Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE42119 E1
Publication typeGrant
Application numberUS 11/144,210
Publication date8 Feb 2011
Filing date2 Jun 2005
Priority date27 Feb 2002
Fee statusLapsed
Also published asCN1633616A, CN100472270C, EP1488271A1, EP1488271A4, US6574033, WO2003073151A1
Publication number11144210, 144210, US RE42119 E1, US RE42119E1, US-E1-RE42119, USRE42119 E1, USRE42119E1
InventorsClarence Chui, Mark W. Miles
Original AssigneeQualcomm Mems Technologies, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Microelectrochemical systems device and method for fabricating same
US RE42119 E1
Abstract
One aspect of the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating an array of first elements, each first element conforming to a first geometry; fabricating at least one array of second elements, each second element conforming to a second geometry; wherein fabricating the arrays comprises selecting a defining aspect of each of the first and second geometries based on a defining characteristic of each of the first and second elements; and normalizing differences in an actuation voltage required to actuate each of the first and second elements, wherein the differences are as a result of the selected defining aspect, the defining characteristic of each of the elements being unchanged.
Images(11)
Previous page
Next page
Claims(75)
1. A microelectromechanical systems device comprising:
a plurality of elements each having at least two layers, the layers being disposed in a stacked relationship with a gap therebetween when the element is in an undriven state, the plurality of elements being of at least two different types, defining at least a first region having elements only of a first type and a second region having elements only of a second type, wherein each type differing differs in a height of its gap, wherein the elements within the first region are substantially co-planar, and wherein the elements within the second region are substantially co-planar; and
a driving mechanism circuit configured to drive the plurality of elements to a driven state, wherein one of the layers of each element is configured to electrostatically displaced relative to the other layer to close the gap between the layers, and wherein a minimum voltage required to actuate the driving mechanism electrostatically displace the layer to a driven state is substantially different for each type of element.
2. The microelectromechanical systems device of claim 1, wherein the plurality of elements are arranged in an array structure wherein the plurality of elements are substantially co-planar.
3. The microelectromechanical systems device of claim 2, further comprising a plurality of said array structures each containing only elements of one type.
4. The microelectromechanical systems device of claim 1, wherein the electrostatically displaceable layer is self-supporting comprising es a plurality of spaced apart limbs which rest on a substrate.
5. The microelectromechanical systems device of claim 3 1, wherein the layers of each element in an array are continuous, the electrostatically displaceable layer being supported by a support structure comprising a plurality of supports spaced along a first axis and extending in a direction which is transverse thereto, each support having a support surface to support the electrostatically displaceable layer above the other layer when the elements are in the undriven state.
6. The microelectromechanical systems device of claim 5, wherein the spacing between the supports along the first axis in each array depends on the height of the gap between the layers, the higher the gap, the greater the spacing.
7. The microelectromechanical systems device of claim 5, wherein an area of the support surface of each support in an array is a function of the height of the gap between the layers, the higher the gap, the smaller the area.
8. The microelectromechanical systems device of claim 1, wherein the electrostatically displaceable layer of each element has a Young's Modulus which is a function of the height of its gap, the higher the gap, the lower the Young's Modulus.
9. The microelectromechanical systems device of claim 1, wherein a thickness of the electrostatically displaceable layer of each element is a function of the height of its gap, the higher the gap, the smaller the thickness.
10. The microelectromechanical systems device of claim 1, wherein the electrostatically displaceable layer of at least those elements having the highest gap have apertures formed therein to reduce a stiffness thereof.
11. The microelectromechanical systems device of claim 1, wherein the electrostatically displaceable layer of each element is under tensile stress to a degree which increases as the height of its gap decreases.
12. The microelectromechanical systems device of claim 1, wherein the driving mechanism circuit comprises an electrode layer to electrostatically displace the electrostatically displaceable layer when energized, wherein the electrode layers which drive at least those elements having the smallest gap have apertures formed therein to increase the minimum voltage required to energize the electrode layers.
13. The microelectromechanical systems device of claim 1, wherein the electrostatically displaceable layer of each element is formed on a dielectric material having a dielectric constant which is a function of the height of the gap of the element, the higher the gap, the greater the dielectric constant.
14. The microelectromechanical systems device of claim 1, wherein the electrostatically displaceable layer of each element is formed on a dielectric material having a thickness which is a function of the height of the gap of the element, the higher the gap, the lower the thickness.
15. The microelectromechanical systems device of claim 1 1, wherein the minimum voltage is not substantially the same for each kind type of element.
16. The microelectromechanical systems device of claim 1, wherein each of the elements defines an interferometric modulator which configured to modulates light.
17. The microelectromechanical systems device of claim 16, comprising three different kinds types of interferometric modulators, each differing in a height of its gap to reflect red, blue, or green light, respectively when in the undriven state.
18. A method for of fabricating a microelectromechanical systems device comprising:
constructing an array a plurality of elements, each element having a first layer, a second layer spaced from the first layer by a gap when in an undriven state, and an electrode layer configured to electrostatically drive the second layer to contact the first layer corresponding to when in a driven state when energized , the elements being of at least two different types, each type differing in a height of its gap, wherein said constructing includes changing a configuration of each at least one element type to compensate for reduce a differences in between a voltage required to drive each the at least one element type and another voltage required to drive another element type to its their respective driven state.
19. The method of claim 18, wherein the first and second layers of each element in an array are defined by continuous layers which are supported by a support structure comprising a plurality of supports spaced along a first axis and extending in a direction which is transverse thereto, each support having a support surface to support the first layer above the second layer when the elements are in the undriven state, wherein changing the configuration of each element type then comprising comprises changing the spacing between the supports.
20. The method of claim 19, wherein changing the configuration of each element type comprises changing an area of the support surface of each support.
21. The method of claim 18, wherein changing the configuration of each element type comprises using a material having a different Young's Modulus for the second layer of each element type.
22. The method of claim 18, wherein changing a configuration of each element type comprises changing a thickness of the second layer of each element type.
23. The method of claim 18, wherein changing a configuration of each element type comprises forming apertures in the second layers of at least those elements having the highest gap.
24. The method of claim 18, wherein changing a configuration of each element type comprises subjecting the second layer of each element to tensile stress to a degree which is inversely proportional to the height of its gap.
25. The method of claim 18, wherein changing a configuration of each element type comprises forming apertures in the electrode layer of at least those element types having the smallest gap.
26. The method of claim 18, wherein the second layer of each element is formed on a dielectric material, wherein changing a configuration of each element type then comprising comprises changing the dielectric constant of the dielectric material on which the second layer of each element is formed.
27. The method of claim 26, wherein changing a configuration of each element type comprises changing a thickness of the dielectric material.
28. The method of claim 18, wherein the elements are interferometric modulators which configured to modulate light.
29. A microelectromechanical systems device comprising:
a plurality of elements, each element having a first layer, a second layer spaced from the first layer by a gap when in an undriven state, and an electrode layer configured to electrostatically drive the second layer to contact the first layer corresponding to a driven state when the electrode layer is energized, the elements being of at least two different kinds, each kind of element differing in at least a height of its gap; and
an element driving mechanism comprising an integrateda drive circuit having multilevel outputs configured to energize the electrode layer of each element to cause the element to change from its undriven state to its driven state.
30. A method for fabricating a microelectromechanical systems device, the method comprising:
fabricating an array a plurality of first elements, each first element conforming to a first geometry;
fabricating at least one array of a plurality of second elements, each second element conforming to a second geometry; wherein
fabricating the arrays first and second elements comprises
selecting a defining an aspect of each of the first and second geometries based on a defining characteristic of each of the first and second elements ; and
normalizing differences in an actuation voltage required to actuate each of the first and second elements, wherein the differences in the actuation voltages are as a result of the selected defining aspect, the defining characteristic of each of the elements being unchanged of the first and second geometries.
31. The method of claim 30, wherein the normalizing comprises changing an other aspects of the first and second geometries without changing the defining selected aspects of the first and second geometries.
32. The method of claim 30 31, wherein the defining selected aspect comprises a gap between an operatively upper and lower layer of each element, the upper and lower layers being separated by supports.
33. The method of claim 32, wherein each element comprises an electrode to electrostatically drive the upper layer towards the lower layer when actuated by the actuation voltage.
34. The method of claim 33, wherein changing the said other aspects comprises at least a changes selected from the group comprising changing a thickness of the upper layer, and changing a distance between the supports.
35. The method of claim 31 32, wherein the normalizing comprises changing a stiffness of the upper layer of each first and second element.
36. The method of claim 35, wherein changing the stiffness comprises changing the Young's modulus of the upper layer of each first and second element.
37. The method of claim 35, wherein changing the stiffness comprises forming apertures in the upper layer to reduce the stiffness thereof.
38. The method of claim 33, wherein the normalizing comprises changing a configuration of the electrode of each first or second element.
39. The method of claim 38, wherein changing a configuration of the electrode comprises forming apertures therein.
40. The method of claim 30, wherein the elements are formed on a dielectric material, the normalization then comprising wherein normalizing the differences comprises changing the dielectric properties of the dielectric material.
41. The method of claim 30, wherein the first and second elements are pixels.
42. A microelectromechanical systems device comprising:
a first element having a first element characteristic and at least two layers with a first gap between the two layers, wherein one layer of the at least two layers of the first element is configured to move relative to another layer and substantially close the first gap upon applying at least a first voltage to the first element; and
a second element having a second element characteristic and at least two layers with a second gap between the two layers, wherein one layer of the at least two layers of the second element is configured to move relative to another layer and substantially close the second gap upon applying at least a second voltage to the second element, wherein the first and second element characteristics are different, wherein a size of the first gap is different than a size of the second gap, wherein the first and second voltages comprise respective mimimum sufficient voltages sufficient to substantially close the gap in the respective element, and wherein the first and second voltages are substantially the same.
43. The microelectromechanical systems device of claim 42, further comprising a circuit configured to apply the first voltage to at least the first element and the second voltage to at least the second element.
44. The microelectromechanical systems device of claim 43, wherein the driving circuit comprises an electrode layer in each of the first and second elements, and wherein the element characteristics of the first and second elements relate to the presence of at least one aperture in the electrode layer of at least one of the first and second elements.
45. The microelectromechanical systems device of claim 42, further comprising a plurality of the first and second elements arranged in a substantially co-planar array.
46. The microelectromechanical systems device of claim 45, further comprising at least two of the substantially co-planar arrays, wherein one of said at least two substantially co-planar arrays comprises only first elements and one of said at least two substantially co-planar arrays comprises only second elements.
47. The microelectromechanical systems device of claim 42, wherein the at least two layers of the respective first and second elements are continuous.
48. The microelectromechanical systems device of claim 42, wherein each movable layer is supported by a support structure comprising a plurality of supports spaced along a first axis and extending in a direction which is transverse to the first axis, and each support having a support surface to support the movable layer above the other of the at least two layers of the respective element.
49. The microelectromechanical systems device of claim 48, wherein the element characteristics of the first and second elements relate to the spacing between the supports along the first axis, wherein the spacing is a function of the size of the gap between the at least two layers of the respective element.
50. The microelectromechanical systems device of claim 48, wherein the element characteristics of the first and second elements relate to an area of the support surface of each support, and wherein the area of the support surface is a function of the height of the gap between the at least two layers.
51. The microelectromechanical systems device of claim 42, wherein the element characteristics of the first and second elements relate to a Young's Modulus of the movable layer, wherein the Young's Modulus is a function of the size of the gap of the respective element.
52. The microelectromechanical systems device of claim 42, wherein the element characteristics of the first and second elements relate to a thickness of the movable layer, wherein the thickness is a function of the size of the gap of the respective element.
53. The microelectromechanical systems device of claim 42, wherein the element characteristics of the first and second elements relate to the presence of at least an aperture formed on the movable layer of at least one of the first and second elements.
54. The microelectromechanical systems device of claim 42, wherein the element characteristics of the first and second elements relate to a tensile stress of the movable layer, wherein the tensile stress is a function of the size of the gap of the respective element.
55. The microelectromechanical systems device of claim 42, wherein the element characteristics of the first and second element relate to a dielectric material of the first and second elements, wherein the dielectric material comprises a dielectric constant that is a function of the size of the gap of the respective element.
56. The microelectromechanical systems device of claim 42, wherein the element characteristics of the first and second elements relate to a dielectric material of the first and second elements, wherein a thickness of the dielectric material is a function of the size of the gap of the respective element.
57. The microelectromechanical systems device of claim 42, wherein the minimum voltage is the same for the first and second elements.
58. The microelectromechanical systems device of claim 42, wherein each of the first and second elements are interferometric modulators configured to modulate light.
59. The microelectromechanical systems device of claim 58, further comprising a third element, wherein the first, second and third elements each comprise an interferometric modulators, each element differing in a height of its gap to reflect red, blue, or green light, respectively.
60. A microelectromechanical systems device comprising:
a first element comprising a first electrode and at least two layers with a first gap between the two layers, wherein at least one of the at least two layers of the first element is configured to move relative to another layer and substantially close the first gap upon applying a first voltage to at least the first electrode; and
a second element comprising a second electrode and at least two layers with a second gap between the two layers, wherein a size of the first gap is different than a size of the second gap, wherein at least one of the at least two layers of the second element is configured to move relative to another layer and substantially close the second gap upon applying a second voltage to at least the second electrode, wherein the first and second voltages are different;
wherein a plurality of said first and second elements are arranged in a substantially co-planar array.
61. The microelectromechanical systems device of claim 60, further comprising a circuit configured to apply the first voltage to at least the first electrode and the second voltage to at least the second electrode.
62. The microelectromechanical systems device of claim 60, wherein the first electrode is located over one of the at least two layers of the first element, and the second electrode is located over one of the at least two layers of the second element.
63. The microelectromechanical systems device of claim 60, further comprising at least two of the substantially co-planar arrays, wherein one of said at least two substantially co-planar arrays comprises only first elements and one of said at least two substantially co-planar arrays comprises only second elements.
64. The microelectromechanical systems device of claim 60, wherein the at least two layers of the respective first and second elements are continuous.
65. The microelectromechanical systems device of claim 60, wherein in each of the first and second elements the layer configured to move relative to another layer is supported by a support structure comprising a plurality of supports spaced along a first axis and extending in a direction which is transverse to the first axis.
66. The microelectromechanical systems device of claim 65, wherein the spacing between the supports along the first axis is a function of the size of the gap between the at least two layers of the respective element.
67. The microelectromechanical systems device of claim 65, wherein an area of the support surface of each support is a function of the height of the gap between the at least two layers of the respective element.
68. The microelectromechanical systems device of claim 60, wherein in each of the first and second elements the layer configured to move relative to another layer is characterized by a Young's Modulus, wherein the Young's Modulus is a function of the size of the gap of the respective element.
69. The microelectromechanical systems device of claim 60, wherein in each of the first and second elements the layer configured to move relative to another layer has a thickness that is a function of the size of the gap of the respective element.
70. The microelectromechanical systems device of claim 60, wherein at least the element having the largest gap size has at least one aperture formed in the layer configured to move relative to another layer.
71. The microelectromechanical systems device of claim 60, wherein in each of the first and second elements the layer configured to move relative to another layer is subject to a tensile stress that is a function of the size of the gap of the respective element.
72. The microelectromechanical systems device of claim 60, wherein the element having the smallest gap size has at least one aperture formed in its electrode layer.
73. The microelectromechanical systems device of claim 60, wherein each of the first and second elements further comprises a dielectric material located between the at least two layers, wherein the dielectric material is characterized by a dielectric constant that is a function of the size of the gap of the respective element.
74. The microelectromechanical systems device of claim 60, wherein each of the elements is an interferometric modulator configured to modulate light.
75. The microelectromechanical systems device of claim 74, further comprising a third element, wherein the first, second and third elements each comprise an interferometric modulators, each of the elements differing in a height of its gap to reflect one of red, blue, and green light.
Description
FIELD OF THE INVENTION

This invention relates to the actuation of microelectromechanical systems devices. In particular, it relates to the actuation or driving of elements in an array in a microelectromechanical systems device.

BACKGROUND

Microelectromechanical systems (MEMS) devices may include arrays of elements wherein the elements are operable between one or more driven and undriven states by the application of an actuation voltage. Depending on the particular microelectromechanical systems device, the elements may include interferometric modulators (IMODs), switches, Infra Red (IR) detectors, etc.

In some microelectromechanical systems devices, it may be necessary to have multiple arrays, wherein each array comprises only elements of a particular type, and wherein each element type requires a different actuation voltage. An example of such a device is the color IMOD-based display described in U.S. Pat. No. 6,040,937, which includes three sets or arrays of IMODs designed to switch between the colors red/black, green/black and blue/black. Each array of IMODS has a different actuation voltage.

Driving the elements in these multiple arrays between their undriven and driven states present a challenge because different actuation voltages are required.

SUMMARY OF THE INVENTION

According to a first aspect of the invention there is provided a microelectromechanical systems device comprising a plurality of elements each having at least two layers disposed in a stacked relationship with a gap therebetween when the element is in an undriven state, the plurality of elements being of at least two different types, each differing in a height of its gap; and a driving mechanism to drive the plurality of elements to a driven state, wherein one of the layers of each element is electrostatically displaced relative to the other layer, and wherein a minimum voltage required to actuate the driving mechanism is substantially the same for each type of element.

According to a second aspect of the invention there is provided a method of fabricating a microelectromechanical systems device comprising constructing an array of elements, each element having a first layer, a second layer spaced from the first layer by a gap when in an undriven state, and an electrode layer to electrostatically drive the second layer to contact the first layer corresponding to a driven state when energized, the elements being of at least two different types which differ in a height of its gap, wherein said constructing includes changing a configuration of each element type to compensate for differences in a voltage required to drive each element to its driven state.

According to a further aspect of the invention, there is provided a microelectromechanical systems device comprising a plurality of elements, each having a first layer, a second layer spaced therefrom by a gap when in an undriven state, and an electrode layer to electrostatically drive the second layer to contact the first layer corresponding to a driven state when energized, the elements being of at least two different kinds, each differing in a height of its gap; and an element driving mechanism comprising an integrated drive circuit having multilevel outputs to energize the electrode layer of each element to cause the element to change from its undriven state to its driven state.

According to yet a further aspect of the invention there is a provided a method for fabricating a microelectromechanical systems device, the method comprising fabricating an array of first elements, each first element conforming to a first geometry; fabricating at least one array of second elements, each second element conforming to a second geometry; wherein fabricating the arrays comprises selecting a defining aspect of each of the first and second geometries based on a defining characteristic of each of the first and second elements; and normalizing differences in an actuation voltage required to actuate each of the first and second elements, wherein the differences are as a result of the selected defining aspect, the defining characteristics of each of the elements being unchanged.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a simplified drawing of a generic MEMs device to which aspects of the present invention apply;

FIG. 2 shows an example of how the geometry of the elements in the MEMs device of FIG. 1 may be changed, according to one embodiment of the invention, to normalize the actuation voltages of the elements;

FIG. 3A shows a different geometry for a driven layer of an element, wherein the driven layer has tabs;

FIG. 3B shows a three dimensional view of the driven layer of FIG. 3A supported on supports;

FIG. 3C shows the driven layer of FIG. 3A with a different configuration for the tabs;

FIG. 4 shows an example of how the configuration of an electrode within each element may be changed in order to achieve voltage normalization in one embodiment of the invention;

FIG. 5 shows an example of how the stiffness of the layer which is driven in each element may be varied in order to achieve voltage normalization in accordance with another embodiment of the invention;

FIG. 6 shows a simplified drawing of an IMOD-based display array wherein the thickness of the layer which is driven within each IMOD is changed in order to achieve voltage normalization, in accordance with one embodiment of the invention;

FIG. 7 shows a schematic end view of an IMOD which includes a dielectric stack; and

FIG. 8 shows a block diagram of a driver in accordance with one embodiment of the invention.

DETAILED DESCRIPTION

FIG. 1 shows, in simplified form, a generic structure of a microelectromechanical systems (MEMS) device 100 to which aspects of the present invention relate. Referring to FIG. 1, it will be seen that the MEMs device 100 comprises two elements which are designated 102 and 104 respectively. The element 102 and the element 104 each have a common lower or base layer 106. Element 102 has an upper layer 108 which is spaced from the base layer 106 by a number of supports which are in the form of posts 110. Likewise, element 104 has an upper layer 112 which is spaced from the base layer 106 by supports in the form of posts 114. It will be apparent that posts 114 are higher than posts 110 and so the height of a gap 116 between layer 106 and layer 108 is less than that of a gap 118 between layer 112 and layer 106. Because of the differences in the heights of gaps 116 and 118, an actuation voltage required to electrostatically drive layers 108 and 112 respectively from an undriven state, corresponding to the state showing FIG. 1 of the drawings, to a driven state (not shown), in which the layers 106 and 112 contact the base layer 116, is different. Thus, any driving mechanism must take into account these differences in the actuation voltages.

As stated above, FIG. 1 is intended to be a simplified drawing of a generic MEMs device to which aspects of the present invention apply. In actual embodiments, the MEMs device 100 may include multiple arrays each array comprising elements such as the elements 102 or 108. Thus, the elements in each array would require a different actuation voltage. An example of one such MEMs device is provided by the IMOD display described in U.S. Pat. No. 6,040,937. In this example, there are three arrays, each comprising elements in the form of IMODs designed to have a particular optical characteristic which arises from a size of an air gap in each IMOD. Each array comprises only IMODs which have a particular optical characteristic. As a result, different actuation voltages are required to drive the IMODs in each array.

Embodiments of the present invention are concerned with the problem of driving MEMs devices such as are described above, wherein different actuation voltages are required by the elements within th e MEMs device. In describing specific embodiments of the invention, reference will be made to a MEMs device such as is described in U.S. Pat. No. 6,040,937. However, it must be borne in mind that the invention is applicable to any MEMs device comprising elements which each require a different actuation voltage to drive or actuate the element resulting in a geometric configuration or state of the element being changed. Such elements may include IMODs, switches, Infra Red (IR) detectors, etc., where the change in the geometric configuration comprises driving one layer of the element to contact another layer. The layer that is driven will be referred to as the driven layer to distinguish it from the undriven layer.

According to embodiments of the present invention, the actuation voltage required to actuate each of the elements is normalized. This is achieved by changing a geometry of the elements within each array. Naturally, aspects of the geometry of an element which impart a defining characteristic to the element are not changed. Thus, in the case of the IMOD displays of U.S. Pat. No. 6,040,937, the height of the air gap in each element (IMOD) imparts a defining optical characteristic to the IMOD and so the one aspect of geometry of an IMOD that is not changed is the height of the air gap.

FIG. 2 of the drawings shows an example wherein the geometry of the element 102 shown in FIG. 1 of the drawings has been changed by increasing the number of posts 110 and by decreasing the spacing therebetween. Thus the layer 108 is supported by posts 110 to a greater degree and therefore a greater actuation voltage will be required to drive layer 108 to contact layer 106. By selecting the number of posts 110 and the spacing therebetween it will be appreciated that the actuation voltages required to drive element 102 and 108 may be normalized.

In other embodiments, the geometry of the driven layer may be changed in order to increase or decrease the degree of support provided thereto. This is illustrated in FIGS. 3A and 3B of the drawings. Referring to FIGS. 3A and 3B, a layer 300, which is similar to layers 108 and 112 of FIGS. 1 and 2, is shown. The layer 300 has a different geometry to that of layers 108 and 112 by virtue of tabs 302 which form tethers which themselves are supported on posts 304. Thus, the thickness and length of the tabs may be varied to change the degree of support to the layer 300. Assuming that an actuation voltage is required to drive layer 300 into the plane of the drawings it will be appreciated that the tabs 302 in FIG. 3A offer a greater degree of support than the tabs 302 shown in FIG. 3C of the drawings. Thus, a lesser actuation voltage will be required to drive layer 300 in FIG. 3C of the drawings than in FIG. 3A of the drawings. Embodiments of the present invention use the principles illustrated in FIGS. 3A and 3C of the drawings to normalize the actuation voltage required to actuate elements within a MEMs device wherein an operatively upper layer (driven layer) is to be driven towards an operatively lower layer across a gap. When the gap is large, the geometry of the tabs is varied in accordance with the principles shown in FIGS. 3A and 3C to reduce the degree of support provided to the driven layer. On the other hand when the gap is small then the geometry of the supports is varied to provide a greater degree of support to the driven layer. In this way, regardless of the size of the gap through which a layer must be driven, the voltage required to drive the layer can be normalized.

Although not shown in FIGS. 1 or 2 of the drawings, a driving mechanism to drive layers 108 and 112 comprises electrodes to electrostatically drive layers 108 and 112 towards base layer 106. The electrodes are disposed on layer 106. An example of an electrode is indicated generally by reference numeral 400 in FIG. 4 of the drawings. According to some embodiments of the present invention, in order to normalize the voltage required to drive or actuate elements within an MEMs device, the configuration of electrode 400 may be changed. Changing the configuration of the electrode may include changing the shape of the electrode or providing apertures therein, for example, such as slots 402 shown in electrode 400. Thus, if a layer is to be driven across a small gap, the electrode may have slots such as slots 402 which serve to reduce the effective electrostatic force created by the electrode. This allows the actuation voltage to be normalized regardless of the height of the gap across which a layer has to be driven.

According to other embodiments of the present invention, changing the geometry of the elements in order to normalize the actuation voltage may include changing the stiffness of the driven layer. One way of changing the stiffness of the driven layer includes changing the Young's Modulus thereof. Thus, the layer which is required to be driven across a small air gap would be made of a material which has a higher Young's Modulus than a layer which has to be driven across a greater air gap.

Another method of changing the stiffness of the driven layer is to form apertures therein to reduce its stiffness. This is shown in FIG. 5, of the drawings where a layer 500 which includes, in addition to tabs 502 apertures or slots 504 formed therein.

Various aspects of the present invention may be applied in combination, thus in the example shown in FIG. 5, it will be seen that while layer 500 has slots formed therein, the layer itself will be supported on tabs 502 which have a thickness which is selected so that it provides a degree of support to the layer 500 to allow an actuation voltage required to actuate layer 500 to be normalized.

FIG. 6 of the drawings shows a simplified version 600 of an IMOD based display such as is described in U.S. Pat. No. 6,040,937. The display 600 includes three arrays 602, 604 and 606. Each array is fabricated on a substrate 608 and includes a 24 grid of IMODs. Each IMOD includes an upper layer 610 which in use is driven towards a common lower layer 612 across a gap. The layers 610 are self-supporting by virtue of having two downwardly extending limbs 611. Each IMOD has an electrode 614 which is disposed on layer 612. It will be seen that the IMODs within array 602 have the highest gap, the IMODs within array 604 have an intermediate size gap and the IMODs within array 606 have the smallest gap. This is because the IMODs in array 602, 604 and 606 are fabricated to have the defining characteristic that they each reflect red, green, and blue light, respectively, when in an undriven state. Thus, an actuation voltage required to drive the layers 610 towards the layer 612 will increase as the height of the gap through which the layer must be driven increases. Thus, the IMODs within array 602 will require a greater actuation voltage than the IMODs within array 604 or array 606. One embodiment of the present invention allows the actuation voltages to be normalized by changing the thickness of the layers 610 in inverse proportion to the size of the gap through which it must be driven. Thus, in FIG. 6, the thickness of the layers 610 have been selected to normalize the actuation voltages required by the IMODs within each array.

In another embodiment of the invention, the actuation voltages may be normalized by increasing or decreasing the tensile stress of each of the layers 610 as the height of the gap through which the layers must be driven increases or decreases, respectively. This can be accomplished by controlling deposition parameters of the film such as deposition pressure, power, and electric field bias.

FIG. 7 of the drawings shows an embodiment of a MEMs device 700 which includes an IMOD comprising a mechanical layer 702 which is supported on posts 704 which are formed on a substrate 706. Disposed on substrate 706 is an electrode 708 on which is formed a dielectric stack 710. The space between mechanical layer 702 and dielectric stack 708 defines an air gap. In use, an actuation voltage is applied to drive layer 702 to contact the dielectric stack 710. The device 700 will typically include three sets of IMODs each differing in the height of its air gap so as to reflect red, blue and green light, respectively, when in an undriven state. In order to normalize the actuation voltages required by each set of IMODs, the dielectric constant of the dielectric stack 710 is varied, in one embodiment of the invention, so that the higher the air gap, the greater the dielectric constant. Alternatively, the thickness of the dielectric stack may be varied so that the thickness of the dielectric stack is increased (or decreased) as the height of the air gap is decreased (or increased).

According to another embodiment of the invention, the problem of driving different elements within a MEMs device wherein the elements require different actuation voltages is solved by providing a driving mechanism such as the one shown in FIG. 8 of the drawings. Referring to FIG. 8, the driving mechanism comprises a driver chip 800 which includes an integrated drive circuit which has multi-level outputs 802, 804, and 806. Each of the outputs 804 to 806 delivers a different voltage and may be used, in one embodiment to drive IMODs with different sized air gaps for example IMODs 808, 810, 812 which reflect red, green, and blue light, respectively, when in an undriven state. The design and integration of components within driver chip 800 is well-known and is therefore is not further described.

Although the present invention has been described with reference to specific exemplary embodiments, it will be evident that the various modification and changes can be made to these embodiments without departing from the broader spirit of the invention as set forth in the claims. Accordingly, the specification and drawings are to be regarded in an illustrative sense rather than in a restrictive sense.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US25348468 Sep 194719 Dec 1950Emi LtdColor filter
US303718923 Apr 195829 May 1962Sylvania Electric ProdVisual display system
US321075729 Jan 19625 Oct 1965Carlyle W JacobMatrix controlled light valve display apparatus
US343997325 Jun 196422 Apr 1969Siemens AgPolarizing reflector for electromagnetic wave radiation in the micron wavelength
US344385425 Jun 196413 May 1969Siemens AgDipole device for electromagnetic wave radiation in micron wavelength ranges
US365374116 Feb 19704 Apr 1972Alvin M MarksElectro-optical dipolar material
US365683626 Jun 196918 Apr 1972Thomson CsfLight modulator
US372586819 Oct 19703 Apr 1973Burroughs CorpSmall reconfigurable processor for a variety of data processing applications
US381326523 Mar 197228 May 1974Marks AElectro-optical dipolar material
US395519011 Sep 19734 May 1976Kabushiki Kaisha Suwa SeikoshaElectro-optical digital display
US395588015 Jul 197411 May 1976Organisation Europeenne De Recherches SpatialesInfrared radiation modulator
US409985412 Oct 197611 Jul 1978The Unites States Of America As Represented By The Secretary Of The NavyOptical notch filter utilizing electric dipole resonance absorption
US41963963 May 19781 Apr 1980Bell Telephone Laboratories, IncorporatedInterferometer apparatus using electro-optic material with feedback
US422843726 Jun 197914 Oct 1980The United States Of America As Represented By The Secretary Of The NavyWideband polarization-transforming electromagnetic mirror
US43773244 Aug 198022 Mar 1983Honeywell Inc.Graded index Fabry-Perot optical filter device
US438909623 Feb 198121 Jun 1983Matsushita Electric Industrial Co., Ltd.Image display apparatus of liquid crystal valve projection type
US439271120 Mar 198112 Jul 1983Hoechst AktiengesellschaftProcess and apparatus for rendering visible charge images
US44032484 Mar 19816 Sep 1983U.S. Philips CorporationDisplay device with deformable reflective medium
US44417917 Jun 198210 Apr 1984Texas Instruments IncorporatedDeformable mirror light modulator
US444505015 Dec 198124 Apr 1984Marks Alvin MDevice for conversion of light power to electric power
US445918222 Apr 198310 Jul 1984U.S. Philips CorporationMethod of manufacturing a display device
US448221323 Nov 198213 Nov 1984Texas Instruments IncorporatedPerimeter seal reinforcement holes for plastic LCDs
US45001712 Jun 198219 Feb 1985Texas Instruments IncorporatedProcess for plastic LCD fill hole sealing
US451967624 Jan 198328 May 1985U.S. Philips CorporationPassive display device
US453112617 May 198223 Jul 1985Societe D'etude Du RadantMethod and device for analyzing a very high frequency radiation beam of electromagnetic waves
US456693531 Jul 198428 Jan 1986Texas Instruments IncorporatedSpatial light modulator and method
US457160310 Jan 198418 Feb 1986Texas Instruments IncorporatedDeformable mirror electrostatic printer
US459699231 Aug 198424 Jun 1986Texas Instruments IncorporatedLinear spatial light modulator and printer
US461559510 Oct 19847 Oct 1986Texas Instruments IncorporatedFrame addressed spatial light modulator
US466274630 Oct 19855 May 1987Texas Instruments IncorporatedSpatial light modulator and method
US46630833 Apr 19845 May 1987Marks Alvin MElectro-optical dipole suspension with reflective-absorptive-transmissive characteristics
US466625428 Jan 198519 May 1987Sharp Kabushiki KaishaLiquid crystal display panel with a metal plate in its terminal portion
US468140319 Jun 198621 Jul 1987U.S. Philips CorporationDisplay device with micromechanical leaf spring switches
US471073231 Jul 19841 Dec 1987Texas Instruments IncorporatedSpatial light modulator and method
US47483662 Sep 198631 May 1988Taylor George WNovel uses of piezoelectric materials for creating optical effects
US47861282 Dec 198622 Nov 1988Quantum Diagnostics, Ltd.Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction
US479063524 Apr 198713 Dec 1988The Secretary Of State For Defence In Her Brittanic Majesty's Government Of The United Kingdom Of Great Britain And Northern IrelandElectro-optical device
US485686322 Jun 198815 Aug 1989Texas Instruments IncorporatedOptical fiber interconnection network including spatial light modulator
US485797811 Aug 198715 Aug 1989North American Philips CorporationSolid state light modulator incorporating metallized gel and method of metallization
US485906025 Nov 198622 Aug 1989501 Sharp Kabushiki KaishaVariable interferometric device and a process for the production of the same
US490013628 Oct 198813 Feb 1990North American Philips CorporationMethod of metallizing silica-containing gel and solid state light modulator incorporating the metallized gel
US49003957 Apr 198913 Feb 1990Fsi International, Inc.HF gas etching of wafers in an acid processor
US49374965 May 198826 Jun 1990W. C. Heraeus GmbhXenon short arc discharge lamp
US495478928 Sep 19894 Sep 1990Texas Instruments IncorporatedSpatial light modulator
US495661928 Oct 198811 Sep 1990Texas Instruments IncorporatedSpatial light modulator
US49655626 May 198823 Oct 1990U.S. Philips CorporationElectroscopic display device
US49821843 Jan 19891 Jan 1991General Electric CompanyElectrocrystallochromic display and element
US501825629 Jun 199028 May 1991Texas Instruments IncorporatedArchitecture and process for integrating DMD with control circuit substrates
US50227457 Sep 198911 Jun 1991Massachusetts Institute Of TechnologyElectrostatically deformable single crystal dielectrically coated mirror
US502893926 Jun 19892 Jul 1991Texas Instruments IncorporatedSpatial light modulator system
US503717322 Nov 19896 Aug 1991Texas Instruments IncorporatedOptical interconnection network
US50447366 Nov 19903 Sep 1991Motorola, Inc.Configurable optical filter or display
US506104913 Sep 199029 Oct 1991Texas Instruments IncorporatedSpatial light modulator and method
US507579617 Sep 199024 Dec 1991Eastman Kodak CompanyOptical article for multicolor imaging
US507847918 Apr 19917 Jan 1992Centre Suisse D'electronique Et De Microtechnique SaLight modulation device with matrix addressing
US507954427 Feb 19897 Jan 1992Texas Instruments IncorporatedStandard independent digitized video system
US508385729 Jun 199028 Jan 1992Texas Instruments IncorporatedMulti-level deformable mirror device
US509627926 Nov 199017 Mar 1992Texas Instruments IncorporatedSpatial light modulator and method
US50993534 Jan 199124 Mar 1992Texas Instruments IncorporatedArchitecture and process for integrating DMD with control circuit substrates
US512483416 Nov 198923 Jun 1992General Electric CompanyTransferrable, self-supporting pellicle for elastomer light valve displays and method for making the same
US513666915 Mar 19914 Aug 1992Sperry Marine Inc.Variable ratio fiber optic coupler optical signal processing element
US514240529 Jun 199025 Aug 1992Texas Instruments IncorporatedBistable dmd addressing circuit and method
US514241422 Apr 199125 Aug 1992Koehler Dale RElectrically actuatable temporal tristimulus-color device
US515377118 Jul 19906 Oct 1992Northrop CorporationCoherent light modulation and detector
US516278730 May 199110 Nov 1992Texas Instruments IncorporatedApparatus and method for digitized video system utilizing a moving display surface
US516840631 Jul 19911 Dec 1992Texas Instruments IncorporatedColor deformable mirror device and method for manufacture
US517015630 May 19918 Dec 1992Texas Instruments IncorporatedMulti-frequency two dimensional display system
US517226216 Apr 199215 Dec 1992Texas Instruments IncorporatedSpatial light modulator and method
US517927412 Jul 199112 Jan 1993Texas Instruments IncorporatedMethod for controlling operation of optical systems and devices
US519239512 Oct 19909 Mar 1993Texas Instruments IncorporatedMethod of making a digital flexure beam accelerometer
US519294630 May 19919 Mar 1993Texas Instruments IncorporatedDigitized color video display system
US52066293 Jul 199127 Apr 1993Texas Instruments IncorporatedSpatial light modulator and memory for digitized video display
US52125824 Mar 199218 May 1993Texas Instruments IncorporatedElectrostatically controlled beam steering device and method
US521441926 Jun 199125 May 1993Texas Instruments IncorporatedPlanarized true three dimensional display
US521442026 Jun 199125 May 1993Texas Instruments IncorporatedSpatial light modulator projection system with random polarity light
US52165372 Jan 19921 Jun 1993Texas Instruments IncorporatedArchitecture and process for integrating DMD with control circuit substrates
US522609926 Apr 19916 Jul 1993Texas Instruments IncorporatedDigital micromirror shutter device
US522801310 Jan 199213 Jul 1993Bik Russell JClock-painting device and method for indicating the time-of-day with a non-traditional, now analog artistic panel of digital electronic visual displays
US52315325 Feb 199227 Jul 1993Texas Instruments IncorporatedSwitchable resonant filter for optical radiation
US523338518 Dec 19913 Aug 1993Texas Instruments IncorporatedWhite light enhanced color field sequential projection
US523345620 Dec 19913 Aug 1993Texas Instruments IncorporatedResonant mirror and method of manufacture
US52334596 Mar 19913 Aug 1993Massachusetts Institute Of TechnologyElectric display device
US52549806 Sep 199119 Oct 1993Texas Instruments IncorporatedDMD display system controller
US527247317 Aug 199221 Dec 1993Texas Instruments IncorporatedReduced-speckle display system
US527865223 Mar 199311 Jan 1994Texas Instruments IncorporatedDMD architecture and timing for use in a pulse width modulated display system
US528027717 Nov 199218 Jan 1994Texas Instruments IncorporatedField updated deformable mirror device
US528709618 Sep 199215 Feb 1994Texas Instruments IncorporatedVariable luminosity display system
US529327224 Aug 19928 Mar 1994Physical Optics CorporationHigh finesse holographic fabry-perot etalon and method of fabricating
US529695031 Jan 199222 Mar 1994Texas Instruments IncorporatedOptical signal free-space conversion board
US53056401 May 199226 Apr 1994Texas Instruments IncorporatedDigital flexure beam accelerometer
US531136028 Apr 199210 May 1994The Board Of Trustees Of The Leland Stanford, Junior UniversityMethod and apparatus for modulating a light beam
US53125133 Apr 199217 May 1994Texas Instruments IncorporatedMethods of forming multiple phase light modulators
US531537023 Oct 199124 May 1994Bulow Jeffrey AInterferometric modulator for optical signal processing
US53230028 Jun 199321 Jun 1994Texas Instruments IncorporatedSpatial light modulator based optical calibration system
US53246832 Jun 199328 Jun 1994Motorola, Inc.Method of forming a semiconductor structure having an air region
US532511618 Sep 199228 Jun 1994Texas Instruments IncorporatedDevice for writing to and reading from optical storage media
US53264307 Dec 19935 Jul 1994International Business Machines CorporationCooling microfan arrangements and process
US532728631 Aug 19925 Jul 1994Texas Instruments IncorporatedReal time optical correlation system
US533145416 Jan 199219 Jul 1994Texas Instruments IncorporatedLow reset voltage process for DMD
US533911615 Oct 199316 Aug 1994Texas Instruments IncorporatedDMD architecture and timing for use in a pulse-width modulated display system
US534532812 Aug 19926 Sep 1994Sandia CorporationTandem resonator reflectance modulator
US535535727 Mar 199211 Oct 1994Sony CorporationDisc player and disc loading device
US535860114 Sep 199325 Oct 1994Micron Technology, Inc.Process for isotropically etching semiconductor devices
US536528319 Jul 199315 Nov 1994Texas Instruments IncorporatedColor phase control for projection display using spatial light modulator
US538123218 May 199310 Jan 1995Akzo Nobel N.V.Fabry-perot with device mirrors including a dielectric coating outside the resonant cavity
US538125314 Nov 199110 Jan 1995Board Of Regents Of University Of ColoradoChiral smectic liquid crystal optical modulators having variable retardation
US54019837 Apr 199328 Mar 1995Georgia Tech Research CorporationProcesses for lift-off of thin film materials or devices for fabricating three dimensional integrated circuits, optical detectors, and micromechanical devices
US541176929 Sep 19932 May 1995Texas Instruments IncorporatedMethod of producing micromechanical devices
US54445667 Mar 199422 Aug 1995Texas Instruments IncorporatedOptimized electronic operation of digital micromirror devices
US54464794 Aug 199229 Aug 1995Texas Instruments IncorporatedMulti-dimensional array video processor system
US54483147 Jan 19945 Sep 1995Texas InstrumentsMethod and apparatus for sequential color imaging
US54520241 Nov 199319 Sep 1995Texas Instruments IncorporatedDMD display system
US545490621 Jun 19943 Oct 1995Texas Instruments Inc.Method of providing sacrificial spacer for micro-mechanical devices
US545749315 Sep 199310 Oct 1995Texas Instruments IncorporatedDigital micro-mirror based image simulation system
US545756630 Dec 199210 Oct 1995Texas Instruments IncorporatedDMD scanner
US545960229 Oct 199317 Oct 1995Texas InstrumentsMicro-mechanical optical shutter
US545961020 May 199317 Oct 1995The Board Of Trustees Of The Leland Stanford, Junior UniversityDeformable grating apparatus for modulating a light beam and including means for obviating stiction between grating elements and underlying substrate
US546104119 Jan 199424 Oct 1995Akzo Nobel N.V.Progestogen-only contraceptive
US547486521 Nov 199412 Dec 1995Sematech, Inc.Globally planarized binary optical mask using buried absorbers
US548995214 Jul 19936 Feb 1996Texas Instruments IncorporatedMethod and device for multi-format television
US549717213 Jun 19945 Mar 1996Texas Instruments IncorporatedPulse width modulation for spatial light modulator with split reset addressing
US54971974 Nov 19935 Mar 1996Texas Instruments IncorporatedSystem and method for packaging data into video processor
US549903714 Jun 199412 Mar 1996Sharp Kabushiki KaishaLiquid crystal display device for display with gray levels
US549906223 Jun 199412 Mar 1996Texas Instruments IncorporatedMultiplexed memory timing with block reset and secondary memory
US550063510 Nov 199419 Mar 1996Mott; Jonathan C.Products incorporating piezoelectric material
US550076127 Jan 199419 Mar 1996At&T Corp.Micromechanical modulator
US550659722 Dec 19929 Apr 1996Texas Instruments IncorporatedApparatus and method for image projection
US551507622 Mar 19957 May 1996Texas Instruments IncorporatedMulti-dimensional array video processor system
US55173471 Dec 199314 May 1996Texas Instruments IncorporatedDirect view deformable mirror device
US55238038 Jun 19944 Jun 1996Texas Instruments IncorporatedDMD architecture and timing for use in a pulse-width modulated display system
US552605127 Oct 199311 Jun 1996Texas Instruments IncorporatedDigital television system
US552617227 Jul 199311 Jun 1996Texas Instruments IncorporatedMicrominiature, monolithic, variable electrical signal processor and apparatus including same
US552632715 Mar 199411 Jun 1996Cordova, Jr.; David J.Spatial displacement time display
US552668826 Apr 199418 Jun 1996Texas Instruments IncorporatedDigital flexure beam accelerometer and method
US553504718 Apr 19959 Jul 1996Texas Instruments IncorporatedActive yoke hidden hinge digital micromirror device
US55483012 Sep 199420 Aug 1996Texas Instruments IncorporatedPixel control circuitry for spatial light modulator
US55512937 Jun 19953 Sep 1996Texas Instruments IncorporatedMicro-machined accelerometer array with shield plane
US555292414 Nov 19943 Sep 1996Texas Instruments IncorporatedMicromechanical device having an improved beam
US55529257 Sep 19933 Sep 1996John M. BakerElectro-micro-mechanical shutters on transparent substrates
US555935823 May 199424 Sep 1996Honeywell Inc.Opto-electro-mechanical device or filter, process for making, and sensors made therefrom
US556339831 Oct 19918 Oct 1996Texas Instruments IncorporatedSpatial light modulator scanning system
US556733427 Feb 199522 Oct 1996Texas Instruments IncorporatedMethod for creating a digital micromirror device using an aluminum hard mask
US55701357 Jun 199529 Oct 1996Texas Instruments IncorporatedMethod and device for multi-format television
US557914912 Sep 199426 Nov 1996Csem Centre Suisse D'electronique Et De Microtechnique SaMiniature network of light obturators
US558127225 Aug 19933 Dec 1996Texas Instruments IncorporatedSignal generator for controlling a spatial light modulator
US558368821 Dec 199310 Dec 1996Texas Instruments IncorporatedMulti-level digital micromirror device
US55898527 Jun 199531 Dec 1996Texas Instruments IncorporatedApparatus and method for image projection with pixel intensity control
US55977367 Jun 199528 Jan 1997Texas Instruments IncorporatedHigh-yield spatial light modulator with light blocking layer
US56003837 Jun 19954 Feb 1997Texas Instruments IncorporatedMulti-level deformable mirror device with torsion hinges placed in a layer different from the torsion beam layer
US56026714 Feb 199411 Feb 1997Texas Instruments IncorporatedLow surface energy passivation layer for micromechanical devices
US560644124 Feb 199425 Feb 1997Texas Instruments IncorporatedMultiple phase light modulation using binary addressing
US56084687 Jun 19954 Mar 1997Texas Instruments IncorporatedMethod and device for multi-format television
US56104388 Mar 199511 Mar 1997Texas Instruments IncorporatedMicro-mechanical device with non-evaporable getter
US561062430 Nov 199411 Mar 1997Texas Instruments IncorporatedSpatial light modulator with reduced possibility of an on state defect
US56106257 Jun 199511 Mar 1997Texas Instruments IncorporatedMonolithic spatial light modulator and memory package
US56149377 Jun 199525 Mar 1997Texas Instruments IncorporatedMethod for high resolution printing
US561905928 Sep 19948 Apr 1997National Research Council Of CanadaColor deformable mirror device having optical thin film interference color coatings
US561936530 May 19958 Apr 1997Texas Instruments IncorporatedElecronically tunable optical periodic surface filters with an alterable resonant frequency
US561936630 May 19958 Apr 1997Texas Instruments IncorporatedControllable surface filter
US562979018 Oct 199313 May 1997Neukermans; Armand P.Micromachined torsional scanner
US563365212 May 199527 May 1997Canon Kabushiki KaishaMethod for driving optical modulation device
US563605229 Jul 19943 Jun 1997Lucent Technologies Inc.Direct view display based on a micromechanical modulation
US563618510 Mar 19953 Jun 1997Boit IncorporatedDynamically changing liquid crystal display timekeeping apparatus
US563808429 Jul 199610 Jun 1997Dielectric Systems International, Inc.Lighting-independent color video display
US563894611 Jan 199617 Jun 1997Northeastern UniversityMicromechanical switch with insulated switch contact
US564139115 May 199524 Jun 1997Hunter; Ian W.Three dimensional microfabrication by localized electrodeposition and etching
US56467687 Jun 19958 Jul 1997Texas Instruments IncorporatedSupport posts for micro-mechanical devices
US56508812 Nov 199422 Jul 1997Texas Instruments IncorporatedSupport post architecture for micromechanical devices
US56547415 Dec 19955 Aug 1997Texas Instruments IncorporationSpatial light modulator display pointing device
US56570991 Aug 199512 Aug 1997Texas Instruments IncorporatedColor phase control for projection display using spatial light modulator
US56593748 Dec 199419 Aug 1997Texas Instruments IncorporatedMethod of repairing defective pixels
US566159129 Sep 199526 Aug 1997Texas Instruments IncorporatedOptical switch having an analog beam for steering light
US566599731 Mar 19949 Sep 1997Texas Instruments IncorporatedGrated landing area to eliminate sticking of micro-mechanical devices
US567313919 Jul 199330 Sep 1997Medcom, Inc.Microelectromechanical television scanning device and method for making the same
US568359111 May 19944 Nov 1997Robert Bosch GmbhProcess for producing surface micromechanical structures
US57037109 Sep 199430 Dec 1997Deacon ResearchMethod for manipulating optical energy using poled structure
US571065630 Jul 199620 Jan 1998Lucent Technologies Inc.Micromechanical optical modulator having a reduced-mass composite membrane
US572648027 Jan 199510 Mar 1998The Regents Of The University Of CaliforniaEtchants for use in micromachining of CMOS Microaccelerometers and microelectromechanical devices and method of making the same
US573994527 Sep 199614 Apr 1998Tayebati; ParvizElectrically tunable optical filter utilizing a deformable multi-layer mirror
US574015022 Nov 199614 Apr 1998Kabushiki Kaisha ToshibaGalvanomirror and optical disk drive using the same
US57451937 Jun 199528 Apr 1998Texas Instruments IncorporatedDMD architecture and timing for use in a pulse-width modulated display system
US574528120 Dec 199628 Apr 1998Hewlett-Packard CompanyElectrostatically-driven light modulator and display
US57514691 Feb 199612 May 1998Lucent Technologies Inc.Method and apparatus for an improved micromechanical modulator
US577111621 Oct 199623 Jun 1998Texas Instruments IncorporatedMultiple bias level reset waveform for enhanced DMD control
US578419027 Apr 199521 Jul 1998John M. BakerElectro-micro-mechanical shutters on transparent substrates
US578421225 Jul 199621 Jul 1998Texas Instruments IncorporatedMethod of making a support post for a micromechanical device
US578692712 Mar 199728 Jul 1998Lucent Technologies Inc.Gas-damped micromechanical structure
US57935047 Aug 199611 Aug 1998Northrop Grumman CorporationHybrid angular/spatial holographic multiplexer
US58087809 Jun 199715 Sep 1998Texas Instruments IncorporatedNon-contacting micromechanical optical switch
US580878124 Feb 199715 Sep 1998Lucent Technologies Inc.Method and apparatus for an improved micromechanical modulator
US581809511 Aug 19926 Oct 1998Texas Instruments IncorporatedHigh-yield spatial light modulator with light blocking layer
US582552826 Dec 199520 Oct 1998Lucent Technologies Inc.Phase-mismatched fabry-perot cavity micromechanical modulator
US58352555 May 199410 Nov 1998Etalon, Inc.Visible spectrum modulator arrays
US583848419 Aug 199617 Nov 1998Lucent Technologies Inc.Micromechanical optical modulator with linear operating characteristic
US58420886 Jan 199724 Nov 1998Texas Instruments IncorporatedMethod of calibrating a spatial light modulator printing system
US590548210 Apr 199518 May 1999The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern IrelandFerroelectric liquid crystal displays with digital greyscale
US591275813 Apr 199815 Jun 1999Texas Instruments IncorporatedBipolar reset for spatial light modulators
US59431585 May 199824 Aug 1999Lucent Technologies Inc.Micro-mechanical, anti-reflection, switched optical modulator array and fabrication method
US595976326 Feb 199828 Sep 1999Massachusetts Institute Of TechnologySpatial light modulator
US59867965 Nov 199616 Nov 1999Etalon Inc.Visible spectrum modulator arrays
US599417429 Sep 199730 Nov 1999The Regents Of The University Of CaliforniaMethod of fabrication of display pixels driven by silicon thin film transistors
US602869023 Nov 199822 Feb 2000Texas Instruments IncorporatedReduced micromirror mirror gaps for improved contrast ratio
US603805616 Jul 199914 Mar 2000Texas Instruments IncorporatedSpatial light modulator having improved contrast ratio
US604093731 Jul 199621 Mar 2000Etalon, Inc.Interferometric modulation
US604684024 Sep 19984 Apr 2000Reflectivity, Inc.Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US60493171 Mar 199511 Apr 2000Texas Instruments IncorporatedSystem for imaging of light-sensitive media
US605509027 Jan 199925 Apr 2000Etalon, Inc.Interferometric modulation
US605640617 Jul 19982 May 2000Samsung Electronics Co., Ltd.Projection system having multiple screens
US60610759 Jun 19949 May 2000Texas Instruments IncorporatedNon-systolic time delay and integration printing
US609714527 Apr 19981 Aug 2000Copytele, Inc.Aerogel-based phase transition flat panel display
US60991327 Jun 19958 Aug 2000Texas Instruments IncorporatedManufacture method for micromechanical devices
US610086117 Feb 19988 Aug 2000Rainbow Displays, Inc.Tiled flat panel display with improved color gamut
US610087227 Aug 19978 Aug 2000Canon Kabushiki KaishaDisplay control method and apparatus
US61132394 Sep 19985 Sep 2000Sharp Laboratories Of America, Inc.Projection display system for reflective light valves
US614779013 May 199914 Nov 2000Texas Instruments IncorporatedSpring-ring micromechanical device
US615815630 Oct 199612 Dec 2000John Mcgavigan LimitedDisplay panels
US61608336 May 199812 Dec 2000Xerox CorporationBlue vertical cavity surface emitting laser
US617194522 Oct 19989 Jan 2001Applied Materials, Inc.CVD nanoporous silica low dielectric constant films
US61727979 Nov 19999 Jan 2001Reflectivity, Inc.Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US618042815 Oct 199830 Jan 2001Xerox CorporationMonolithic scanning light emitting devices using micromachining
US619519629 Oct 199927 Feb 2001Fuji Photo Film Co., Ltd.Array-type exposing device and flat type display incorporating light modulator and driving method thereof
US62016337 Jun 199913 Mar 2001Xerox CorporationMicro-electromechanical based bistable color display sheets
US621522129 Dec 199810 Apr 2001Honeywell International Inc.Electrostatic/pneumatic actuators for active surfaces
US623293631 Mar 199515 May 2001Texas Instruments IncorporatedDMD Architecture to improve horizontal resolution
US623977721 Jul 199829 May 2001Kabushiki Kaisha ToshibaDisplay device
US624314929 Mar 19995 Jun 2001Massachusetts Institute Of TechnologyMethod of imaging using a liquid crystal display device
US62820106 May 199928 Aug 2001Texas Instruments IncorporatedAnti-reflective coatings for spatial light modulators
US62854243 Nov 19984 Sep 2001Sumitomo Chemical Company, LimitedBlack mask, color filter and liquid crystal display
US628847217 May 200011 Sep 2001Honeywell International Inc.Electrostatic/pneumatic actuators for active surfaces
US628882417 Mar 199911 Sep 2001Alex KastalskyDisplay device based on grating electromechanical shutter
US629515412 May 199925 Sep 2001Texas Instruments IncorporatedOptical switching apparatus
US632398211 May 199927 Nov 2001Texas Instruments IncorporatedYield superstructure for digital micromirror device
US632707118 Oct 19994 Dec 2001Fuji Photo Film Co., Ltd.Drive methods of array-type light modulation element and flat-panel display
US63319095 Aug 199918 Dec 2001Microvision, Inc.Frequency tunable resonant scanner
US633583118 Dec 19981 Jan 2002Eastman Kodak CompanyMultilevel mechanical grating device
US635625424 Sep 199912 Mar 2002Fuji Photo Film Co., Ltd.Array-type light modulating device and method of operating flat display unit
US635637824 Jul 200012 Mar 2002Reflectivity, Inc.Double substrate reflective spatial light modulator
US63580213 Nov 200019 Mar 2002Honeywell International Inc.Electrostatic actuators for active surfaces
US637678724 Aug 200023 Apr 2002Texas Instruments IncorporatedMicroelectromechanical switch with fixed metal electrode/dielectric interface with a protective cap layer
US64078511 Aug 200018 Jun 2002Mohammed N. IslamMicromechanical optical switch
US64178682 Sep 19999 Jul 2002Sharp Kabushiki KaishaSwitchable display devices
US643391722 Nov 200013 Aug 2002Ball Semiconductor, Inc.Light modulation device and system
US643828214 Nov 200120 Aug 2002Seiko Epson CorporationOptical switching device and image display device
US64471267 Jun 199510 Sep 2002Texas Instruments IncorporatedSupport post architecture for micromechanical devices
US64490849 May 200010 Sep 2002Yanping GuoOptical deflector
US645642027 Jul 200024 Sep 2002McncMicroelectromechanical elevating structures
US646535527 Apr 200115 Oct 2002Hewlett-Packard CompanyMethod of fabricating suspended microstructures
US646619019 Jun 200015 Oct 2002Koninklijke Philips Electronics N.V.Flexible color modulation tables of ratios for generating color modulation patterns
US646635419 Sep 200015 Oct 2002Silicon Light MachinesMethod and apparatus for interferometric modulation of light
US646635828 Dec 200015 Oct 2002Texas Instruments IncorporatedAnalog pulse width modulation cell for digital micromechanical device
US647307212 May 199929 Oct 2002E Ink CorporationMicroencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US647327428 Jun 200029 Oct 2002Texas Instruments IncorporatedSymmetrical microactuator structure for use in mass data storage devices, or the like
US64801772 Jun 199812 Nov 2002Texas Instruments IncorporatedBlocked stepped address voltage for micromechanical devices
US649612226 Jun 199817 Dec 2002Sharp Laboratories Of America, Inc.Image display and remote control system capable of displaying two distinct images
US654533527 Dec 19998 Apr 2003Xerox CorporationStructure and method for electrical isolation of optoelectronic integrated circuits
US654890827 Dec 199915 Apr 2003Xerox CorporationStructure and method for planar lateral oxidation in passive devices
US65493387 Nov 200015 Apr 2003Texas Instruments IncorporatedBandpass filter to reduce thermal impact of dichroic light shift
US655284030 Nov 200022 Apr 2003Texas Instruments IncorporatedElectrostatic efficiency of micromechanical devices
US657403327 Feb 20023 Jun 2003Iridigm Display CorporationMicroelectromechanical systems device and method for fabricating same
US65896251 Aug 20018 Jul 2003Iridigm Display CorporationHermetic seal and method to create the same
US66002013 Aug 200129 Jul 2003Hewlett-Packard Development Company, L.P.Systems with high density packing of micromachines
US660617516 Mar 199912 Aug 2003Sharp Laboratories Of America, Inc.Multi-segment light-emitting diode
US66082685 Feb 200219 Aug 2003Memtronics, A Division Of Cogent Solutions, Inc.Proximity micro-electro-mechanical system
US662494426 Mar 199723 Sep 2003Texas Instruments IncorporatedFluorinated coating for an optical element
US662504731 Dec 200123 Sep 2003Texas Instruments IncorporatedMicromechanical memory element
US663078630 Mar 20017 Oct 2003Candescent Technologies CorporationLight-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance
US66326987 Aug 200114 Oct 2003Hewlett-Packard Development Company, L.P.Microelectromechanical device having a stiffened support beam, and methods of forming stiffened support beams in MEMS
US663591917 Aug 200021 Oct 2003Texas Instruments IncorporatedHigh Q-large tuning range micro-electro mechanical system (MEMS) varactor for broadband applications
US664306928 Aug 20014 Nov 2003Texas Instruments IncorporatedSLM-base color projection display having multiple SLM's and multiple projection lenses
US665045513 Nov 200118 Nov 2003Iridigm Display CorporationPhotonic mems and structures
US665783226 Apr 20012 Dec 2003Texas Instruments IncorporatedMechanically assisted restoring force support for micromachined membranes
US666065619 Sep 20019 Dec 2003Applied Materials Inc.Plasma processes for depositing low dielectric constant films
US667409027 Dec 19996 Jan 2004Xerox CorporationStructure and method for planar lateral oxidation in active
US66745628 Apr 19986 Jan 2004Iridigm Display CorporationInterferometric modulation of radiation
US668079210 Oct 200120 Jan 2004Iridigm Display CorporationInterferometric modulation of radiation
US671090813 Feb 200223 Mar 2004Iridigm Display CorporationControlling micro-electro-mechanical cavities
US674138324 May 200225 May 2004Reflectivity, Inc.Deflectable micromirrors with stopping mechanisms
US677517428 Dec 200110 Aug 2004Texas Instruments IncorporatedMemory architecture for micromirror cell
US677815531 Jul 200117 Aug 2004Texas Instruments IncorporatedDisplay operation with inserted block clears
US679411912 Feb 200221 Sep 2004Iridigm Display CorporationMethod for fabricating a structure for a microelectromechanical systems (MEMS) device
US680978829 Jun 200126 Oct 2004Minolta Co., Ltd.Liquid crystal display element with different ratios of polydomain and monodomain states
US685312911 Apr 20038 Feb 2005Candescent Technologies CorporationProtected substrate structure for a field emission display device
US68592187 Nov 200022 Feb 2005Hewlett-Packard Development Company, L.P.Electronic display devices and methods
US686202927 Jul 19991 Mar 2005Hewlett-Packard Development Company, L.P.Color display system
US686789628 Sep 200115 Mar 2005Idc, LlcInterferometric modulation of radiation
US68916584 Mar 200210 May 2005The University Of British ColumbiaWide viewing angle reflective display
US694720024 Sep 200420 Sep 2005Reflectivity, IncDouble substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US700881230 May 20007 Mar 2006Ic Mechanics, Inc.Manufacture of MEMS structures in sealed cavity using dry-release MEMS device encapsulation
US705373719 Sep 200230 May 2006Hrl Laboratories, LlcStress bimorph MEMS switches and methods of making same
US707570025 Jun 200411 Jul 2006The Boeing CompanyMirror actuator position sensor systems and methods
US71232165 Oct 199917 Oct 2006Idc, LlcPhotonic MEMS and structures
US71617289 Dec 20039 Jan 2007Idc, LlcArea array modulation and lead reduction in interferometric modulators
US720572214 Dec 200517 Apr 2007Pioneer CorporationPlasma display panel
US2001000348720 Aug 199914 Jun 2001Mark W. MilesVisible spectrum modulator arrays
US200100285031 Mar 200111 Oct 2001Flanders Dale C.Integrated tunable fabry-perot filter and method of making same
US200200145796 Sep 20017 Feb 2002Microvision, Inc.Frequency tunable resonant scanner
US2002001521528 Sep 20017 Feb 2002Iridigm Display Corporation, A Delaware CorporationInterferometric modulation of radiation
US2002002148511 Jul 200121 Feb 2002Nissim PilossofBlazed micro-mechanical light modulator and array thereof
US2002002471110 Oct 200128 Feb 2002Iridigm Display Corporation, A Delaware CorporationInterferometric modulation of radiation
US2002005442413 Nov 20019 May 2002Etalon, Inc.Photonic mems and structures
US200200709312 Jul 200113 Jun 2002Hiroichi IshikawaOptical multilayer structure, optical switching device, and image display
US2002007555521 Nov 200120 Jun 2002Iridigm Display CorporationInterferometric modulation of radiation
US200201145586 Dec 200122 Aug 2002Yael NemirovskyIntegrated actuator for optical switch mirror array
US2002012636419 Feb 200212 Sep 2002Iridigm Display Corporation, A Delaware CorporationInterferometric modulation of radiation
US2002013998125 Feb 20023 Oct 2002Koninklijke Philips Electronics N.V.Matrix array devices with flexible substrates
US2002014982813 Feb 200217 Oct 2002Miles Mark W.Controlling micro-electro-mechanical cavities
US2002014985017 Apr 200117 Oct 2002E-Tek Dynamics, Inc.Tunable optical filter
US2002016707215 Mar 200214 Nov 2002Andosca Robert GeorgeElectrostatically actuated micro-electro-mechanical devices and method of manufacture
US200201677301 May 200214 Nov 2002Anthony NeedhamWavelength selectable optical filter
US2003001593615 Jul 200223 Jan 2003Korea Advanced Institute Of Science And TechnologyElectrostatic actuator
US200300164285 Jul 200223 Jan 2003Takahisa KatoLight deflector, method of manufacturing light deflector, optical device using light deflector, and torsion oscillating member
US2003003519617 Aug 200120 Feb 2003Walker James A.Optical modulator and method of manufacture thereof
US2003005307817 Sep 200120 Mar 2003Mark MisseyMicroelectromechanical tunable fabry-perot wavelength monitor with thermal actuators
US2003015631520 Feb 200221 Aug 2003Kebin LiPiecewise linear spatial phase modulator using dual-mode micromirror arrays for temporal and diffractive fourier optics
US200302108511 Dec 200013 Nov 2003Fu Xiaodong R.Mems optical switch actuator
US2004002770112 Jul 200212 Feb 2004Hiroichi IshikawaOptical multilayer structure and its production method, optical switching device, and image display
US2004005192919 Aug 200318 Mar 2004Sampsell Jeffrey BrianSeparable modulator
US200400567424 Dec 200125 Mar 2004Dabbaj Rad H.Electrostatic device
US2004010067726 Nov 200227 May 2004Reflectivity, Inc., A California CorporationSpatial light modulators with light blocking/absorbing areas
US200501954673 Mar 20048 Sep 2005Manish KothariAltering temporal response of microelectromechanical elements
US200502499664 May 200410 Nov 2005Ming-Hau TungMethod of manufacture for microelectromechanical devices
US2006004465425 Aug 20052 Mar 2006Krist VandorpePrism assembly
US2006006659920 May 200530 Mar 2006Clarence ChuiReflective display pixels arranged in non-rectangular arrays
US2006006664021 Jan 200530 Mar 2006Manish KothariDisplay region architectures
US2006006693519 Aug 200530 Mar 2006Cummings William JProcess for modifying offset voltage characteristics of an interferometric modulator
US200600676431 Apr 200530 Mar 2006Clarence ChuiSystem and method for multi-level brightness in interferometric modulation
US2006007715210 Jun 200513 Apr 2006Clarence ChuiDevice and method for manipulation of thermal response in a modulator
US2006007750711 Feb 200513 Apr 2006Clarence ChuiConductive bus structure for interferometric modulator array
US2006007750822 Apr 200513 Apr 2006Clarence ChuiMethod and device for multistate interferometric light modulation
US2006007751511 Apr 200513 Apr 2006Cummings William JMethod and device for corner interferometric modulation
US2006007751629 Apr 200513 Apr 2006Manish KothariDevice having a conductive light absorbing mask and method for fabricating same
US2006007904820 May 200513 Apr 2006Sampsell Jeffrey BMethod of making prestructure for MEMS systems
US2006013972325 Feb 200229 Jun 2006Iridigm Display Corporation, A Delaware CorporationVisible spectrum modulator arrays
US2007022993625 May 20074 Oct 2007Idc, LlcMethod of making a light modulating display device and associated transistor circuitry and structures thereof
US2008003709320 Aug 200714 Feb 2008Idc, LlcMethod and device for multi-color interferometric modulation
US2008008890420 Aug 200717 Apr 2008Idc, LlcMethod and device for modulating light with semiconductor substrate
US2008008891120 Aug 200717 Apr 2008Idc, LlcSystem and method for a mems device
US2008008891220 Aug 200717 Apr 2008Idc, LlcSystem and method for a mems device
US2008010678220 Aug 20078 May 2008Idc, LlcSystem and method for a mems device
DE4108966A119 Mar 199124 Sep 1992Iot Entwicklungsgesellschaft FElectro-optical interferometric light modulator - uses single crystal with three flat face sides, refractive index being variable by application of electrical or magnetic field
EP0310176A220 Sep 19885 Apr 1989Philips Electronics Uk LimitedMethod of and arrangement for generating a two-dimensional image
EP0361981B12 Oct 198920 Dec 1995Sharp Kabushiki KaishaLiquid crystal display device for display with grey levels
EP0667548A118 Jan 199516 Aug 1995AT&T Corp.Micromechanical modulator
EP0788005B121 Jan 199711 Oct 2006AT&T Corp.Micromechanical optical modulator and method for making the same
EP1484635A17 Feb 20038 Dec 2004Bridgestone CorporationImage display unit
JP05275401A1 Title not available
JP11211999A Title not available
JP62082454A Title not available
JP2000306515A Title not available
WO1999052006A21 Apr 199914 Oct 1999Etalon IncInterferometric modulation of radiation
WO1999052006A31 Apr 199929 Dec 1999Etalon IncInterferometric modulation of radiation
WO2003007049A110 Jul 200123 Jan 2003Iridigm Display CorpPhotonic mems and structures
WO2003014789A27 Jun 200220 Feb 2003Michel DespontMicrosystem switches
WO2003069413A129 Apr 200221 Aug 2003Iridigm Display CorpA method for fabricating a structure for a microelectromechanical systems (mems) device
WO2003073151A129 Apr 20024 Sep 2003Iridigm Display CorpA microelectromechanical systems device and method for fabricating same
Non-Patent Citations
Reference
1Akasaka, "Three-Dimensional IC Trends", Proceedings of IEEE, vol. 74, No. 12, pp. 1703-1714, (Dec. 1986).
2Aratani et al., "Process and Design Considerations for Surface Micromachined Beams for a Tuneable Interferometer Array in Silicon," Proc. IEEE Microelectromechanical Workshop, Fort Lauderdale, FL, pp. 230-235 (Feb. 1993).
3Aratani K., et al., "Surface micromachined tuneable interferometer array," Sensors and Actuators, pp. 17-23, (1994).
4Austrian Search Report No. 140/2005, Dated Jul. 15, 2005.
5Austrian Search Report No. 144/2005, Dated Aug. 11, 2005.
6Austrian Search Report No. 150/2005, Dated Jul. 29, 2005.
7Austrian Search Report No. 161/2005, Dated Jul. 15, 2005.
8Austrian Search Report No. 162/2005, Dated Jul. 14, 2005.
9Austrian Search Report No. 164/2005, Dated Jul. 4, 2005.
10Austrian Search Report No. 66/2005, Dated May 9, 2005.
11Bass, "Handbook of Optics, vol. I, Fundamentals, Techniques, and Design, Second Edition," McGraw-Hill, Inc. New York, pp. 2.29-2.36 (1995).
12Butler et al., "An Embedded Overlay Concept for Microsystems Packaging," IEEE Transactions on Advanced Packaging IEEE USA, vol. 23, No. 4, pp. 617-622, XP002379648 (2000).
13Chiou et al., "A Novel Capacitance Control Design of Tunable Capacitor Using Multiple Electrostatic Driving Electrodes," IEEE NANO 2001, M 3.1, Nanoelectronics and Giga-Scale Systems (Special Session), Oct. 29, 2001, pp. 319-324.
14ChunJun Wang et al., "Flexible circuit-based RF MEMS Switches," MEMS. XP002379649 pp. 757-762, (Nov. 2001).
15Circle 36: Light over Matter, Circle No. 36 (Jun. 1993).
16Conner, "Hybrid Color Display Using Optical Interference Filter Array," SID Digest, pp. 577-580 (1993).
17English translation of First Office Action dated Feb. 24, 2006 in Chinese App. No. 02828352.
18English translation of Second Office Action dated Sep. 15, 2006 in Chinese App. No. 02828352.
19English translation of Third Office Action dated Apr. 13, 2007 in Chinese App. No. 02828352.
20European Search Report Application No. 05255693.3-2217, dated May 24, 2006.
21European Search Report Application No. EP 05 25 5673 in 9 pages, dated Jan. 23, 2006.
22Fan et al., "Channel Drop Filters in Photonic Crystals," Optics Express, vol. 3, No. 1, 1998.
23Fork et al., "P-67: Chip on Glass Bonding using StressedMetal(TM) Technology" Sid 05 Digest May 24, 2005.
24Fork et al., "P-67: Chip on Glass Bonding using StressedMetal™ Technology" Sid 05 Digest May 24, 2005.
25Giles et al., "A Silicon MEMS Optical Switch Attenuator and Its Use in Lightwave Subsystems," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 1, pp. 18-25, (Jan./Feb. 1999).
26Goossen et al., "Possible Display Applications of the Silicon Mechanical Anti-Reflection Switch," Society for Information Display (1994).
27Goossen et al., "Silicon Modulator Based on Mechanically-Active Anti-Reflection Layer with 1Mbit/sec Capability for Fiber-in-the-Loop Applications," IEEE Photonics Technology Letters, pp. 1119-1121 (Sep. 1994).
28Goossen, "MEMS-based variable optical interference devices," Optical MEMS, 2000 IEEE/LEDS Int'l. Conf. on Aug. 21-24, 2000, Piscatawny, NJ, Aug. 21, 2000, pp. 17-18.
29Gosh, "West Germany Grabs the Lead in X-Ray Lithography," Electronics pp. 78-80 (Feb. 5, 1987).
30Howard et al., "Nanometer-Scale Fabrication Techniques", VLSI Electronics: Microstructure Science, vol. 5, pp. 145-153 and pp. 166-173 (1982).
31Ibbotson et al., "Comparison of XeF2 and F-atom reactions with Si and SiO2," Applied Physics Letters, vol. 44, No. 12, pp. 1129-1131 (Jun. 1984).
32International Search Report and Written Opinion of the International Searching Authority for PCT/US2005/005919 dated Aug. 24, 2005.
33International Search Report Application No. PCT/US2005/026448, Dated Nov. 23, 2005.
34International Search Report Application No. PCT/US2005/029820, Dated Dec. 27, 2005.
35International Search Report Application No. PCT/US2005/030962, Dated Aug. 31, 2005.
36International Search Report Application No. PCT/US2005/034465, Dated Sep. 23, 2005.
37IPER for PCT/US02/013462 filed Apr. 29, 2002.
38ISR and WO for PCT/US02/013462 filed Apr. 29, 2002.
39Jackson "Classical Electrodynamics", John Wiley & Sons Inc., pp. 568-573. (date unknown).
40Jerman et al., "A Miniature Fabry-Perot Interferometer with a Corrugated Silicon Diaphragm Support", (1988).
41Jerman et al., "Miniature Fabry-Perot Inferometers Micromachined in Silicon for Use in Optical Fiber WDM Systems," Transducers, San Francisco, Jun. 24-27, 1991, Proceedings on the Int'l. Conf. on Solid State Sensors and Actuators, vol. Conf. 6, Jun. 24, 1991, pp. 372-375.
42Joannopoulos et al., "Molding the Flow of Light," Photonic Crystals. 1995.
43Johnson "Optical Scanners", Microwave Scanning Antennas, vol. 1, p. 251-261, (1964).
44Kim et al., "Control of Optical Transmission Through metals Perforated With Subwave-Length Hole Arrays," Optic Letters, vol. 24, No. 4, Feb. 15, 1999, pp. 256-257.
45Lin et al., "Free-Space Micromachined Optical Switches for Optical Networking," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 1m Jan./Feb. 1999, pp. 4-9.
46Little et al., "Vertically Coupled Microring Resonator Channel Droping Filter," IEEE Photonics Technology Letters, vol. 11, No. 2, 1999.
47Magel, "Integrated Optic Devices Using Micromachined Metal Membranes," SPIE vol. 2686, 0-8194-2060-3/1996.
48Miles, Mark W., "A New Reflective FPD Technology Using Interferometric Modulation", The Proceedings of the Society for Information Display (May 11-16, 1997).
49Nagami et al., "Plastic Cell Architecture: Towards Reconfigurable Computing for General-Purpose," IEEE Worshop on FPGA-based Custom Computing Machines, (1998).
50Newsbreaks, "Quantum-trench devices might operate at terahertz frequencies", Laser Focus World (May 1993).
51Notice of Grounds for Rejection in Korean App. No. 2004-7013279, dated Apr. 30, 2009.
52Notice of Grounds for Rejection in Korean App. No. 2004-7013279, dated Sep. 30, 2008.
53Office Action for Japanese Patent App. No. 2003-571782 dated Aug. 20, 2007.
54Office Action mailed Jun. 27, 2002 in U.S. Appl. No. 10/084,893.
55Oliner et al., "Radiating Elements and Mutual Coupling", Microwave Scanning Antennas, vol. 2, pp. 131-141, (1966).
56Pape et al., Characteristics of the deformable mirror device for optical information processing, Optical Engineering, 22(6):676-681, Nov.-Dec. 1983.
57Peerlings et al., "Long Resonator Micromachined Turnable GaAs-A1As Fabry-Perot Filter," IEEE Photonics Technology Letters, IEEE Service Center, Piscatawny, NJ, vol. 9, No. 9, Sep. 1997, pp. 1235-1237.
58Raley et al., "A Fabry-Perot Microinterferometer for Visible Wavelengths", IEEE Solid-State Sensor and Actuator Workshop, Jun. 1992, Hilton Head, SC.
59Schnakenberg, et al. TMAHW Etchants for Silicon Micromachining. 1991 International Conference on Solid State Sensors and Actuators-Digest of Technical Papers. pp. 815-818.
60Science and Technology, The Economist, May 22, 1999, pp. 89-90.
61Sperger et al., "High Performance Patterned All-Dielelctric Interference Colour Filter for Display Application", SID Digest, pp. 81-83, (1994).
62Stone, "Radiation and Optics, An Introduction to the Classical Theory", McGraw-Hill, pp. 340-343, (1963).
63Walker, et al., "Electron-beam-tunable Interference Filter Spatial Light Modualtor", Optics Letters vol. 13, No. 5, pp. 345-347, (May 1988).
64Williams, et al., Etch Rates for Micromachining Processing. Journal of Microelectromechanical Systems, vol. 5, No. 4, pp. 256-259, (Dec. 1996).
65Winters, et al., The etching of silicon with XeF2 vapor. Applied Physics Letters, vol. 34, No. 1, pp. 70-73, (Jan. 1979).
66Winton, John M., "A novel way to capture solar energy", Chemical Week, (May 1985).
67Wu et al., "MEMS Designed for Tunable Capacitors," Microwave Symposium Digest, 1998 IEEE MTT-S Int'l., Baltimore, MD, Jun. 7-12, 1998, vol. 1, pp. 127-129.
68Wu, "Design of a Reflective Color LCD Using Optical Interference Reflectors", ASIA Display '95, pp. 929-931, (Oct. 1995).
69Zhou et al., "Waveguide Panel Display Using Electromechanical Spatial Modulators," SID Digest, vol. XXIX, 1998.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US79999938 Nov 200716 Aug 2011Qualcomm Mems Technologies, Inc.Reflective display device having viewable display on both sides
US811126218 May 20077 Feb 2012Qualcomm Mems Technologies, Inc.Interferometric modulator displays with reduced color sensitivity
US827005623 Mar 200918 Sep 2012Qualcomm Mems Technologies, Inc.Display device with openings between sub-pixels and method of making same
US840589920 Jul 200926 Mar 2013Qualcomm Mems Technologies, IncPhotonic MEMS and structures
US865981625 Apr 201125 Feb 2014Qualcomm Mems Technologies, Inc.Mechanical layer and methods of making the same
US876075126 Jan 201224 Jun 2014Qualcomm Mems Technologies, Inc.Analog IMOD having a color notch filter
US88173578 Apr 201126 Aug 2014Qualcomm Mems Technologies, Inc.Mechanical layer and methods of forming the same
US89289674 Oct 20106 Jan 2015Qualcomm Mems Technologies, Inc.Method and device for modulating light
US89631594 Apr 201124 Feb 2015Qualcomm Mems Technologies, Inc.Pixel via and methods of forming the same
US896428023 Jan 201224 Feb 2015Qualcomm Mems Technologies, Inc.Method of manufacturing MEMS devices providing air gap control
US897094123 Jun 20143 Mar 2015Qualcomm Mems Technologies, Inc.Analog IMOD having a color notch filter
US897167528 Mar 20113 Mar 2015Qualcomm Mems Technologies, Inc.Interconnect structure for MEMS device
US911028913 Jan 201118 Aug 2015Qualcomm Mems Technologies, Inc.Device for modulating light with multiple electrodes
US91345274 Apr 201115 Sep 2015Qualcomm Mems Technologies, Inc.Pixel via and methods of forming the same
US20080055706 *8 Nov 20076 Mar 2008Clarence ChuiReflective display device having viewable display on both sides
US20080110855 *15 Jan 200815 May 2008Idc, LlcMethods and devices for inhibiting tilting of a mirror in an interferometric modulator
US20080111834 *9 Nov 200615 May 2008Mignard Marc MTwo primary color display
US20090279162 *20 Jul 200912 Nov 2009Idc, LlcPhotonic mems and structures
US20100238572 *23 Sep 2010Qualcomm Mems Technologies, Inc.Display device with openings between sub-pixels and method of making same
US20110170166 *14 Jul 2011Qualcomm Mems Technologies, Inc.Device for modulating light with multiple electrodes
US20110177745 *21 Jul 2011Qualcomm Mems Technologies, Inc.Interconnect structure for mems device
Classifications
U.S. Classification359/291, 359/247
International ClassificationG02B26/00, G02F1/07, B81B3/00, H02N1/00
Cooperative ClassificationG02B26/001
European ClassificationG02B26/08M4E
Legal Events
DateCodeEventDescription
28 Oct 2009ASAssignment
Owner name: QUALCOMM MEMS TECHNOLOGIES, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IDC, LLC;REEL/FRAME:023435/0918
Effective date: 20090925
9 Jun 2010ASAssignment
Owner name: IDC, LLC, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IRIDIGM DISPLAY CORPORATION;REEL/FRAME:024512/0808
Effective date: 20041001
Owner name: IRIDIGM DISPLAY CORPORATION, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHUI, CLARENCE;MILES, MARK W.;REEL/FRAME:024512/0862
Effective date: 20020220
9 Jan 2015REMIMaintenance fee reminder mailed
3 Jun 2015LAPSLapse for failure to pay maintenance fees