Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE43328 E1
Publication typeGrant
Application numberUS 10/062,265
Publication date24 Apr 2012
Filing date31 Jan 2002
Priority date20 Nov 1997
Also published asUS6021343, WO1999026549A1
Publication number062265, 10062265, US RE43328 E1, US RE43328E1, US-E1-RE43328, USRE43328 E1, USRE43328E1
InventorsKevin T. Foley, Anthony J. Melkent, Catalina J. Carroll
Original AssigneeMedtronic Navigation, Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Image guided awl/tap/screwdriver
US RE43328 E1
Abstract
A trackable medical instrument for use in a computer assisted image guided medical and surgical navigation systems that generate images during medical and surgical procedures, includes a guide member having an emitter array for being tracked by the system and a drive shaft contained within the guide member having a proximal and a distal end, the drive shaft being rotatable within the guide member while being fixable axially inside the guide member, the proximal end of the drive shaft having a first connector for interchangeably receiving at least one drive source, and the distal end having a second connector for interchangeably receiving at least one instrument tip.
Images(6)
Previous page
Next page
Claims(88)
1. A trackable medical instrument for use in a computer assisted image guided surgery system having a digitizer for tracking the position of the instrument in three dimensional space and a display providing an indication of the position of the instrument with respect to images of a body part taketaken preoperatively, the instrument comprising:
a guide member having an emitter array mounted thereon for being tracked by a digitizer; and
a drive shaft contained within the guide member, the drive shaft having a longitudinal axis and a proximal and a distal end, the drive shaft being rotatable within the guide member while being fixable within the guide member in a direction of the longitudinal axis, the proximal end of the drive shaft having a first connector for interchangeably receiving at least one drive source for transmitting torque to the drive shaft causing rotation of the drive shaft relative to the guide member, and the distal end having a second connector for interchangeably receiving at least one instrument tip.
2. The instrument according to claim 1, further comprising at least one instrument tip for removable connection to the distal end of the drive shaft.
3. The instrument according to claim 2, wherein the at least onone drive source comprises a drive handle for removable connection to the proximal end of the drive shaft for transmitting torque to the drive shaft and the instrument tip to cause rotation of the instrument tip.
4. The instrument according to claim 3, wherein the drive handle and the drive shaft include a male-female socket joint to removably connect the drive shaft to the drive handle.
5. The instrument according to claim 3, wherein the drive handle includes a ratchet.
6. The instrument according to claim 3, wherein the drive handle includes a motor for imparting torque to the drive shaft.
7. The instrument according to claim 2, wherein the instrument tip and the drive shaft include a male-female socket joint to removably connect the drive shaft to the instrument tip.
8. The instrument according to claim 2, wherein the instrument tip is an awl.
9. The instrument according to claim 2, wherein the instrument tip is a tap.
10. The instrument according to claim 2, wherein the instrument tip has a shaped end for mating with a workpiece to be rotated by said drive shaft.
11. The instrument according to claim 2, wherein the instrument tip is a drill bit.
12. The instrument according to claim 1, wherein the emitter array includes at least one LED array for emitting light signals.
13. The instrument according to claim 12, wherein the LED array includes a base and a plurality of LED emitters disposed on the base.
14. The instrument according to claim 1, wherein at least one bushing is provided in the guide member to reduce friction between the guide member and drive shaft.
15. The instrument according to claim 1, wherein the instrument includes a sensor which senses the removal and connection of an instrument tip to the instrument.
16. The instrument according to 15, wherein the sensor includes an electromechanical switch on the guide member electrically connected to the system.
17. A trackable medical instrument for use in a computer assisted image guided surgery system having a digitizer for receiving signals representing a position of the instrument during surgery, a computer for processing the signals received, and a display for providing an image representing the position of the instrument in three dimensional space during surgery, the instrument comprising:
guiding means for guiding the instrument in three dimensional space, the guiding means including signaling means for providing a signal representing the trajectory of the instrument and the location of the instrument; and
driving means for driving the instrument contained within the guiding means, the driving means having a longitudinal axis and being fixable in relation to the guiding means in a direction of the longitudinal axis while being rotatable in relation to the guiding means, the driving means having a first end adapted to interchangeably receive at least one medical instrument tip and an opposite end adapted to interchangeably receive at least one drive source.
18. The instrument according to claim 17, wherein the instrument includes a sensing means for sensing the removal and the connection of an instrument tip to the instrument.
19. The instrument according to 18, wherein the sensing means includes an electromechanical switch on the guiding means connected to thea means for processing.
20. The instrument according to claim 17, wherein the guiding means comprises a housing for receiving the driving means, the driving means being rotatable within the housing while being retained axially within the housing.
21. The instrument according to claim 20 wherein the signaling means comprises an LED array.
22. The instrument according to claim 21, further comprising an instrument tip for connection to the first end of the driving means.
23. The instrument according to claim 22, further comprising a drive handle for connection to the opposite end of the driving means for transmitting torque to the instrument tip to cause rotation of the instrument tip.
24. The instrument according to claim 20, wherein the driving means comprises a drive shaft having mating connectors on both ends for connection to corresponding connectors disposed on an instrument tip and a drive source.
25. The instrument according to claim 24, wherein at least one bushing is provided between the housing and the drive shaft to reduce friction between the guide handle and drive shaft.
26. The instrument according to claim 22, wherein the instrument tip is an awl.
27. The instrument according to claim 22, wherein the instrument tip is a tap.
28. The instrument according to claim 22, wherein the instrument tip has a shaped end for mating with a workpiece.
29. A trackable medical instrument for use in a computer assisted image guided surgery system having a digitizer for tracking the position of the instrument in three dimensional space and a display providing an indication of the position of the instrument with respect to images of a body part taketaken preoperatively, the instrument comprising:
a guide member having an emitter array mounted thereon for being tracked by a digitizer;
a drive shaft contained within the guide member, the drive shaft having a longitudinal axis and a proximal and a distal end, the drive shaft being rotatable within the guide member while being fixable within the guide member in a direction of the longitudinal axis;
an instrument tip extending from the proximal end of the drive shaft; wherein the instrument tip rotates freely relative to the guide member while being fixable axially relative to the guide member; and
a drive handle extending from the distal end of the drive shaft for guiding the instrument, including the guide member, and for imparting rotary motion to the drive shaft and the instrument tip independent of the guide member.
30. The instrument according to claim 29, further comprising a proximal coupler for interchangeably coupling the drive source to the drive shaft.
31. The instrument according to claim 30, wherein the proximal coupler comprises a male-female socket joint disposed on the drive shaft and the drive source to removably connect the drive source to the drive shaft.
32. The instrument according to claim 29, wherein the drive handle includes a ratchet.
33. The instrument according to claim 29, wherein the drive handle includes a motor for imparting rotary motion to the drive shaft.
34. The instrument according to claim 29, further comprising a distal coupler for interchangeably coupling the instrument tip to the drive shaft.
35. The instrument according to claim 34, wherein the distal coupler includes a male-female socket joint disposed on the drive shaft and the instrument tip to removably connect the instrument tip to the drive shaft.
36. The instrument according to claim 29, wherein the instrument tip is an awl.
37. The instrument according to claim 29, wherein the instrument tip is a tap.
38. The instrument according to claim 29, wherein the instrument tip has a shaped end for mating with a workpiece to be rotated by said drive shaft.
39. The instrument according to claim 29, wherein the instrument tip is a drill bit.
40. The instrument according to claim 29, wherein the emitter array includes at least one LED array for emitting light signals.
41. The instrument according to claim 29, wherein the at least one LED array includes a base and a plurality of LED emitters disposed on the base.
42. The instrument according to claim 29, wherein at least one bushing is provided in the guide member to reduce friction between the guide member and drive shaft.
43. A trackable medical instrument for use in a computer assisted image guided surgery system having a digitizer for tracking the position of the instrument in three dimensional space and a display providing an indication of the position of the instrument with respect to images of a body part taken preoperatively, the instrument comprising:
a guide member having a tracking device mounted thereon for being tracked by a digitizer;
a drive shaft contained within the guide member, the drive shaft having a longitudinal axis and a proximal and a distal end, the drive shaft being rotatable within the guide member while being fixable within the guide member in a direction of the longitudinal axis;
an instrument tip extending from the proximal end of the drive shaft; wherein the instrument tip rotates freely relative to the guide member while being fixable axially relative to the guide member; and
a drive handle extending from the distal end of the drive shaft for guiding the instrument, including the guide member, and for imparting rotary motion to the drive shaft and the instrument tip independent of the guide member.
44. The instrument according to claim 43, wherein the tracking device includes a passive signal generator.
45. The instrument according to claim 44, wherein the instrument comprises at least one reflective surface for reflecting signals to be tracked by the digitizer.
46. The instrument according to claim 44, wherein the instrument comprises at least three reflective surfaces for reflecting signals to be tracked by the digitizer.
47. The instrument according to claim 43, further comprising a proximal coupler for interchangeably coupling the drive source to the drive shaft.
48. The instrument according to claim 47, wherein the proximal coupler comprises a male-female socket joint disposed on the drive shaft and the drive source to removably connect the drive source to the drive shaft.
49. The instrument according to claim 43, further comprising a distal coupler for interchangeably coupling the instrument tip to the drive shaft.
50. The instrument according to claim 49, wherein the distal coupler includes a male-female socket joint disposed on the drive shaft and the instrument tip to removably connect the instrument tip to the drive shaft.
51. A trackable medical instrument for use in a computer assisted image guided surgery system having a digitizer for tracking the position of the instrument in three dimensional space and a display providing an indication of the position of the instrument with respect to images of a body part taken preoperatively, the instrument comprising:
a guide member having an emitter array mounted thereon for being tracked by a digitizer; and
a drive shaft contained within the guide member, the drive shaft having a longitudinal axis and a proximal and a distal end, the drive shaft being rotatable within the guide member while being fixable within the guide member in a direction of the longitudinal axis, the proximal end of the drive shaft having a first connector for receiving at least one drive source for transmitting torque to the drive shaft causing rotation of the drive shaft relative to the guide member, and the distal end having a second connector for receiving at least one instrument tip.
52. A trackable medical instrument for use with a surgical navigation system, the trackable medical instrument comprising:
a surgical implement having a distal end;
a guide member coupled to the surgical implement; and
a tracking device mounted to the guide member, wherein the tracking device is rotatable relative to the surgical implement wherein the relationship between the tracking device and the distal end of the surgical implement remains substantially constant upon rotating the tracking device relative to the surgical implement and the substantially constant relationship enables the distal end of the surgical implement to be tracked by the surgical navigation system.
53. The trackable medical instrument as defined in claim 52, wherein the substantially constant relationship between the tracking device and the distal end of the surgical implement is a distance between the tracking device and the distal end of the surgical implement.
54. The trackable medical instrument as defined in claim 52, wherein the surgical implement comprises a proximal end comprising a coupling member.
55. The trackable medical instrument as defined in claim 52, wherein the substantially constant relationship enables both orientation in three-dimensional space of the surgical implement and a depth the distal end of the surgical implement has been inserted into a body part to be tracked by the surgical navigation system.
56. The trackable medical instrument as defined in claim 52, wherein the tracking device is fixed axially with respect to the distal end of the surgical implement.
57. The trackable medical instrument as defined in claim 52, wherein the surgical implement is rotatably coupled to the guide member.
58. The trackable medical instrument as defined in claim 57, wherein the tracking device is fixedly secured to the guide member.
59. The trackable medical instrument as defined in claim 52, wherein the surgical implement and the guide member are integral.
60. The trackable medical instrument as defined in claim 52, wherein the tracking device is selected from at least one of a LED, a reflector, an acoustic device, a magnetic device, an electromagnetic device, a radiologic device, a micropulsed radar device or combinations thereof.
61. The trackable medical instrument as defined in claim 52, wherein the tracking device is one of either an active tracking device or a passive tracking device.
62. The trackable medical instrument as defined in claim 52, wherein the surgical implement is selected from at least one of a tap, an awl, a driving instrument, a drill, or combinations thereof.
63. The trackable medical instrument as defined in claim 52, further comprising a drive source coupled to the guide member to drive the surgical implement.
64. The trackable medical instrument as defined in claim 63, wherein the drive source, the surgical implement and the guide member are integral.
65. The trackable medical instrument as defined in claim 63, wherein the drive source is a drive handle.
66. The trackable medical instrument as defined in claim 65, wherein the drive handle includes a ratchet.
67. The trackable medical instrument as defined in claim 63, wherein the drive source is a motor.
68. The trackable medical instrument as defined in claim 63, further comprising a drive shaft housed within the guide member, wherein the drive source is operable to rotate the drive shaft to rotate the surgical implement.
69. The trackable medical instrument as defined in claim 68, wherein the surgical implement and the drive source are removable from the drive shaft.
70. The trackable medical instrument as defined in claim 52, wherein the tracking device includes a plurality of tracking devices.
71. The trackable medical instrument as defined in claim 52, further comprising a sensor operable to sense a removal and connection of the surgical implement to the medical instrument.
72. The trackable medical instrument as defined in claim 52, further comprising a bushing operable to allow the tracking device to be rotated relative to the surgical implement.
73. The trackable medical instrument as defined in claim 72, wherein the bushing is positioned within the guide member.
74. The trackable medical instrument as defined in claim 52, further comprising a plurality of surgical implements each operable to be interchangeably coupled to the guide member.
75. The trackable medical instrument as defined in claim 52, wherein the tracking device includes a tracking array mounted to the guide member.
76. The trackable medical instrument as defined in claim 52, wherein the guide member includes a mount for mounting the tracking device.
77. The trackable medical instrument as defined in claim 76, wherein the guide member further includes an elongated tubular body with the guide member mount extending from the elongated tubular body.
78. A trackable medical instrument for use with a surgical navigation system, the trackable medical instrument comprising:
a surgical implement having a distal end;
a guide member coupled to the surgical implement;
a tracking device mounted to the guide member; and
a means for rotating the tracking device relative to the surgical implement; wherein the relationship between the tracking device and the distal end of the surgical implement remains substantially constant upon rotating the tracking device relative to the surgical implement and the substantially constant relationship enables the distal end of the surgical implement to be tracked.
79. The trackable medical instrument as defined in claim 78, wherein the surgical implement is rotatably coupled to the guide member.
80. The trackable medical instrument as defined in claim 78, wherein the surgical implement is integral with the guide member.
81. The trackable medical instrument as defined in claim 78, wherein the tracking device is fixed axially with respect to the distal end of the surgical implement.
82. The trackable medical instrument as defined in claim 78, further comprising a drive source coupled to the guide member to drive the surgical implement.
83. The trackable medical instrument as defined in claim 78, wherein the tracking device is a passive reflective tracking device and the medical instrument is a wireless instrument.
84. The trackable medical device as defined in claim 78, wherein the surgical implement and the guide member extend along a longitudinal axis.
85. The trackable medical instrument as defined in claim 78, further comprising a sensor operable to sense a removal and connection of the surgical implement to the medical instrument.
86. A trackable medical instrument for use with a surgical navigation system, the trackable medical instrument comprising:
a surgical implement having a distal end;
a handle positioned near a proximal end of the medical instrument;
a guide member coupled to the surgical implement and handle; and
a tracking device mounted to the guide member, wherein the tracking device is rotatable relative to the surgical implement; and the relationship between the tracking device and the distal end of the surgical implement remains substantially constant upon rotating the tracking device relative to the surgical implement.
87. The trackable medical instrument as defined in claim 86, wherein the handle is a drive handle.
88. The trackable medical instrument as defined in claim 86, wherein the surgical implement is selected from at least one of a tap, an awl, a driving instrument, a drill, or combinations thereof.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to computer assisted image guided medical and surgical navigation systems that generate images during medical and surgical procedures indicating the relative position of various body parts, surgical implants, and instruments. In particular, the present invention relates to an instrument for use in an image guided surgery navigation system that enables the system to track both the depth and the trajectory of the instrument during surgery.

2. Background of Related Art

Computer assisted image guided medical and surgical navigation systems are known and used to generate images in order to guide a doctor during a surgical procedure. Such systems are disclosed, for example, in U.S. Pat. No. 5,383,454 to Bucholz; PCT application Ser. No. PCT/US94/04530 (Publication No. WO 94/24933) to Bucholz; and PCT application Ser. No. PCT/US95/12984 (Publication No. WO 96/11624) to Bucholz et al., incorporated herein by reference.

In general, these image guided systems use images of a body part, such as CT scans, taken before surgery to generate images on a display, such as a CRT monitor screen, during surgery for representing the position of a surgical instrument with respect to the body part. The systems typically include tracking devices such as, for example, an LED array mounted on a surgical instrument as well as a body part, a digitizer to track in real time the position of the body part and the instrument used during surgery, and a monitor screen to display images representing the body and the position of the instrument relative to the body part as the surgical procedure is performed.

There is a need in the art for a surgically navigable tool for use with these image guided systems that is simple to use and manipulate, that enables the computer tracking system to track both the trajectory of the instrument and the depth that the instrument is inserted into the body, and that is easily interchangeable with alternative drive sources such as a ratcheting handle or other instruments such as awls, taps, and screwdrivers.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide an image guided medical instrument whose tip and trajectory can be simultaneously tracked.

It is a further object of the invention to provide an image guided medical instrument capable of generating a signal representing the trajectory and the depth of the tip of the instrument.

It is a still further object of the invention to provide an image guided medical instrument that may easily be used with any number of different tips and handles.

It is another object of the invention to provide an image guided medical instrument that is of relatively simple construction and relatively easy to use.

Additional objects and advantages of the invention will be set forth in the description which follows and, in part, will be obvious from the description or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.

To achieve the objects and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention comprises a trackable medical instrument for use in a computer assisted image guided surgery system having a digitizer for tracking the position of the instrument in three dimensional space and a display providing an indication of the position of the instrument with respect to images of a body part taken preoperatively. The instrument includes a guide member having an emitter array mounted thereon for being tracked by the digitizer, and a drive shaft contained within the guide member, the drive shaft having a proximal and a distal end, the drive shaft being rotatable within the guide member while being fixable axially within the guide member, the proximal end of the drive shaft having a first connector for interchangeably receiving at least one drive source, and the distal end having a second connector for interchangeably receiving at least one instrument tip. The instrument may further include at least one instrument tip for connection to the distal end of the drive shaft and a drive handle for connection to the proximal end of the drive shaft for transmitting torque to the instrument tip to cause rotation of the instrument tip.

In another aspect of this invention, the instrument may further include a sensor which senses the removal and the connection of an instrument tip to the instrument. The sensor may be an electromechanical switch on the guide member.

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

FIG. 1 is a schematic front view of a computer assisted image guided surgery system used with an instrument according to the present invention.

FIG. 2 is a perspective view of an instrument according to the present invention.

FIG. 3 is an exploded view of the instrument shown in FIG. 2.

FIG. 4 is a view of a portion of the instrument shown in FIG. 2.

FIG. 5 is an exploded view of the portion of the instrument shown in FIG. 4.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.

The medical instrument of the present invention is shown generally at 10 in FIG. 1. Instrument 100 can be used in many known computer assisted image guided surgical navigation systems such the system shown in FIG. 1 and disclosed in PCT application Ser. No. PCT/US95/12984 (Publication No. WO 96/11624) to Bucholz et al., incorporated herein by reference. A computer assisted image guided surgery system, shown at 10, generates an image for display on a monitor 106 representing the real time position of a body part and the position of instrument 100 relative to the body part.

An image may be generated on monitor 106 from an image data set stored in a controller, such as computer 108, usually generated preoperatively by some scanning technique such as by a CAT scanner or by magnetic resonance imaging. The image data set and the image generated have reference points for at least one body part. The reference points for the particularly body part have a fixed spatial relation to the particular body part.

System 10 also generally includes a processor for processing image data, shown as digitizer control unit 114. Digitizer control unit 114 is connected to monitor 106, under control of computer 108, and to instrument 100. Digitizer 114, in conjunction with a reference frame arc 120 and a sensor array 110 or other known position sensing unit, tracks the real time position of a body part, such as a cranium shown at 119 clamped in reference frame 120, and an instrument 100. Reference frame 120 has emitters 122 or other tracking means that generate signals representing the position of the various body reference points. Reference frame 120 is fixed spatially in relation to a body part by a clamp assembly indicated generally at 124,125, and 126. Instrument 100 also has a tracking device shown as an emitter array 40 which generates signals representing the position of the instrument during the procedure.

Sensor array 110, mounted on support 112, receives and triangulates the signals generated by emitters 122 and emitter array 40 in order to identify during the procedure the relative position of each of the reference points and the instrument. Digitizer 114 and computer 108 may then modify the image date set according to the identified relative position of each of the reference points during the procedure. Computer 108 may then generate an image data set representing the position of the body elements and the instrument during the procedure. System 10 may also include a foot switch 116 connected to instrument 100 and digitizer 114 for controlling operation of the system. The structure and operation of an image guided surgery system is well known in the art and need not be discussed further here.

Referring to FIGS. 2 and 3, an instrument according to the present invention is shown at 100. Instrument 100 includes a guide member 30, an interchangeable instrument tip 15, and an interchangeable driving handle 20.

A drive shaft 35 is housed within guide member 30 and is removably connected to an end, here the proximal end 37, to surgical instrument tip 15 and at the other end, here the distal end 38, to driving handle 20 such that torque applied manually or by motorized means to drive handle 20 is transmitted to drive shaft 35 which in turn is transmitted to tip 15. Drive shaft 35, while it could be extractable such as for service, is fixable axially in relation to guide member 30, but is rotatable within guide member 30. As shown in FIG. 5, bushings 33 may be provided at each end of guide member 30 to ensure smooth motion between drive shaft 35 and guide member 30. Guide member 30 is preferably made of stainless steel, but can also be made of titanium, aluminum or plastic. Shaft 35 is preferably made from stainless steel, titanium, or aluminum.

Instrument 100 further includes a tracking device such as emitter array 40 attached to guide member 30 for tracking the location and trajectory of instrument 100. As shown in FIG. 4, array 40 is equipped with a plurality of emitters or tracking means 45, preferably four emitters, for generating a signal representing the trajectory of instrument 100 and the depth of instrument tip 15. Preferably emitters 45 are light emitting diodes; however, other tracking devices known in the art capable of being tracked by a corresponding sensor array are within the scope of the invention. For purposes of illustration, not limitation, the tracking device may generate signals actively such as with acoustic, magnetic, electromagnetic, radiologic, and micropulsed radar systems, or passively such as with reflective surfaces.

Drive handle 20 and instrument tip 15 are shown as modular units that can be attached to drive shaft 35 with corresponding and interlocking male and female socket joints. As shown in FIGS. 3 and 4, drive shaft 35 has a female socket joint 34 for connection with a male socket 14 on tip 15, and drive shaft 35 has a male socket joint 36 for connection with a female socket joint 26 on drive handle 20. With the use of male and female socket joints, various instrument tips and various type and sized drive handles can be easily interchangeable. Instrument tip 15 could be any of a variety of instruments used in surgery such as taps, awls, and shaped tools for interacting with a work piece, such as a screwdriver for driving screws. Drive handle 20 could be any number of existing or specially designed handles and could be ratcheting, nonratcheting or motorized. Instrument tip 15 and drive handle 20 could also be permanently attached to drive shaft 35. Other suitable connection means are within the scope of the invention as well.

In operation, torque applied to drive handle 20 is transmitted through drive shaft 35 to instrument tip 15. Because drive shaft 35 is fixed axially in relation to guide member 30, guide member 30 can remain stationary while drive shaft 35 rotates without translating along the axis of drive shaft 35. The relationship between array 40 and the axis of drive shaft 35, therefore, remains constant. Instrument tip 15 is also fixed axially in relation guide member 30. As a result, the relationship between array 40 and instrument tip 15 also remains constant. Because the relationship between array 40 and tip 15 is constant, the signals emitted by emitters 45 can be used by the computer assisted image guided surgical navigation system to inform the surgeon of the position of instrument 100, indicating both the trajectory or orientation in three dimensional space of instrument 100 and the length of travel along the trajectory, i.e., the depth instrument tip 15 has been inserted into a body part.

It should be recognized that other variations or modifications may be made to provide an instrument that has an emitter array fixed axially relative to the instrument tip while allowing the instrument tip to rotate relative to the emitter array. For example, guide member 30 may also be integral with instrument tip 15 and/or drive handle 20. The array could then be fixed axially relative to the instrument and means could be provided to allow rotation of the instrument relative to the array.

As discussed above, a variety of different instrument tips may be easily interchanged on instrument 100. To use these different instrument tips, information concerning the dimensions of the different tips may be entered into computer 108. As a result, computer 108 can process the various image data for the specific instrument tip being used so that system 10 tracks the depth of the tip being used or, in the case of a screwdriver, so that system 10 tracks the depth of the screw being inserted.

System 10 may also be provided with a mechanism to prevent the system from operating after a new tip has been connected until computer 108 has been recalibrated. For example, an electromechanical switch, or other suitable sensors, could be provided on instrument 100 to provide a signal to computer 108 indicating that instrument tip 15 has been removed from instrument 100 or that a new instrument tip 15 has been coupled to instrument 100. The switch is preferably a micro switch but can be embodied by any suitable electrical or electromechanical device or sensing device capable of providing a signal in response to attachment or detachment at a particular point on guide member 30 or tip 15.

The switch may be automatically actuated when tip 15 is removed or coupled to instrument 100. Computer 108 may be operably connected to the switch, such as through cable 161, and is responsive to the operation of the switch. Alternatively, if a wireless instrument is used such as one with passive reflective surfaces in place of LED emitters, any suitable form of communication known in the art can be used. An alarm or other indication of some type, such as a message or display on monitor 106, may be generated by computer 108 indicating to the user that tip 15 has been changed. The computer 108 may further prevent the system from operating until the system has been recalibrated for the new instrument tip. Recalibration may be accomplished by touching the instrument tip to a known reference point. Recalibration of the instrument tip can be positively confirmed by means of a light emission from the emitter array 40 detected by sensor array 110 and triangulated to determine the position of the instrument tip. Alternatively, the dimensions of the instrument or tool type may be entered into computer 108 or selected from a pre-programmed list of tool dimensions or tool types. Further, recalibration could be accomplished by a fiber optic device for reading a bar code on the instrument tip, or by any other suitable recalibration technique.

It will also be apparent to those skilled in the art that various modifications and variations can be made to the structure and methodology of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US157678122 Apr 192416 Mar 1926Philips Herman BFluoroscopic fracture apparatus
US173572620 Dec 192712 Nov 1929 bornhardt
US240784516 Jan 194317 Sep 1946California Inst Res FoundAligning device for tools
US26505887 Feb 19511 Sep 1953Drew Harry Guy RadcliffeArtificial femoral head having an x-ray marker
US26974334 Dec 195121 Dec 1954Max A ZehnderDevice for accurately positioning and guiding guide wires used in the nailing of thefemoral neck
US30168993 Nov 195816 Jan 1962Carl B StenvallSurgical instrument
US301788719 Jan 196023 Jan 1962William T HeyerStereotaxy device
US30619368 Jul 19596 Nov 1962Univ LouvainStereotaxical methods and apparatus
US30733105 Aug 195715 Jan 1963Zenon R MocarskiSurgical instrument positioning device
US310958826 Jan 19625 Nov 1963Bostick Lewis MCelestial computers
US329408326 Aug 196327 Dec 1966Alderson Res Lab IncDosimetry system for penetrating radiation
US336732615 Jun 19656 Feb 1968Calvin H. FrazierIntra spinal fixation rod
US343925623 Feb 196715 Apr 1969Merckle Flugzeugwerke GmbhInductive angular position transmitter
US357716010 Jan 19684 May 1971James E WhiteX-ray gauging apparatus with x-ray opaque markers in the x-ray path to indicate alignment of x-ray tube, subject and film
US361495017 Mar 196926 Oct 1971Graham Peter RabeyApparatus for location relatively to a subject's cephalic axis
US364482531 Dec 196922 Feb 1972Texas Instruments IncMagnetic detection system for detecting movement of an object utilizing signals derived from two orthogonal pickup coils
US367401421 Oct 19704 Jul 1972Astra Meditec AbMagnetically guidable catheter-tip and method
US370293513 Oct 197114 Nov 1972Litton Medical ProductsMobile fluoroscopic unit for bedside catheter placement
US37047076 Apr 19715 Dec 1972William X HalloranOrthopedic drill guide apparatus
US382146915 May 197228 Jun 1974Amperex Electronic CorpGraphical data device
US386856530 Jul 197325 Feb 1975Jack KuipersObject tracking and orientation determination means, system and process
US39411273 Oct 19742 Mar 1976Froning Edward CApparatus and method for stereotaxic lateral extradural disc puncture
US39630286 Feb 197515 Jun 1976Texas Medical Products, Inc.Suction wand
US398347421 Feb 197528 Sep 1976Polhemus Navigation Sciences, Inc.Tracking and determining orientation of object using coordinate transformation means, system and process
US401785824 Feb 197512 Apr 1977Polhemus Navigation Sciences, Inc.Apparatus for generating a nutating electromagnetic field
US40375924 May 197626 Jul 1977Kronner Richard FGuide pin locating tool and method
US405262028 Nov 19754 Oct 1977Picker CorporationMethod and apparatus for improved radiation detection in radiation scanning systems
US405488126 Apr 197618 Oct 1977The Austin CompanyRemote object position locater
US41173373 Nov 197726 Sep 1978General Electric CompanyPatient positioning indication arrangement for a computed tomography system
US417322816 May 19776 Nov 1979Applied Medical DevicesCatheter locating device
US418231220 May 19778 Jan 1980Mushabac David RDental probe
US420234924 Apr 197813 May 1980Jones James WRadiopaque vessel markers
US422879922 Sep 197821 Oct 1980Anichkov Andrei DMethod of guiding a stereotaxic instrument at an intracerebral space target point
US425611212 Feb 197917 Mar 1981David Kopf InstrumentsHead positioner
US426230621 Nov 197914 Apr 1981Karlheinz RennerMethod and apparatus for monitoring of positions of patients and/or radiation units
US428780920 Aug 19798 Sep 1981Honeywell Inc.Helmet-mounted sighting system
US429887424 Oct 19783 Nov 1981The Austin CompanyMethod and apparatus for tracking objects
US431425130 Jul 19792 Feb 1982The Austin CompanyRemote object position and orientation locater
US431707815 Oct 197923 Feb 1982Ohio State University Research FoundationRemote position and orientation detection employing magnetic flux linkage
US43191369 Nov 19799 Mar 1982Jinkins J RandolphComputerized tomography radiograph data transfer cap
US43285484 Apr 19804 May 1982The Austin CompanyLocator for source of electromagnetic radiation having unknown structure or orientation
US432881320 Oct 198011 May 1982Medtronic, Inc.Brain lead anchoring system
US433995329 Aug 198020 Jul 1982Aisin Seiki Company, Ltd.Position sensor
US434122013 Apr 197927 Jul 1982Pfizer Inc.Stereotactic surgery apparatus and method
US434638430 Jun 198024 Aug 1982The Austin CompanyRemote object position and orientation locator
US435885631 Oct 19809 Nov 1982General Electric CompanyMultiaxial x-ray apparatus
US436853619 Nov 198011 Jan 1983Siemens AktiengesellschaftDiagnostic radiology apparatus for producing layer images
US43968853 Jun 19802 Aug 1983Thomson-CsfDevice applicable to direction finding for measuring the relative orientation of two bodies
US439694519 Aug 19812 Aug 1983Solid Photography Inc.Method of sensing the position and orientation of elements in space
US440332115 Apr 19816 Sep 1983U.S. Philips CorporationSwitching network
US441842211 Mar 198129 Nov 1983Howmedica International, Inc.Aiming device for setting nails in bones
US44190123 Sep 19806 Dec 1983Elliott Brothers (London) LimitedPosition measuring system
US442204130 Jul 198120 Dec 1983The United States Of America As Represented By The Secretary Of The ArmyMagnet position sensing system
US44310057 May 198114 Feb 1984Mccormick Laboratories, Inc.Method of and apparatus for determining very accurately the position of a device inside biological tissue
US448581530 Aug 19824 Dec 1984Kurt AmplatzDevice and method for fluoroscope-monitored percutaneous puncture treatment
US450667610 Sep 198226 Mar 1985Duska Alois ARadiographic localization technique
US454395925 Jan 19851 Oct 1985Instrumentarium OyDiagnosis apparatus and the determination of tissue structure and quality
US454820827 Jun 198422 Oct 1985Medtronic, Inc.Automatic adjusting induction coil treatment device
US457183416 May 198525 Feb 1986Orthotronics Limited PartnershipKnee laxity evaluator and motion module/digitizer arrangement
US457219818 Jun 198425 Feb 1986Varian Associates, Inc.Catheter for use with NMR imaging systems
US45835384 May 198422 Apr 1986Onik Gary MMethod and apparatus for stereotaxic placement of probes in the body utilizing CT scanner localization
US458457717 Oct 198322 Apr 1986Brookes & Gatehouse LimitedAngular position sensor
US460897720 Dec 19822 Sep 1986Brown Russell ASystem using computed tomography as for selective body treatment
US461386613 May 198323 Sep 1986Mcdonnell Douglas CorporationThree dimensional digitizer with electromagnetic coupling
US461792528 Sep 198421 Oct 1986Laitinen Lauri VAdapter for definition of the position of brain structures
US461897821 Oct 198321 Oct 1986Cosman Eric RMeans for localizing target coordinates in a body relative to a guidance system reference frame in any arbitrary plane as viewed by a tomographic image through the body
US46216286 Sep 198411 Nov 1986Ortopedia GmbhApparatus for locating transverse holes of intramedullary implantates
US46257187 Jun 19852 Dec 1986Howmedica International, Inc.Aiming apparatus
US463879810 Sep 198027 Jan 1987Shelden C HunterStereotactic method and apparatus for locating and treating or removing lesions
US464278625 May 198410 Feb 1987Position Orientation Systems, Ltd.Method and apparatus for position and orientation measurement using a magnetic field and retransmission
US46453434 Jun 198424 Feb 1987U.S. Philips CorporationAtomic resonance line source lamps and spectrophotometers for use with such lamps
US464950422 May 198410 Mar 1987Cae Electronics, Ltd.Optical position and orientation measurement techniques
US465173211 Apr 198524 Mar 1987Frederick Philip RThree-dimensional light guidance system for invasive procedures
US46535093 Jul 198531 Mar 1987The United States Of America As Represented By The Secretary Of The Air ForceGuided trephine samples for skeletal bone studies
US465997116 Aug 198521 Apr 1987Seiko Instruments & Electronics Ltd.Robot controlling system
US466097015 Oct 198428 Apr 1987Carl-Zeiss-StiftungMethod and apparatus for the contact-less measuring of objects
US46723068 Apr 19859 Jun 1987Tektronix, Inc.Electronic probe having automatic readout of identification and status
US46733522 Jan 198616 Jun 1987Markus HansenDevice for measuring relative jaw positions and movements
US468803719 Apr 198218 Aug 1987Mcdonnell Douglas CorporationElectromagnetic communications and switching system
US470104919 Jun 198420 Oct 1987B.V. Optische Industrie "De Oude Delft"Measuring system employing a measuring method based on the triangulation principle for the non-contact measurement of a distance from the surface of a contoured object to a reference level. _
US47053953 Oct 198410 Nov 1987Diffracto Ltd.Triangulation data integrity
US470540112 Aug 198510 Nov 1987Cyberware Laboratory Inc.Rapid three-dimensional surface digitizer
US470666517 Dec 198417 Nov 1987Gouda Kasim IFrame for stereotactic surgery
US470915627 Nov 198524 Nov 1987Ex-Cell-O CorporationMethod and apparatus for inspecting a surface
US471070823 Jul 19821 Dec 1987DevelcoMethod and apparatus employing received independent magnetic field components of a transmitted alternating magnetic field for determining location
US471941915 Jul 198512 Jan 1988Harris Graphics CorporationApparatus for detecting a rotary position of a shaft
US472205618 Feb 198626 Jan 1988Trustees Of Dartmouth CollegeReference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US472233625 Jan 19852 Feb 1988Michael KimPlacement guide
US47235449 Jul 19869 Feb 1988Moore Robert RHemispherical vectoring needle guide for discolysis
US472756513 Nov 198423 Feb 1988Ericson Bjoern EMethod of localization
US47339698 Sep 198629 Mar 1988Cyberoptics CorporationLaser probe for determining distance
US473703226 Aug 198512 Apr 1988Cyberware Laboratory, Inc.Surface mensuration sensor
US47377949 Dec 198512 Apr 1988Mcdonnell Douglas CorporationMethod and apparatus for determining remote object orientation and position
US47379213 Jun 198512 Apr 1988Dynamic Digital Displays, Inc.Three dimensional medical image display system
US47423569 Dec 19853 May 1988Mcdonnell Douglas CorporationMethod and apparatus for determining remote object orientation and position
US47428152 Jan 198610 May 1988Ninan Champil AComputer monitoring of endoscope
US474377022 Sep 198610 May 1988Mitutoyo Mfg. Co., Ltd.Profile-measuring light probe using a change in reflection factor in the proximity of a critical angle of light
US474377117 Jun 198510 May 1988View Engineering, Inc.Z-axis height measurement system
US5617857 *6 Jun 19958 Apr 1997Image Guided Technologies, Inc.Imaging system having interactive medical instruments and methods
US5645545 *14 Aug 19958 Jul 1997Zimmer, Inc.Self reaming intramedullary nail and method for using the same
US5682890 *26 Jan 19954 Nov 1997Picker International, Inc.Magnetic resonance stereotactic surgery with exoskeleton tissue stabilization
US5732703 *20 May 199631 Mar 1998The Cleveland Clinic FoundationStereotaxy wand and tool guide
US6236875 *5 Oct 199522 May 2001Surgical Navigation TechnologiesSurgical navigation systems including reference and localization frames
USRE3261917 Oct 19848 Mar 1988 Apparatus and method for nuclear magnetic resonance scanning and mapping
Non-Patent Citations
Reference
1"Prestige Cervical Disc System Surgical Technique", 12 pgs.
2"3-D Digitizing Accessories," PixSys, Jul. 2, 1992, 6 pages.
3"Alignment Procedure for the PixSys Two-Emitter Offset Probe for the SAC GP-8-3d Sonic Digitizer," PixSys, Jul. 2, 1992, 4 pages.
43-D Digitizing Accessories, Pixsys, Jul. 2, 1992, 6 pages.
5Adams et al., "Orientation Aid for Head and Neck Surgeons," Innov. Tech. Biol. Med., vol. 13, No. 4, 1992, pp. 409-424.
6Adams et al., Computer-Assisted Surgery, IEEE Computer Graphics & Applications, pp. 43-51, (May 1990).
7Adams, L., et al., "Aide Au Reperage Tridimensionnel Pour La Chirurgie de la Base du Crane," Innov. Tech. Biol. Med., vol. 13, No. 4, pp. 409-424, 1992.
8Alignment Procedure for the PixSys Two-Emitter Offset Probe for the SAC GP83d Sonic Digitizer, Pixsys, Jul. 2, 1992, 4 pages.
9Barrick et al., "Prophylactic Intramedullary Fixation of the Tibia for Stress Fracture in a Professional Athlete," Journal of Orthopaedic Trauma, vol. 6, No. 2, pp. 241-244 (1992).
10Barrick et al., "Technical Difficulties with the Brooker-Wills Nail in Acute Fractures of the Femur," Journal of Orthopaedic Trauma, vol. 6, No. 2, pp. 144-150 (1990).
11Barrick, "Distal Locking Screw Insertion Using a Cannulated Drill Bit: Technical Note," Journal of Orthopaedic Trauma, vol. 7, No. 3, 1993, pp. 248-251.
12Batnitzky et al., "Three-Dimensinal Computer Reconstructions of Brain Lesions from Surface Contours Provided by Computed Tomography: A Prospectus," Neurosurgery, vol. 11, No. 1, Part 1, 1982, pp. 73-84.
13Benzel et al., "Magnetic Source Imaging: a Review of the Magnes System of Biomagnetic Technologies Incorporated," Neurosurgery, vol. 33, No. 2 (Aug. 1993), pp. 252-259.
14Bergstrom et al. Stereotaxic Computed Tomography, Am. J. Roentgenol, vol. 127 pp. 167-170 (1976).
15Bouazza-Marouf et al.; "Robotic-Assisted Internal Fixation of Femoral Fractures", IMECHE., pp. 51-58 (1995).
16Brack et al., "Accurate X-ray Based Navigation in Computer-Assisted Orthopedic Surgery," CAR '98, pp. 716-722.
17Brown, R., M.D., A Stereotactic Head Frame for Use with CT Body Scanners, Investigative Radiology © J.B. Lippincott Company, pp. 300-304 (Jul.-Aug. 1979).
18Bryan, "Bryan Cervical Disc System Single Level Surgical Technique", Spinal Dynamics, 2002, pp. 1-33.
19Bucholz et al., "Variables affecting the accuracy of stereotactic localizationusing computerized tomography," Journal of Neurosurgery, vol. 79, Nov. 1993, pp. 667-673.
20Bucholz et al., Richard D.; "Clinical Applications of Modern Imaging Technology," SPIE vol. 1894; pp. 312-322; Jan. 19, 1993.
21Bucholz et al., Richard D.; "Poster #1120, Use of An Intraoperative Optical Digitizer in A System for Free-Hand Stereotactic Surgery," Scientific Program, Am. Assoc. of Neurological Surgeons 1992 Annual Meeting, pp. 284-285; Apr. 16, 1992.
22Bucholz, R.D., et al. Image-guided surgical techniques for infections and trauma of the central nervous system, Neurosurg. Clinics of N.A., vol. 7, No. 2, pp. 187-200 (1996).
23Bucholz, R.D., et al., A Comparison of Sonic Digitizers Versus Light Emitting Diode-Based Localization, Interactive Image-Guided Neurosurgery, Chapter 16, pp. 179-200 (1993).
24Bucholz, R.D., et al., Intraoperative localization using a three dimensional optical digitizer, SPIE-The Intl. Soc. for Opt. Eng., vol. 1894, pp. 312-322 (Jan. 17-19, 1993).
25Bucholz, R.D., et al., Intraoperative localization using a three dimensional optical digitizer, SPIE—The Intl. Soc. for Opt. Eng., vol. 1894, pp. 312-322 (Jan. 17-19, 1993).
26Bucholz, R.D., et al., Intraoperative Ultrasonic Brain Shift Monitor and Analysis, Stealth Station Marketing Brochure (2 pages) (undated).
27Bucholz, R.D., et al., The Correction of Stereotactic Inaccuracy Caused by Brain Shift Using an Intraoperative Ultrasound Device, First Joint Conference, Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery, Grenoble, France, pp. 459-466 (Mar. 19-22, 1997).
28Bucholz, Richard D., "Halo vest versus spinal fusion for cervical injury: evidence from an outcome study," J. Neurosurg 70:884-892, Jun. 1989.
29Bucholz, Richard, D., M.D., "A Comparison of Sonic Digitizers Versus Light Emitting Diode-Based Localization," Interactive Image-Guided Neurosurgey, pp. 179-200, 1993.
30C. Hunter Shelden, M.D, et al., "Development of a computerized microstereotaxic method for localization and removal of minute CNS lesions under direct 3-D vision," J. Neurosurg 52: 21-27, 1980.
31Champleboux et al., "Accurate Calibration of Cameras and Range Imaging Sensors: the NPBS Method," IEEE International Conference on Robotics and Automation, Nice, France, May 1992.
32Champleboux, "Utilisation de Fonctions Splines pour la Mise au Point D'un Capteur Tridimensionnel sans Contact," Quelques Applications Medicales, Jul. 1991.
33Cinquin et al., "Computer Assisted Medical Interventions," IEEE Engineering in Medicine and Biology, May/Jun. 1995, pp. 254-263.
34Cinquin et al., "Computer Assisted Medical Interventions," International Advanced Robotics Programme, Sep. 1989, pp. 63-65.
35Clarysse et al., "A Computer-Assisted System for 3-D Frameless Localization in Stereotaxic MRI," IEEE Transactions on Medical Imaging, vol. 10, No. 4, Dec. 1991, pp. 523-529.
36Cutting M.D. et al., Optical Tracking of Bone Fragments During Craniofacial Surgery, Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, pp. 221-225, (Nov. 1995).
37Feldmar et al., "3D-2D Projective Registration of Free-Form Curves and Surfaces," Rapport de recherche (Inria Sophia Antipolis), 1994, pp. 1-44.
38Foley et al., "Fundamentals of Interactive Computer Graphics," The Systems Programming Series, Chapter 7, Jul. 1984, pp. 245-266.
39Foley et al., "Image-guided Intraoperative Spinal Localization," Intraoperative Neuroprotection, Chapter 19, 1996, pp. 325-340.
40Foley, "The StealthStation: Three-Dimensional Image-Interactive Guidance for the Spine Surgeon," Spinal Frontiers, Apr. 1996, pp. 7-9.
41Friets, E.M., et al. A Frameless Stereotaxic Operating Microscope for Neurosurgery, IEEE Trans. on Biomed. Eng., vol. 36, No. 6, pp. 608-617 (Jul. 1989).
42Gallen, C.C., et al., Intracranial Neurosurgery Guided by Functional Imaging, Surg. Neurol., vol. 42, pp. 523-530 (1994).
43Galloway, R.L., et al., Interactive Image-Guided Neurosurgery, IEEE Trans. on Biomed. Eng., vol. 89, No. 12, pp. 1226-1231 (1992).
44Galloway, R.L., Jr. et al, Optical localization for interactive, image-guided neurosurgery, SPIE, vol. 2164, pp. 137-145 (undated.
45Germano, "Instrumentation, Technique and Technology", Neurosurgery, vol. 37, No. 2, Aug. 1995, pp. 348-350.
46Germano, Isabelle M., "The NeuroStation System fir Unage-Guided, Frameless Stereotaxy," Neurosurgery, vol. 37, No. 2 Aug. 1995, pp. 348-350.
47Gildenberg et al., "Calculation of Stereotactic Coordinates from the Computed Tomographic Scan," Neurosurgery, vol. 10, No. 5, May 1982, pp. 580-586.
48Gomez, C.R., et al., Transcranial Doppler Ultrasound Following Closed Head Injury: Vasospasm or Vasoparalysis?, Surg. Neurol., vol. 35, pp. 30-35 (1991).
49Gonzalez, "Digital Image Fundamentals," Digital Image Processing, Second Edition, 1987, pp. 52-54.
50Gottesfeld Brown et al., "Registration of Planar Film Radiographs with Computer Tomography," Proceedings of MMBIA, Jun. 1996, pp. 42-51.
51Grimson, W.E.L., An Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery, and enhanced Reality Visualization, IEEE, pp. 430-436 (1994).
52Grimson, W.E.L., et al., Virtual-reality technology is giving surgeons the equivalent of x-ray vision helping them to remove tumors more effectively, to minimize surgical wounds and to avoid damaging critical tissues, Sci. Amer., vol. 280, No. 6, pp. 62-69 (Jun. 1999).
53Gueziec et al., "Registration of Computed Tomography Data to a Surgical Robot Using Fluoroscopy: A Feasibility Study," Computer Science/Mathematics, Sep. 27, 1996, 6 pages.
54Guthrie, B.L., Graphic-Interactive Cranial Surgery: The Operating Arm System, Handbook of Stereotaxy Using the CRW Apparatus, Chapter 13, pp. 193-211 (undated.
55Hamadeh et al, "Kinematic Study of Lumbar Spine Using Functional Radiographies and 3D/2D Registration," TIMC UMR 5525-IMAG.
56Hamadeh et al, "Kinematic Study of Lumbar Spine Using Functional Radiographies and 3D/2D Registration," TIMC UMR 5525—IMAG.
57Hamadeh et al., "Automated 3-Dimensional Computed Tomographic and Fluorscopic Image Registration," Computer Aided Surgery (1998), 3:11-19.
58Hamadeh et al., "Towards Automatic Registration Between CT and X-ray Images: Cooperation Between 3D/2D Registration and 2D Edge Detection," MRCAS '95, pp. 39-46.
59Hans F. Reinharts, M.D., et al., "Sonic Stereometry in Microsurgical Procedures for Deep-Seated Brain Tumors and Vascular Malformations," Neurosurgery, vol. 32, No. 1, Jan. 1993 pp. 51-57.
60Hardy, T., M.D., et al., CASS: A Program for Computer Assisted Stereotaxic Surgery, The Fifth Annual Symposium on Comptuer Applications in Medical Care, Proceedings, Nov. 1-4, 1981, IEEE, pp. 1116-1126, (1981).
61Hatch, "Reference-Display System for the Integration of CT Scanning and the Operating Microscope," Thesis, Thayer School of Engineering, Oct. 1984, pp. 1-189.
62Hatch, et al., "Reference-Display System for the Integration of CT Scanning and the Operating Microscope", Proceedings of the Eleventh Annual Northeast Bioengineering Conference, Mar. 14-15, 1985, pp. 252-254.
63Heilbrun et al., "Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system," Journal of Neurosurgery, vol. 59, Aug. 1983, pp. 217-222.
64Heilbrun, M.D., Progressive Technology Applications, Neurosurgery for the Third Millenium, Chapter 15, J. Whitaker & Sons, Ltd., Amer. Assoc. of Neurol. Surgeons, pp. 191-198 (1992).
65Heilbrun, M.P., Computed Tomography—Guided Stereotactic Systems, Clinical Neurosurgery, Chapter 31, pp. 564-581 (1983).
66Heilbrun, M.P., et al., Stereotactic Localization and Guidance Using a Machine Vision Technique, Sterotact & Funct. Neurosurg., Proceed. of the Mtg. of the Amer. Soc. for Sterot. and Funct. Neurosurg. (Pittsburgh, PA) vol. 58, pp. 94-98 (1992).
67Henderson et al., "An Accurate and Ergonomic Method of Registration for Image-guided Neurosurgery," Computerized Medical Imaging and Graphics, vol. 18, No. 4, Jul.-Aug. 1994, pp. 273-277.
68Hoerenz, "The Operating Microscope I. Optical Principles, Illumination Systems, and Support Systems," Journal of Microsurgery, vol. 1, 1980, pp. 364-369.
69Hofstetter et al., "Fluoroscopy Based Surgical Navigation-Concept and Clinical Applications," Computer Assisted Radiology and Surgery, 1997, pp. 956-960.
70Hofstetter et al., "Fluoroscopy Based Surgical Navigation—Concept and Clinical Applications," Computer Assisted Radiology and Surgery, 1997, pp. 956-960.
71Horner et al., "A Comparison of CT-Stereotaxic Brain Biopsy Techniques," Investigative Radiology, Sep.-Oct. 1984, pp. 367-373.
72Hounsfield, "Computerized transverse axial scanning (tomography): Part 1. Description of system," British Journal of Radiology, vol. 46, No. 552, Dec. 1973, pp. 1016-1022.
73Isabelle M. Germano, "The NeuroStation System for Image-Guided, Frameless Stereotaxy," Neurosurgery, vol. 37, No. 2, Aug. 1995, pp. 348-350.
74Jacques et al., "A Computerized Microstereotactic Method to Approach, 3-Dimensionally Reconstruct, Remove and Adjuvantly Treat Small CNS Lesions," Applied Neurophysiology, vol. 43, 1980, pp. 176-182.
75Jacques et al., "Computerized three-dimensional stereotaxic removal of small central nervous system lesion in patients," J. Neurosurg., vol. 53, Dec. 1980, pp. 816-820.
76Joskowicz et al., "Computer-Aided Image-Guided Bone Fracture Surgery: Concept and Implementation," CAR '98, pp. 710-715.
77Kall, B., The Impact of Computer and Imgaging Technology on Stereotactic Surgery, Proceedings of the Meeting of the American Society for Stereotactic and Functional Neurosurgery, pp. 10-22 (1987).
78Kato, A., et al., A frameless, armless navigational system for computer-assisted neurosurgery, J. Neurosurg., vol. 74, pp. 845-849 (May 1991).
79Kelly et al., "Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms," Journal of Neurosurgery, vol. 64, Mar. 1986, pp. 427-439.
80Kelly et al., "Precision Resection of Intra-Axial CNS Lesions by CT-Based Stereotactic Craniotomy and Computer Monitored CO2 Laser," Acta Neurochirurgica, vol. 68, 1983, pp. 1-9.
81Kelly, P.J., Computer Assisted Stereotactic Biopsy and Volumetric Resection of Pediatric Brain Tumors, Brain Tumors in Children, Neurologic Clinics, vol. 9, No. 2, pp. 317-336 (May 1991).
82Kelly, P.J., Computer-Directed Stereotactic Resection of Brain Tumors, Neurologica Operative Atlas, vol. 1, No. 4, pp. 299-313 (1991).
83Kelly, P.J., et al., Results of Computed Tomography-based Computer-assisted Stereotactic Resection of Metastatic Intracranial Tumors, Neurosurgery, vol. 22, No. 1, Part 1, 1988, pp. 7-17 (Jan. 1988).
84Kelly, P.J., Stereotactic Imaging, Surgical Planning and Computer-Assisted Resection of Intracranial Lesions: Methods and Results, Advances and Technical Standards in Neurosurgery, vol. 17, pp. 78-118, (1990).
85Kevin T. Foley, et al., "Image-guided Intraoperative Spinal Localization," Intraoperative Neuroprotection: Monitoring, Ch. 19, pp. 325-340, 1996.
86Kim, W.S. et al., A Helmet Mounted Display for Telerobotics, IEEE, pp. 543-547 (1988).
87Klimek, L., et al., Long-Term Experience with Different Types of Localization Systems in Skull-Base Surgery, Ear, Nose & Throat Surgery, Chapter 51, pp. 635-638 (undated).
88Kosugi, Y., et al., An Articulated Neurosurgical Navigation System Using MRI and CT Images, IEEE Trans. on Biomed, Eng. vol. 35, No. 2, pp. 147-152 (Feb. 1988).
89Krybus, W., et al., Navigation Support for Surgery by Means of Optical Position Detection, Computer Assisted Radiology Proceed. of the Intl. Symp. CAR '91 Computed Assisted Radiology, pp. 362-366 (Jul. 3-6, 1991).
90Kurt R. Smith and Richard D. Bucholz, "Computer Methods for Improved Diagnostic Image Display Applied to Stereotactic Neurosurgery," Stereotactic Neurosurgery Display, vol. 14, pp. 371-382, 1992.
91Kurt R. Smith, et al., "The Neurostation™—A Highly Accurate, Minimally Invasive Solution To Frameless Stereotactic Neurosurgery," Computerized Medical Imaging and Graphics, Jul.-Aug. 1994, vol. 18, No. 4, pp. 247-256.
92Kwoh, Y.S., Ph.D., et al., A New Computerized Tomographic-Aided Robotic Stereotaxis System, Robotics Age, vol. 7, No. 6, pp. 17-22 (Jun. 1985).
93L. Adams, et al., "Aide Au Reperage Tridimensionnel Pour La Chirurgie de la Base du Crane," Innov. Tech. Biol. Med., vol. 13, No. 4, pp. 409-424, 1992.
94Laitinen et al., "An Adapter for Computed Tomography-Guided, Stereotaxis," Surg. Neurol., 1985, pp. 559-566.
95Laitinen, "Noninvasive multipurpose stereoadapter," Neurological Research, Jun. 1987, pp. 137-141.
96Lavallee et al, "Matching 3-D Smooth Surfaces with their 2-D Projections using 3-D Distance Maps," SPIE, vol. 1570, Geometric Methods in Computer Vision, 1991, pp. 322-336.
97Lavallee et al., "Computer Assisted Driving of a Needle into the Brain," Proceedings of the International Symposium CAR '89, Computer Assisted Radiology, 1989, pp. 416-420.
98Lavallee et al., "Computer Assisted Interventionist Imaging: The Instance of Stereotactic Brain Surgery," North-Holland MEDINFO 89, Part 1, 1989, pp. 613-617.
99Lavallee et al., "Computer Assisted Spine Surgery: A Technique For Accurate Transpedicular Screw Fixation Using CT Data and a 3-D Optical Localizer," TIMC, Faculte de Medecine de Grenoble.
100Lavallee et al., "Image guided operating robot: a clinical application in stereotactic neurosurgery," Proceedings of the 1992 IEEE Internation Conference on Robotics and Automation, May 1992, pp. 618-624.
101Lavallee et al., "Matching of Medical Images for Computed and Robot Assisted Surgery," IEEE EMBS, Orlando, 1991.
102Lavallee, "A New System for Computer Assisted Neurosurgery," IEEE Engineering in Medicine & Biology Society 11th Annual International Conference, 1989, pp. 0926-0927.
103Lavallee, "VI Adaption de la Methodologie a Quelques Applications Cliniques," Chapitre VI, pp. 133-148.
104Lavallee, S., et al., Computer Assisted Knee Anterior Cruciate Ligament Reconstruction First Clinical Tests, Proceedings of the First International Symposium on Medical Robotics and Computer Assisted Surgery, pp. 11-16 (Sep. 1994).
105Lavallee, S., et al., Computer Assisted Medical Interventions, NATO ASI Series, vol. F 60, 3d Imaging in Medic., pp. 301-312 (1990).
106Leavitt, D.D., et al., Dynamic Field Shaping to Optimize Stereotactic Radiosurgery, I.J. Rad. Onc. Biol. Physc., vol. 21, pp. 1247-1255 (1991).
107Leksell et al., "Stereotaxis and Tomography-A Technical Note," ACTA Neurochirurgica, vol. 52, 1980, pp. 1-7.
108Leksell et al., "Stereotaxis and Tomography—A Technical Note," ACTA Neurochirurgica, vol. 52, 1980, pp. 1-7.
109Lemieux et al., "A Patient-to-Computed-Tomography Image Registration Method Based on Digitally Reconstructed Radiographs," Med. Phys. 21 (11), Nov. 1994, pp. 1749-1760.
110Levin et al., "The Brain: Integrated Three-dimensional Display of MR and PET Images," Radiology, vol. 172, No. 3, Sep. 1989, pp. 783-789.
111M. Peter Heilbrun, M.D., "Computer Tomography—Guided Stereotactic Systems," Computed Tomographic Stereotaxy, Ch.31 pp. 564-581, 1983.
112Maurer, Jr., et al., Registration of Head CT Images to Physical Space Using a Weighted Combination of Points and Surfaces, IEEE Trans. on Med. Imaging, vol. 17, No. 5, pp. 753-761 (Oct. 1998).
113Mazier et al., "Computer-Assisted Interventionist Imaging: Application to the Vertebral Column Surgery," Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, No. 1, 1990, pp. 0430-0431.
114Mazier et al., Chirurgie de la Colonne Vertebrale Assistee par Ordinateur: Appication au Vissage Pediculaire, Innov. Tech. Biol. Med., vol. 11, No. 5, 1990, pp. 559-566.
115McGirr, S., M.D., et al., Stereotactic Resection of Juvenile Pilocytic Astrocytomas of the Thalamus and Basal Ganglia, Neurosurgery, vol. 20, No. 3, pp. 447-452, (1987).
116Merloz, et al., "Computer Assisted Spine Surgery", Clinical Assisted Spine Surgery, No. 337, pp. 86-96.
117Ng, W.S. et al., Robotic Surgery—A First-Hand Experience in Transurethral Resection of the Prostate Surgery, IEEE Eng. in Med. and Biology, pp. 120-125 (Mar. 1993).
118Offset Probe for SAC GP8-3d Digitizer, 2 pages, not dated.
119Pelizzari et al., "Accurate Three-Dimensional Registration of CT, PET, and/or MR Images of the Brain," Journal of Computer Assisted Tomography, Jan./Feb. 1989, pp. 20-26.
120Pelizzari et al., "Interactive 3D Patient-Image Registration," Information Processing in Medical Imaging, 12th International Conference, IPMI '91, Jul. 7-12, 136-141 (A.C.F. Colchester et al. eds. 1991).
121Pelizzari et al., No. 528-"Three Dimensional Correlation of PET, CT and MRI Images," The Journal of Nuclear Medicine, vol. 28, No. 4, Apr. 1987, p. 682.
122Pelizzari et al., No. 528—"Three Dimensional Correlation of PET, CT and MRI Images," The Journal of Nuclear Medicine, vol. 28, No. 4, Apr. 1987, p. 682.
123Penn, R.D., et al., Stereotactic Surgery with Image Processing of Computerized Tomographic Scans, Neurosurgery, vol. 3, No. 2, pp. 157-163 (Sep.-Oct. 1978).
124Phillips et al., "Image Guided Orthopaedic Surgery Design and Analysis," Trans Inst. MC, vol. 17, No. 5, 1995, pp. 251-264.
125Pixsys, 3-D Digitizing Accessories, by Pixsys (marketing brochure)(undated) (2 pages).
126Potamianos et al., "Intra-Operative Imaging Guidance for Keyhole Surgery Methodology and Calibration," First International Symposium on Medical Robotics and Computer Assisted Surgery, Sep. 22-24, 1994, pp. 98-104.
127Reinhardt et al., "CT-Guided 'Real Time' Stereotaxy," ACTA Neurochirurgica, 1989.
128Reinhardt et al., "CT-Guided ‘Real Time’ Stereotaxy," ACTA Neurochirurgica, 1989.
129Reinhardt, H., et al., A Computer-Assisted Device for Intraoperative CT-Correlated Localization of Brain Tumors, pp. 51-58 (1988).
130Reinhardt, H.F. et al., Sonic Stereometry in Microsurgical Procedures for Deep-Seated Brain Tumors and Vascular Malformations, Neurosurgery, vol. 32, No. 1, pp. 51-57 (Jan. 1993).
131Reinhardt, H.F., et al., Mikrochirugische Entfernung tiefliegender Gefäβmiβbildungen mit Hilfe der Sonar-Stereometrie (Microsurgical Removal of Deep-Seated Vascular Malformations Using Sonar Stereometry). Ultraschall in Med. 12, pp. 80-83 (1991).
132Reinhardt, Hans. F., Neuronavigation: A Ten-Year Review, Neurosurgery, pp. 329-341 (undated).
133Richard D. Bucholz, et al., "Clinical Applications of Modern Imaging Technology," SPIE vol. 1894 pp. 312-322, Jan. 19, 1993.
134Richard D. Bucholz, et al., "Intraoperative localization using a three dimensional optical digitizer," Proceedings of Clinical Applicatins of Modern Imaging Technology, vol. 1894, pp. 312-322, 1993.
135Richard D. Bucholz, M.D. and K. Charles Cheung, M.D., "Halo vest versus spinal fusion for cervical injury: evidence from an outcome study," J. Neurosurg 70:884-892, Jun. 1989.
136Richard D. Bucholz, M.D., and Kurt R. Smith, "A Comparison of Sonic Digitizers Versus Light Emitting Diode-Based Localization," Interactive Image-Guided Neurosurgery, pp. 179-200, 1993.
137Richard D. Bucholz, M.D., et al., "Poster #1120, Use of an Intraoperative Optical Digitizer in a System for Free-Hand Stereotactic Surgery," Scientific Program, Am. Assoc. of Neurological Surgeons 1992 Annual Meeting, pp. 284-285, Apr. 16, 1992.
138Roberts et al., "A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope," J. Neurosurg., vol. 65, Oct. 1986, pp. 545-549.
139Rosenbaum et al., "Computerized Tomography Guided Stereotaxis: A New Approach," Applied Neurophysiology, vol. 43, No. 3-5, 1980, pp. 172-173.
140Sautot, "Vissage Pediculaire Assiste Par Ordinateur," Sep. 20, 1994.
141Schueler et al., "Correction of Image Intensifier Distortion for Three-Dimensional X-Ray Angiography," SPIE Medical Imaging 1995, vol. 2432, pp. 272-279.
142Selvik et al., "A Roentgen Stereophotogrammetric System," Acta Radiologica Diagnosis, 1983, pp. 343-352.
143Shelden et al., "Development of a computerized microsteroetaxic method for localization and removal of minute CNS lesions under direct 3-D vision," J. Neurosurg., vol. 52, 1980, pp. 21-27.
144Simon, D.A., Accuracy Validation in Image-Guided Orthopaedic Surgery, Second Annual Intl. Symp. on Med. Rob. an Comp-Assisted surgery, MRCAS '95, pp. 185-192 (undated).
145Skip Jacques, et al., "A Computerized Microstereotactic Method to Approach, 3-Dimensionally Reconstruct, Remove and Adjuvantly Treat Small CNS Lesions," Meeting of the Amer. Soc. Stereotactic & Functional Neurosurgery, Houston 1980, Appl. Neurophysiol. 43: 176-182 (1980).
146Smith et al., "Computer Methods for Improved Diagnostic Image Display Applied to Stereotactic Neurosurgery," Automedical, vol. 14, 1992, pp. 371-382 (4 unnumbered pages).
147Smith et al., "The Neurostation(TM)-A Highly Accurate, Minimally Invasive Solution to Frameless Stereotactic Neurosurgery," Computerized Medical Imaging and Graphics, vol. 18, Jul.-Aug. 1994, pp. 247-256.
148Smith et al., "The Neurostation™—A Highly Accurate, Minimally Invasive Solution to Frameless Stereotactic Neurosurgery," Computerized Medical Imaging and Graphics, vol. 18, Jul.-Aug. 1994, pp. 247-256.
149Smith, K.R., et al. Multimodality Image Analysis and Display Methods for Improved Tumor Localization in Stereotactic Neurosurgery, Annul Intl. Conf. of the IEEE Eng. in Med. and Biol. Soc., vol. 13, No. 1, p. 210 (1991).
150Tan, K., Ph.D., et al., A frameless stereotactic approach to neurosurgical planning based on retrospective patient-image registration, J Neurosurgy, vol. 79, pp. 296-303 (Aug. 1993).
151The Laitinen Stereotactic System, E2-E6.
152Thompson, et al., A System for Anatomical and Functional Mapping of the Human Thalamus, Computers and Biomedical Research, vol. 10, pp. 9-24 (1977).
153Trobraugh, J.W., et al., Frameless Stereotactic Ultrasonography: Method and Applications, Computerized Medical Imaging and Graphics, vol. 18, No. 4, pp. 235-246 (1994).
154Viant et al., "A Computer Assisted Orthopaedic System for Distal Locking of Intramedullary Nails," Proc. of MediMEC '95, Bristol, 1995, pp. 86-91.
155Von Hanwhr et al., Foreword, Computerized Medical Imaging and Graphics, vol. 18, No. 4, pp. 225-228, (Jul.-Aug. 1994).
156W. Krybus, et al., "Navigation Support for Surgery by Means of Optical Position Detection," p. 362-366, 1990.
157Wang, M.Y., et al., An Automatic Technique for Finding and Localizing Externally Attached Markers in CT and MR Volume Images of the Head, IEEE Trans. on Biomed. Eng., vol. 43, No. 6, pp. 627-637 (Jun. 1996).
158Watanabe et al., "Three-Dimensional Digitizer (Neuronavigator): New Equipment for Computed Tomography-Guided Stereotaxic Surgery," Surgical Neurology, vol. 27, No. 6, Jun. 1987, pp. 543-547.
159Watanabe, "Neuronavigator," Igaku-no-Ayumi, vol. 137, No. 6, May 10, 1986, pp. 1-4.
160Watanabe, E., M.D., et al., Open Surgery Assisted by the Neuronavigator, a Stereotactic, Articulated, Sensitive Arm, Neurosurgery, vol. 28, No. 6, pp. 792-800 (1991).
161Weese et al., "An Approach to 2D/3D Registration of a Vertebra in 2D X-ray Fluoroscopies with 3D CT Images," pp. 119-128.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US20100039506 *14 Aug 200918 Feb 2010Amir SarvestaniSystem for and method of visualizing an interior of body
US20100076455 *18 Sep 200925 Mar 2010Rainer BirkenbachSurgical instrument, in particular pointer instrument, comprising tip sensor
US20100286710 *22 Oct 200911 Nov 2010Blue OrthoDevice and Method For Instrument Adjustment in Computer Assisted Surgery
US20110218546 *22 Oct 20098 Sep 2011Blue OrthoDevice for controlled adjustment of a surgical positioning unit
Classifications
U.S. Classification600/429, 600/417, 606/80, 606/79, 600/407, 606/60, 606/96, 606/130, 600/476, 600/473, 606/104, 606/62, 606/275
International ClassificationA61B17/16, A61B17/00, A61B17/88, A61B19/00, A61B5/05
Cooperative ClassificationA61B2019/507, A61B17/1655, A61B17/16, A61B2019/442, A61B2019/5483, A61B19/5244, A61B2019/5272, A61B2019/5255, A61B19/52, A61B2017/0046, A61B19/50, A61B17/8875
European ClassificationA61B17/16, A61B17/88S, A61B19/52, A61B19/52H12
Legal Events
DateCodeEventDescription
12 Nov 2013CCCertificate of correction
11 Jan 2012ASAssignment
Free format text: CHANGE OF NAME;ASSIGNOR:SURGICAL NAVIGATION TECHNOLOGIES, INC.;REEL/FRAME:027519/0191
Effective date: 20041220
Owner name: MEDTRONIC NAVIGATION, INC., COLORADO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOLEY, KEVIN T.;MELKENT, ANTHONY;CARROLL, CATALINA J.;SIGNING DATES FROM 19980427 TO 19980504;REEL/FRAME:027513/0648
Owner name: SURGICAL NAVIGATION TECHNOLOGIES, INC., COLORADO