;REEL/FRAME:029225/0850

Owner name: MEDTRONIC NAVIGATION, INC., COLORADO

Free format text: CHANGE OF NAME;ASSIGNOR:SURGICAL NAVIGATION TECHNOLOGIES, INC.;REEL/FRAME:029229/0069

Effective date: 20041220

Owner name: MARTINELLI, MICHAEL A., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC, INC.;REEL/FRAME:029225/0774

Effective date: 19980625

Owner name: WINCHESTER DEVELOPMENT ASSOCIATES, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC, INC.;REEL/FRAME:029225/0774

Effective date: 19980625

Owner name: MARTINELLI, MICHAEL A., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAASE, WAYNE C.;REEL/FRAME:029225/0806

Effective date: 20010921