USRE39075E1 - Heater for physiological fluids - Google Patents

Heater for physiological fluids Download PDF

Info

Publication number
USRE39075E1
USRE39075E1 US10/032,559 US3255902A USRE39075E US RE39075 E1 USRE39075 E1 US RE39075E1 US 3255902 A US3255902 A US 3255902A US RE39075 E USRE39075 E US RE39075E
Authority
US
United States
Prior art keywords
fluid
heat exchanger
warming
connector means
central tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/032,559
Inventor
Wesley H. Verkaart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Medical ASD Inc
Original Assignee
Smiths Medical ASD Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smiths Medical ASD Inc filed Critical Smiths Medical ASD Inc
Priority to US10/032,559 priority Critical patent/USRE39075E1/en
Assigned to LEVEL 1, INC. reassignment LEVEL 1, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SIMS LEVEL 1, INC.
Assigned to SMITHS MEDICAL ASD, INC. reassignment SMITHS MEDICAL ASD, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LEVEL 1, INC.
Application granted granted Critical
Publication of USRE39075E1 publication Critical patent/USRE39075E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/44Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for cooling or heating the devices or media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/366General characteristics of the apparatus related to heating or cooling by liquid heat exchangers

Definitions

  • This invention relates to the art of devices used with physiological fluids.
  • the invention is an apparatus for heating a physiological fluid before introduction into a patient.
  • fluids to be administered to a patient be heated.
  • whole blood and packed cells are stored in refrigerators at a temperature of approximately 4° C.
  • These fluids often are required to be administered to a patient within a short period of time, which necessitates warming them to a temperature approximately equal to that of the patient, i.e. 37° C.
  • U.S. Pat. No. 2,910,981 shows a device for conducting blood transfusions.
  • a heat exchanger is in fluid communication with a heating element, and the blood to be ministered passes through the heat ex. changer before being administered to the patient.
  • the heat exchanger comprises a central tube surrounded by an outer tube, and the heating fluid passes through the space between the inner and outer tubes.
  • the heat ex. changer is threadedly connected to valves at opposite ends. No structure is described for supporting the various elements described in the patent.
  • the invention is a self-contained, free standing system which permits controlled, but rapid heating of cellular fluids as they are being administered to a patient.
  • the heating of the cellular fluids is controlled to prevent damage to the fluids from various causes including overheating.
  • the heat exchanger is easily installed on the pole, which includes a fixed mounting block and a movable mounting block. Opposite ends of the heat exchanger comprise nipples which are received in O-ring containing recesses in the mounting blocks. Thus, installation and removal of the disposable heat exchanger are quite easy.
  • the system may also include a filter which would be attached to an outlet of the heat exchanger. Sensors on the pole detect when the heat exchanger or the filter is in a correct place to control operation of the heating system.
  • the heating system comprises a tank and a heating element in the outlet line of the tank. A pump circulates a heating fluid from the tank and heating element through the disposable heat exchanger.
  • FIG. 1 is an exploded view of the apparatus in accordance with the invention.
  • FIG. 2 is a longitudinal cross-section of the support pole.
  • FIG. 3 is a longitudinal cross-section of the heat exchanger.
  • FIG. 4 is an enlarged cross-section of an upper end of the support pole.
  • FIG. 5 is an exploded perspective of a movable mounting block and the upper end of the support pole.
  • FIG. 6 is a side view of the upper end of the support pole shown in FIG. 4 .
  • FIG. 7 is a perspective view of the heating element with the cover removed and the storage tank shown in phantom lines.
  • FIG. 8 is a schematic view showing the preferred fluid circuit.
  • FIG. 1 is an exploded view of a preferred embodiment of the invention.
  • a base 2 which preferably has wheels for ease of mobility, supports a pole 4 and a heating unit 6 .
  • Pole 4 removably receives a disposable unit 8 which includes a heat exchanger 10 and a filter 12 .
  • Tube 14 is in fluid communication with one end of heat exchanger 10 and connects it to a pair of bags spikes 16 .
  • the bag spikes are known in the art and are used to puncture and allow the dispensing of a body fluid from a storage bag.
  • Tube 18 connects a lower end of heat exchanger 10 to an upper end of filter 12 and tube 20 connects a lower end of filter 12 to cannula 22 to allow fluids to be introduced into a patient.
  • the entire unit 8 is manufactured of an inexpensive material and is disposable to ensure sterility.
  • FIG. 2 is a longitudinal cross-section of pole 4 with heat exchanger 10 partially mounted thereon.
  • Pole 4 includes a housing 24 which is attached to base 2 ( FIG. 1 ) to extend substantially vertically.
  • Housing 24 is preferably a hollow square tube, and hoses 26 and 28 extend along a hollow portion of housing 24 .
  • hoses 26 and 28 exit housing 24 via opening 30 .
  • electric conductor 32 extends along the hollow portion of housing 24 and exits by way of a second opening 34 .
  • Heat exchanger 10 is removably received by first detachable fluid connector 36 and second detachable fluid connector 38 .
  • Detachable fluid connector 36 is mounted for vertical movement with respect to housing 24 to allow heat exchanger 10 to be easily attached to pole 4 and detached.
  • Accordion element 40 is placed in hose 28 to permit fluid connector 36 to move vertically.
  • Sensor 42 detects when fluid connector 36 is in its lowermost position (as shown in FIG. 4 )
  • sensor 44 detects when heat exchanger 10 is in an operable position
  • sensor 46 detects when filter 12 is in operable position.
  • Filter 12 is supported on pole 4 by U-shaped bracket 48 .
  • the distance between the legs of the bracket is slightly less than the diameter of the filter so that it “snaps” into place.
  • a U-shaped bracket 49 is located between connectors 36 and 38 . Bracket 49 holds heat exchanger 10 aligned with connector 36 during insertion of the heat exchanger.
  • FIG. 3 is a longitudinal cross-section of heat exchanger 10 .
  • An inner tube 50 has ends 52 and 54 which are adapted to be received in respective fluid connectors 36 and 38 .
  • a central portion 56 of tube 50 is helically shaped to provide a helical groove on the exterior of tube 50 .
  • Tube 50 is preferably made of aluminum, and the helical surface is produced by twisting the tube.
  • An outer tube 58 fits over the inner tube 50 in a central portion thereof The space between the helical central portion 56 and the outer tube 58 forms a helical path extending between opposite ends of outer tube 58 .
  • An inlet connector 60 is secured to one end of outer tube 58 and includes connection 62 which receives tube 14 (see FIG. 2 ). End 52 of inner tube 50 extends beyond the upper edge of inlet connector 60 to provide a nipple for engagement with fluid connectors 36 as will be more fully described with respect to FIG. 4 .
  • Outlet connector 64 is secured to a second end of outer tube 58 , provides connection 66 for attachment to tube 18 , and allows end 54 to project to form a nipple for being received in fluid connector 38 .
  • FIG. 4 is an enlarged cross section of an upper end of pole 4 .
  • Housing 24 has a slot 68 in one side thereof for receiving a projection 70 from fluid connector 36 .
  • Projection 70 has outwardly extending ears 72 (see FIG. 5 ) to secure the fluid connector to the pole and yet to allow it to move in the direction indicated by the arrow in FIG. 4 .
  • Elbow 74 is threadedly connected to projection 70 to connect hose 28 with inner passage 76 .
  • Recess 78 connects with passage 76 and receives nipple end 52 of heat exchanger 10 .
  • O-ring seal 80 is received in an enlarged portion of recess 78 to provide a fluid-tight seal. It will be appreciated that fluid passing through hose 28 is thus connected to inner tube 50 of heat exchanger 10 .
  • FIG. 5 is an exploded view of the fluid connector 36 and the upper portion of housing 24 .
  • Fluid connector 38 is similar to fluid connector 36 , except that connector 38 is secured to housing 24 .
  • heat exchanger 10 may be easily attached to pole 4 by inserting end 54 into fluid connector 38 and by lowering fluid connector 36 onto end $2 52 . When this is accomplished, heat exchanger 10 will be supported mainly by fluid connectors 36 and 38 .
  • FIG. 6 is a side view of the top portion of pole 4 with a bracket 82 shown in cross-section.
  • Bracket 82 has a hole therethrough for supporting a rod 84 which in turn supports bags containing fluids to be administered to a patient.
  • a threaded stem 86 engages rod 84 to allow rod 84 to be adjusted in height.
  • FIG. 7 is a perspective view of heating unit 6 , with a cover removed.
  • FIG. 8 is a schematic flow diagram of the unit shown in FIG. 7 and these two Figures will be discussed together.
  • a base 88 supports electrical components 90 , a pump motor 92 , and a heater 94 .
  • a tank 96 sits on top of heater 94 , and filter 98 is located between an outlet of the tank and an inlet of the heater.
  • a fill port 100 is connected to the top of tank 96 to allow circulating fluid to be introduced into the system.
  • Inlet 102 also connects to the top of tank 96 and receives circulating fluid from either hose 26 or 28 , and outlet 104 supplies heated fluid to hose 28 or 26 .
  • the warming fluid is driven through the heat exchanger circuit by pump 106 which is connected to the pump motor by magnetic clutch 108 .
  • tank 96 includes an air vent and overflow tube 110 , and a float switch 112 .
  • the float switch is in turn connected to a control circuit 114 to permit operation of the device only when sufficient fluid is present.
  • Heater 94 comprises a tubular channel having an electric heating rod 116 therein, and the heating rod is connected to a temperature control circuit 118 which is in turn also connected to control circuit 114 .
  • temperature probe 120 As fluid flows from tank 96 through filter 98 and through heater 94 , it is warmed, and the temperature is measured by temperature probe 120 , _ which is located in the outlet of heater 94 .
  • Temperature control probe 120 is connected to temperature control circuit 118 to control energization of heating rod 116 .
  • a second temperature control probe 122 is also located in the outlet of heater 94 and is connected to control circuit 114 to ensure that the temperature does not exceed a predetermined level. If the temperature of the warming fluid is too high, the blood cells could be destroyed, and it is thus important either to automatically shut down the heating system or to activate an alarm such as that shown at 124 .
  • Power is provided through power cord 126 , and the voltage is adjusted by an isolation transformer 128 .
  • a switch 130 activates the entire electrical system, and the operation of the system, including the fluid temperature is displayed on panel 132 .
  • the unit is rolled to a location adjacent to a patient, and a sterile unit 8 is installed between fluid connectors 36 and 38 .
  • Cannula 22 is attached to the patient, and bag spikes 16 are inserted into appropriate bags containing the desired fluid to be administered to the patient.
  • Switch 130 is be warmed by the heat exchanger. If filter 12 has been placed in the circuit, the warmed body fluid then passes through the filter and into the patient. If filter 12 is not being used, tube 18 is connected directly to the cannula 22 for direct admission of the warm body fluid to the patient.

Abstract

A self-contained portable unit for heating physiological fluids is disclosed. A heat exchanger is disposable to ensure sterility, and the hot exchanger is attached to a heating system by inserting it between opposed fluid connection elements. One of the fluid connection elements is movable to permit the heat exchanger to be installed and removed easily by inserting one end of the heat exchanger in one of the fluid connection units and moving the other fluid connection unit into contact with an opposite end of the heat exchanges. The heating fluid is heated by an electric heating element and is circulated by an electric pump.

Description

This application is a continuation of application No. 08/758,853 filed Dec. 2, 1996, since abandoned, which is a continuation of application No. 08/571,706 filed Dec. 6, 1995, since abandoned, which is a continuation of application No. 08/145,099 filed Nov. 3, 1993, since abandoned, which is a continuation of application No. 07/979,434 filed Nov. 20, 1992, since abandoned, which is a continuation of application No. 07/558,177 filed Jul. 26, 1990, since abandoned, which is a reissue of application No. 06/866,910 filed May 27, 1986, U.S. Pat. No. 4,759,749.
FIELD OF THE INVENTION
This invention relates to the art of devices used with physiological fluids. In particular, the invention is an apparatus for heating a physiological fluid before introduction into a patient.
BACKGROUND ART
In many medical procedures, it is necessary that fluids to be administered to a patient be heated. For example, whole blood and packed cells are stored in refrigerators at a temperature of approximately 4° C. These fluids often are required to be administered to a patient within a short period of time, which necessitates warming them to a temperature approximately equal to that of the patient, i.e. 37° C.
Great care must be exercised when heating fluids such as whole blood or packed cells to avoid damaging the cells. For example, it is generally accepted that whole blood and packed cells should not be exposed to a temperature above 44° C. This places a severe restriction on the techniques used to heat quickly fluids which have been stored in a refrigerator and which must be administered to a patient within a short period of time.
U.S. Pat. Nos. 3,614,385 (Horstmann), 3,629,552 (Edging), 4,476,867 (Parks), and 4,532,414 (Shah et al.) teach systems for heating blood prior to being administered to a patient. The Horstmann, Edging, and Parks devices use various heat exchangers whereby blood flows through a tube which communicates with a warming fluid in a heat exchanger. It is quite difficult to maintain sterility of the heating apparatus in these systems after the first use because of the complexity of the heat exchangers. The Shah et al. device is simply a heated plate having a groove therein for receiving a tube leading from the bag containing the fluid to be administered.
U.S. Pat. No. 2,910,981 (Wilson et at.) shows a device for conducting blood transfusions. A heat exchanger is in fluid communication with a heating element, and the blood to be ministered passes through the heat ex. changer before being administered to the patient. The heat exchanger comprises a central tube surrounded by an outer tube, and the heating fluid passes through the space between the inner and outer tubes. The heat ex. changer is threadedly connected to valves at opposite ends. No structure is described for supporting the various elements described in the patent.
SUMMARY OF THE INVENTION
The invention is a self-contained, free standing system which permits controlled, but rapid heating of cellular fluids as they are being administered to a patient. The heating of the cellular fluids is controlled to prevent damage to the fluids from various causes including overheating.
The system comprises two major parts. A first part includes a heating element, a support pole, and a wheeled base. A second part comprises a heat exchanger and, optionally, a filter. The heat exchanger and filter are disposable and are removably attached to the support pole. The heat exchanger is disposable to facilitate each patient's use of a new, sterile heat exchanger.
The heat exchanger is easily installed on the pole, which includes a fixed mounting block and a movable mounting block. Opposite ends of the heat exchanger comprise nipples which are received in O-ring containing recesses in the mounting blocks. Thus, installation and removal of the disposable heat exchanger are quite easy.
The system may also include a filter which would be attached to an outlet of the heat exchanger. Sensors on the pole detect when the heat exchanger or the filter is in a correct place to control operation of the heating system. The heating system comprises a tank and a heating element in the outlet line of the tank. A pump circulates a heating fluid from the tank and heating element through the disposable heat exchanger.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an exploded view of the apparatus in accordance with the invention.
FIG. 2 is a longitudinal cross-section of the support pole.
FIG. 3 is a longitudinal cross-section of the heat exchanger.
FIG. 4 is an enlarged cross-section of an upper end of the support pole.
FIG. 5 is an exploded perspective of a movable mounting block and the upper end of the support pole.
FIG. 6 is a side view of the upper end of the support pole shown in FIG. 4.
FIG. 7 is a perspective view of the heating element with the cover removed and the storage tank shown in phantom lines.
FIG. 8 is a schematic view showing the preferred fluid circuit.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an exploded view of a preferred embodiment of the invention. A base 2, which preferably has wheels for ease of mobility, supports a pole 4 and a heating unit 6. Pole 4 removably receives a disposable unit 8 which includes a heat exchanger 10 and a filter 12. Tube 14 is in fluid communication with one end of heat exchanger 10 and connects it to a pair of bags spikes 16. The bag spikes are known in the art and are used to puncture and allow the dispensing of a body fluid from a storage bag. Tube 18 connects a lower end of heat exchanger 10 to an upper end of filter 12 and tube 20 connects a lower end of filter 12 to cannula 22 to allow fluids to be introduced into a patient. As will be more fully described below, the entire unit 8 is manufactured of an inexpensive material and is disposable to ensure sterility.
FIG. 2 is a longitudinal cross-section of pole 4 with heat exchanger 10 partially mounted thereon. Pole 4 includes a housing 24 which is attached to base 2 (FIG. 1) to extend substantially vertically. Housing 24 is preferably a hollow square tube, and hoses 26 and 28 extend along a hollow portion of housing 24. Preferably, hoses 26 and 28 exit housing 24 via opening 30. In addition, electric conductor 32 extends along the hollow portion of housing 24 and exits by way of a second opening 34.
Heat exchanger 10 is removably received by first detachable fluid connector 36 and second detachable fluid connector 38. The structure of fluid connectors 36 and 38 will be more fully described with respect to FIGS. 4 and 5. Detachable fluid connector 36 is mounted for vertical movement with respect to housing 24 to allow heat exchanger 10 to be easily attached to pole 4 and detached. Accordion element 40 is placed in hose 28 to permit fluid connector 36 to move vertically. Sensor 42 detects when fluid connector 36 is in its lowermost position (as shown in FIG. 4), sensor 44 detects when heat exchanger 10 is in an operable position, and sensor 46 detects when filter 12 is in operable position.
Filter 12 is supported on pole 4 by U-shaped bracket 48. The distance between the legs of the bracket is slightly less than the diameter of the filter so that it “snaps” into place. Similarly, a U-shaped bracket 49 is located between connectors 36 and 38. Bracket 49 holds heat exchanger 10 aligned with connector 36 during insertion of the heat exchanger.
FIG. 3 is a longitudinal cross-section of heat exchanger 10. An inner tube 50 has ends 52 and 54 which are adapted to be received in respective fluid connectors 36 and 38. A central portion 56 of tube 50 is helically shaped to provide a helical groove on the exterior of tube 50. Tube 50 is preferably made of aluminum, and the helical surface is produced by twisting the tube.
An outer tube 58 fits over the inner tube 50 in a central portion thereof The space between the helical central portion 56 and the outer tube 58 forms a helical path extending between opposite ends of outer tube 58.
An inlet connector 60 is secured to one end of outer tube 58 and includes connection 62 which receives tube 14 (see FIG. 2). End 52 of inner tube 50 extends beyond the upper edge of inlet connector 60 to provide a nipple for engagement with fluid connectors 36 as will be more fully described with respect to FIG. 4.
Outlet connector 64 is secured to a second end of outer tube 58, provides connection 66 for attachment to tube 18, and allows end 54 to project to form a nipple for being received in fluid connector 38.
FIG. 4 is an enlarged cross section of an upper end of pole 4. Housing 24 has a slot 68 in one side thereof for receiving a projection 70 from fluid connector 36. Projection 70 has outwardly extending ears 72 (see FIG. 5) to secure the fluid connector to the pole and yet to allow it to move in the direction indicated by the arrow in FIG. 4.
Elbow 74 is threadedly connected to projection 70 to connect hose 28 with inner passage 76. Recess 78 connects with passage 76 and receives nipple end 52 of heat exchanger 10. O-ring seal 80 is received in an enlarged portion of recess 78 to provide a fluid-tight seal. It will be appreciated that fluid passing through hose 28 is thus connected to inner tube 50 of heat exchanger 10.
FIG. 5 is an exploded view of the fluid connector 36 and the upper portion of housing 24.
Fluid connector 38 is similar to fluid connector 36, except that connector 38 is secured to housing 24.
It will be appreciated that heat exchanger 10 may be easily attached to pole 4 by inserting end 54 into fluid connector 38 and by lowering fluid connector 36 onto end $2 52. When this is accomplished, heat exchanger 10 will be supported mainly by fluid connectors 36 and 38.
FIG. 6 is a side view of the top portion of pole 4 with a bracket 82 shown in cross-section. Bracket 82 has a hole therethrough for supporting a rod 84 which in turn supports bags containing fluids to be administered to a patient. A threaded stem 86 engages rod 84 to allow rod 84 to be adjusted in height.
FIG. 7 is a perspective view of heating unit 6, with a cover removed. FIG. 8 is a schematic flow diagram of the unit shown in FIG. 7 and these two Figures will be discussed together.
A base 88 supports electrical components 90, a pump motor 92, and a heater 94. A tank 96 sits on top of heater 94, and filter 98 is located between an outlet of the tank and an inlet of the heater. A fill port 100 is connected to the top of tank 96 to allow circulating fluid to be introduced into the system. Inlet 102 also connects to the top of tank 96 and receives circulating fluid from either hose 26 or 28, and outlet 104 supplies heated fluid to hose 28 or 26.
The warming fluid is driven through the heat exchanger circuit by pump 106 which is connected to the pump motor by magnetic clutch 108.
With particular reference to FIG. 8, tank 96 includes an air vent and overflow tube 110, and a float switch 112. The float switch is in turn connected to a control circuit 114 to permit operation of the device only when sufficient fluid is present. Heater 94 comprises a tubular channel having an electric heating rod 116 therein, and the heating rod is connected to a temperature control circuit 118 which is in turn also connected to control circuit 114. As fluid flows from tank 96 through filter 98 and through heater 94, it is warmed, and the temperature is measured by temperature probe 120, _ which is located in the outlet of heater 94. Temperature control probe 120 is connected to temperature control circuit 118 to control energization of heating rod 116. A second temperature control probe 122 is also located in the outlet of heater 94 and is connected to control circuit 114 to ensure that the temperature does not exceed a predetermined level. If the temperature of the warming fluid is too high, the blood cells could be destroyed, and it is thus important either to automatically shut down the heating system or to activate an alarm such as that shown at 124.
Power is provided through power cord 126, and the voltage is adjusted by an isolation transformer 128. A switch 130 activates the entire electrical system, and the operation of the system, including the fluid temperature is displayed on panel 132.
In operation of the apparatus is accordance with the invention, the unit is rolled to a location adjacent to a patient, and a sterile unit 8 is installed between fluid connectors 36 and 38. Cannula 22 is attached to the patient, and bag spikes 16 are inserted into appropriate bags containing the desired fluid to be administered to the patient. Switch 130 is be warmed by the heat exchanger. If filter 12 has been placed in the circuit, the warmed body fluid then passes through the filter and into the patient. If filter 12 is not being used, tube 18 is connected directly to the cannula 22 for direct admission of the warm body fluid to the patient.
It will be appreciated that a unique self-contained unit has been described which provides sterility by use of an easily-installed disposable heat exchanger circuit. Modifications within the scope of the appended claims will be apparent to those who are skilled in the art.

Claims (21)

1. In combination
first and second fluid connector means for removably receiving respective first and second warming fluid ports of a heat exchanger and for facilitating passage of a warming fluid, and
support means for supporting said first and second fluid connector means,
each of said fluid connector means comprising a passageway for passing said warming fluid and means for engaging a respective said first or second warming fluid port to allow said warming fluid in said passageway to communicate with said port and to physically support said heat exchanger in cooperation with the other of said fluid connector means,
fluid circulation means for circulating said warming fluid to said first and second fluid connector means, and
temperature control means for controlling the temperature of said warming fluid,
wherein one of said first and second fluid connector means is movably mounted to said support means for movement with respect to said support means between at least first and second positions, wherein such that said first and second fluid connector means are spaced by a first distance for engaging engage said warming fluid ports when said one of said fluid connectors is in said first position and are spaced by a second distance for releasing release said warming fluid ports when said one of said fluid connectors is in said second position,
wherein each of said means for engaging comprises means for removably receiving or releasing one of said warming fluid ports in a single mechanical action.
2. A combination according to claim 1 wherein said means for engaging removably receiving or releasing comprises means forming a recess for receiving a said fluid port.
3. A combination according to claim 2 wherein said recess includes seal means for preventing leakage of said warming fluid.
4. A combination according to claim 3 wherein said seal is an O-ring seal.
5. A combination according to claim 1 wherein said support means is elongated in a first direction, said one of said first and second connector means is mounted to said support means for linear movement in said direction toward or away from the other of said first and second connector means between said first and second positions, and said other of said first and second connector means is fixed with respect to said support means.
6. A combination according to claim 5 wherein said means for engaging comprises a cylindrical recess and wherein said cylindrical recess of said first fluid connector means is axially aligned with said cylindrical recess of said second fluid connector means.
7. A combination according to claim 2 wherein a longitudinal axis of said recess of said first fluid connector means is parallel to a longitudinal axis of said recess of said second fluid connector means, and said first fluid connector means is mounted for linear movement in the direction of said longitudinal axis.
8. A combination according to claim 7 further comprising said heat exchanger, wherein said heat exchanger comprises a central tube and an outer tube having a length shorter than that of said central tube wherein said first and second warming fluid ports comprise portions of said central tube which extend beyond respective ends of said outer tube and said central and outer tubes form a passageway for a fluid to be warmed.
9. A combination according to claim 8 wherein said heat exchanger further comprises first and second end caps, each of said first and second end caps having a first part sealingly secured to an outer surface of a respective end of said outer tube and a second part extending away from said first part and sealingly engaged to a side of said central tube.
10. A combination according to claim 9 wherein said second portion of said cap means comprises an open cylinder in contact with said side of said central tube.
11. A combination according to claim 8 wherein said temperature control means comprises heater means in fluid communication with said warming fluid ports.
12. A combination according to claim 11 wherein said heater means comprises an electrical fluid heating element, a storage tank containing said first warming fluid, and pump means for circulating said first warming fluid in a circuit including said heating element, said tank, and said central tube of said heat exchanger.
13. A combination according to claim 12 wherein said heater means and said support means are mounted on a common wheeled base and further comprising switch means for detecting when said heat exchanger is operatively mounted on said support means.
14. A combination according to claim 13 further comprising filter means in fluid communication with said fluid to be warmed.
15. A sterile heat exchange for controlling the temperature of a physiological fluid comprising a central tube having high heat conductivity for carrying a temperature-controlled fluid, an outer tube shorter than said central tube and surrounding a part of said central tube to form a passageway for said physiological fluid between said central and outer tubes, and first and second end caps, each of said end caps having a first part extending axially along an outer surface of said outer tube and being sealed and secured to said outer surface and a second part sealingly engaging said central tube to ensure maintenance of sterility during operation, said second part comprising an elongate cylindrical opening engaging an outer surface of said central tube and extending away from said first part and wherein said inner tube extends beyond each of said second parts and forms two elongate connections for being slidingly received in an elongate recess.
16. A heat exchanger according to claim 15 19 wherein said central tube is of aluminum.
17. A heat exchanger according to claim 15 19 wherein said central tube has an exterior surface providing increased surface area.
18. A heat exchanger according to claim 17 wherein said exterior surface is helical and a longitudinal axis of said central tube is straight.
19. A heat exchanger according to claim 15 A sterile heat exchanger for controlling the temperature of a physiological fluid comprising a central tube having high heat conductivity for carrying a temperature-controlled fluid, an outer tube shorter than said central tube and surrounding a part of said central tube to form a passageway for said physiological fluid between said central and outer tubes, and first and second end caps, each of said end caps having a first part extending axially along an outer surface of said outer tube and being sealed and secured to said outer surface and a second part sealingly engaging said central tube to ensure maintenance of sterility during operation, said second part comprising an elongate cylindrical opening engaging an outer surface of said central tube and extending away from said first part and wherein said inner tube extends beyond each of said second parts and forms two elongate connections for being slidingly received in an elongate recess, wherein each of said end caps includes a port for communicating a fluid to be warmed with said passageway.
20. In combination
first and second fluid connector means for removably receiving respective first and second warming fluid ports of a heat exchanger for receiving a warming fluid, and support means for supporting said first and second fluid connector means,
each of said fluid connector means comprising a passageway for passing said warming fluid and means for engaging a respective said first or second warming fluid port to allow said warming fluid in said passageway to communicate with said port and to physically support said heat exchanger in cooperation with the other of said fluid connector means,
fluid circulation means for circulating said warming fluid to said first and second fluid connector means, and
temperature control means for controlling the temperature of said warming fluid,
wherein one of said first and second fluid connector means is movably mounted to said support means for movement with respect to said support means between at least first and second positions, such that said first and second fluid connector means are spaced by a first distance for engaging said warming fluid ports when said one of said fluid connectors is in said first position and are spaced by a second distance for releasing said warming fluid ports when said one of said fluid connectors is in said second position, said means for engaging comprises means forming a recess for receiving a said fluid port, said recess includes an O-ring seal for preventing leakage of said warming fluid, and wherein said support means is elongated in a first direction, said one of said first and second connector means is mounted to said support means for linear movement in said direction toward or away from the other of said first and second connector means between said first and second positions, and said other of said first and second connector means is fixed with respect to said support means.
21. A combination according to claim 20 wherein said means for engaging comprises a cylindrical recess and wherein said cylindrical recess of said first fluid connector means is axially aligned with said cylindrical recess of said second fluid connector means.
US10/032,559 1986-05-27 2002-01-02 Heater for physiological fluids Expired - Lifetime USRE39075E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/032,559 USRE39075E1 (en) 1986-05-27 2002-01-02 Heater for physiological fluids

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US06/866,910 US4759749A (en) 1986-05-27 1986-05-27 Heater for physiological fluids
US55817790A 1990-07-26 1990-07-26
US97943492A 1992-11-20 1992-11-20
US14509993A 1993-11-03 1993-11-03
US57170695A 1995-12-06 1995-12-06
US75885396A 1996-12-02 1996-12-02
US10/032,559 USRE39075E1 (en) 1986-05-27 2002-01-02 Heater for physiological fluids

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06/866,910 Reissue US4759749A (en) 1986-05-27 1986-05-27 Heater for physiological fluids

Publications (1)

Publication Number Publication Date
USRE39075E1 true USRE39075E1 (en) 2006-04-18

Family

ID=25348705

Family Applications (2)

Application Number Title Priority Date Filing Date
US06/866,910 Ceased US4759749A (en) 1986-05-27 1986-05-27 Heater for physiological fluids
US10/032,559 Expired - Lifetime USRE39075E1 (en) 1986-05-27 2002-01-02 Heater for physiological fluids

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US06/866,910 Ceased US4759749A (en) 1986-05-27 1986-05-27 Heater for physiological fluids

Country Status (8)

Country Link
US (2) US4759749A (en)
EP (1) EP0247989B1 (en)
JP (1) JPH084626B2 (en)
AT (1) ATE127350T1 (en)
CA (1) CA1271796A (en)
DE (1) DE3751504T2 (en)
ES (1) ES2076932T3 (en)
GR (1) GR3017835T3 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050177087A1 (en) * 2004-02-11 2005-08-11 Steve Lee Blood heat conserving tube assembly for hemodialysis or blood transfusion
US20100059498A1 (en) * 2008-09-10 2010-03-11 Hansen William J Modular fluid warmer
US7740611B2 (en) 2005-10-27 2010-06-22 Patented Medical Solutions, Llc Method and apparatus to indicate prior use of a medical item
US20100276411A1 (en) * 2008-09-10 2010-11-04 Hansen William J Fluid warmer with switch assembly
US8613723B2 (en) 2008-07-11 2013-12-24 Smiths Medical Asd, Inc. Multi lumen heat exchanger
US8845586B2 (en) 2004-03-09 2014-09-30 Patented Medical Solutions Llc Method and apparatus for facilitating injection of medication into an intravenous fluid line while maintaining sterility of infused fluids
US20160045659A1 (en) * 2014-08-18 2016-02-18 Howard Z. Chen Intravenous pole integrated power, control, and communication system and method for an infusion pump
US10918787B2 (en) 2015-05-26 2021-02-16 Icu Medical, Inc. Disposable infusion fluid delivery device for programmable large volume drug delivery
USD939079S1 (en) 2019-08-22 2021-12-21 Icu Medical, Inc. Infusion pump
US11213619B2 (en) 2013-11-11 2022-01-04 Icu Medical, Inc. Thermal management system and method for medical devices

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874359A (en) * 1987-12-14 1989-10-17 White Frederick R Power infuser
US5254094A (en) * 1989-07-17 1993-10-19 Starkey David L Physiological fluid warmer
US5063994A (en) * 1990-06-26 1991-11-12 Level 1 Technologies, Inc. Reflux fluid heated patient line
US5180896A (en) * 1990-10-11 1993-01-19 University Of Florida System and method for in-line heating of medical fluid
DE4105781C1 (en) * 1991-02-23 1992-01-02 Fresenius Ag, 6380 Bad Homburg, De
US5381510A (en) * 1991-03-15 1995-01-10 In-Touch Products Co. In-line fluid heating apparatus with gradation of heat energy from inlet to outlet
US5245693A (en) * 1991-03-15 1993-09-14 In-Touch Products Co. Parenteral fluid warmer apparatus and disposable cassette utilizing thin, flexible heat-exchange membrane
US5403281A (en) * 1992-09-25 1995-04-04 Minnesota Mining And Manufacturing Company Inline heat exchanger and cardioplegia system
US5417274A (en) * 1993-03-12 1995-05-23 Verkaart; Wesley H. Heater for physiological solutions effective at both low and high flow rates
US5514335A (en) * 1993-10-25 1996-05-07 Minnesota Mining And Manufacturing Company Blood oxygenation system and reservoir and method of manufacture
US5807332A (en) * 1994-03-22 1998-09-15 Augustine Medical, Inc. Tube apparatus for warming intravenous fluids within an air hose
US5514095A (en) * 1994-04-04 1996-05-07 Haemonetics Corporation Apparatus for heating, filtering and eliminating gas from biological fluids
ES2316333T3 (en) * 1994-07-08 2009-04-16 Astrazeneca Ab DOSAGE FORM IN TABLETS CONSTITUTED BY MULTIPLE UNITS.
US5817146A (en) * 1995-11-09 1998-10-06 Augustine Medical, Inc. Patient warming system with IV fluid warmer
US5846224A (en) * 1996-10-01 1998-12-08 Baxter International Inc. Container for use with blood warming apparatus
US6047108A (en) * 1996-10-01 2000-04-04 Baxter International Inc. Blood warming apparatus
US7090658B2 (en) 1997-03-03 2006-08-15 Medical Solutions, Inc. Temperature sensing device for selectively measuring temperature at desired locations along an intravenous fluid line
AU6683498A (en) 1997-03-03 1998-09-22 Medical Solutions, Inc. Method and apparatus for pressure infusion and temperature control of infused liquids
US6467953B1 (en) 1999-03-30 2002-10-22 Medical Solutions, Inc. Method and apparatus for monitoring temperature of intravenously delivered fluids and other medical items
ES2135325B1 (en) * 1997-04-21 2000-07-01 Fernandez Damian Gomez HEAT EXCHANGE DEVICE FOR CATHETERS.
US6175688B1 (en) 1998-07-10 2001-01-16 Belmont Instrument Corporation Wearable intravenous fluid heater
US6113782A (en) * 1998-07-28 2000-09-05 Terumo Cardiovascular Systems Corporation Potting of tubular bundles in housing
US6229957B1 (en) 1999-05-14 2001-05-08 Joseph Baker Physiological fluid warming process and apparatus
US6259074B1 (en) 1999-10-26 2001-07-10 Sims Level 1, Inc. Apparatus for regulating the temperature of a fluid
ATE338441T1 (en) * 1999-10-26 2006-09-15 Smith Medical Asd Inc CONNECTOR ARRANGEMENT FOR DEVICE FOR TEMPERATURE CONTROL OF A LIQUID
US6257265B1 (en) * 1999-10-26 2001-07-10 Sims Level 1 Inc. Apparatus for connecting a heat exchanger with a fluid temperature regulation device
US7238171B2 (en) 2001-03-12 2007-07-03 Medical Solutions, Inc. Method and apparatus for controlling pressurized infusion and temperature of infused liquids
US6746439B2 (en) * 2001-04-19 2004-06-08 Jay Alan Lenker Method and apparatus for fluid administration with distributed heating
US20040220523A1 (en) * 2001-04-19 2004-11-04 Lenker Jay A Method and apparatus for fluid administration with distributed heating
US8226605B2 (en) 2001-12-17 2012-07-24 Medical Solutions, Inc. Method and apparatus for heating solutions within intravenous lines to desired temperatures during infusion
US7160303B2 (en) * 2003-01-23 2007-01-09 Cervitech, Inc. Medical implant with a secured bone screw
US7261557B2 (en) * 2004-07-07 2007-08-28 The Board Of Regents Of The University Of Texas System Portable fluid warming system
US7891974B2 (en) * 2004-07-07 2011-02-22 The Board Of Regents Of The University Of Texas System Portable fluid warming system
US7236694B1 (en) 2006-01-27 2007-06-26 Jacques Chammas Blood and biological fluid warmer
US8226293B2 (en) 2007-02-22 2012-07-24 Medical Solutions, Inc. Method and apparatus for measurement and control of temperature for infused liquids
US11000407B2 (en) 2007-08-07 2021-05-11 Belmont Instrument, Llc Hyperthermia, system, method, and components
US7819835B2 (en) 2007-08-07 2010-10-26 Belmont Instrument Corporation Hyperthermia, system, method and components
CA2964741C (en) * 2009-03-09 2019-10-29 Thermedx, Llc Surgical fluid management system
US9474848B2 (en) 2009-03-09 2016-10-25 Thermedx, Llc Fluid management system
US9211381B2 (en) 2012-01-20 2015-12-15 Medical Solutions, Inc. Method and apparatus for controlling temperature of medical liquids
US9656029B2 (en) 2013-02-15 2017-05-23 Medical Solutions, Inc. Plural medical item warming system and method for warming a plurality of medical items to desired temperatures
US9770541B2 (en) 2014-05-15 2017-09-26 Thermedx, Llc Fluid management system with pass-through fluid volume measurement
EP3268071A1 (en) 2015-03-10 2018-01-17 Life Warmer Inc. Thermic infusion system
US20160317392A1 (en) * 2015-03-30 2016-11-03 Covidien Lp Enteral feeding bag and pump support
DE102016103779A1 (en) * 2016-03-03 2017-09-07 Heinz Schade Gmbh Temperature control unit for medical technology
DE102017204776B4 (en) 2016-03-23 2021-09-23 Stihler Electronic Gmbh Modular blood warmer and procedure
USD855993S1 (en) 2016-03-30 2019-08-13 Kpr U.S., Llc Medical bag and pump support
US10507292B2 (en) 2016-11-30 2019-12-17 Belmont Instrument, Llc Rapid infuser with vacuum release valve
US10137257B2 (en) 2016-11-30 2018-11-27 Belmont Instrument, Llc Slack-time heating system for blood and fluid warming
US10485936B2 (en) 2016-11-30 2019-11-26 Belmont Instrument, Llc Rapid infuser with advantageous flow path for blood and fluid warming
SG11202003754YA (en) 2017-05-16 2020-05-28 Bhamis Research Laboratory Pvt Ltd High concentration protein formulations with reduced viscosity
US11707580B2 (en) 2017-09-08 2023-07-25 Life Warmer Inc. Thermic infusion system dry tube detector
US20210138146A1 (en) 2019-11-08 2021-05-13 Thermedx Llc Fluid Management Systems and Methods

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1873590A (en) * 1928-05-11 1932-08-23 Harold Elno Smith Pipe connection
US2432592A (en) * 1943-10-25 1947-12-16 Weatherhead Co Tubular connection
US2910981A (en) * 1954-01-08 1959-11-03 Volney C Wilson Replacement blood transfusion apparatus
US3064649A (en) * 1959-10-01 1962-11-20 Hemathermatrol Corp Apparatus for controlling the temperature of blood during extracorporeal circulation
US3374066A (en) * 1964-06-15 1968-03-19 William E. Farrant Thermostabilizer for extracorporeal oxygenator
US3643733A (en) * 1970-02-05 1972-02-22 Roger W Hall Heat exchanger
US3831672A (en) * 1971-04-05 1974-08-27 Ford Motor Co Liquid-to-liquid heat exchanger
US4066119A (en) * 1976-08-30 1978-01-03 Caterpillar Tractor Co. Rotatable radiator assembly for a vehicle
US4354548A (en) 1978-04-24 1982-10-19 Carlsson Bror Erland Device for heating liquid for one or several washer systems
US4437513A (en) * 1978-06-02 1984-03-20 Joseph Castiglioni Heat recovery apparatus
EP0108525A1 (en) * 1982-11-03 1984-05-16 Thermodynetics, Inc. Heat exchanger
US4475584A (en) * 1980-10-10 1984-10-09 Suddeutsche Kuhlerfabrik Julius Fr. Behr Gmbh & Co. Kg Double-tube radiator
DE3443085A1 (en) * 1983-12-07 1985-06-13 Kühner GmbH & Cie, 7155 Oppenweiler Double-tube heat exchanger
US4559999A (en) * 1983-04-08 1985-12-24 Shiley, Inc. Heat exchanger for extracorporeal circuit
US4562890A (en) * 1983-11-22 1986-01-07 Matex Co., Ltd. Apparatus for warming window washer liquid for a motor vehicle
US4623333A (en) * 1984-09-28 1986-11-18 Fried Steven J Fried-Grant rapid solution administration set with integral heat exchanger
US4678460A (en) * 1985-02-11 1987-07-07 Rosner Mark S Portable rapid massive parenteral fluid warming and infusion apparatus

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1873590A (en) * 1928-05-11 1932-08-23 Harold Elno Smith Pipe connection
US2432592A (en) * 1943-10-25 1947-12-16 Weatherhead Co Tubular connection
US2910981A (en) * 1954-01-08 1959-11-03 Volney C Wilson Replacement blood transfusion apparatus
US3064649A (en) * 1959-10-01 1962-11-20 Hemathermatrol Corp Apparatus for controlling the temperature of blood during extracorporeal circulation
US3374066A (en) * 1964-06-15 1968-03-19 William E. Farrant Thermostabilizer for extracorporeal oxygenator
US3643733A (en) * 1970-02-05 1972-02-22 Roger W Hall Heat exchanger
US3831672A (en) * 1971-04-05 1974-08-27 Ford Motor Co Liquid-to-liquid heat exchanger
US4066119A (en) * 1976-08-30 1978-01-03 Caterpillar Tractor Co. Rotatable radiator assembly for a vehicle
US4354548A (en) 1978-04-24 1982-10-19 Carlsson Bror Erland Device for heating liquid for one or several washer systems
US4437513A (en) * 1978-06-02 1984-03-20 Joseph Castiglioni Heat recovery apparatus
US4475584A (en) * 1980-10-10 1984-10-09 Suddeutsche Kuhlerfabrik Julius Fr. Behr Gmbh & Co. Kg Double-tube radiator
EP0108525A1 (en) * 1982-11-03 1984-05-16 Thermodynetics, Inc. Heat exchanger
US4559999A (en) * 1983-04-08 1985-12-24 Shiley, Inc. Heat exchanger for extracorporeal circuit
US4562890A (en) * 1983-11-22 1986-01-07 Matex Co., Ltd. Apparatus for warming window washer liquid for a motor vehicle
DE3443085A1 (en) * 1983-12-07 1985-06-13 Kühner GmbH & Cie, 7155 Oppenweiler Double-tube heat exchanger
US4623333A (en) * 1984-09-28 1986-11-18 Fried Steven J Fried-Grant rapid solution administration set with integral heat exchanger
US4678460A (en) * 1985-02-11 1987-07-07 Rosner Mark S Portable rapid massive parenteral fluid warming and infusion apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050177087A1 (en) * 2004-02-11 2005-08-11 Steve Lee Blood heat conserving tube assembly for hemodialysis or blood transfusion
US8845586B2 (en) 2004-03-09 2014-09-30 Patented Medical Solutions Llc Method and apparatus for facilitating injection of medication into an intravenous fluid line while maintaining sterility of infused fluids
US8444599B2 (en) 2005-10-27 2013-05-21 Patented Medical Solutions, Llc Method and apparatus to indicate prior use of a medical item
US7740611B2 (en) 2005-10-27 2010-06-22 Patented Medical Solutions, Llc Method and apparatus to indicate prior use of a medical item
US20100222763A1 (en) * 2005-10-27 2010-09-02 Faries Jr Durward I Method and Apparatus to Indicate Prior Use of a Medical Item
US20100222762A1 (en) * 2005-10-27 2010-09-02 Faries Jr Durward I Method and Apparatus to Indicate Prior Use of a Medical Item
US8636691B2 (en) 2005-10-27 2014-01-28 Patented Medical Solutions, Llc Method and apparatus to indicate prior use of a medical item
US8613723B2 (en) 2008-07-11 2013-12-24 Smiths Medical Asd, Inc. Multi lumen heat exchanger
US20100059498A1 (en) * 2008-09-10 2010-03-11 Hansen William J Modular fluid warmer
US8362402B2 (en) 2008-09-10 2013-01-29 Enthermics Medical Systems, Inc Fluid warmer with switch assembly
US8076618B2 (en) 2008-09-10 2011-12-13 Enthermics Medical Systems, Inc. Modular fluid warmer
US20100276411A1 (en) * 2008-09-10 2010-11-04 Hansen William J Fluid warmer with switch assembly
US11213619B2 (en) 2013-11-11 2022-01-04 Icu Medical, Inc. Thermal management system and method for medical devices
US20160045659A1 (en) * 2014-08-18 2016-02-18 Howard Z. Chen Intravenous pole integrated power, control, and communication system and method for an infusion pump
US10143795B2 (en) * 2014-08-18 2018-12-04 Icu Medical, Inc. Intravenous pole integrated power, control, and communication system and method for an infusion pump
AU2015305673B2 (en) * 2014-08-18 2020-12-03 Icu Medical, Inc. Intravenous pole integrated power, control, and communication system and method for an infusion pump
US10918787B2 (en) 2015-05-26 2021-02-16 Icu Medical, Inc. Disposable infusion fluid delivery device for programmable large volume drug delivery
US11660386B2 (en) 2015-05-26 2023-05-30 Icu Medical, Inc. Disposable infusion fluid delivery device for programmable large volume drug delivery
USD939079S1 (en) 2019-08-22 2021-12-21 Icu Medical, Inc. Infusion pump

Also Published As

Publication number Publication date
EP0247989A3 (en) 1990-11-22
ES2076932T3 (en) 1995-11-16
EP0247989B1 (en) 1995-09-06
US4759749A (en) 1988-07-26
ATE127350T1 (en) 1995-09-15
DE3751504D1 (en) 1995-10-12
JPH084626B2 (en) 1996-01-24
CA1271796A (en) 1990-07-17
JPS6319156A (en) 1988-01-26
GR3017835T3 (en) 1996-01-31
EP0247989A2 (en) 1987-12-02
DE3751504T2 (en) 1996-02-22

Similar Documents

Publication Publication Date Title
USRE39075E1 (en) Heater for physiological fluids
US5875282A (en) Medical apparatus for warming patient fluids
US6775473B2 (en) IV fluid warming system with detection of presence and orientation of an IV fluid heat exchanger
US6069343A (en) Peritoneal dialysis solution warmer
US3640283A (en) Disposable blood-warming container
US4249923A (en) Cardioplegic fluid refrigeration and delivery system
US4709135A (en) Device to heat infusion and transfusion solutions
US4110419A (en) High-volume disposable and semi-disposable cartridge humidifier with self-contained cartridge sterilizing means, and related method
US8920372B2 (en) Method and apparatus for heating solutions within intravenous lines to desired temperatures during infusion
ES2440477T3 (en) Device for adjusting the temperature of a physiological fluid
CA1235620A (en) Peritoneal dialysis apparatus
US20030004470A1 (en) Method and apparatus for managing temperature and flow of medical fluids
US3629552A (en) Heating device for parenteral fluid
US4638806A (en) Rectal hemorrhoid therapeutic apparatus
US5522871A (en) Apparatus for controlling the body temperature of a patient
US6035102A (en) Cylindrical electric liquid warming system utilizing heating by condensation
US7611504B1 (en) Method and apparatus for facilitating injection of medication into an intravenous fluid line while maintaining sterility of infused fluids
US5123839A (en) Air and water heater for dental instruments
US20120029606A1 (en) Cooling device for use with heat-exchange catheter and method of use
Browne et al. An evaluation of the Level 1 blood warmer series
CN110025859A (en) A kind of transfusion and blood transfusion heating system
WO1996011027A1 (en) A device for administering warmed liquids to a patient by intravenous injection
CN215260630U (en) Transfusion temperature controller
CN211798057U (en) Automatic heat preservation device for infusion
RU2093195C1 (en) Device for infusions

Legal Events

Date Code Title Description
AS Assignment

Owner name: LEVEL 1, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:SIMS LEVEL 1, INC.;REEL/FRAME:012721/0875

Effective date: 20010701

AS Assignment

Owner name: SMITHS MEDICAL ASD, INC., NEW HAMPSHIRE

Free format text: CHANGE OF NAME;ASSIGNOR:LEVEL 1, INC.;REEL/FRAME:015044/0700

Effective date: 20031222

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY