Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE41494 E1
Publication typeGrant
Application numberUS 11/183,298
Publication date10 Aug 2010
Filing date15 Jul 2005
Priority date19 Apr 2000
Also published asCA2445711A1, CA2445711C, CA2445716A1, CA2445716C, DE60126074D1, DE60126074T2, EP1275048A2, EP1275048B1, EP1275049A2, EP1801704A2, EP1801704A3, US6594719, WO2001082089A2, WO2001082089A3, WO2001082090A2, WO2001082090A3
Publication number11183298, 183298, US RE41494 E1, US RE41494E1, US-E1-RE41494, USRE41494 E1, USRE41494E1
InventorsFrank W. Ahern, Doss Jeff, Charles Mollo
Original AssigneeAhern Frank W, Doss Jeff, Charles Mollo
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Extended cardbus/PC card controller with split-bridge technology
US RE41494 E1
Abstract
An improved extended cardbus/PC card controller (20) incorporating proprietary Split-Bridge™ high speed serial communication technology for interconnecting a conventional parallel system bus via a high speed serial link with a remote peripheral device. The extend cardbus/PC card controller is adapted to interface the parallel system bus, which may be PCI, PCMCIA, integrated, or some other parallel I/O bus architecture, with peripheral devices via PC cards, and now optionally via a high speed serial link using the proprietary serial Split-Bridge™ technology. The serial Split-Bridge™ technology provides real time interconnection between the parallel system bus and the remote device which may also be based on a parallel system data bus architecture, over a serial link, which serial link appears to be transparent between the buses and thus facilitates high speed data transfer exceeding data rates of 1.0 GigaHertz.
Images(4)
Previous page
Next page
Claims(36)
1. An interface comprising:
first electronics adapted to interface parallel data from a parallel data bus to a first bus; and
second electronics adaptedconfigured to interface said parallel data from said parallel data bus into serial data adaptedand configured to interface with a second remote bus, said second electronics configured to converting said parallel data into said serial data and, without inserting bus wait states, send said serial data to said second remote bus without requiring any external signal from said second remote bus.
2. The interface as specified in claim 1 wherein said second electronics comprises Split-Bridge™split-bridge serial interface electronics.
3. The interface as specified in claim 1 wherein said parallel data bus is based on PCI-type or PCMCIA-type interface standards.
4. The interface as specified in claim 1 wherein said serial data has a serial data rate exceeding 1.0 Giga bits/second.
5. The interface as specified in claim 1 wherein said first electronics comprises a digital signal processor (DSP).
6. The interface card as specified in claim 1 wherein said first electronics comprises Cardbus electronics.
7. The interface card as specified in claim 1 wherein said first electronics and said second electronics are adapted to concurrently support transfer of data to said respective first bus and said second busesremote bus, respectively.
8. A method of interfacing parallel data on a parallel system bus to a first bus and a second remote bus, comprising the steps of:
a) converting a first portion of the parallel data on the parallel system bus to parallel data adapted to communicate with said first bus; and
b) converting a second portion of the parallel data on the parallel system bus to high-speed serial data, which said serial data is sent, without inserting bus wait states, to the second remote bus without requiring or receiving a signal from said second remote bus before sending said serial data.
9. The method as specified in claim 8 further comprising the step of using a Split-Bridge™split-bridge serial interface.
10. The method as specified in claim 8 wherein said parallel system bus is based on PCI-type or Cardbus-type bus standard.
11. The method as specified in claim 8 wherein said serial data is sent at a data rate exceeding 1.0 GHZ.
12. The method as specified in claim 8 wherein said step a) and said step b) are performed in a single electronic device.
13. The method as specified in claim 12 wherein said electronic device comprises a Digital Signal Processor (DSP).
14. The method as specified in claim 8 wherein a retry message is sent in advance of sending said serial data.
15. The method as specified in claim 8 wherein said step a) uses Cardbus electronics.
16. An interface comprising:
first electronics adapted to interface parallel data from a parallel data bus to a first bus; and
second electronics configured to interface said parallel data from said parallel data bus into serial data and configured to interface with a second remote bus, said second electronics configured to convert said parallel data into said serial data and, without additional bus wait states, send said serial data to said second remote bus, said second electronics configured to add tag data indicative of a transaction type to the serial data.
17. The interface as specified in claim 16 wherein said second electronics comprises split-bridge serial interface electronics.
18. The interface as specified in claim 16 wherein said parallel data bus is based on PCI-type or PCMCIA-type interface standards.
19. The interface as specified in claim 16 wherein said serial data has a serial data rate exceeding 1.0 Giga bits/second.
20. The interface as specified in claim 16 wherein said first electronics comprises a digital signal processor (DSP).
21. The interface card as specified in claim 16 wherein said first electronics comprises Cardbus electronics.
22. The interface card as specified in claim 16 wherein said first electronics and said second electronics are adapted to support transfer of data to said first bus and said second remote bus, respectively.
23. A method of interfacing parallel data on a parallel system bus to a first bus and a second remote bus, comprising:
a) converting a first portion of the parallel data on the parallel system bus to parallel data adapted to communicate with said first bus; and
b) converting a second portion of the parallel data on the parallel system bus to high-speed serial data, which said serial data is sent, without requiring bus wait states, to the second remote bus, said serial data including a tag indicative of a transaction type.
24. The method as specified in claim 23 further comprising the step of using a split-bridge serial interface.
25. The method as specified in claim 23 wherein said parallel system bus is based on PCI or Cardbus bus standard.
26. The method as specified in claim 23 wherein said serial data is sent at a data rate exceeding 1.0 GHZ.
27. The method as specified in claim 23 wherein said step a) and said step b) are performed in a single electronic device.
28. The method as specified in claim 27 wherein said electronic device comprises a Digital Signal Processor (DSP).
29. The method as specified in claim 23 wherein a retry message is sent in advance of sending said serial data.
30. The method as specified in claim 23 wherein said step a) uses Cardbus electronics.
31. An interface, comprising:
first electronics configured to interface parallel data from a parallel data bus to a first bus; and
second electronics configured to interface said parallel data from said parallel data bus into serial data and configured to interface with a second remote bus, said second electronics configured to add tag data indicative of a transaction type to the serial data.
32. The interface as specified in claim 31 wherein said parallel data bus is based on PCI standard.
33. The interface as specified in claim 31 wherein said second electronics further comprises a data register configured to store said parallel data.
34. The interface as specified in claim 33 wherein said second electronics is configured to mirror said data register parallel data to a register of another remote said interface.
35. The interface as specified in claim 31 wherein said second electronics is configured to add said tag data during a transaction.
36. The interface as specified in claim 35 wherein the second electronics is configured to proceed to a data cycle without delay.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority of provisional patent application serial No. 60/198,317 entitled Split-Bridge Systems, Applications and Methods of Use filed on Apr. 19, 2000, as well as co-pending and commonly assigned patent applications Ser. No. 09/130,057 filed Jun. 6, 1998, Ser. No. 09/130,058 filed Jun. 6, 1998, Ser. No. 08/679,131 now issued as U.S. Pat. No. 5,941,965; and co-pending patent application Ser. No. 09/559,678, entitled Modular Computer Based on Universal Connectivity Station, the teachings of each incorporated herein by reference.

FIELD OF THE INVENTION

The present invention is generally related to data processing systems, and more particularly to computer systems having at least one host processor and connectable to a plurality of peripherals devices including notebook computers, storage devices, displays, keyboards, mouse's and so forth.

BACKGROUND OF THE INVENTION

Computer systems today are powerful, but are rendered limited in adapting to changing computing environments. The PCI bus is pervasive in the industry, but as a parallel data bus is not easily bridged to other PCI based devices. Full bridges are known, such as used in traditional laptop computer/docking stations. However, separating the laptop computer from the docking station a significant distance has not been possible. Moreover, the processing power of computer systems has been resident within the traditional computer used by the user because the microprocessor had to be directly connected to and resident on the PCI motherboard. Thus, upgrading processing power usually meant significant costs and/or replacing the computer system.

PCI

The PCI bus is primarily a wide multiplexed address and data bus that provides support for everything from a single data word for every address to very long bursts of data words for a single address, with the implication being that burst data is intended for sequential addresses. Clearly the highest performance of the PCI bus comes from the bursts of data, however most PCI devices require reasonable performance for even the smallest single data word operations. Many PCI devices utilize only the single data mode for their transfers. In addition, starting with the implementation of the PCI 2.1 version of the specification, there has been at least pseudo isochronous behavior demanded from the bus placing limits on an individual device's utilization of the bus, thus virtually guaranteeing every device gets a dedicated segment of time on a very regular interval and within a relatively short time period. The fundamental reason behind such operation of the PCI bus is to enable such things as real time audio and video data streams to be mixed with other operations on the bus without introducing major conflicts or interruption of data output. Imagine spoken words being broken into small unconnected pieces and you get the picture. Prior to PCI 2.1 these artifacts could and did occur because devices could get on the bus and hold it for indefinite periods of time. Before modification of the spec for version 2.1, there really was no way to guarantee performance of devices on the bus, or to guarantee time slot intervals when devices would get on the bus. Purists may argue that PCI is still theoretically not an isochronous bus, but as in most things in PC engineering, it is close enough.

Traditional High Speed Serial

Typical high speed serial bus operation on the other hand allows the possibility of all sizes of data transfers across the bus like PCI, but it certainly favors the very long bursts of data unlike PCI. The typical operation of a serial bus includes an extensive header of information for every data transaction on the bus much like Ethernet, which requires on the order of 68 bytes of header of information for every data transaction regardless of length. In other words, every data transaction on Ethernet would have to include 68 bytes of data along with the header information just to approach 50% utilization of the bus. As it turns out Ethernet also requires some guaranteed dead time between operations to “mostly” prevent collisions from other Ethernet devices on the widely disperse bus, and that dead time further reduces the average performance.

The typical protocol for a serial bus is much the same as Ethernet with often much longer header information. Virtually all existing serial bus protocol implementations are very general and every block of data comes with everything needed to completely identify it. FiberChannel (FC) has such a robust protocol that virtually all other serial protocols can be transmitted across FC completely embedded within the FC protocol, sort of like including the complete family history along with object size, physical location within the room, room measurements, room number, street address, city, zip code, country, planet, galaxy, universe, . . . etc. and of course all the same information about the destination location as well, even if all you want to do is move the object to the other side of the same room. Small transfers across all of these protocols, while possible, are extremely expensive from a bandwidth point of view. Of course the possibility of isochronous operation on the more general serial bus is not very reasonable.

Recreating High Speed Serial for PCI

In creating the proprietary Split-Bridge™ technology, Mobility electronics of Phoenix, Ariz., the present applicant, actually had to go back to the drawing board and design a far simpler serial protocol to allow a marriage to the PCI bus, because none of the existing implementations could coexist without substantial loss of performance. For a detailed discussion of Applicant's proprietary Split-Bridge™ technology, cross reference is made to Applicant's co-pending commonly assigned patent applications identified as Ser. No. 09/130,057 and 09/130,058 both filed Jun. 6, 1998, the teachings of each incorporated herein by reference. The Split-Bridge™ technology approach is essentially custom fit for PCI and very extensible to all the other peripheral bus protocols under discussion like PCIx, and LDT™ of AMD corporation. Split-Bridge™ technology fundamentals are a natural for extending anything that exists within a computer. It basically uses a single-byte of overhead for 32 bits of data and address—actually less when you consider that byte enables, which are not really “overhead”, are included as well.

Armed with the far simpler protocol, all of the attributes of the PCI bus are preserved and made transparent across a high speed serial link at much higher effective bandwidth than any existing serial protocol. The net result is the liberation of a widely used general purpose bus, and the new found ability to separate what were previously considered fundamental inseparable parts of a computer into separate locations. When the most technical reviewers grasp the magnitude of the invention, then the wheels start to turn and the discussions that follow open up a new wealth of opportunities. It now becomes reasonable to explore some of the old fundamentals, like peer-to-peer communication between computers that has been part of the basic PCI specification from the beginning, but never really feasible because of the physical limits of the bus prior to Split-Bridge™ technology. The simplified single-byte overhead also enables very efficient high speed communication between two computers and could easily be extended beyond PCI.

The proprietary Split-Bridge™ technology is clearly not “just another high speed link” and distinguishing features that make it different represent novel approaches to solving some long troublesome system architecture issues.

First of all is the splitting of a PCI bridge into two separate and distinct pieces. Conceptually, a PCI bridge was never intended to be resident in two separate modules or chips and no mechanism existed to allow the sharing of setup information across two separate and distinct devices. A PCI bridge requires a number of programmable registers that supply information to both ports of a typical device. For the purpose of the following discussion, the two ports are defined into a north and south segment of the complete bridge.

The north segment is typically the configuration port of choice and the south side merely takes the information from the registers on the north side and operates accordingly. The problem exists when the north and south portions are physically and spatially separated and none of the register information is available to the south side because all the registers are in the north chip. A typical system solution conceived by the applicant prior to the invention of Split-Bridge™ technology would have been to merely create a separate set of registers in the south chip for configuration of that port. However, merely creating a separate set of registers in the south port would still leave the set up of those registers to the initialization code of the operating system and hence would have required a change to the system software.

Split-Bridge™ technology, on the other hand, chose to make the physical splitting of the bridge into two separate and spaced devices “transparent” to the system software (in other words, no knowledge to the system software that two devices were in fact behaving as one bridge chip). In order to make the operations transparent, all accesses to the configuration space were encoded, serialized, and “echoed” across the serial link to a second set of relevant registers in the south side. Such transparent echo between halves of a PCI bridge or any other bus bridge is an innovation that significantly enhances the operation of the technology.

Secondly, the actual protocol in the Split-Bridge™ technology is quite unique and different from the typical state of the art for serial bus operations. Typically transfers are “packetized” into block transfers of variable length. The problem as it relates to PCI is that the complete length of a given transfer must be known before a transfer can start so the proper packet header may be sent.

Earlier attempts to accomplish anything similar to Split-Bridge™ technology failed because the PCI bus does not inherently know from one transaction to the next when, or if, a transfer will end or how long a block or burst of information will take. In essence the protocol for the parallel PCI bus (and all other parallel, and or real time busses for that matter) is incompatible with existing protocols for serial buses.

An innovative solution to the problem was to invent a protocol for the serial bus that more or less mimics the protocol on the PCI. With such an invention it is now possible to substantially improve the performance and real time operation here to for not possible with any existing serial bus protocol.

The 8 bit to 10 bit encoding of the data on the bus is not new, but follows existing published works. However, the direct sending of 32 bits of information along with the 4 bits of control or byte enables, along with an additional 4 bits of extension represents a 40 bit for every 36 bits of existing PCI data, address, and control or a flat 10% overhead regardless of the transfer size or duration, and this approach is new and revolutionary. Extending the 4 bit extension to 12 or more bits and include other functionality such as error correction or retransmit functionality is also within the scope of the Split-Bridge™ technology.

New Applications of the Split-Bridge™ Technology

Basic Split-Bridge™ technology was created for the purpose of allowing a low cost, high speed universal dock solution for all laptop computers and it has accomplished that task very well. By taking advantage of the standard and pervasive nature of the PCI bus in many other applications in computing, dramatic improvements in the price performance for other machines can be realized as well. The present invention is rendered possible due to the attributes of applicant's proprietary Split-Bridge™ technology.

SUMMARY OF THE INVENTION

The present invention achieves technical advantages as an improved extended cardbus/PC card controller incorporating the proprietary serial high speed Split-Bridge™ technology providing serial communications between a parallel system bus and a remote peripheral device. The improved controller includes the conventional system frontside controls, I/O controls, a cardbus translator having PC card slots adapted to receive a PCMCIA card or cards, and one end of the split bridge serial communication link comprising the proprietary serial Split-Bridge™ technology. The controller may further include super I/O circuitry for communicating remote I/O devices with the system bus as the super I/O devices become more readily available in the market.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates prior art computer systems depicted as a traditional performance desk top computer shown at 10, and a portable computing device 12, such as a notebook or laptop computer, mechanically coupled to mechanical docking station 14;

FIG. 2 is a block diagram of a prior art bridge 16 used to couple two system computing buses, such as used between the portable computing device 12 and the mechanical docking station 14 shown in FIG. 1;

FIG. 3 illustrates the proprietary Split-Bridge™ technology serial communication technology of the applicant enabling high speed serial communications within the modular computer system of the present invention;

FIG. 4 is a diagram of a conventional cardbus/PC controller; and

FIG. 5 is a block diagram of an improved extended cardbus/PC card controller having an integrated serial Split-Bridge™ interface according to the preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 3, there is depicted the proprietary Split-Bridge™ technology serial communications technology of the present applicant, discussed in great detail in commonly assigned U.S. patent applications Ser. No. 09/130,057 filed Jun. 6, 1998, and Ser. No. 09/130,058 also filed Jun. 6, 1998 the teachings of which are incorporated herein by reference.

Applicant's Split-Bridge™ technology revolutionizes the status quo for computer systems. The Split-Bridge™ technology does not require the need for custom hardware or custom software to achieve full performance serial communication between devices, including devices having parallel data buses including the PCI bus. In fact, for each device in a modular computer system, the Split-Bridge™ technology appears just like a standard PCI bridge, and all software operating systems and device drivers already take such standard devices into consideration. By utilizing standard buses within each device operating within the modular computer system, each device does not require any additional support from the Operating System (OS) software. The modular computing system has simple elegance, allowing the PCI bus which is so pervasive in the computer industry, that possible applications of the initial PCI form of Split-Bridge™ technology are all most limitless.

Originally implemented in PCI, there is nothing fundamental that ties the Split-Bridge™ technology to PCI, and thus, the Split-Bridge™ technology can migrate as bus architectures grow and migrate. The 64 bit PCI is compatible with the Split-Bridge™ technology, as is future PCIx and/or LDT™ that are currently under consideration in the industry and which are straight forward transitions of the Split-Bridge™ technology. Implementations with other protocols or other possible and natural evolutions of the Split-Bridge™ technology.

Referring to FIG. 5, there is depicted generally at 20 an improved card/bus controller according to the preferred embodiment of the present invention. Cardbus controller 20 is seen to have conventional system front side control circuitry 22, input/output (I/O) control circuitry 24 a cardbus translator circuitry 26 adapted to couple to and communicably interface with one or more PC cards inserted into respective slots 28, and being improved to include a serial Split-Bridge™ interface generally show at 30. The serial Split-Bridge™ interface portion 30 is adapted to serially communicate data and control signals between the parallel system bus 32 via a duplex serial link 34 to a remote peripheral device (not shown) converting the parallel data to outgoing serial data and converting incoming serial data to parallel data.

The proprietary Split-Bridge™ technology, when employed in the extended cardbus/PC card controller 20, significantly expands the interconnectivity of a standard communications network by allowing devices accessing the parallel systems bus 32 to communicate with a variety of external devices via PC cards, an extended cardbus, or advantageously via a serial link when employing the high speed serial Split-Bridge™ technology according to the present invention.

All of the electronics comprising the controller 20 can be embodied in discrete circuitry, in an application specific integrated circuit (ASIC), or combination thereof, to provide the multi-function interface capability between the parallel system bus 32 and remote peripheral devices. By employing a serial Split-Bridge™ technology interface 30 in a controller 30 with commercially available custom electronic control circuitry since much of such as Cardbus, the controller 20 can communicate with either Cardbus or PCMCIA, or via the serial link Split-Bridge™ remote PCI devices. Since much of the PCI interface electronics are commonly used by the respective interfaces, the integrating of the circuitry 30 is very economical.

The present invention 20 facilitates the evolution of information transfer to offer high speed serial link connectivity exceeding data rates of 1.0 GHZ for use with PCI, Cardbus, integrated, or other parallel I/O bus architectures. Moreover, conventional digital signal processors, such as those manufactured by Texas Instruments Incorporated of Dallas, Tex., (DSPs) being employed on extended Cardbus/PC card controllers are well adapted to interface with and incorporate the serial Split-Bridge™ technology interface. Integrating commercially available Cardbus/PC card controller electronics with the proprietary serial Split-Bridge™ technology significantly improves performance and available features of the device 30 with nominal additional cost associated therewith. In fact, the price versus performance improvement of the present invention shown in FIG. 4 is a quantum leap over existing price-performance points.

The Split-Bridge™ serial interface electronics 30 can be designed into a custom Application Specific Integrated Circuit (ASIC) along with other electronics, moreover, multiple interfaces 30 can be employed on to a single controller 20 and multiplexed to interface with multiple internal or external devices and users. Accordingly, limitation to integration of a single Split-Bridge™ interface is not to be inferred, but rather parallel buses and possibly future general serial buses, can be interfaced to other devices using the proprietary Split-Bridge™ serial technology.

In summary, the improved Cardbus/PC card controller 20 facilitates improved connectivity between a system parallel bus and remote peripheral devices, allowing data connectivity via either the proprietary serial Split-Bridge™ technology, or via the standard PC card slots such as those based on the PCMCIA standards. Existing electronics, including DSPs, are well adapted to interface with ASICs or other discrete/custom componentry comprising the interface and employing the serials Split-Bridge™ technology.

Though the invention has been described with respect to a specific preferred embodiment, many variations and modifications will become apparent to those skilled in the art upon reading the present application. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US380009715 Sep 197226 Mar 1974Gte Automatic Electric Lab IncBus system for interconnecting systems of a communication switching system
US41123699 Apr 19765 Sep 1978Digital Data, Inc.Secure SCA broadcasting system including subscriber actuated portable receiving terminals
US44133199 Mar 19811 Nov 1983Allen-Bradley CompanyProgrammable controller for executing block transfer with remote I/O interface racks
US45049278 Sep 198212 Mar 1985Allen-Bradley CompanyProgrammable controller with expandable I/O interface circuitry
US45354215 Jul 198313 Aug 1985Pitney Bowes Inc.Universal real time transparent asynchronous serial/echoplex converter
US4591660 *25 Oct 198327 May 1986At&T Bell LaboratoriesCommon control audio decryptor
US478702929 Sep 198622 Nov 1988Gte Communication Systems CorporationLevel converting bus extender with subsystem selection signal decoding enabling connection to microprocessor
US488270216 May 198821 Nov 1989Allen-Bradley Company, Inc.Programmable controller with I/O expansion module located in one of I/O module positions for communication with outside I/O modules
US490130825 Apr 198913 Feb 1990Dsc Communications CorporationDigital bridge for a time slot interchange digital switched matrix
US4941845 *7 Jun 198917 Jul 1990Traveling Software, Inc.Data transfer cable
US49549492 Oct 19894 Sep 1990Commodore-Amiga, Inc.Universal connector device for bus networks in host computer/co-processor computer system
US49598338 Mar 198925 Sep 1990Ics Electronics CorporationData transmission method and bus extender
US496114029 Jun 19882 Oct 1990International Business Machines CorporationApparatus and method for extending a parallel synchronous data and message bus
US4969830 *12 Jun 198913 Nov 1990Grid Systems CorporationConnection between portable computer components
US50069818 Nov 19889 Apr 1991Jenoptik Jena GmbhSystem bus expansion for coupling multimaster-capable multicomputer systems
US50383206 Jan 19896 Aug 1991International Business Machines Corp.Computer system with automatic initialization of pluggable option cards
US511142321 Jul 19885 May 1992Altera CorporationProgrammable interface for computer system peripheral circuit card
US513470221 Apr 198628 Jul 1992Ncr CorporationSerial-to-parallel and parallel-to-serial converter
US5187645 *7 Jun 199116 Feb 1993Ergo Computing, Inc.Portable computer with docking connector for peripheral devices
US5191653 *28 Dec 19902 Mar 1993Apple Computer, Inc.Io adapter for system and io buses having different protocols and speeds
US51916579 Nov 19892 Mar 1993Ast Research, Inc.Microcomputer architecture utilizing an asynchronous bus between microprocessor and industry standard synchronous bus
US52376906 Jul 199017 Aug 1993International Business Machines CorporationSystem for testing adaptor card upon power up and having disablement, enablement, and reconfiguration options
US527471114 Nov 198928 Dec 1993Rutledge Janet CApparatus and method for modifying a speech waveform to compensate for recruitment of loudness
US530134917 Aug 19925 Apr 1994Kabushiki Kaisha ToshibaSingle chip computer having ground wire formed immediately parallel a data bus and drivers formed directly under the data bus for high speed data transfer
US531358912 Mar 199317 May 1994Ibm CorporationLow level device interface for direct access storage device including minimum functions and enabling high data rate performance
US532549113 Apr 199328 Jun 1994International Business Machines CorporationMethod and apparatus for extending a computer bus
US53353261 Oct 19922 Aug 1994Xerox CorporationMultichannel FIFO device channel sequencer
US533532918 Jul 19912 Aug 1994Texas Microsystems, Inc.Apparatus for providing DMA functionality to devices located in a bus expansion chassis
US535762112 Oct 199318 Oct 1994Hewlett-Packard CompanySerial architecture for memory module control
US5373149 *1 Feb 199313 Dec 1994At&T Bell LaboratoriesFolding electronic card assembly
US53771842 Mar 199227 Dec 1994International Business Machines CorporationMethod of controlling TWA link in a communications adapter by monitoring buffer fill levels
US543084722 Oct 19924 Jul 1995International Business Machines CorporationMethod and system for extending system buses to external devices
US5432916 *11 Jan 199311 Jul 1995International Business Machines Corp.Precharge for non-disruptive bus live insertion
US544069829 Apr 19948 Aug 1995Xerox CorporationArbitration of packet switched busses, including busses for shared memory multiprocessors
US544686930 Dec 199329 Aug 1995International Business Machines CorporationConfiguration and RAM/ROM control of PCI extension card residing on MCA adapter card
US5452180 *15 Jul 199319 Sep 1995Dell Usa, L.P.Docking apparatus for a portable data processing unit including an arcuate support member with a card extension pivotally mounted on a base member
US545778510 Feb 199310 Oct 1995Elonex Technologies, Inc.CPU-independent and device-driver transparent system for translating a computer's internal bus signals onto an intermediate bus and further translating onto an expansion bus
US54695457 Nov 199421 Nov 1995Compaq Computer Corp.Expandable communication system with data flow control
US547581826 May 199412 Dec 1995Aeg Transportation Systems, Inc.Communications controller central processing unit board
US5477415 *12 Nov 199319 Dec 1995Texas Instruments IncorporatedAutomatic computer docking station having a motorized tray, cammed side connectors, motorized side connectors, and locking and unlocking guide pins
US548302012 Apr 19949 Jan 1996W. L. Gore & Associates, Inc.High speed data transmission cable
US548870531 Jan 199530 Jan 1996E. I. Du Pont De Nemours And CompanyApparatus for connecting computer devices
US549556930 Dec 199427 Feb 1996Compaq Computer Corp.Circuit for ensuring that a local interrupt controller in a microprocessor is powered up active
US549749828 Sep 19935 Mar 1996Giga Operations CorporationVideo processing module using a second programmable logic device which reconfigures a first programmable logic device for data transformation
US550700224 Dec 19929 Apr 1996At&T Global Information Solutions CompanyPeripheral component interconnect special cycle protocol using soft message IDS
US551762313 Dec 199014 May 1996International Business Machines CorporationFlexible entry level or advanced level computer system
US552205028 May 199328 May 1996International Business Machines CorporationBus-to-bus bridge for a multiple bus information handling system that optimizes data transfers between a system bus and a peripheral bus
US552425219 Apr 19914 Jun 1996International Business Machines CorporationPersonal computer system combined with an adapter for networks having varying characteristics, and adapter for coupling a personal computer to such networks
US553089525 Feb 199325 Jun 1996Microsoft CorporationSystem and method for computer interface board identification by serially comparing identification address bits and asserting complementary logic patterns for each match
US554059715 Dec 199330 Jul 1996International Business Machines CorporationAll flex PCMCIA-format cable
US554205528 May 199330 Jul 1996International Business Machines Corp.System for counting the number of peripheral buses in each hierarch connected to primary bus for creating map of peripheral buses to locate peripheral devices
US554873020 Sep 199420 Aug 1996Intel CorporationIntelligent bus bridge for input/output subsystems in a computer system
US55555102 Aug 199410 Sep 1996Intel CorporationAutomatic computer card insertion and removal algorithm
US55618067 Mar 19941 Oct 1996International Business Machines CorporationSerial channel adapter
US557252531 May 19955 Nov 1996National Instruments CorporationGPIB extender with find listener protocol capabilities
US557268830 Sep 19945 Nov 1996Tyan Computer CorporationPrimary bus processing element with multifunction interconnection to secondary bus
US557948926 Jul 199426 Nov 1996Elonex I.P. Holdings, Ltd.Digital assistant i/o expansion system
US5579491 *7 Jul 199426 Nov 1996Dell U.S.A., L.P.Local proactive hot swap request/acknowledge system
US55862657 Jun 199517 Dec 1996International Business Machines CorporationPriority arbitrating interface for a plurality of shared subsystems coupled to a plurality of system processing devices for selective association of subsystem to processing device
US55903777 Jun 199531 Dec 1996Ast Research, Inc.Automatic control of distributed DMAs in a PCI bus system supporting dual ISA buses
US561105321 Jan 199411 Mar 1997Advanced Micro Devices, Inc.Apparatus and method for integrating bus master ownership of local bus load by plural data transceivers
US5632020 *9 Jun 199420 May 1997Advanced Micro Devices, Inc.System for docking a portable computer to a host computer without suspending processor operation by a docking agent driving the bus inactive during docking
US5634080 *19 Jul 199427 May 1997Elonex Ip Holdings, Ltd.Hand-held portable computer having an electroluminescent flat-panel display with pixel elements at right angles to the plane of the display and an excitation direction parallel to the plane of the display
US565514228 Aug 19965 Aug 1997Advanced Micro Devices, Inc.High performance derived local bus and computer system employing the same
US56714217 Dec 199423 Sep 1997Intel CorporationSerial interrupt bus protocol
US56945567 Jun 19952 Dec 1997International Business Machines CorporationData processing system including buffering mechanism for inbound and outbound reads and posted writes
US569691111 Dec 19969 Dec 1997Fredriksson; Lars-BernoArrangement for eliminating malfunction and/or permitting high-speed transmission in a serial bus connection, and transmitter and receiver units linked to the latter
US569694915 Jun 19959 Dec 1997Intel CorporationSystem for PCI slots expansion using asynchronous PCI-to-PCI bridge with clock generator for providing clock signal to the expansion mother board and expansion side of bridge
US570148324 Jan 199723 Dec 1997Sun Microsystems, Inc.Data acess implementation of device driver interface
US5724529 *22 Nov 19953 Mar 1998Cirrus Logic, Inc.Computer system with multiple PC card controllers and a method of controlling I/O transfers in the system
US57369683 Feb 19957 Apr 1998Mind Path Technologies, Inc.For controlling presentation of visual graphics to an audience
US574892111 Dec 19955 May 1998Advanced Micro Devices, Inc.Computer system including a plurality of multimedia devices each having a high-speed memory data channel for accessing system memory
US576492424 Aug 19959 Jun 1998Ncr CorporationMethod and apparatus for extending a local PCI bus to a remote I/O backplane
US57746819 Aug 199630 Jun 1998Kabushiki Kaisha ToshibaMethod and apparatus for controlling a response timing of a target ready signal on a PCI bridge
US5781747 *14 Nov 199514 Jul 1998Mesa Ridge Technologies, Inc.Method and apparatus for extending the signal path of a peripheral component interconnect bus to a remote location
US579399519 Jul 199611 Aug 1998Compaq Computer CorporationBus system for shadowing registers
US57939963 May 199511 Aug 1998Apple Computer, Inc.Bridge for interconnecting a computer system bus, an expansion bus and a video frame buffer
US579920728 Mar 199525 Aug 1998Industrial Technology Research InstituteNon-blocking peripheral access architecture having a register configure to indicate a path selection for data transfer between a master, memory, and an I/O device
US580205522 Apr 19961 Sep 1998Apple Computer, Inc.Method and apparatus for dynamic buffer allocation in a bus bridge for pipelined reads
US580926230 Aug 199615 Sep 1998Dell U.S.A., L.P.Commonly housed multiple processor type computing system and method of manufacturing the same
US581567731 Dec 199629 Sep 1998Compaq Computer CorporationBuffer reservation method for a bus bridge system
US58190535 Jun 19966 Oct 1998Compaq Computer CorporationComputer system bus performance monitoring
US583227927 May 19973 Nov 1998Lsi Logic CorporationAdvanced programmable interrupt controller (APIC) with high speed serial data bus
US583574131 Dec 199610 Nov 1998Compaq Computer CorporationBus-to-bus bridge in computer system, with fast burst memory range
US585490815 Oct 199629 Dec 1998International Business Machines CorporationComputer system generating a processor interrupt in response to receiving an interrupt/data synchronizing signal over a data bus
US58840275 Jun 199716 Mar 1999Intel CorporationArchitecture for an I/O processor that integrates a PCI to PCI bridge
US590587011 Sep 199618 May 1999Advanced Micro Devices, IncArrangement for initiating and maintaining flow control in shared-medium, full-duplex, and switched networks
US59110555 Jun 19968 Jun 1999Compaq Computer CorporationComputer system
US59130373 Jul 199615 Jun 1999Compaq Computer CorporationDynamic management information base manager
US5941965 *12 Jul 199624 Aug 1999Electronics Accessory Specialists International, Inc.Computer system
US594807631 Dec 19977 Sep 1999Adaptec, Inc.Method and system for changing peripheral component interconnect configuration registers
US59535118 Apr 199714 Sep 1999National Instruments CorporationPCI bus to IEEE 1394 bus translator
US596814427 Jun 199619 Oct 1999Vlsi Technology, Inc.System for supporting DMA I/O device using PCI bus and PCI-PCI bridge comprising programmable DMA controller for request arbitration and storing data transfer information
US5991304 *13 Feb 199823 Nov 1999Intel CorporationMethod and apparatus for minimizing asynchronous transmit FIFO under-run and receive FIFO over-run conditions
US599183920 Sep 199623 Nov 1999Kabushiki Kaisha ToshibaComputer system having computer main body and expansion unit
US60031053 Nov 199714 Dec 1999Hewlett-Packard CompanyLong-haul PCI-to-PCI bridge
US602607525 Feb 199715 Feb 2000International Business Machines CorporationFlow control mechanism
US603182119 Aug 199729 Feb 2000Advanced Micro Devices, Inc.Apparatus and method for generating a pause frame in a buffered distributor based on lengths of data packets distributed according to a round robin repeater arbitration
US603533324 Nov 19977 Mar 2000International Business Machines CorporationMethod and system for providing congestion control in a data communications network
US60442157 Mar 199628 Mar 2000Cnf Technologies, Inc.System and method for expansion of a computer
US6058144 *3 Apr 19982 May 2000Nortel Networks CorporationMulti-GB/S data pulse receiver
US6070214 *6 Aug 199830 May 2000Mobility Electronics, Inc.Serially linked bus bridge for expanding access over a first bus to a second bus
US608485618 Dec 19974 Jul 2000Advanced Micro Devices, Inc.Method and apparatus for adjusting overflow buffers and flow control watermark levels
US60852782 Jun 19984 Jul 2000Adaptec, Inc.Communications interface adapter for a computer system including posting of system interrupt status
US609810311 Aug 19971 Aug 2000Lsi Logic CorporationAutomatic MAC control frame generating apparatus for LAN flow control
US610156315 May 19988 Aug 2000International Business Machines CorporationConfiguration access system
US611535618 Dec 19975 Sep 2000Advanced Micro Devices, Inc.Apparatus and method for generating flow control frames in a workgroup switch based on traffic contribution from a network switch port
US6141744 *11 Aug 199931 Oct 2000Texas Instruments IncorporatedPC circuits, systems and methods
US615796730 Dec 19975 Dec 2000Tandem Computer IncorporatedMethod of data communication flow control in a data processing system using busy/ready commands
US616702926 Oct 199826 Dec 2000Xaqti CorporationSystem and method for integrated data flow control
US616712024 Jun 199826 Dec 2000Lextron Systems, Inc.Apparatus and methods for home networking
US61700223 Apr 19982 Jan 2001International Business Machines CorporationMethod and system for monitoring and controlling data flow in a network congestion state by changing each calculated pause time by a random amount
US6201829 *3 Apr 199813 Mar 2001Adaptec, Inc.Serial/parallel GHZ transceiver with pseudo-random built in self test pattern generator
US62161858 Sep 199810 Apr 2001Acqis Technology, Inc.Personal computer peripheral console with attached computer module
US622282523 Jan 199724 Apr 2001Advanced Micro Devices, Inc.Arrangement for determining link latency for maintaining flow control in full-duplex networks
US62336394 Jan 199915 May 2001International Business Machines CorporationMemory card utilizing two wire bus
US623704623 Apr 199822 May 2001Fujitsu LimitedInput/output control apparatus managing cache memory utilizing a spare hash table for operations if first hash table enters a synonym state
US624708612 Nov 199812 Jun 2001Adaptec, Inc.PCI bridge for optimized command delivery
US624709128 Apr 199712 Jun 2001International Business Machines CorporationMethod and system for communicating interrupts between nodes of a multinode computer system
US6445711 *21 Apr 20003 Sep 2002Sony CorporationMethod of and apparatus for implementing and sending an asynchronous control mechanism packet used to control bridge devices within a network of IEEE STD 1394 serial buses
US6473810 *28 Sep 199929 Oct 2002Texas Instruments IncorporatedCircuits, systems, and methods for efficient wake up of peripheral component interconnect controller
US6581125 *14 May 199917 Jun 2003Koninklijke Philips Electronics N.V.PCI bridge having latency inducing serial bus
US6728822 *10 Mar 200027 Apr 2004International Business Machines CorporationBus bridge circuit, information processing system and cardbus controller
US6778543 *13 Mar 200017 Aug 2004Canon Kabushiki KaishaMethod and device for controlling the synchronization between two serial communication buses of a network
US6788101 *13 Feb 20037 Sep 2004Lattice Semiconductor CorporationProgrammable interface circuit for differential and single-ended signals
US6950440 *18 Mar 199927 Sep 2005National Instruments CorporationSystem and method for efficiently generating packets on a serial bus in response to parallel bus cycles
US20020078289 *19 Feb 200220 Jun 2002Morrow Neil G.Bus interface segments connected by a repeater having two or more devices separated by a physical link
USRE37980 *3 Nov 20004 Feb 2003Compaq Computer CorporationBus-to-bus bridge in computer system, with fast burst memory range
JP2003050661A Title not available
JPH031429A * Title not available
JPH0628307A * Title not available
JPH02140852A * Title not available
Non-Patent Citations
Reference
1"Advisory Action", U.S. Appl. No. 10/782,082, (Apr. 7, 2009),3 pages.
2"Advisory Action", U.S. Appl. No. 10/782,082, (Jul. 9, 2007),3 pages.
3"Advisory Action", U.S. Appl. No. 11/513,806, PTOL 303, (Apr. 10, 2008), 4 pages.
4"Allowed Claims", U.S. Appl. No. 09/559,678, (Jun. 26, 2009),9 pages.
5"Allowed Claims", U.S. Appl. No. 11/300,131, (Jun. 18, 2009),7 pages.
6"European Search Report", EP07000788, (Oct. 1, 2008),1 Pages.
7"Final Office Action", U.S. Appl. No. 09/559,678, (Aug. 20, 2007), 8 pages.
8"Final Office Action", U.S. Appl. No. 09/559,678, (Jun. 22, 2004), 7 pages.
9"Final Office Action", U.S. Appl. No. 09/559,678, (Nov. 8, 2005), 7 pages.
10"Final Office Action", U.S. Appl. No. 09/819,053, (Jul. 12, 2005),46 pages.
11"Final Office Action", U.S. Appl. No. 10/766,660, (Dec. 4, 2006),17 pages.
12"Final Office Action", U.S. Appl. No. 10/782,082, (Aug. 11, 2008),26 pages.
13"Final Office Action", U.S. Appl. No. 10/782,082, (Feb. 2, 2009),27 pages.
14"Final Office Action", U.S. Appl. No. 10/782,082, (Mar. 6, 2007),14 pages.
15"Final Office Action", U.S. Appl. No. 11/300,131, (Aug. 20, 2007), 9 pages.
16"Final Office Action", U.S. Appl. No. 11/513,806, (Sep. 27, 2007), 8 pages.
17"Foreign Office Action", Application Serial No. 2,445,711, (Mar. 18, 2009),2 pages.
18"Foreign Office Action", Application Serial No. 2001-560830, (Mar. 19, 2009), 3 pages.
19"Foreign Office Action", Application Serial No. 2001-560831, (Mar. 19, 2009), 3 pages.
20"Foreign Office Action", Application Serial No. 2006-203273, (Jul. 21, 2009), 10 pages.
21"Foreign Office Action", Application Serial No. 2006-203293, (Jun. 26, 2009), 9 pages.
22"International Search Report", EP01925078, (Oct. 30, 2001),2 Pages.
23"International Search Report", PCT/US2001/12666, (Nov. 15, 2001),2 pages.
24"International Search Report", PCT/US2001/12678, (Oct. 30, 2001),2 pages.
25"International Search Report", PCT/US2005/006089, (Jun. 12, 2005),4 pages.
26"MC68HC11A8-HCMOS Single-Chip Microcontroller", Motorola, Inc. 1996, (1996),158 pages.
27"Non Final Office Action", U.S. Appl. No. 09/130,057, (Jul. 21, 1999),27 pages.
28"Non Final Office Action", U.S. Appl. No. 09/130,058, (Jul. 21, 1999),32 pages.
29"Non Final Office Action", U.S. Appl. No. 09/559,677, (Dec. 12, 2002),5 pages.
30"Non Final Office Action", U.S. Appl. No. 09/559,677, (Jun. 26, 2002),4 pages.
31"Non Final Office Action", U.S. Appl. No. 09/559,678, (Dec. 4, 2002), 9 pages.
32"Non Final Office Action", U.S. Appl. No. 09/559,678, (Mar. 27, 2008), 9 pages.
33"Non Final Office Action", U.S. Appl. No. 09/559,678, (Mar. 8, 2008), 8 pages.
34"Non Final Office Action", U.S. Appl. No. 09/559,678, (May 2, 2006), 7 pages.
35"Non Final Office Action", U.S. Appl. No. 09/559,678, (Nov. 24, 2006), 9 pages.
36"Non Final Office Action", U.S. Appl. No. 09/559,678, (Oct. 30, 2008), 8 pages.
37"Non Final Office Action", U.S. Appl. No. 09/559,678, (Sep. 17, 2005), 7 pages.
38"Non Final Office Action", U.S. Appl. No. 09/819,053, (Apr. 22, 2004),12 pages.
39"Non Final Office Action", U.S. Appl. No. 09/819,053, (Mar. 2, 2006),14 pages.
40"Non Final Office Action", U.S. Appl. No. 09/819,054, (Jan. 28, 2003),11 pages.
41"Non Final Office Action", U.S. Appl. No. 09/819,057, (Nov. 26, 2002),7 pages.
42"Non Final Office Action", U.S. Appl. No. 10/766,660, (May 15, 2006),17 pages.
43"Non Final Office Action", U.S. Appl. No. 10/782,082, (Jun. 9, 2006),17 pages.
44"Non Final Office Action", U.S. Appl. No. 10/782,082, (Nov. 9, 2007),12 Pages.
45"Non Final Office Action", U.S. Appl. No. 11/300,131, (Dec. 15, 2006), 13 pages.
46"Non Final Office Action", U.S. Appl. No. 11/300,131, (Mar. 27, 2008), 12 pages.
47"Non Final Office Action", U.S. Appl. No. 11/300,131, (Nov. 12, 2008), 20 pages.
48"Non Final Office Action", U.S. Appl. No. 11/513,806, (Mar. 12, 2007), 10 pages.
49"Non Final Office Action", U.S. Appl. No. 11/513,806, (Oct. 2, 2008), 22 pages.
50"Non Final Office Action", U.S. Appl. No. 11/513,976, (Oct. 27, 2006),10 pages.
51"Notice of allowance", Appl. No. 11/300,131, (Dec. 4, 2009), 4 pages.
52"Notice of Allowance", U.S. Appl. No. 09/130,057, (Feb. 25, 2000),12 pages.
53"Notice of Allowance", U.S. Appl. No. 09/130,058, (Feb. 25, 2000),4 pages.
54"Notice of Allowance", U.S. Appl. No. 09/559,677, (Mar. 20, 2003),3 pages.
55"Notice of Allowance", U.S. Appl. No. 09/559,678, (Jan. 29, 2010), 4 pages.
56"Notice of Allowance", U.S. Appl. No. 09/559,678, (Jun. 26, 2009),4 pages.
57"Notice of Allowance", U.S. Appl. No. 09/559,678, (Oct. 26, 2009), 4 pages.
58"Notice of Allowance", U.S. Appl. No. 09/819,053, (Jun. 15, 2007),13 pages.
59"Notice of Allowance", U.S. Appl. No. 09/819,054, (Dec. 2, 2003),8 pages.
60"Notice of Allowance", U.S. Appl. No. 09/819,057, (Mar. 14, 2003),4 pages.
61"Notice of Allowance", U.S. Appl. No. 11/300,131, (Oct. 22, 2009), 4 pages.
62"Notice of Allowance", U.S. Appl. No. 11/513,976, (Jan. 16, 2008),7 pages.
63"Notice of Allowance/Base Issue Fee", U.S. Appl. No. 11/300,131, (Jun. 18, 2009),12 pages.
64"Patent Abstract of Japan vol. 2003, No. 6, Jun. 3, 2003 & JP 2003 050661", Casio Computer Co., Ltd., (Feb. 21, 2003),1 page.
65"PCI to PCI Bridge Architecture Specification", Author-PCI Special Interest Group Revision 1.0, (Apr. 5, 1994),26 pages.
66"PCI-to-PCI Bridge Architecture Specification", Chapter 5-Buffer Management, Tables 5-1, (Dec. 18, 1998),pp. 69-92.
67"PCI-to-PCI Bridge Architecture Specification", PCI Local Bus; XP-002382184; Revision 1.1, (Dec. 18, 1998),148 pages.
68"MC68HC11A8—HCMOS Single-Chip Microcontroller", Motorola, Inc. 1996, (1996),158 pages.
69"PCI to PCI Bridge Architecture Specification", Author—PCI Special Interest Group Revision 1.0, (Apr. 5, 1994),26 pages.
70"PCI-to-PCI Bridge Architecture Specification", Chapter 5—Buffer Management, Tables 5-1, (Dec. 18, 1998),pp. 69-92.
71 *Adaptec, "Hardware Istallation Guide" CardPark APA-4510, ISA-to-PCMCIA Card Adapter for Desktop PC's, pp. 1-7.
72 *Adaptec, "SlimSCSI 1460 For Fast, Easy Connections to All SCSI Devices" 6 pages.
73 *Anderson, Don "PCMCIA System Architecture" 16-Bit PC Cards, 2nd Edition, pp. 146-167, 214-215, 218-225, 296-297, 1995.
74 *Anderson, et al "CardBus System Architecture" pp. 150-153, 194-201, 228-231, 322-325,1995.
75Annamalai, Kay "Multi-ported PCI-to-PCI Bridge Chip", IEEE 1997, (1997),p. 426-433.
76Anon, "Remote Memory Access Interface Between Two Personal Computers", IBM Technical Disclosure Bulletin v 28 n Feb. 9, 1986, (1986),4110-4113.
77Balatsos, A et al., "A bridge for a multiprocessor graphics system", Proceedings of the 2002 IEEE Canadian Conference on Electrical and Computer Engineering, (2002),p. 646-650.
78 *Brochure entitled "Card Station Expanding Your Portable World" Axonix Corporation 1994.
79Bui, et al., "60x Bus-to-PCI Bridge", IBM TDB May 1995, (May 1995),p. 401-402.
80 *Edge: Work-Group Computing Report, Nov. 21, 1994 "PCMCIA: Adaptec targets mobile computing market with two new host adapters that relieve problem of system-to-system and peripheral connectivity" 2 pages.
81Ekiz, H. et al., "Performance Analysis of a CAN/CAN Bridge", IEEE 1996, describes a Bridge Process Model with Bridge Port A and Bridge Port B. The Bridge Port A connects to a LAN 1 Data Lin. Next, the Bridge Port B connects to a LAN 2 Data Link (see fig. 2).,(1996),8 pages.
82Fulp, C. D., et al., "A Wireless Handheld System for Interactive Multimedia-Enhanced Instruction", FIE 2002. 32nd Annual Frontiers In Education Conference, Boston, MA., Nov. 6-9, 2002, Frontiers In Education Conference, New York, NY: IEEE, US, vol. 1 of 3, Conf. 32, (Nov. 6, 2002),4 pages.
83Gillett, Richard B., "Memory Channel Network for PCI", IEEE 1996, (1996),7 pages.
84Gillett, Richard B., et al., "Using the Memory Channel Network", IEEE 1997, (1997),p. 19-25.
85Harper, Stephen "Update on PCMCIA Standard Activities: Cardbus and Beyond", PCMCIA 1995, (1995),p. 136-144.
86 *IEEE Microprocessor and Microcomputer Standards Committee, P1394a Draft Standard for a High Performance Serial Bus (Amendment), Feb. 11, 2000, IEEE Computer Society, Draft 5.0, pp. i-v, 131-134, 140, and 144-150.
87Karl, Wolfgang et al., "SCI monitoring hardware and software: supporting performance evaluation and debugging", Book Title: SCI: scalable coherent interface. Architecture and software for high-performance compute cluster,(1999),p. 417-432.
88 *Kitamura, et al "Design of the ISDN PC Card" NTT Human Interface Laboratory, Japan pp. 1169-1174, 1994.
89Marsden, Philip "Interworking IEEE 802/FDDI LAN's Via the ISDN Frame Relay Bearer Service", Proceedings of the IEEE, vol. 79, No. 2, Feb. 1991, describes ISDN MAC Bridge/Routers. The Bridge/Router connects directly to each other via 2Mbit/s ISDN interface (see fig. 6), (Feb. 1991),p. 223-229.
90Mora, F et al., "Design of a high performance PCI interface for an SCI network", Computing & Control Engineering Journal, Dec. 1998., (Dec. 1998),p. 275-282.
91Mora, F et al., "Electronic Design of a High Performance Interface to the SCI Network", IEEE 1998, (1998),p. 535-538.
92Poor, Alfred "The Expansion Bus.(ISA, PCI, and AGP)(Technology Information)", PC Magazine, 194(1) Jan. 19, 1999, (Jan. 19, 1999),5 pages.
93Skaali, B et al., "A Prototype DAQ System for the Alice Experiment Based on SCI", IEEE Transactions on Nuclear Science, vol. 45, Aug. 1998, (Aug. 1998), 1917-1922.
94Surkan, Michael "NetFrame takes lead in reliability: ClusterSystem's hot-swappable PCI a", PC Week, v14, n34, p60(1) Aug. 11, 1997, NetFRAME System' ClusterSystem 9008 Pentium Pro-based system) (Hardware Review)(Evaluation),(Aug. 11, 1997),4 pages.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US867033531 Mar 200911 Mar 2014Marvell World Trade Ltd.Reduced power transmission
Classifications
U.S. Classification710/300, 710/306, 710/305, 710/315
International ClassificationG06F13/40, G06F13/00
Cooperative ClassificationG06F13/4022, G06F13/4045
European ClassificationG06F13/40D5R, G06F13/40D2
Legal Events
DateCodeEventDescription
9 Oct 2013ASAssignment
Free format text: MERGER;ASSIGNOR:TAO LOGIC SYSTEMS LLC;REEL/FRAME:031369/0442
Effective date: 20131007
Owner name: INTELLECTUAL VENTURES I LLC, DELAWARE
12 Jul 2011CCCertificate of correction