USRE38705E1 - Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers - Google Patents

Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers Download PDF

Info

Publication number
USRE38705E1
USRE38705E1 US10/004,182 US418201A USRE38705E US RE38705 E1 USRE38705 E1 US RE38705E1 US 418201 A US418201 A US 418201A US RE38705 E USRE38705 E US RE38705E
Authority
US
United States
Prior art keywords
electrodes
heart
nerve fibers
lead
stimulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/004,182
Inventor
Michael R. S. Hill
Kenneth R. Jonkman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/070,506 external-priority patent/US6006134A/en
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US10/004,182 priority Critical patent/USRE38705E1/en
Application granted granted Critical
Publication of USRE38705E1 publication Critical patent/USRE38705E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36114Cardiac control, e.g. by vagal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3956Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/385Devices for inducing an abnormal cardiac function, e.g. fibrillation

Definitions

  • This invention relates to methods and devices for controlling the operation of the human heart or other organs by means of electrical stimulation, and more particularly, to devices for electronically slowing or stopping the heart.
  • electrodes or electrode arrays located on pliant electrode pads are often employed. Recently, the ability to select from among various pairs of electrodes located on such electrode pads has been proposed to allow steering of the electrical field produced by the electrodes, as in U.S. Pat. No. 5,501,703, issued to Holscheimer, incorporated herein by reference in its entirety. Such electrode arrays offer additional possibilities to stimulate nerve fibers without direct and possibly damaging contact.
  • an electro-stimulation device includes at least two electrodes for connection to at least one location in the body that affects or regulates the heartbeat.
  • At least one switch is connected between a power supply and the electrodes for selectively supplying current from the power supply to the electrodes to augment the natural stimuli to the heart in order to control the beating of the heart, and preferably to stop the heart from beating.
  • the switch is a foot switch operable by a surgeon to free a surgeon's hands during surgery.
  • the at least two electrodes are connected to an intravenous catheter for transvenous stimulation/destimulation of the heartbeat.
  • a first switch is connected between a power supply and the electrodes for selectively supplying current from the power supply to the electrodes to augment the natural stimuli to the heart and thereby stop the heart from beating.
  • a second switch is connected between the power supply and the electrodes for selectively supplying current from the power supply to the electrodes to provide an artificial stimulus to initiate the heartbeat.
  • a method for arresting the beat of a heart in a living body includes the process of connecting a pair of electrodes to at least one location in the body that affects or regulates the heartbeat and supplying an electrical current to the electrodes of sufficient amplitude and duration to arrest the heartbeat.
  • the step of supplying an electrical current to the electrodes includes supplying an alternating current.
  • the invention is embodied in an external or implantable device which employs electrodes located on transvenous leads located in veins adjacent nerve fibers to be stimulated, in these aspects of the invention, the leads preferably carry an array of electrodes from which pairs of electrodes can be chosen in order to direct the electrical field appropriately with respect to the desired nerve fibers.
  • the phrase “stimulate the heart” and its derivatives as used herein refer to the initiation of the heartbeat through the application of electricity, while the phrase “destimulate the heart” and its derivatives refer to stopping or arresting the heartbeat through the application of electricity.
  • FIG. 1 is a perspective view of an electro-stimulation device according to the present invention
  • FIG. 2 is a perspective view of an electro-stimulation device according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a circuit for use with the electro-stimulation device of FIGS. 1 and 2 ;
  • FIG. 4 is a diagrammatical view of a pair of electrodes of the electro-stimulation device attached to a pair of points on the heart;
  • FIG. 5 is a diagrammatical view of a pair of electrodes of the electro-stimulation device attached to a single point on the heart;
  • FIG. 6 shows operation of a foot pedal by a surgeon during heart electro-stimulation.
  • FIG. 7 is a cross sectional view of a catheter and a set of electrodes positioned circumferentially around the catheter according to the invention.
  • FIG. 8 is a cross sectional view of a catheter and a set of electrodes positioned circumfernetially around the catheter according to a second embodiment of the invention.
  • FIG. 9 is a side elevational view of a catheter with electrodes positioned axially along the catheter according to a third embodiment of the invention.
  • FIG. 10 is a side elevational view of a catheter with electrodes positioned axially along the catheter according to a fourth embodiment of the invention.
  • FIG. 11 is a top plan view of a cathether with electrodes positioned axially along the catheter according to a fifth embodiment of the invention.
  • FIG. 12 is a top plan view of a catheter with electrodes positioned axially and circumferentially along the catheter accordingto a sixth embodiment of the invention.
  • FIG. 13 is a cross sectional view similar to FIG. 8 showing the current density distributed between two of the electrodes
  • FIG. 14 is a cross sectional view similar to FIG. 7 showing the current density distribution between two of the electrodes
  • FIG. 15 is a top view of a catheter with electrodes positioned axially and circumferentially along the catheter and showing the current density distribution between two of the electrodes.
  • FIG. 16 illustrates an embodiment of the invention as employed with an implantable cardiac pacemaker which also stimulates the vagal nerve to treat arrhythmias and/or angina.
  • FIG. 17 illustrates the present invention in an embodiment including an upper airway stimulator in which stimulation of the hypoglossal nerve is employed to treat obstructive sleep apena.
  • FIG. 18 illustrates an embodiment of the invention employed to stimulate the phrenic nerve in order to provide a diaphragamatic pacemaker.
  • FIG. 19 illustrates an embodiment of the invention ss employed in conjunction with an implantable cardioverter defibrillator in which vagal nerve stimulation is employed to treat detected arrhythmias or to prevent arrhythmias.
  • a first embodiment of an electro-stimulation device 10 includes a housing 12 and a control panel 14 located on an upper surface of the housing 12 .
  • the control panel 14 is divided into a heart stimulation control area 15 and a heart destimulation control area 17 .
  • the stimulation control area 15 includes a rotary dial 16 and scale 16 A for setting the amount of current that is passed to the heart, and as rotary dial 18 and scale 18 A for setting the duration or frequency of cycles that the current is passed to the heart to start the hert beating.
  • the destimulation control area 17 includes a rotary dial 20 and scale 20 A for setting the amount of current that is passed to the heart, and a rotary dial 22 and scale 22 A for setting the duration that the current is passed to the heart to stop the heart from beating. Controls for regulating pulse width, pulse voltage, pulse phases and/or band duration may also be added.
  • a normally open stimulation switch 24 can be pressed to initiate heart stimulation while a normally open destimulation switch 26 can be pressed to initiate the heart destimulation.
  • An on/off switch 28 can be used to turn the entire device off when not in use.
  • a foot petal assembly 30 has a normally open heart stimulation foot switch 32 and a heart destimulation foot switch 34 that can be used as an alternative to switches 24 , 26 .
  • the provision of a foot petal assembly permits the surgeon to control when the heart stimulation and destimulation occurs while leaving the hands free to perform other procedures. This also permits the surgeon's hands to remain sterile since contact with the housing 12 or switches 26 , 28 is avoided.
  • the foot pedal assembly 30 is connected via cable 36 to an electronic control device 50 ( FIG. 3 ) within the housing 12 .
  • An alternative to providing two different foot switches 32 , 34 would be to provide a single foot switch which intermittently switches between stimulation and destimulation each time the switch is actuated. It is also contemplated that automatic stimulation could be provided after a preset time period or only if the device detects that the heart did not automatically restart.
  • a pair of electrodes 37 , 38 are connected via a pair of leads 39 A, 39 B, respectively, to the electronic control device 50 for supplying electrical current to the heart during stimulation and destimulation.
  • a second pair of electrodes 43 A, 45 A can also be connected via a pair of leads 43 , 45 , respectively, to the electronic control devices 50 for supplying electrical current to the phrenic nerve to control breathing during heart stimulation and destimulation.
  • a lead 48 having a connector 49 may be provided in addition to or alternatively of the phrenic nerve electrodes 43 A, 43 B. The connector 49 interfaces with a respirator (not shown) and, upon stimulation or destimulation of the heart, sends a logic signal to activate or deactivate the respirator.
  • the electro-stimulation device 40 is miroprocessor based and includes a housing 41 having a display 42 , a plurality of numeric keys 44 , a heart stimulation switch 46 , and a heart destimulation switch 48 .
  • One of the keys 44 may be an on/off switch for supplying electrical power to the device 40 .
  • the device 40 prompts a user to enter the patient's age, height, weight, body temperature, etc., via the keys 44 to calculate the proper amount of electrical current and its duration necessary for proper heart stimulation and destimulation.
  • the amount of current and duration to stop the heart will typically be different than the amount of current and duration to start the heart, and will vary from one person to another depending on factors such as height, weight, body temperature, etc.
  • the current may be of the alternating, direct, or waveform type.
  • the electronic control device 50 for use with the electro-stimulator of FIGS. 1 and 2 includes a regulated power source 52 , such as a battery and regulator, a stimulation timer circuit 54 , a destimulation timer circuit 55 , a stimulation power amplifier 56 , and a destimulation power amplifier 57 .
  • the timer circuits and power amplifiers can be chosen from any of several well-known timers and amplifiers that can incorporate the dials 16 , 18 , 20 , and 22 . These dials may be of the variable resistive, capacitive, or pulse type to vary the timer frequency and power dissipation.
  • input from the keys 44 stored in a microprocessor 60 can be used to vary the amplification and duration of the applied electrical current.
  • the stimulation switch 24 and stimulation foot switch 32 on pedal assembly 30 are connected in parallel such that actuation of one or the other switch begins heart stimulation.
  • the destimulation switch 26 and stimulation foot switch 34 on pedal assembly 30 are connected in parallel such that the actuation of one or the other switch begins heart distimulation.
  • the switches are of the single-shot type that permit current to flow through the circuit for the amount of time set by the timers 54 , 56 , even when the switches are released.
  • the switches may be of the type requiring manual positioning between the open and closed positions.
  • the timers 54 , 56 may provide an audible signal to indicate when the appropriate duration of electrical current application has been reached.
  • the timers 54 , 56 may also be eliminated. In this instance, the appropriate switch is manually closed until the surgeon visually observes that the heart has been properly stimulated or destimulated.
  • the electrode 37 is connected to the sinoatrial region 72 of heart 70 while the electrode 38 is connected to the atrioventricular region 74 in a unipolar arrangement, while the electrodes 43 A, 43 B are connected to the phrenic nerve (not shown) or to other regions of the body or heart.
  • the separate connection regions on the heart serve to alternatively stimulate and destimulate the heart.
  • the electrode terminations may be of the type used in pacemakers, such as corkscrews, clips, pads, tines or barbs, needles, etc.
  • the electrodes 37 , 38 may both be connected to the ventricular wall as shown in FIG. 5 in a bipolar arrangement or at any position that a pacemaker is commonly connected to.
  • the electrodes 43 A, 43 B may be connected in a bipolar arrangement to the vagus nerve or one of its cardiac branches.
  • the electrodes 37 , 38 are placed near each other at a particular region for stimulating the heart while the electrodes 43 A, 45 A are placed near each other at a second region for destimulating the heart.
  • the tissue between each pair of serves to close the circuit such that electrical current from the power source and amplifier passes through the tissue to cause stimulation or destimulation of the heart.
  • a series of current pulses is passed long enough through the tissue to augment any recurring natural heartbeat stimuli to stop the heart from beating.
  • a continuous pulse train for 10-30 seconds using a constant current of 10-100 mA in conjunction with a constant pulse width of 0.01-0.5 msec. and a frequency between 6 Hz and 50 Hz applied to the epicardial parasympathetic nerves is sufficient to augment the recurring natural heartbeat stimuli to stop the heart.
  • a burst pulse width of current be applied instead of a continuous pulse train.
  • a burst pulse width having the same current amplitude and frequency as in the constant pulse width is applied during the repolarization phase.
  • the burst pulse time will be less than the continuous pulse train to stop the heart.
  • the burst pulse is programmable for different burst times, current amplitudes, and frequency.
  • the natural heart beat stimuli will typically occur again automatically a short time thereafter.
  • the separate heart stimulation leads, therefore, provide an added safety feature in the event that the heart does not automatically restart.
  • a series of current pulses are passed through the tissue to initiate the natural heartbeat stimuli. These current pulses are similar to those used in pacemakers.
  • the electrodes 37 , 38 are secured at an appropriate position on the patient 80 (FIG. 6 ).
  • the surgeon 82 performs various steps such as cutting, stitching, etc.
  • one of the foot switches 32 , 34 is pressed to initiate or stop the heartbeat as required.
  • the surgeon may wish to stop the heartbeat while making one or a plurality of stitches where movement of the heart would normally be a hindrance.
  • the heart may then be stimulated either naturally or artificially through the present device to beat for a predetermined time to permit blood flow throughout the body and then be destimulated or stopped again to continue stitching.
  • the electrodes 43 A, 45 A may be connected to the phrenic nerve and/or the connector 49 may be attached to a respirator to still the lungs during the surgical procedure.
  • a continuous pulse train having the range of values as discussed previously is sufficient for controlling lung movement.
  • a set of four electrodes 102 , 104 , 106 , and 108 are equally circumferentially spaced around a catheter 100 .
  • Each electrode 102 - 108 is embedded in and extends from an inner wall 110 to an outer wall 112 of the catheter 100 .
  • a separate insulated lead 102 a, 104 a, 106 a, and 108 a are each soldered or otherwise electrically connected to their respective electrode.
  • the insulated leads extend through the catheter 100 and into the electronic control device 50 . Any pair of electrodes can be accessed through extra switches in the control device 50 for supplying electrical current to the heart during stimulation and destimulation.
  • a set of three electrodes 122 , 124 and 126 are equally circumferentially spaced around a catheter 120 .
  • Each electrode 122 - 126 is embedded in and extends from an inner wall 130 to an outer wall 132 of the catheter 120 .
  • a separate insulated lead 122 a, 124 a and 126 a are each soldered or otherwise electrically connected to their respective electrode.
  • the insulated leads extend through the catheter 100 and into the electronic control device 50 . Any pair of electrodes can be accessed through extra switches in the control device 50 for supplying electrical current to the heart during stimulation and destimulation.
  • each electrode 142 , 144 may be spaced axially on a catheter 140 .
  • the longitudinal centerline of each electrode 142 , 144 extends perpendicularly to the axis of the catheter 140 .
  • two electrodes 152 , 154 are spaced axially and circumferentially from each other on the catheter 150 . Their longitudinal centerlines extend parallel to the axis of the catheter. Two additional electrodes 156 , 158 (shown in dashed line) may be provided on an opposite side of the catheter 150 , as shown in FIG. 11 .
  • a first electrode 162 is spaced axially and circumferentially from a pair of circumferentially electrodes 164 , 166 on a catheter 160 .
  • Each of the electrodes 162 - 166 extends approximately 120° around the circumference of the catheter 160 .
  • the catheters 100 - 160 as shown in FIGS. 7-12 are preferably of a small size to fit easily into the internal jugular vein, superior vena cava or other appropriate vessel adjacent to the desired nerve bundle.
  • the internal jugular vein is next to the vagal nerve bundle, and thus presents an ideal path for the catheter when attempting to stimulate the vagal nerve.
  • the human internal jugular vein is about 2 to 6 mm in diameter and tapers over an estimated length of about 15 cm. Hence, the use of a 7 F or smaller size catheter is contemplated.
  • the electrodes are placed on the catheter in such a way that the amplitude required to stimulate the nerve fibers would have the correct field distribution.
  • the spacing between the electrodes would need to be about 1-2 cm to achieve nerve stimulation. This spacing may vary depending on the size of the internal jugular vein and vagal nerve bundle, as well as the amount of applied current.
  • electrodes 104 , 106 of the catheter 100 are in contact with a nerve (not shown) and have been selected to apply a current thereto.
  • the circumferential current density through the nerve tissue, as represented by lines 170 diminishes as the distance increases from the pair of activated electrodes.
  • FIG. 14 shows a similar occurrence for the three-electrode embodiment of FIG. 8 . Since the electrodes in this embodiment are spaced a greater distance than the electrodes from in the FIG. 7 embodiment, the current distribution is not as concentrated, and therefore produces a different neural stimulation.
  • An axial current distribution may be required in addition to or in place of the circumferential distribution, as shown in FIG. 15 , depending on the particular nerve stimulation desired.
  • the axial current distribution is obtained by accessing a pair of axially spaced electordes ( FIG. 9 ) or a pair of axially and circumferentially spaced electrodes (FIGS. 10 - 12 ).
  • the preferred use of the electro-stimulation device would be a transvenous implementation through standard transvenous implantation techniques such as those used to implant pace/sense leads into the heart.
  • transvenous vagal stimulation in laproscopic/endoscopic/minithorascopic surgical coronary artery bypass graft (CABG) procedures, the use of vagal nerve stimulation provides a reversible, quick acting (like an on/off switch) method for slowing the heart rate.
  • CABG coronary artery bypass graft
  • the electro-stimulation device could be provided with two or more electrode-welding catheters for use in multiple transvenous regions for the stimulation of different nerves.
  • a pair of catheters could be inserted into the internal jugular vein for stimulation of the right and left vagal nerve bundles.
  • the right bundle could be used to elicit more specific heart effects and reduce heart rate and increase AV delay for antiarrhythmic and hemodynamic benefits; whereas the left bundle could be used to effect afferent vagal information and potentially reduce epileptic activity.
  • An electrode-wielding catheter could be inserted into the very high internal jugular vein to stimulate the hypoglossal nerve and/or into the very low internal jugular vein or superior vena cava to stimulate the phrenic nerve for respiratory control.
  • the stimulation of the phrenic nerve in conjunction with heart stimulation would insure that the blood is properly oxygenated during surgical procedures on the heart with intermittent heart destimulation.
  • catheters of the present invention could be inserted into the azygos or accessory hemizygous veins to stimulate the sympathetic nerves for increasing heart rate to altering DFT efficacy for antiarrhythmic and hemodynamic benefits.
  • Other transvenous routes to nerve stimulation for functional purposes may also be applicable.
  • the electro-stimulation device may also have sepcificity for direction of neural stimulation in regards to the location of the vessel and the nerve bundle that is to be stimulated.
  • the phrenic nerve could be elicited on and off by a mere rotation of the transvenous catheter, depending on the location of the electrodes on the catheter and the resulting electric current density generated.
  • a series of degree markings may be located on an outer circumference of the catheter at a position readily observable by the surgeon.
  • the catheter may be associated with a rotary encoder to obtain a digit read-out of the amount of catheter rotation.
  • the electrodes of the intravenous catheters according to the present invention could also be used to manipulate the heart rate or hemodynamics in response to device sensors.
  • the devices may stimulate either the sympathetic or the parasympathetic individually or in combination to attempt to delay or prevent the event.
  • current may be applied to different pairs of electrodes as discussed above.
  • this new device in its preferred embodiment, eliminates the potential for direct nerve damage and reduces the invasiveness of the placement of the electrodes for direct neural stimulation in conjunction with implantable medical devices. Examples of how the present invention may be employed in the context of implantable medical devices are illustrated in FIGS. 16-19 .
  • FIG. 16 illustrates an embodiment of the present invention employing a permanently implantable cardiac pacemaker 300 coupled to an electrode lead 304 used to stimulate the vagal nerve in accordance with the present invention.
  • the pacemaker is also provided with a second electrical lead 308 , which, like electrical lead 304 is coupled to the circuitry within the housing of pacemaker 300 by means of a connector blocks 302 .
  • Pacemaker 300 includes therein both a dual chamber cardiac pacemaker and an implantable nerve stimulator, and may correspond to that illustrated in U.S. Pat. No. 5,334,221 issued to Bardy; U.S. Pat. No. 5,330,507 issued to Schwartz or U.S. Pat. No. 5,199,428 issued to Obel et al, all of which are incorporated herein by reference in the entireties.
  • Electrode lead 304 has an array of electrodes as illustrated in FIGS. 7-15 , discussed above, located at or adjacent its distal end 306 which is positioned within the internal jugular vein 316 , with electrodes chosen to direct the stimulation pulses provided by the electrodes to the vagal nerve in order to slow heart rate.
  • the second electrodes 308 carries a pair of electrodes 310 for sensing depolarizations of the atrium of the patient's heart and a pair of electrodes 312 for sensing and pacing the ventricle of the patient's heart.
  • the electrodes on lead 304 may be employed to slow the patients heart rhythm in order to prevent or treat detected arrhythmias, ischemia, angina or other problems.
  • Electrode lead 304 may be formed with a bend 318 , performed into the body of the lead a distance from the electrode array the distal end of the lead 306 to position it appropriately for vagal nerve stimulation.
  • the lead may be inserted and positioned generally according to the procedure disclosed in U.S. Pat. No. 5,354,318 issued to Taepke, describing a similarly located and configured lead, also incorporated herein by reference in its entirety.
  • FIG. 17 illustrates an embodiment of the invention in which an implanted stimulator 400 is used in conjunction with an electrode lead according to the present invention to stimulate the hypoglossal nerve to treat obstructive sleep apnea.
  • the pulse generator may correspond to that disclosed in U.S. Pat. No. 5,549,655 issued to Erickson and incorporated herein by reference in its entirety.
  • the stimulator 400 is provided with a first electrode lead 404 which carries adjacent its distal end 406 an array of electrodes as described in FIGS. 7-15 , discussed above.
  • the lead is located relatively higher up within the internal jugular artery than the electrode array in FIG. 16 and is directed to stimulate the hypoglossal nerve by selection of appropriate electrodes as described above.
  • lead 404 may optionally be provided with a preformed bend 414 , an appropriate distance from the location of the electrode array the distal end 406 of the catheter to position it in appropriate position and orientation to stimulate the hypoglossal nerve.
  • the lead like lead 304 in FIG. 16 , may be inserted according to the procedure described in U.S. Pat. No. 5,354,318 issued to Taepke.
  • the pulse generator 400 is additionally provided with a second lead 408 which carries a pressure sensor 410 which is used to synchronize delivery of hypoglossal nerve stimulus pulses to the detected inspiratory phase of the respiration cycle as described in the above cited Erickson patent.
  • FIG. 18 illustrates an additional embodiment of the present invention including a pulse generator 500 employed to stimulate the phrenic nerve in order to provide a diaphragmatic pacer.
  • Pacer 500 may correspond generally to that disclosed in U.S. Pat. No. 5,056,519, issued to Vince et al. which employs a signal indicative of the normal respirative function of the right diaphragm to regulate stimulation of the left phrenic nerve to correspondingly stimulate the left diaphragm.
  • a pulse generator 500 is provided with a second lead 508 which carries at its distal tip a temperature sensor 510 which is employed to sense the temperature changes within body tissues resulting from inspiration of outside air through the upper airways.
  • Temperature sensor 510 may be located within the airway to the right diaphragm as described in the Vince patent and employs to regulate stimulus pulses provided to the electrodes on lead 504 so that the left diaphragm functions in synchrony with the inspiratory cycle of the right diaphragm.
  • Lead 504 may be provided with a preformed bend 514 located an appropriate distance from the electrode array located at the distal end of 506 of the lead to position the electrode array adjacent the phrenic nerve.
  • the lead may be introduced using the procedure described in the above cited Gunderson patent.
  • FIG. 19 illustrates an embodiment of the invention employed in conjunction with an implantable cardioverter/defibrillator 600 which employs vagal nerve stimulation as an adjunct to its array of antiachyarrhythmia therapies including antitachyacardia pacing, cardioversion and defibrillation.
  • Pulse generator 600 may correspond, for example, to the pulse generator illustrated in U.S. Pat. No. 5,014,698 issued to Collins or U.S. Pat. No. 5,243,980 issued to Mehra, both incorporated herein by reference in their entireties.
  • Pulse generator 600 is provided with an electrical lead 604 which carries adjacent its distal end 606 an array of electrodes as described in conjunction with FIGS. 7-14 above. Electrode lead 604 may correspond to electrode lead 304 illustrated in FIG. 15 , with its distal end 606 located within the internal jugular vein in a position appropriate to stimulate the vagal nerve.
  • the pulse generator 600 is also provided with a second electrode lead 608 which carries first and second defibrillation electrodes 610 and 612 and pacing/sensing electrodes 614 and 616 which are employed to sense and pace the ventricle of the patient's heart.
  • the vagal nerve stimulator may be employed in conjunction with delivery of therapies of treatment of arrhythmias or prevention of arrhythmias as described in the above cited Collins et al patent or may be employed as part of a diagnostic regimen as described in the above cited Mehra patent.
  • FIGS. 16-19 above are intended to be exemplary of general types of devices in which the present invention may be employed by transvenously locating an electrode or array of electrodes in a blood vessel adjacent a desired nerve to be stimulated, as discussed above.
  • permanently implanted leads configured and located according to the present invention may be used with a wide variety of implantable electrical devices not specifically illustrated in conjunction with FIGS. 16-19 , including implantable drug dispersers, implantable muscle or nerve stimulators, and implantable monitoring systems in which regulation of one or more nervous functions is desired.
  • electrodes may be located bi-laterally, and employed to simulate the same or different nerves, also as discussed above.

Abstract

An electro-stimulation device includes a pair of electrodes for connection to at least one location in the body that affects or regulates the heartbeat. The electro-stimulation device both electrically arrests the heartbeat and stimulates the heartbeat. A pair of electrodes are provided for connection to at least one location in the body that affects or regulates the heartbeat. The pair of electrodes may be connected to an intravenous catheter for transvenous stimulation of the appropriate nerve. A first switch is connected between a power supply and the electrodes for selectively supplying current from the power supply to the electrodes to augment any natural stimuli to the heart and thereby stop the heart from beating. A second switch is connected between the power supply and the electrodes for selectively supplying current from the power supply to the electrodes to provide an artificial stimulus to initiate heartbeating. In another aspect, the invention is directed to a method for arresting the beat of a heart in a living body comprising the steps of connecting the pair of electrodes to at least one location in the body that affects or regulates the heartbeat and supplying an electrical current to the electrodes of sufficient amplitude and duration to arrest the heartbeat. The device may also serve to still the lungs by input to a respirator or by stimulation of the phrenic nerve during surgical procedures.

Description

RELATED U.S. APPLICATION DATA
Continuation in part of application Ser. No. 08/640,013 filed on Apr. 30, 1996 now abandoned.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to methods and devices for controlling the operation of the human heart or other organs by means of electrical stimulation, and more particularly, to devices for electronically slowing or stopping the heart.
2. Description of the Related Art
In some surgical procedures, such as coronary bypass surgery, it is necessary to stop the heart from beating so that the surgeon can perform necessary techniques. The use of a cardioplegia solution to stop the heart from beating without rerouting the blood would permit the surgeon to accomplish the required task without interference from heart movement. However, this is not a viable approach, since the body needs a constant supply of oxygen. Thus, there exists a need to temporarily slow down or stop heart movement during minimally invasive CABG or other surgical procedures to permit the surgeon to accomplish the required task. In the context of treatment of the heart by means of implanted medical devices, such as pacemakers, defibrillators and drug dispensers, it is also sometimes beneficial to slow or temporarily stop the heart, either for diagnostic or therapeutic purposes.
It has been known in the past to stimulate the vagal nerves by invasively dissecting the major nerve bundle and placing a spiral or enveloping nerve-type cuff around the nerve bundle. The nerve fibers are then directly stimulated by electrical field to achieve reduction in epilepsy, heart rate slowing, and potential blood pressure changes. In a study entiteld “Selective Stimulation of Parasympathetic Nerve Fibers to the Human Sinoatrial Node”, Circulation, Vol. 85, No. 4, April 1992, it was reported that cardiac parasympathetic nerve fibers located in an epicardial fat pad at the margin of the right atrium, the superior vena cava, and the right pulmonary vein in humans could be electrically stimulated to affect the heart rate. Additional reference is found in PACE October 1992 Vol. 15, No. 10, pt. 11, pages 1543-1630 on the use of nerve cuff stimulation of the vagal nerves (left side) in humans for reducing of epilepsy and it's side-effects. Additional uses for electical nerve stimulation have been disclosed for the prevention of arrhythmias, alteration of hemodynamics, stimulation of the hypoglossal nerve for sleep apnea, stimulation of the stomach, and control of the sphincter for blader or colon evacuation.
Currently, only nerve cuff-type electrodes or impalement-type electrodes are used for nerve stimulation, other than in the spinal cord. These types of electrodes can potentially cause irreversible nerve damage due to swelling or direct mechanical damage of the nerve. The placement of these electrodes either around the nerve bundle or into the neural perineum also poses a significant risk. The electrode placement is usually perfomred through very invasive surgery which in and of itself produces a high risk to nerve damage, and would be self-defeating when performing minimally invasive surgery. However, it has been demonstrated that the paraympathetic nerve fibers associated with the heart can also be stimulated by means of electrodes located on transvenous leads, as in U.S. Pat. No. 5,243,980, issued to Mehra et al, U.S. Pat. No. 5,507,784, issued to Hill et al and U.S. Pat. No. 5,356,4215, issued to Bardy et al. The use of transvenous electrode leads to stimulate parasympathetic nerves associated with the heart is also discussed in the article “Neural effects on Sinus Rate and Atrial Ventricular Conduction Produced by Electrical Stimulation From a Transvenous Electrode Catheter in the Canine Right Pulmonary Artery, by Cooper et al., published in Circulation research, Vol. 46, No. 1, January 1980, pp. 48-57.
In conjunction with spinal cord stimulation, electrodes or electrode arrays located on pliant electrode pads are often employed. Recently, the ability to select from among various pairs of electrodes located on such electrode pads has been proposed to allow steering of the electrical field produced by the electrodes, as in U.S. Pat. No. 5,501,703, issued to Holscheimer, incorporated herein by reference in its entirety. Such electrode arrays offer additional possibilities to stimulate nerve fibers without direct and possibly damaging contact.
SUMMARY OF THE INVENTION
It is with these problems in mind that a new apparatus and mehtod have been developed for electrically stimulating or destimulating certain nerves associated with the functioning of the heart or other organs which can be combined with certain surgical procedures or incorporated into implantable medical devices. According to one aspect of the invention, the invention is embodied in an electro-stimulation device includes at least two electrodes for connection to at least one location in the body that affects or regulates the heartbeat. At least one switch is connected between a power supply and the electrodes for selectively supplying current from the power supply to the electrodes to augment the natural stimuli to the heart in order to control the beating of the heart, and preferably to stop the heart from beating. Preferably, the switch is a foot switch operable by a surgeon to free a surgeon's hands during surgery.
According to another aspect of the invention, the at least two electrodes are connected to an intravenous catheter for transvenous stimulation/destimulation of the heartbeat.
According to another feature of the invention, an electro-stimulation device for both electrically destimulating and stimulating the heart includes a pair of electrodes for connection to at least one location in the body that affects or regulates the heartbeat. A first switch is connected between a power supply and the electrodes for selectively supplying current from the power supply to the electrodes to augment the natural stimuli to the heart and thereby stop the heart from beating. A second switch is connected between the power supply and the electrodes for selectively supplying current from the power supply to the electrodes to provide an artificial stimulus to initiate the heartbeat.
In a further aspect of the invention, a method for arresting the beat of a heart in a living body includes the process of connecting a pair of electrodes to at least one location in the body that affects or regulates the heartbeat and supplying an electrical current to the electrodes of sufficient amplitude and duration to arrest the heartbeat. According to one aspect of the inveiton, the step of supplying an electrical current to the electrodes includes supplying an alternating current.
In yet further aspects of the invention, the invention is embodied in an external or implantable device which employs electrodes located on transvenous leads located in veins adjacent nerve fibers to be stimulated, in these aspects of the invention, the leads preferably carry an array of electrodes from which pairs of electrodes can be chosen in order to direct the electrical field appropriately with respect to the desired nerve fibers.
It is to be noted that with regard to the effect of the delivered nerve or other stimulus pulses relative to the action of the heart the phrase “stimulate the heart” and its derivatives as used herein refer to the initiation of the heartbeat through the application of electricity, while the phrase “destimulate the heart” and its derivatives refer to stopping or arresting the heartbeat through the application of electricity.
BRIEF DESCRIPTION OF THE DRAWINGS
The iunvention will now be described with reference to the drawings in which:
FIG. 1 is a perspective view of an electro-stimulation device according to the present invention;
FIG. 2 is a perspective view of an electro-stimulation device according to a second embodiment of the present invention;
FIG. 3 is a schematic diagram of a circuit for use with the electro-stimulation device of FIGS. 1 and 2;
FIG. 4 is a diagrammatical view of a pair of electrodes of the electro-stimulation device attached to a pair of points on the heart;
FIG. 5 is a diagrammatical view of a pair of electrodes of the electro-stimulation device attached to a single point on the heart;
FIG. 6 shows operation of a foot pedal by a surgeon during heart electro-stimulation.
FIG. 7 is a cross sectional view of a catheter and a set of electrodes positioned circumferentially around the catheter according to the invention;
FIG. 8 is a cross sectional view of a catheter and a set of electrodes positioned circumfernetially around the catheter according to a second embodiment of the invention;
FIG. 9 is a side elevational view of a catheter with electrodes positioned axially along the catheter according to a third embodiment of the invention;
FIG. 10 is a side elevational view of a catheter with electrodes positioned axially along the catheter according to a fourth embodiment of the invention;
FIG. 11 is a top plan view of a cathether with electrodes positioned axially along the catheter according to a fifth embodiment of the invention;
FIG. 12 is a top plan view of a catheter with electrodes positioned axially and circumferentially along the catheter accordingto a sixth embodiment of the invention;
FIG. 13 is a cross sectional view similar to FIG. 8 showing the current density distributed between two of the electrodes;
FIG. 14 is a cross sectional view similar to FIG. 7 showing the current density distribution between two of the electrodes;
FIG. 15 is a top view of a catheter with electrodes positioned axially and circumferentially along the catheter and showing the current density distribution between two of the electrodes.
FIG. 16 illustrates an embodiment of the invention as employed with an implantable cardiac pacemaker which also stimulates the vagal nerve to treat arrhythmias and/or angina.
FIG. 17 illustrates the present invention in an embodiment including an upper airway stimulator in which stimulation of the hypoglossal nerve is employed to treat obstructive sleep apena.
FIG. 18 illustrates an embodiment of the invention employed to stimulate the phrenic nerve in order to provide a diaphragamatic pacemaker.
FIG. 19 illustrates an embodiment of the invention ss employed in conjunction with an implantable cardioverter defibrillator in which vagal nerve stimulation is employed to treat detected arrhythmias or to prevent arrhythmias.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to FIG. 1, a first embodiment of an electro-stimulation device 10 includes a housing 12 and a control panel 14 located on an upper surface of the housing 12. The control panel 14 is divided into a heart stimulation control area 15 and a heart destimulation control area 17. The stimulation control area 15 includes a rotary dial 16 and scale 16A for setting the amount of current that is passed to the heart, and as rotary dial 18 and scale 18A for setting the duration or frequency of cycles that the current is passed to the heart to start the hert beating. Likwise, the destimulation control area 17 includes a rotary dial 20 and scale 20A for setting the amount of current that is passed to the heart, and a rotary dial 22 and scale 22A for setting the duration that the current is passed to the heart to stop the heart from beating. Controls for regulating pulse width, pulse voltage, pulse phases and/or band duration may also be added. A normally open stimulation switch 24 can be pressed to initiate heart stimulation while a normally open destimulation switch 26 can be pressed to initiate the heart destimulation. An on/off switch 28 can be used to turn the entire device off when not in use.
A foot petal assembly 30 has a normally open heart stimulation foot switch 32 and a heart destimulation foot switch 34 that can be used as an alternative to switches 24, 26. The provision of a foot petal assembly permits the surgeon to control when the heart stimulation and destimulation occurs while leaving the hands free to perform other procedures. This also permits the surgeon's hands to remain sterile since contact with the housing 12 or switches 26, 28 is avoided. The foot pedal assembly 30 is connected via cable 36 to an electronic control device 50 (FIG. 3) within the housing 12. An alternative to providing two different foot switches 32, 34 would be to provide a single foot switch which intermittently switches between stimulation and destimulation each time the switch is actuated. It is also contemplated that automatic stimulation could be provided after a preset time period or only if the device detects that the heart did not automatically restart.
A pair of electrodes 37, 38 are connected via a pair of leads 39A, 39B, respectively, to the electronic control device 50 for supplying electrical current to the heart during stimulation and destimulation. A second pair of electrodes 43A, 45A can also be connected via a pair of leads 43, 45, respectively, to the electronic control devices 50 for supplying electrical current to the phrenic nerve to control breathing during heart stimulation and destimulation. A lead 48 having a connector 49 may be provided in addition to or alternatively of the phrenic nerve electrodes 43A, 43B. The connector 49 interfaces with a respirator (not shown) and, upon stimulation or destimulation of the heart, sends a logic signal to activate or deactivate the respirator.
Referring now to FIG. 2, a second embodiment of an electro-stimulation device 40 according to a second embodiment is shown, wherein like parts from the previous embodiment are represented by like numerals. The electro-stimulation device 40 is miroprocessor based and includes a housing 41 having a display 42, a plurality of numeric keys 44, a heart stimulation switch 46, and a heart destimulation switch 48. One of the keys 44 may be an on/off switch for supplying electrical power to the device 40. The device 40 prompts a user to enter the patient's age, height, weight, body temperature, etc., via the keys 44 to calculate the proper amount of electrical current and its duration necessary for proper heart stimulation and destimulation. In most instances, the amount of current and duration to stop the heart will typically be different than the amount of current and duration to start the heart, and will vary from one person to another depending on factors such as height, weight, body temperature, etc. In the embodiments of FIGS. 1 and 2, the current may be of the alternating, direct, or waveform type.
Referring now to FIG. 3, the electronic control device 50 for use with the electro-stimulator of FIGS. 1 and 2 includes a regulated power source 52, such as a battery and regulator, a stimulation timer circuit 54, a destimulation timer circuit 55, a stimulation power amplifier 56, and a destimulation power amplifier 57. The timer circuits and power amplifiers can be chosen from any of several well-known timers and amplifiers that can incorporate the dials 16, 18, 20, and 22. These dials may be of the variable resistive, capacitive, or pulse type to vary the timer frequency and power dissipation. Alternatively, input from the keys 44 stored in a microprocessor 60 (shown in dashed line) in the FIG. 2 embodiment can be used to vary the amplification and duration of the applied electrical current. The stimulation switch 24 and stimulation foot switch 32 on pedal assembly 30 are connected in parallel such that actuation of one or the other switch begins heart stimulation. Likewise, the destimulation switch 26 and stimulation foot switch 34 on pedal assembly 30 are connected in parallel such that the actuation of one or the other switch begins heart distimulation. Preferably, the switches are of the single-shot type that permit current to flow through the circuit for the amount of time set by the timers 54, 56, even when the switches are released. Alternatively, the switches may be of the type requiring manual positioning between the open and closed positions. In this alternative embodiment, the timers 54, 56 may provide an audible signal to indicate when the appropriate duration of electrical current application has been reached. The timers 54, 56 may also be eliminated. In this instance, the appropriate switch is manually closed until the surgeon visually observes that the heart has been properly stimulated or destimulated.
With reference now to FIG. 4, the electrode 37 is connected to the sinoatrial region 72 of heart 70 while the electrode 38 is connected to the atrioventricular region 74 in a unipolar arrangement, while the electrodes 43A, 43B are connected to the phrenic nerve (not shown) or to other regions of the body or heart. The separate connection regions on the heart serve to alternatively stimulate and destimulate the heart. The electrode terminations may be of the type used in pacemakers, such as corkscrews, clips, pads, tines or barbs, needles, etc. The electrodes 37, 38 may both be connected to the ventricular wall as shown in FIG. 5 in a bipolar arrangement or at any position that a pacemaker is commonly connected to. The electrodes 43A, 43B may be connected in a bipolar arrangement to the vagus nerve or one of its cardiac branches. In the bipolar arrangement, the electrodes 37, 38 are placed near each other at a particular region for stimulating the heart while the electrodes 43A, 45A are placed near each other at a second region for destimulating the heart. The tissue between each pair of serves to close the circuit such that electrical current from the power source and amplifier passes through the tissue to cause stimulation or destimulation of the heart.
When the electrodes are connected to other locations besides the heart, a series of current pulses is passed long enough through the tissue to augment any recurring natural heartbeat stimuli to stop the heart from beating. In has been found that a continuous pulse train for 10-30 seconds using a constant current of 10-100 mA in conjunction with a constant pulse width of 0.01-0.5 msec. and a frequency between 6 Hz and 50 Hz applied to the epicardial parasympathetic nerves is sufficient to augment the recurring natural heartbeat stimuli to stop the heart. When the electrodes are connected directly to the heart, it is preferred that a burst pulse width of current be applied instead of a continuous pulse train. Once activity from the heart is sensed, a burst pulse width having the same current amplitude and frequency as in the constant pulse width is applied during the repolarization phase. Typically, the burst pulse time will be less than the continuous pulse train to stop the heart. Preferably, the burst pulse is programmable for different burst times, current amplitudes, and frequency. Upon cessation of heart destimulation, the natural heart beat stimuli will typically occur again automatically a short time thereafter. The separate heart stimulation leads, therefore, provide an added safety feature in the event that the heart does not automatically restart. In order to stimulate the heart, if required, a series of current pulses are passed through the tissue to initiate the natural heartbeat stimuli. These current pulses are similar to those used in pacemakers.
In use, the electrodes 37, 38 are secured at an appropriate position on the patient 80 (FIG. 6). During open surgery or minimally invasive surgery, as the surgeon 82 performs various steps such as cutting, stitching, etc., one of the foot switches 32, 34 is pressed to initiate or stop the heartbeat as required. For example, the surgeon may wish to stop the heartbeat while making one or a plurality of stitches where movement of the heart would normally be a hindrance. The heart may then be stimulated either naturally or artificially through the present device to beat for a predetermined time to permit blood flow throughout the body and then be destimulated or stopped again to continue stitching. If desired, the electrodes 43A, 45A may be connected to the phrenic nerve and/or the connector 49 may be attached to a respirator to still the lungs during the surgical procedure. When the electrodes are attached to the phrenic nerve, a continuous pulse train having the range of values as discussed previously is sufficient for controlling lung movement.
Referring now to FIG. 7, and according to a further embodiment, a set of four electrodes 102, 104, 106, and 108 are equally circumferentially spaced around a catheter 100. Each electrode 102-108 is embedded in and extends from an inner wall 110 to an outer wall 112 of the catheter 100. A separate insulated lead 102a, 104a, 106a, and 108a are each soldered or otherwise electrically connected to their respective electrode. The insulated leads extend through the catheter 100 and into the electronic control device 50. Any pair of electrodes can be accessed through extra switches in the control device 50 for supplying electrical current to the heart during stimulation and destimulation.
Referring now to FIG. 8, and according to a further embodiment, a set of three electrodes 122, 124 and 126 are equally circumferentially spaced around a catheter 120. Each electrode 122-126 is embedded in and extends from an inner wall 130 to an outer wall 132 of the catheter 120. A separate insulated lead 122a, 124a and 126a are each soldered or otherwise electrically connected to their respective electrode. As in the previous embodiment, the insulated leads extend through the catheter 100 and into the electronic control device 50. Any pair of electrodes can be accessed through extra switches in the control device 50 for supplying electrical current to the heart during stimulation and destimulation.
Although the catheters 100, 120 have been described with three or four electrodes, any number of electrodes may be provided, depending on the particular nerve stimulation application. For example, as shown in FIG. 9, two electrodes 142, 144 may be spaced axially on a catheter 140. The longitudinal centerline of each electrode 142, 144 extends perpendicularly to the axis of the catheter 140.
In FIG. 10, two electrodes 152, 154 are spaced axially and circumferentially from each other on the catheter 150. Their longitudinal centerlines extend parallel to the axis of the catheter. Two additional electrodes 156, 158 (shown in dashed line) may be provided on an opposite side of the catheter 150, as shown in FIG. 11.
In yet another embodiment, as shown in FIG. 12, a first electrode 162 is spaced axially and circumferentially from a pair of circumferentially electrodes 164, 166 on a catheter 160. Each of the electrodes 162-166 extends approximately 120° around the circumference of the catheter 160.
The catheters 100-160 as shown in FIGS. 7-12 are preferably of a small size to fit easily into the internal jugular vein, superior vena cava or other appropriate vessel adjacent to the desired nerve bundle. The internal jugular vein is next to the vagal nerve bundle, and thus presents an ideal path for the catheter when attempting to stimulate the vagal nerve. The human internal jugular vein is about 2 to 6 mm in diameter and tapers over an estimated length of about 15 cm. Hence, the use of a 7 F or smaller size catheter is contemplated. The electrodes are placed on the catheter in such a way that the amplitude required to stimulate the nerve fibers would have the correct field distribution. For an internal jugular vein of about 5 mm in diameter and a vagal nerve bundle of about 3 mm in diameter, and for an applied current of 10 mA with a frequency of 2-20 Hz, the spacing between the electrodes would need to be about 1-2 cm to achieve nerve stimulation. This spacing may vary depending on the size of the internal jugular vein and vagal nerve bundle, as well as the amount of applied current.
Referring now to FIG. 13, electrodes 104, 106 of the catheter 100 are in contact with a nerve (not shown) and have been selected to apply a current thereto. The circumferential current density through the nerve tissue, as represented by lines 170, diminishes as the distance increases from the pair of activated electrodes. FIG. 14 shows a similar occurrence for the three-electrode embodiment of FIG. 8. Since the electrodes in this embodiment are spaced a greater distance than the electrodes from in the FIG. 7 embodiment, the current distribution is not as concentrated, and therefore produces a different neural stimulation.
An axial current distribution may be required in addition to or in place of the circumferential distribution, as shown in FIG. 15, depending on the particular nerve stimulation desired. The axial current distribution is obtained by accessing a pair of axially spaced electordes (FIG. 9) or a pair of axially and circumferentially spaced electrodes (FIGS. 10-12).
The preferred use of the electro-stimulation device would be a transvenous implementation through standard transvenous implantation techniques such as those used to implant pace/sense leads into the heart. For the method of transvenous vagal stimulation in laproscopic/endoscopic/minithorascopic surgical coronary artery bypass graft (CABG) procedures, the use of vagal nerve stimulation provides a reversible, quick acting (like an on/off switch) method for slowing the heart rate.
Although the foregoing description relates to the stimulation/destimulation of the heart during surgical procedures, it is not intended that the invention be limited thereto. The electro-stimulation device could be provided with two or more electrode-welding catheters for use in multiple transvenous regions for the stimulation of different nerves. For example, a pair of catheters could be inserted into the internal jugular vein for stimulation of the right and left vagal nerve bundles. The right bundle could be used to elicit more specific heart effects and reduce heart rate and increase AV delay for antiarrhythmic and hemodynamic benefits; whereas the left bundle could be used to effect afferent vagal information and potentially reduce epileptic activity. An electrode-wielding catheter could be inserted into the very high internal jugular vein to stimulate the hypoglossal nerve and/or into the very low internal jugular vein or superior vena cava to stimulate the phrenic nerve for respiratory control. The stimulation of the phrenic nerve in conjunction with heart stimulation would insure that the blood is properly oxygenated during surgical procedures on the heart with intermittent heart destimulation. Likwise, catheters of the present invention could be inserted into the azygos or accessory hemizygous veins to stimulate the sympathetic nerves for increasing heart rate to altering DFT efficacy for antiarrhythmic and hemodynamic benefits. Other transvenous routes to nerve stimulation for functional purposes may also be applicable.
The electro-stimulation device may also have sepcificity for direction of neural stimulation in regards to the location of the vessel and the nerve bundle that is to be stimulated. For example, the phrenic nerve could be elicited on and off by a mere rotation of the transvenous catheter, depending on the location of the electrodes on the catheter and the resulting electric current density generated. In order to observe and control the amount of catheter rotation, a series of degree markings may be located on an outer circumference of the catheter at a position readily observable by the surgeon. Alternatively, the catheter may be associated with a rotary encoder to obtain a digit read-out of the amount of catheter rotation.
The electrodes of the intravenous catheters according to the present invention could also be used to manipulate the heart rate or hemodynamics in response to device sensors. In addition, in response to precursors of an arrhythmic event, the devices may stimulate either the sympathetic or the parasympathetic individually or in combination to attempt to delay or prevent the event. Alternatively, current may be applied to different pairs of electrodes as discussed above.
Although the use of catheters having electrodes permanently mounted thereto for temporarily manipulating or stimulating nerves accessibly through blood carrying vessels, it is to be understood that a more permanent nerve stimulation arrangement is possibly by fixing electrodes onto the inside of the vessel adjacent to the nerve to be stimulated. Thus, this new device in its preferred embodiment, eliminates the potential for direct nerve damage and reduces the invasiveness of the placement of the electrodes for direct neural stimulation in conjunction with implantable medical devices. Examples of how the present invention may be employed in the context of implantable medical devices are illustrated in FIGS. 16-19.
FIG. 16 illustrates an embodiment of the present invention employing a permanently implantable cardiac pacemaker 300 coupled to an electrode lead 304 used to stimulate the vagal nerve in accordance with the present invention. The pacemaker is also provided with a second electrical lead 308, which, like electrical lead 304 is coupled to the circuitry within the housing of pacemaker 300 by means of a connector blocks 302. Pacemaker 300 includes therein both a dual chamber cardiac pacemaker and an implantable nerve stimulator, and may correspond to that illustrated in U.S. Pat. No. 5,334,221 issued to Bardy; U.S. Pat. No. 5,330,507 issued to Schwartz or U.S. Pat. No. 5,199,428 issued to Obel et al, all of which are incorporated herein by reference in the entireties.
Electrode lead 304 has an array of electrodes as illustrated in FIGS. 7-15, discussed above, located at or adjacent its distal end 306 which is positioned within the internal jugular vein 316, with electrodes chosen to direct the stimulation pulses provided by the electrodes to the vagal nerve in order to slow heart rate. The second electrodes 308 carries a pair of electrodes 310 for sensing depolarizations of the atrium of the patient's heart and a pair of electrodes 312 for sensing and pacing the ventricle of the patient's heart. As described in the above cited patents, the electrodes on lead 304 may be employed to slow the patients heart rhythm in order to prevent or treat detected arrhythmias, ischemia, angina or other problems. The electrodes 310 and 312 may be employed to sense the rate of the heart and to ensure that the heart is beating at an adequate rate, preventing over-stimulation of the vagal nerve from causing the heart to drop below a base heart rate determined either as a fixed parameter or as a function of an indwelling activity sensor within pacemaker 300. Electrode lead 304 may be formed with a bend 318, performed into the body of the lead a distance from the electrode array the distal end of the lead 306 to position it appropriately for vagal nerve stimulation. The lead may be inserted and positioned generally according to the procedure disclosed in U.S. Pat. No. 5,354,318 issued to Taepke, describing a similarly located and configured lead, also incorporated herein by reference in its entirety.
FIG. 17 illustrates an embodiment of the invention in which an implanted stimulator 400 is used in conjunction with an electrode lead according to the present invention to stimulate the hypoglossal nerve to treat obstructive sleep apnea. The pulse generator may correspond to that disclosed in U.S. Pat. No. 5,549,655 issued to Erickson and incorporated herein by reference in its entirety. The stimulator 400 is provided with a first electrode lead 404 which carries adjacent its distal end 406 an array of electrodes as described in FIGS. 7-15, discussed above. The lead is located relatively higher up within the internal jugular artery than the electrode array in FIG. 16 and is directed to stimulate the hypoglossal nerve by selection of appropriate electrodes as described above. Like the lead 304 described in FIG. 16, lead 404 may optionally be provided with a preformed bend 414, an appropriate distance from the location of the electrode array the distal end 406 of the catheter to position it in appropriate position and orientation to stimulate the hypoglossal nerve. The lead, like lead 304 in FIG. 16, may be inserted according to the procedure described in U.S. Pat. No. 5,354,318 issued to Taepke. The pulse generator 400 is additionally provided with a second lead 408 which carries a pressure sensor 410 which is used to synchronize delivery of hypoglossal nerve stimulus pulses to the detected inspiratory phase of the respiration cycle as described in the above cited Erickson patent.
FIG. 18 illustrates an additional embodiment of the present invention including a pulse generator 500 employed to stimulate the phrenic nerve in order to provide a diaphragmatic pacer. Pacer 500 may correspond generally to that disclosed in U.S. Pat. No. 5,056,519, issued to Vince et al. which employs a signal indicative of the normal respirative function of the right diaphragm to regulate stimulation of the left phrenic nerve to correspondingly stimulate the left diaphragm. A pulse generator 500 is provided with a second lead 508 which carries at its distal tip a temperature sensor 510 which is employed to sense the temperature changes within body tissues resulting from inspiration of outside air through the upper airways. Temperature sensor 510 may be located within the airway to the right diaphragm as described in the Vince patent and employs to regulate stimulus pulses provided to the electrodes on lead 504 so that the left diaphragm functions in synchrony with the inspiratory cycle of the right diaphragm. Lead 504 may be provided with a preformed bend 514 located an appropriate distance from the electrode array located at the distal end of 506 of the lead to position the electrode array adjacent the phrenic nerve. The lead may be introduced using the procedure described in the above cited Gunderson patent.
FIG. 19 illustrates an embodiment of the invention employed in conjunction with an implantable cardioverter/defibrillator 600 which employs vagal nerve stimulation as an adjunct to its array of antiachyarrhythmia therapies including antitachyacardia pacing, cardioversion and defibrillation. Pulse generator 600 may correspond, for example, to the pulse generator illustrated in U.S. Pat. No. 5,014,698 issued to Collins or U.S. Pat. No. 5,243,980 issued to Mehra, both incorporated herein by reference in their entireties.
Pulse generator 600 is provided with an electrical lead 604 which carries adjacent its distal end 606 an array of electrodes as described in conjunction with FIGS. 7-14 above. Electrode lead 604 may correspond to electrode lead 304 illustrated in FIG. 15, with its distal end 606 located within the internal jugular vein in a position appropriate to stimulate the vagal nerve. The pulse generator 600 is also provided with a second electrode lead 608 which carries first and second defibrillation electrodes 610 and 612 and pacing/ sensing electrodes 614 and 616 which are employed to sense and pace the ventricle of the patient's heart. The vagal nerve stimulator may be employed in conjunction with delivery of therapies of treatment of arrhythmias or prevention of arrhythmias as described in the above cited Collins et al patent or may be employed as part of a diagnostic regimen as described in the above cited Mehra patent.
The embodiments of the invention illustrated in FIGS. 16-19 above are intended to be exemplary of general types of devices in which the present invention may be employed by transvenously locating an electrode or array of electrodes in a blood vessel adjacent a desired nerve to be stimulated, as discussed above. It should be understood that permanently implanted leads configured and located according to the present invention may be used with a wide variety of implantable electrical devices not specifically illustrated in conjunction with FIGS. 16-19, including implantable drug dispersers, implantable muscle or nerve stimulators, and implantable monitoring systems in which regulation of one or more nervous functions is desired. It should also be understood that in conjunction with such devices, as discussed above, electrodes may be located bi-laterally, and employed to simulate the same or different nerves, also as discussed above.
Reasonable variation and modification are possible within the spirit of the foregoing specification and drawings without departing from the scope of the invention.

Claims (12)

1. A method for stimulating desired nerve fibers within a living body, comprising the steps of:
advancing a lead carrying an array of electrodes through the vascular system to a point within a vein adjacent the nerve fibers to be stimulated;
selectively employing electrodes within the array to direct electrical pulses applied to the electrodes to the desired nerve fibers; and
delivering electrical pulses to the selectively employed electrodes.
2. A method for stimulating desired nerve fibers within a living body, comprising the steps of:
advancing a lead carrying electrodes through the vascular system to a point within an internal jugular vein adjacent the nerve fibers to be stimulated;
employing electrodes to direct electrical pulses applied to the electrodes to the desired nerve fibers; and
delivering electrical pulses to the employed electrodes.
3. A method according to claim 1 or claim 2 wherein said advancing step comprises advancing said lead to position said electrodes adjacent vagus nerve fibers.
4. A method according to claim 1 or claim 2 wherein said advancing step comprises advancing said lead to position said electrodes adjacent hypoglossal nerve fibers.
5. A method according to claim 1 or claim 2 wherein said advancing step comprises advancing said lead to position said electrodes adjacent phrenic nerve fibers.
6. A method according to claim 1 wherein said advancing step comprises advancing said lead to position said electrodes within an azygous vein.
7. A method according to claim 1 wherein said advancing step comprises advancing said lead to position said electrodes within a hemizygous vein.
8. A method according to claim 1 wherein said advancing step comprises advancing said lead to said position said electrodes adjacent parasympathetic nerve fibers.
9. A method according to claim 1 wherein said advancing step comprises advancing said lead to position said electrodes adjacent sympathetic nerve fibers.
10. An apparatus for stimulating desired nerve fibers within a living body, comprising:
a transverse lead carrying an array of electrodes locatable in the vascular system at a point within a vein adjacent the nerve fibers to be stimulated;
switch means for selectively employing electrodes within the array to direct electrical pulses applied to the electrodes to the desired nerve fibers; and
pulse generator means for delivering electrical pulses to the selectively employed electrodes.
11. An apparatus according to claim 10 wherein said array is locatable in a patients internal jugular vein adjacent the patient's vagus nerve, and wherein said device further comprises cardiac pacing means for stimulating heartbeats following delivery of pulses to the electrode array.
12. An apparatus according to claim 10 or claim 11 further comprising phrenic nerve stimulation electrodes locatable adjacent the patients phrenic nerve and means for delivering electrical pulses to the phrenic nerve stimulation electrodes in conjunction with delivery of pulses to the electrode array.
US10/004,182 1996-04-30 2001-11-15 Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers Expired - Lifetime USRE38705E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/004,182 USRE38705E1 (en) 1996-04-30 2001-11-15 Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US64001396A 1996-04-30 1996-04-30
US09/070,506 US6006134A (en) 1998-04-30 1998-04-30 Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US10/004,182 USRE38705E1 (en) 1996-04-30 2001-11-15 Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/070,506 Reissue US6006134A (en) 1996-04-30 1998-04-30 Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers

Publications (1)

Publication Number Publication Date
USRE38705E1 true USRE38705E1 (en) 2005-02-22

Family

ID=34138130

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/004,182 Expired - Lifetime USRE38705E1 (en) 1996-04-30 2001-11-15 Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers

Country Status (1)

Country Link
US (1) USRE38705E1 (en)

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020198570A1 (en) * 1997-08-26 2002-12-26 Puskas John D. Apparatus for indirectly stimulating the vagus nerve with an electrical field
US20030045909A1 (en) * 2001-08-31 2003-03-06 Biocontrol Medical Ltd. Selective nerve fiber stimulation for treating heart conditions
US20040015106A1 (en) * 2000-01-19 2004-01-22 Coleman R. Glen Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US20040024422A1 (en) * 2000-09-26 2004-02-05 Hill Michael R.S. Method and system for sensing cardiac contractions during a medical procedure
US20040172094A1 (en) * 2001-08-31 2004-09-02 Biocontrol Medical Ltd. Treatment of disorders by unidirectional nerve stimulation
US20040172075A1 (en) * 1996-04-30 2004-09-02 Shafer Lisa L. Method and system for vagal nerve stimulation with multi-site cardiac pacing
US20040186517A1 (en) * 1996-04-30 2004-09-23 Hill Michael R.S. Method and system for nerve stimulation prior to and during a medical procedure
US20040199209A1 (en) * 2003-04-07 2004-10-07 Hill Michael R.S. Method and system for delivery of vasoactive drugs to the heart prior to and during a medical procedure
US20040243182A1 (en) * 2001-08-31 2004-12-02 Ehud Cohen Treatment of disorders by unidirectional nerve stimulation
US20040254612A1 (en) * 2003-06-13 2004-12-16 Ezra Omry Ben Vagal stimulation for anti-embolic therapy
US20050038490A1 (en) * 2001-08-31 2005-02-17 Biocontrol Medical Ltd. Electrode assembly for nerve control
US20050065553A1 (en) * 2003-06-13 2005-03-24 Omry Ben Ezra Applications of vagal stimulation
US20050096707A1 (en) * 2000-09-26 2005-05-05 Medtronic, Inc. Method and system for monitoring and controlling systemic and pulmonary circulation during a medical procedure
US20050125044A1 (en) * 2000-05-23 2005-06-09 North Shore-Long Island Jewish Research Institute Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US20050143779A1 (en) * 2003-12-24 2005-06-30 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US20050149143A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex stimulator with integrated pressure sensor
US20050149131A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex modulation to gradually decrease blood pressure
US20050149128A1 (en) * 2003-12-24 2005-07-07 Heil Ronald W.Jr. Barorflex stimulation system to reduce hypertension
US20050149155A1 (en) * 2003-12-24 2005-07-07 Avram Scheiner Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US20050149126A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex stimulation to treat acute myocardial infarction
US20050197675A1 (en) * 2001-08-31 2005-09-08 Biocontrol Medical Ltd. Techniques for applying, calibrating, and controlling nerve fiber stimulation
US20050267454A1 (en) * 2000-01-19 2005-12-01 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US6976487B1 (en) * 1995-08-17 2005-12-20 University Of Florida Research Foundation, Inc. Ventilatory method utilizing body length-based parameter calculations
US20050282906A1 (en) * 2004-03-25 2005-12-22 North Shore-Long Island Jewish Research Institute Neural tourniquet
US20060025756A1 (en) * 2000-01-19 2006-02-02 Francischelli David E Methods of using high intensity focused ultrasound to form an ablated tissue area
US20060100668A1 (en) * 2001-08-31 2006-05-11 Biocontrol Medical Ltd. Selective nerve fiber stimulation
US20060136024A1 (en) * 2004-12-22 2006-06-22 Biocontrol Medical Ltd. Construction of electrode assembly for nerve control
US20060195170A1 (en) * 2002-05-23 2006-08-31 Ehud Cohen Electrode assembly for nerve control
US20060229594A1 (en) * 2000-01-19 2006-10-12 Medtronic, Inc. Method for guiding a medical device
US20060229677A1 (en) * 2005-04-11 2006-10-12 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
US20060259107A1 (en) * 2005-05-16 2006-11-16 Anthony Caparso System for selective activation of a nerve trunk using a transvascular reshaping lead
US20060271115A1 (en) * 2003-06-13 2006-11-30 Omry Ben-Ezra Vagal stimulation for anti-embolic therapy
US20060266369A1 (en) * 2005-05-27 2006-11-30 Prospex Medical Ii, Inc. Devices and methods for treating sleep disorders
US20070118183A1 (en) * 2005-11-18 2007-05-24 Mark Gelfand System and method to modulate phrenic nerve to prevent sleep apnea
US20070191904A1 (en) * 2006-02-14 2007-08-16 Imad Libbus Expandable stimulation electrode with integrated pressure sensor and methods related thereto
US20070203527A1 (en) * 2003-05-23 2007-08-30 Tamir Ben-David Parasympathetic stimulation for termination of non-sinus atrial tachycardia
US20080039746A1 (en) * 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20080065158A1 (en) * 2006-09-07 2008-03-13 Omry Ben-Ezra Techniques for reducing pain associated with nerve stimulation
US20080103546A1 (en) * 2006-10-27 2008-05-01 Cyberonics, Inc. Patient management system for treating epilepsy using an implantable medical device
US20080103407A1 (en) * 2006-10-13 2008-05-01 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US20080140138A1 (en) * 2002-02-26 2008-06-12 Ivanova Svetlana M Inhibition of inflammatory cytokine production by stimulation of brain muscarinic receptors
US20080183265A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Transvascular lead with proximal force relief
US20080183254A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Dual spiral lead configurations
US20080183253A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Neurostimulating lead having a stent-like anchor
US20080183186A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Method and apparatus for delivering a transvascular lead
US20080183255A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Side port lead delivery system
US20080183264A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Electrode configurations for transvascular nerve stimulation
US20080183259A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Spiral configurations for intravascular lead stability
US20080220466A1 (en) * 2004-06-01 2008-09-11 Valentin Fulga In Vitro Techniques For Use With Stem Cells
US20080234780A1 (en) * 2007-03-19 2008-09-25 Cardiac Pacemakers Selective nerve stimulation with optionally closed-loop capabilities
US20080249439A1 (en) * 2004-03-25 2008-10-09 The Feinstein Institute For Medical Research Treatment of inflammation by non-invasive stimulation
US20090005845A1 (en) * 2007-06-26 2009-01-01 Tamir Ben David Intra-Atrial parasympathetic stimulation
US7555341B2 (en) 2005-04-05 2009-06-30 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
US20090275997A1 (en) * 2008-05-01 2009-11-05 Michael Allen Faltys Vagus nerve stimulation electrodes and methods of use
US7616990B2 (en) 2005-10-24 2009-11-10 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
US20090306734A1 (en) * 2005-03-11 2009-12-10 Julia Moffitt Combined neural stimulation and cardiac resynchronization therapy
US7657312B2 (en) 2003-11-03 2010-02-02 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US20100042186A1 (en) * 2008-08-13 2010-02-18 Tamir Ben-David Electrode devices for nerve stimulation and cardiac sensing
US20100042194A1 (en) * 2004-11-15 2010-02-18 Biocontrol Medical Ltd. Techniques for nerve stimulation
US20100125304A1 (en) * 2008-11-18 2010-05-20 Faltys Michael A Devices and methods for optimizing electrode placement for anti-inflamatory stimulation
US7840278B1 (en) 1999-06-25 2010-11-23 Puskas John D Devices and methods for vagus nerve stimulation
US20100312320A1 (en) * 2009-06-09 2010-12-09 Faltys Michael A Nerve cuff with pocket for leadless stimulator
US20110060380A1 (en) * 2009-09-10 2011-03-10 Mark Gelfand Respiratory rectification
US7925352B2 (en) 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US20110160794A1 (en) * 2008-12-31 2011-06-30 Apnex Medical Inc. Obstructive Sleep Apnea Treatment Devices, Systems and Methods
US7974693B2 (en) 2001-08-31 2011-07-05 Bio Control Medical (B.C.M.) Ltd. Techniques for applying, configuring, and coordinating nerve fiber stimulation
US20110190849A1 (en) * 2009-12-23 2011-08-04 Faltys Michael A Neural stimulation devices and systems for treatment of chronic inflammation
US20110224749A1 (en) * 2001-08-31 2011-09-15 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation techniques
US8024050B2 (en) 2003-12-24 2011-09-20 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US8036741B2 (en) 1996-04-30 2011-10-11 Medtronic, Inc. Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
US8116883B2 (en) 2003-06-04 2012-02-14 Synecor Llc Intravascular device for neuromodulation
US8170668B2 (en) 2006-07-14 2012-05-01 Cardiac Pacemakers, Inc. Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy
US8200331B2 (en) 2004-11-04 2012-06-12 Cardiac Pacemakers, Inc. System and method for filtering neural stimulation
US8204591B2 (en) 2002-05-23 2012-06-19 Bio Control Medical (B.C.M.) Ltd. Techniques for prevention of atrial fibrillation
US8249705B1 (en) 2007-03-20 2012-08-21 Cvrx, Inc. Devices, systems, and methods for improving left ventricular structure and function using baroreflex activation therapy
US8311647B2 (en) 2007-01-30 2012-11-13 Cardiac Pacemakers, Inc. Direct delivery system for transvascular lead
US8386046B2 (en) 2011-01-28 2013-02-26 Apnex Medical, Inc. Screening devices and methods for obstructive sleep apnea therapy
US8391970B2 (en) 2007-08-27 2013-03-05 The Feinstein Institute For Medical Research Devices and methods for inhibiting granulocyte activation by neural stimulation
US8406868B2 (en) 2010-04-29 2013-03-26 Medtronic, Inc. Therapy using perturbation and effect of physiological systems
US8433412B1 (en) 2008-02-07 2013-04-30 Respicardia, Inc. Muscle and nerve stimulation
US8457746B2 (en) 2003-12-24 2013-06-04 Cardiac Pacemakers, Inc. Implantable systems and devices for providing cardiac defibrillation and apnea therapy
US8541232B2 (en) 2006-03-08 2013-09-24 Kwalata Trading Limited Composition comprising a progenitor/precursor cell population
US8565896B2 (en) 2010-11-22 2013-10-22 Bio Control Medical (B.C.M.) Ltd. Electrode cuff with recesses
US8609082B2 (en) 2005-01-25 2013-12-17 Bio Control Medical Ltd. Administering bone marrow progenitor cells or myoblasts followed by application of an electrical current for cardiac repair, increasing blood supply or enhancing angiogenesis
US8620425B2 (en) 2010-04-29 2013-12-31 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US8639327B2 (en) 2010-04-29 2014-01-28 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US8706223B2 (en) 2011-01-19 2014-04-22 Medtronic, Inc. Preventative vagal stimulation
US8718791B2 (en) 2003-05-23 2014-05-06 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
US8718763B2 (en) 2011-01-19 2014-05-06 Medtronic, Inc. Vagal stimulation
US8725259B2 (en) 2011-01-19 2014-05-13 Medtronic, Inc. Vagal stimulation
US8781583B2 (en) 2011-01-19 2014-07-15 Medtronic, Inc. Vagal stimulation
US8781582B2 (en) 2011-01-19 2014-07-15 Medtronic, Inc. Vagal stimulation
US8788034B2 (en) 2011-05-09 2014-07-22 Setpoint Medical Corporation Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US8855771B2 (en) 2011-01-28 2014-10-07 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US8880192B2 (en) 2012-04-02 2014-11-04 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
US8909341B2 (en) 2007-01-22 2014-12-09 Respicardia, Inc. Device and method for the treatment of breathing disorders and cardiac disorders
US8983611B2 (en) 2011-09-27 2015-03-17 Cardiac Pacemakers, Inc. Neural control of central sleep apnea
US8996116B2 (en) 2009-10-30 2015-03-31 Setpoint Medical Corporation Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
US9067071B2 (en) 2011-07-11 2015-06-30 Interventional Autonomics Corporation System and method for neuromodulation
US9126048B2 (en) 2011-04-28 2015-09-08 Interventional Autonomics Corporation Neuromodulation systems and methods for treating acute heart failure syndromes
US9186511B2 (en) 2006-10-13 2015-11-17 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9205262B2 (en) 2011-05-12 2015-12-08 Cyberonics, Inc. Devices and methods for sleep apnea treatment
US9211409B2 (en) 2008-03-31 2015-12-15 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation of T-cell activity
US9211410B2 (en) 2009-05-01 2015-12-15 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9370660B2 (en) 2013-03-29 2016-06-21 Rainbow Medical Ltd. Independently-controlled bidirectional nerve stimulation
US9415225B2 (en) 2005-04-25 2016-08-16 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US9439598B2 (en) 2012-04-12 2016-09-13 NeuroMedic, Inc. Mapping and ablation of nerves within arteries and tissues
US9446240B2 (en) 2011-07-11 2016-09-20 Interventional Autonomics Corporation System and method for neuromodulation
US9572983B2 (en) 2012-03-26 2017-02-21 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
US9662490B2 (en) 2008-03-31 2017-05-30 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
US9833621B2 (en) 2011-09-23 2017-12-05 Setpoint Medical Corporation Modulation of sirtuins by vagus nerve stimulation
US9884182B2 (en) 2011-07-11 2018-02-06 Interventional Autonomics Corporation Catheter system for acute neuromodulation
US9889299B2 (en) 2008-10-01 2018-02-13 Inspire Medical Systems, Inc. Transvenous method of treating sleep apnea
US9987488B1 (en) 2007-06-27 2018-06-05 Respicardia, Inc. Detecting and treating disordered breathing
US10195429B1 (en) 2017-08-02 2019-02-05 Lungpacer Medical Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10293164B2 (en) 2017-05-26 2019-05-21 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
US10314501B2 (en) 2016-01-20 2019-06-11 Setpoint Medical Corporation Implantable microstimulators and inductive charging systems
US10335280B2 (en) 2000-01-19 2019-07-02 Medtronic, Inc. Method for ablating target tissue of a patient
US10391314B2 (en) 2014-01-21 2019-08-27 Lungpacer Medical Inc. Systems and related methods for optimization of multi-electrode nerve pacing
US10406367B2 (en) 2012-06-21 2019-09-10 Lungpacer Medical Inc. Transvascular diaphragm pacing system and methods of use
US10406366B2 (en) 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
US10512772B2 (en) 2012-03-05 2019-12-24 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US10561843B2 (en) 2007-01-29 2020-02-18 Lungpacer Medical, Inc. Transvascular nerve stimulation apparatus and methods
US10583304B2 (en) 2016-01-25 2020-03-10 Setpoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
US10596367B2 (en) 2016-01-13 2020-03-24 Setpoint Medical Corporation Systems and methods for establishing a nerve block
US10695569B2 (en) 2016-01-20 2020-06-30 Setpoint Medical Corporation Control of vagal stimulation
US10912712B2 (en) 2004-03-25 2021-02-09 The Feinstein Institutes For Medical Research Treatment of bleeding by non-invasive stimulation
US10940308B2 (en) 2017-08-04 2021-03-09 Lungpacer Medical Inc. Systems and methods for trans-esophageal sympathetic ganglion recruitment
US10987511B2 (en) 2018-11-08 2021-04-27 Lungpacer Medical Inc. Stimulation systems and related user interfaces
US11051744B2 (en) 2009-11-17 2021-07-06 Setpoint Medical Corporation Closed-loop vagus nerve stimulation
US11173307B2 (en) 2017-08-14 2021-11-16 Setpoint Medical Corporation Vagus nerve stimulation pre-screening test
US11207518B2 (en) 2004-12-27 2021-12-28 The Feinstein Institutes For Medical Research Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway
US11260229B2 (en) 2018-09-25 2022-03-01 The Feinstein Institutes For Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
US11311725B2 (en) 2014-10-24 2022-04-26 Setpoint Medical Corporation Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation
US11344724B2 (en) 2004-12-27 2022-05-31 The Feinstein Institutes For Medical Research Treating inflammatory disorders by electrical vagus nerve stimulation
US11357979B2 (en) 2019-05-16 2022-06-14 Lungpacer Medical Inc. Systems and methods for sensing and stimulation
US11383083B2 (en) 2014-02-11 2022-07-12 Livanova Usa, Inc. Systems and methods of detecting and treating obstructive sleep apnea
US11406833B2 (en) 2015-02-03 2022-08-09 Setpoint Medical Corporation Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator
US11471681B2 (en) 2016-01-20 2022-10-18 Setpoint Medical Corporation Batteryless implantable microstimulators
US11707619B2 (en) 2013-11-22 2023-07-25 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
US11771900B2 (en) 2019-06-12 2023-10-03 Lungpacer Medical Inc. Circuitry for medical stimulation systems
US11883658B2 (en) 2017-06-30 2024-01-30 Lungpacer Medical Inc. Devices and methods for prevention, moderation, and/or treatment of cognitive injury
US11938324B2 (en) 2020-05-21 2024-03-26 The Feinstein Institutes For Medical Research Systems and methods for vagus nerve stimulation

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014698A (en) * 1987-10-06 1991-05-14 Leonard Bloom Method of and system for monitoring and treating a malfunctioning heart
US5056519A (en) * 1990-05-14 1991-10-15 Vince Dennis J Unilateral diaphragmatic pacer
US5199428A (en) * 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5203326A (en) * 1991-12-18 1993-04-20 Telectronics Pacing Systems, Inc. Antiarrhythmia pacer using antiarrhythmia pacing and autonomic nerve stimulation therapy
US5243980A (en) * 1992-06-30 1993-09-14 Medtronic, Inc. Method and apparatus for discrimination of ventricular and supraventricular tachycardia
US5330507A (en) * 1992-04-24 1994-07-19 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
US5334221A (en) * 1992-06-30 1994-08-02 Medtronic, Inc. Method and apparatus for treatment of angina same
US5354318A (en) * 1993-04-30 1994-10-11 Medtronic, Inc. Method and apparatus for monitoring brain hemodynamics
US5356425A (en) * 1992-06-30 1994-10-18 Medtronic, Inc. Method and apparatus for treatment of atrial fibrillation and flutter
US5458625A (en) * 1994-05-04 1995-10-17 Kendall; Donald E. Transcutaneous nerve stimulation device and method for using same
US5507784A (en) * 1993-09-23 1996-04-16 Medtronic, Inc. Method and apparatus for control of A-V interval
US5549655A (en) * 1994-09-21 1996-08-27 Medtronic, Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US5578061A (en) * 1994-06-24 1996-11-26 Pacesetter Ab Method and apparatus for cardiac therapy by stimulation of a physiological representative of the parasympathetic nervous system
US5651378A (en) 1996-02-20 1997-07-29 Cardiothoracic Systems, Inc. Method of using vagal nerve stimulation in surgery
US5913876A (en) * 1996-02-20 1999-06-22 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
US5916239A (en) * 1996-03-29 1999-06-29 Purdue Research Foundation Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014698A (en) * 1987-10-06 1991-05-14 Leonard Bloom Method of and system for monitoring and treating a malfunctioning heart
US5056519A (en) * 1990-05-14 1991-10-15 Vince Dennis J Unilateral diaphragmatic pacer
US5199428A (en) * 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5203326A (en) * 1991-12-18 1993-04-20 Telectronics Pacing Systems, Inc. Antiarrhythmia pacer using antiarrhythmia pacing and autonomic nerve stimulation therapy
US5330507A (en) * 1992-04-24 1994-07-19 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
US5356425A (en) * 1992-06-30 1994-10-18 Medtronic, Inc. Method and apparatus for treatment of atrial fibrillation and flutter
US5334221A (en) * 1992-06-30 1994-08-02 Medtronic, Inc. Method and apparatus for treatment of angina same
US5243980A (en) * 1992-06-30 1993-09-14 Medtronic, Inc. Method and apparatus for discrimination of ventricular and supraventricular tachycardia
US5354318A (en) * 1993-04-30 1994-10-11 Medtronic, Inc. Method and apparatus for monitoring brain hemodynamics
US5507784A (en) * 1993-09-23 1996-04-16 Medtronic, Inc. Method and apparatus for control of A-V interval
US5458625A (en) * 1994-05-04 1995-10-17 Kendall; Donald E. Transcutaneous nerve stimulation device and method for using same
US5578061A (en) * 1994-06-24 1996-11-26 Pacesetter Ab Method and apparatus for cardiac therapy by stimulation of a physiological representative of the parasympathetic nervous system
US5549655A (en) * 1994-09-21 1996-08-27 Medtronic, Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US5651378A (en) 1996-02-20 1997-07-29 Cardiothoracic Systems, Inc. Method of using vagal nerve stimulation in surgery
US5913876A (en) * 1996-02-20 1999-06-22 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
US5916239A (en) * 1996-03-29 1999-06-29 Purdue Research Foundation Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Neural effects on Sinus Rate and Atrial Ventricular Conduction Produced by Electrical Stimulation from a Transvenous Electrode Catheter in the Canine Right Pulmonary Artery", by Cooper et al, Circulation research, vol. 46, No. 1, Jan. 1980, pp. 48-57. *
"Selective Stimulation of Parasympathetic Nerve Fibers to the Human Sinoatrial Node", Circulation, vol. 85, No. 4, Apr. 1992.* *
Pace Oct. 1992, vol. 15, No. 10, pt. 11, pp. 1543-1630 (on the use of nerve cuff stimulation of the vagal nerves).* *

Cited By (311)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6976487B1 (en) * 1995-08-17 2005-12-20 University Of Florida Research Foundation, Inc. Ventilatory method utilizing body length-based parameter calculations
US8036741B2 (en) 1996-04-30 2011-10-11 Medtronic, Inc. Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
US20040172075A1 (en) * 1996-04-30 2004-09-02 Shafer Lisa L. Method and system for vagal nerve stimulation with multi-site cardiac pacing
US20040186517A1 (en) * 1996-04-30 2004-09-23 Hill Michael R.S. Method and system for nerve stimulation prior to and during a medical procedure
US20050143412A1 (en) * 1997-08-26 2005-06-30 Puskas John D. Methods of indirectly stimulating the vagus nerve with an electrical field
US20020198570A1 (en) * 1997-08-26 2002-12-26 Puskas John D. Apparatus for indirectly stimulating the vagus nerve with an electrical field
US20040059383A1 (en) * 1997-08-26 2004-03-25 Puskas John D. Methods of indirectly stimulating the vagus nerve with an electrical field
US7840278B1 (en) 1999-06-25 2010-11-23 Puskas John D Devices and methods for vagus nerve stimulation
US20060229594A1 (en) * 2000-01-19 2006-10-12 Medtronic, Inc. Method for guiding a medical device
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
US20050267454A1 (en) * 2000-01-19 2005-12-01 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US7706882B2 (en) 2000-01-19 2010-04-27 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area
US20060025756A1 (en) * 2000-01-19 2006-02-02 Francischelli David E Methods of using high intensity focused ultrasound to form an ablated tissue area
US10335280B2 (en) 2000-01-19 2019-07-02 Medtronic, Inc. Method for ablating target tissue of a patient
US20040015106A1 (en) * 2000-01-19 2004-01-22 Coleman R. Glen Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US10561846B2 (en) 2000-05-23 2020-02-18 The Feinstein Institutes For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US20050125044A1 (en) * 2000-05-23 2005-06-09 North Shore-Long Island Jewish Research Institute Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US10166395B2 (en) 2000-05-23 2019-01-01 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US9987492B2 (en) 2000-05-23 2018-06-05 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US8914114B2 (en) 2000-05-23 2014-12-16 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US20090248097A1 (en) * 2000-05-23 2009-10-01 Feinstein Institute For Medical Research, The Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US20050096707A1 (en) * 2000-09-26 2005-05-05 Medtronic, Inc. Method and system for monitoring and controlling systemic and pulmonary circulation during a medical procedure
US20040024422A1 (en) * 2000-09-26 2004-02-05 Hill Michael R.S. Method and system for sensing cardiac contractions during a medical procedure
US20060100668A1 (en) * 2001-08-31 2006-05-11 Biocontrol Medical Ltd. Selective nerve fiber stimulation
US7778703B2 (en) 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Selective nerve fiber stimulation for treating heart conditions
US20030045909A1 (en) * 2001-08-31 2003-03-06 Biocontrol Medical Ltd. Selective nerve fiber stimulation for treating heart conditions
US7974693B2 (en) 2001-08-31 2011-07-05 Bio Control Medical (B.C.M.) Ltd. Techniques for applying, configuring, and coordinating nerve fiber stimulation
US7734355B2 (en) 2001-08-31 2010-06-08 Bio Control Medical (B.C.M.) Ltd. Treatment of disorders by unidirectional nerve stimulation
US20050038490A1 (en) * 2001-08-31 2005-02-17 Biocontrol Medical Ltd. Electrode assembly for nerve control
US7890185B2 (en) 2001-08-31 2011-02-15 Bio Control Medical (B.C.M.) Ltd. Treatment of disorders by unidirectional nerve stimulation
US7778711B2 (en) 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Reduction of heart rate variability by parasympathetic stimulation
US8571653B2 (en) 2001-08-31 2013-10-29 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation techniques
US20050197675A1 (en) * 2001-08-31 2005-09-08 Biocontrol Medical Ltd. Techniques for applying, calibrating, and controlling nerve fiber stimulation
US20040172094A1 (en) * 2001-08-31 2004-09-02 Biocontrol Medical Ltd. Treatment of disorders by unidirectional nerve stimulation
US7885709B2 (en) 2001-08-31 2011-02-08 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation for treating disorders
US8386056B2 (en) 2001-08-31 2013-02-26 Bio Control Medical (B.C.M.) Ltd. Parasympathetic stimulation for treating atrial arrhythmia and heart failure
US20040243182A1 (en) * 2001-08-31 2004-12-02 Ehud Cohen Treatment of disorders by unidirectional nerve stimulation
US20080109045A1 (en) * 2001-08-31 2008-05-08 Yossi Gross Selective nerve fiber stimulation for treating conditions
US20110224749A1 (en) * 2001-08-31 2011-09-15 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation techniques
US20080140138A1 (en) * 2002-02-26 2008-06-12 Ivanova Svetlana M Inhibition of inflammatory cytokine production by stimulation of brain muscarinic receptors
US20060195170A1 (en) * 2002-05-23 2006-08-31 Ehud Cohen Electrode assembly for nerve control
US8204591B2 (en) 2002-05-23 2012-06-19 Bio Control Medical (B.C.M.) Ltd. Techniques for prevention of atrial fibrillation
US7844346B2 (en) 2002-05-23 2010-11-30 Biocontrol Medical Ltd. Electrode assembly for nerve control
US8494655B2 (en) 2002-05-23 2013-07-23 Bio Control Medical (B.C.M.) Ltd. Electrode devices with resistive elements
US8725271B2 (en) 2002-05-23 2014-05-13 Bio Control Medical (B.C.M.) Ltd. Electrode device with elongated electrode
US20040199209A1 (en) * 2003-04-07 2004-10-07 Hill Michael R.S. Method and system for delivery of vasoactive drugs to the heart prior to and during a medical procedure
US8060197B2 (en) 2003-05-23 2011-11-15 Bio Control Medical (B.C.M.) Ltd. Parasympathetic stimulation for termination of non-sinus atrial tachycardia
US20070203527A1 (en) * 2003-05-23 2007-08-30 Tamir Ben-David Parasympathetic stimulation for termination of non-sinus atrial tachycardia
US8718791B2 (en) 2003-05-23 2014-05-06 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
US8116883B2 (en) 2003-06-04 2012-02-14 Synecor Llc Intravascular device for neuromodulation
US7885711B2 (en) 2003-06-13 2011-02-08 Bio Control Medical (B.C.M.) Ltd. Vagal stimulation for anti-embolic therapy
US20060271115A1 (en) * 2003-06-13 2006-11-30 Omry Ben-Ezra Vagal stimulation for anti-embolic therapy
US20040254612A1 (en) * 2003-06-13 2004-12-16 Ezra Omry Ben Vagal stimulation for anti-embolic therapy
US20050065553A1 (en) * 2003-06-13 2005-03-24 Omry Ben Ezra Applications of vagal stimulation
US8571655B2 (en) 2003-11-03 2013-10-29 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US20100125307A1 (en) * 2003-11-03 2010-05-20 Pastore Joseph M Multi-site ventricular pacing therapy with parasympathetic stimulation
US7657312B2 (en) 2003-11-03 2010-02-02 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US8626301B2 (en) 2003-12-24 2014-01-07 Cardiac Pacemakers, Inc. Automatic baroreflex modulation based on cardiac activity
US8805513B2 (en) 2003-12-24 2014-08-12 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
US8126560B2 (en) 2003-12-24 2012-02-28 Cardiac Pacemakers, Inc. Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US20090143838A1 (en) * 2003-12-24 2009-06-04 Imad Libbus Baroreflex modulation to gradually decrease blood pressure
US8121693B2 (en) 2003-12-24 2012-02-21 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
US8195289B2 (en) 2003-12-24 2012-06-05 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
US7486991B2 (en) 2003-12-24 2009-02-03 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
US8024050B2 (en) 2003-12-24 2011-09-20 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US8321023B2 (en) 2003-12-24 2012-11-27 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
US8442640B2 (en) 2003-12-24 2013-05-14 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
US8457746B2 (en) 2003-12-24 2013-06-04 Cardiac Pacemakers, Inc. Implantable systems and devices for providing cardiac defibrillation and apnea therapy
US7643875B2 (en) 2003-12-24 2010-01-05 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
US20050143779A1 (en) * 2003-12-24 2005-06-30 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US7647114B2 (en) 2003-12-24 2010-01-12 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US20090048641A1 (en) * 2003-12-24 2009-02-19 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
US20050149143A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex stimulator with integrated pressure sensor
US20050149131A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex modulation to gradually decrease blood pressure
US8473076B2 (en) 2003-12-24 2013-06-25 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US7460906B2 (en) 2003-12-24 2008-12-02 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
US20050149128A1 (en) * 2003-12-24 2005-07-07 Heil Ronald W.Jr. Barorflex stimulation system to reduce hypertension
US20110106216A1 (en) * 2003-12-24 2011-05-05 Imad Libbus Baroreflex stimulator with integrated pressure sensor
US9440078B2 (en) 2003-12-24 2016-09-13 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
US8626282B2 (en) 2003-12-24 2014-01-07 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually change a physiological parameter
US8639322B2 (en) 2003-12-24 2014-01-28 Cardiac Pacemakers, Inc. System and method for delivering myocardial and autonomic neural stimulation
US20050149155A1 (en) * 2003-12-24 2005-07-07 Avram Scheiner Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US20050149126A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex stimulation to treat acute myocardial infarction
US7869881B2 (en) 2003-12-24 2011-01-11 Cardiac Pacemakers, Inc. Baroreflex stimulator with integrated pressure sensor
US8805501B2 (en) 2003-12-24 2014-08-12 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
US20050282906A1 (en) * 2004-03-25 2005-12-22 North Shore-Long Island Jewish Research Institute Neural tourniquet
US10912712B2 (en) 2004-03-25 2021-02-09 The Feinstein Institutes For Medical Research Treatment of bleeding by non-invasive stimulation
US20080249439A1 (en) * 2004-03-25 2008-10-09 The Feinstein Institute For Medical Research Treatment of inflammation by non-invasive stimulation
US8729129B2 (en) 2004-03-25 2014-05-20 The Feinstein Institute For Medical Research Neural tourniquet
US8685724B2 (en) 2004-06-01 2014-04-01 Kwalata Trading Limited In vitro techniques for use with stem cells
US20080220466A1 (en) * 2004-06-01 2008-09-11 Valentin Fulga In Vitro Techniques For Use With Stem Cells
US8200332B2 (en) 2004-11-04 2012-06-12 Cardiac Pacemakers, Inc. System and method for filtering neural stimulation
US8200331B2 (en) 2004-11-04 2012-06-12 Cardiac Pacemakers, Inc. System and method for filtering neural stimulation
US8768462B2 (en) 2004-11-04 2014-07-01 Cardiac Pacemakers, Inc. System and method for filtering neural stimulation
US8909355B2 (en) 2004-11-15 2014-12-09 Bio Control Medical (B.C.M.) Ltd. Techniques for nerve stimulation
US20100042194A1 (en) * 2004-11-15 2010-02-18 Biocontrol Medical Ltd. Techniques for nerve stimulation
US8326438B2 (en) 2004-11-15 2012-12-04 Bio Control Medical (B.C.M.) Ltd. Techniques for nerve stimulation
US20060136024A1 (en) * 2004-12-22 2006-06-22 Biocontrol Medical Ltd. Construction of electrode assembly for nerve control
US11207518B2 (en) 2004-12-27 2021-12-28 The Feinstein Institutes For Medical Research Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway
US11344724B2 (en) 2004-12-27 2022-05-31 The Feinstein Institutes For Medical Research Treating inflammatory disorders by electrical vagus nerve stimulation
US8609082B2 (en) 2005-01-25 2013-12-17 Bio Control Medical Ltd. Administering bone marrow progenitor cells or myoblasts followed by application of an electrical current for cardiac repair, increasing blood supply or enhancing angiogenesis
US20090306734A1 (en) * 2005-03-11 2009-12-10 Julia Moffitt Combined neural stimulation and cardiac resynchronization therapy
US8131362B2 (en) 2005-03-11 2012-03-06 Cardiac Pacemakers, Inc. Combined neural stimulation and cardiac resynchronization therapy
US8909337B2 (en) 2005-04-05 2014-12-09 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
US7555341B2 (en) 2005-04-05 2009-06-30 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
US8190257B2 (en) 2005-04-05 2012-05-29 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
US20060229677A1 (en) * 2005-04-11 2006-10-12 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
US8929990B2 (en) 2005-04-11 2015-01-06 Cardiac Pacemakers, Inc. Transvascular neural stimulation device and method for treating hypertension
US20110082537A1 (en) * 2005-04-11 2011-04-07 Julia Moffitt Transvascular neural stimulation device
US20090149900A1 (en) * 2005-04-11 2009-06-11 Julia Moffitt Transvascular neural stimulation device
US7499748B2 (en) 2005-04-11 2009-03-03 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
US10549101B2 (en) 2005-04-25 2020-02-04 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US9415225B2 (en) 2005-04-25 2016-08-16 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US9649495B2 (en) 2005-04-25 2017-05-16 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7979141B2 (en) 2005-05-16 2011-07-12 Cardiac Pacemakers, Inc. Transvascular reshaping lead system
US7617003B2 (en) 2005-05-16 2009-11-10 Cardiac Pacemakers, Inc. System for selective activation of a nerve trunk using a transvascular reshaping lead
US20060259107A1 (en) * 2005-05-16 2006-11-16 Anthony Caparso System for selective activation of a nerve trunk using a transvascular reshaping lead
US20100016927A1 (en) * 2005-05-16 2010-01-21 Anthony Caparso Transvascular reshaping lead system
US20060266369A1 (en) * 2005-05-27 2006-11-30 Prospex Medical Ii, Inc. Devices and methods for treating sleep disorders
US20100139667A1 (en) * 2005-05-27 2010-06-10 Apnex Medical, Inc. Devices and methods for treating sleep disorders
US7644714B2 (en) 2005-05-27 2010-01-12 Apnex Medical, Inc. Devices and methods for treating sleep disorders
US8126561B2 (en) 2005-10-24 2012-02-28 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
US8660648B2 (en) 2005-10-24 2014-02-25 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
US7616990B2 (en) 2005-10-24 2009-11-10 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
US8634921B2 (en) 2005-10-24 2014-01-21 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
US8244359B2 (en) 2005-11-18 2012-08-14 Respicardia, Inc. System and method to modulate phrenic nerve to prevent sleep apnea
US10518090B2 (en) 2005-11-18 2019-12-31 Respicardia, Inc. System and method to modulate phrenic nerve to prevent sleep apnea
US11305119B2 (en) 2005-11-18 2022-04-19 Zoll Respicardia, Inc. System and method to modulate phrenic nerve to prevent sleep apnea
US20070118183A1 (en) * 2005-11-18 2007-05-24 Mark Gelfand System and method to modulate phrenic nerve to prevent sleep apnea
US20070191904A1 (en) * 2006-02-14 2007-08-16 Imad Libbus Expandable stimulation electrode with integrated pressure sensor and methods related thereto
US9234173B2 (en) 2006-03-08 2016-01-12 Kwalata Trading Ltd. Regulating stem cells
US8541232B2 (en) 2006-03-08 2013-09-24 Kwalata Trading Limited Composition comprising a progenitor/precursor cell population
US10358629B2 (en) 2006-03-08 2019-07-23 Kwalata Trading Limited Regulating stem cells
US9931134B2 (en) 2006-05-25 2018-04-03 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US9724119B2 (en) 2006-05-25 2017-08-08 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20100217162A1 (en) * 2006-05-25 2010-08-26 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US9227088B2 (en) 2006-05-25 2016-01-05 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20080039746A1 (en) * 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US10589130B2 (en) 2006-05-25 2020-03-17 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US8170668B2 (en) 2006-07-14 2012-05-01 Cardiac Pacemakers, Inc. Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy
US8571651B2 (en) 2006-09-07 2013-10-29 Bio Control Medical (B.C.M.) Ltd. Techniques for reducing pain associated with nerve stimulation
US7904176B2 (en) 2006-09-07 2011-03-08 Bio Control Medical (B.C.M.) Ltd. Techniques for reducing pain associated with nerve stimulation
US20080065158A1 (en) * 2006-09-07 2008-03-13 Omry Ben-Ezra Techniques for reducing pain associated with nerve stimulation
US20080103545A1 (en) * 2006-10-13 2008-05-01 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
USRE48025E1 (en) 2006-10-13 2020-06-02 Livanova Usa, Inc. Obstructive sleep apnea treatment devices, systems and methods
US7809442B2 (en) 2006-10-13 2010-10-05 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8744589B2 (en) 2006-10-13 2014-06-03 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US20080103407A1 (en) * 2006-10-13 2008-05-01 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8428727B2 (en) 2006-10-13 2013-04-23 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8417343B2 (en) 2006-10-13 2013-04-09 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9186511B2 (en) 2006-10-13 2015-11-17 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US10632308B2 (en) 2006-10-13 2020-04-28 Livanova Usa, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8718783B2 (en) 2006-10-13 2014-05-06 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8311645B2 (en) 2006-10-13 2012-11-13 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8626304B2 (en) 2006-10-13 2014-01-07 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8498712B2 (en) 2006-10-13 2013-07-30 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US11471685B2 (en) 2006-10-13 2022-10-18 Livanova Usa, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8639354B2 (en) 2006-10-13 2014-01-28 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US20110196445A1 (en) * 2006-10-13 2011-08-11 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
USRE48024E1 (en) 2006-10-13 2020-06-02 Livanova Usa, Inc. Obstructive sleep apnea treatment devices, systems and methods
US11517746B2 (en) 2006-10-13 2022-12-06 Livanova Usa, Inc. Obstructive sleep apnea treatment devices, systems and methods
US20080103546A1 (en) * 2006-10-27 2008-05-01 Cyberonics, Inc. Patient management system for treating epilepsy using an implantable medical device
US10406366B2 (en) 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
US9744351B1 (en) 2007-01-22 2017-08-29 Respicardia, Inc. Device and method for the treatment of breathing disorders and cardiac disorders
US10300270B2 (en) 2007-01-22 2019-05-28 Respicardia, Inc. Device and method for the treatment of breathing disorders and cardiac disorders
US8909341B2 (en) 2007-01-22 2014-12-09 Respicardia, Inc. Device and method for the treatment of breathing disorders and cardiac disorders
US10765867B2 (en) 2007-01-29 2020-09-08 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US10792499B2 (en) 2007-01-29 2020-10-06 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US10864374B2 (en) 2007-01-29 2020-12-15 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US11027130B2 (en) 2007-01-29 2021-06-08 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US10561843B2 (en) 2007-01-29 2020-02-18 Lungpacer Medical, Inc. Transvascular nerve stimulation apparatus and methods
US20080183255A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Side port lead delivery system
US8311647B2 (en) 2007-01-30 2012-11-13 Cardiac Pacemakers, Inc. Direct delivery system for transvascular lead
US20080183253A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Neurostimulating lead having a stent-like anchor
US20080183254A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Dual spiral lead configurations
US20080183264A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Electrode configurations for transvascular nerve stimulation
US7917230B2 (en) 2007-01-30 2011-03-29 Cardiac Pacemakers, Inc. Neurostimulating lead having a stent-like anchor
US8244378B2 (en) 2007-01-30 2012-08-14 Cardiac Pacemakers, Inc. Spiral configurations for intravascular lead stability
US20080183186A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Method and apparatus for delivering a transvascular lead
US7949409B2 (en) 2007-01-30 2011-05-24 Cardiac Pacemakers, Inc. Dual spiral lead configurations
US8412350B2 (en) 2007-01-30 2013-04-02 Cardiac Pacemakers, Inc. Neurostimulating lead having a stent-like anchor
US20080183265A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Transvascular lead with proximal force relief
US20080183259A1 (en) * 2007-01-30 2008-07-31 Cardiac Pacemakers, Inc. Spiral configurations for intravascular lead stability
US8406877B2 (en) * 2007-03-19 2013-03-26 Cardiac Pacemakers, Inc. Selective nerve stimulation with optionally closed-loop capabilities
US20080234780A1 (en) * 2007-03-19 2008-09-25 Cardiac Pacemakers Selective nerve stimulation with optionally closed-loop capabilities
US8249705B1 (en) 2007-03-20 2012-08-21 Cvrx, Inc. Devices, systems, and methods for improving left ventricular structure and function using baroreflex activation therapy
US20090005845A1 (en) * 2007-06-26 2009-01-01 Tamir Ben David Intra-Atrial parasympathetic stimulation
US9987488B1 (en) 2007-06-27 2018-06-05 Respicardia, Inc. Detecting and treating disordered breathing
US11305114B2 (en) 2007-06-27 2022-04-19 Zoll Respicardia, Inc. Detecting and treating disordered breathing
US8391970B2 (en) 2007-08-27 2013-03-05 The Feinstein Institute For Medical Research Devices and methods for inhibiting granulocyte activation by neural stimulation
US11389648B2 (en) 2008-02-07 2022-07-19 Zoll Respicardia, Inc. Transvascular medical lead
US8433412B1 (en) 2008-02-07 2013-04-30 Respicardia, Inc. Muscle and nerve stimulation
US9295846B2 (en) 2008-02-07 2016-03-29 Respicardia, Inc. Muscle and nerve stimulation
US11865333B2 (en) 2008-02-07 2024-01-09 Zoll Respicardia, Inc. Transvascular medical lead
US8369954B2 (en) 2008-03-27 2013-02-05 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US7925352B2 (en) 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US9662490B2 (en) 2008-03-31 2017-05-30 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
US9211409B2 (en) 2008-03-31 2015-12-15 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation of T-cell activity
US20090275997A1 (en) * 2008-05-01 2009-11-05 Michael Allen Faltys Vagus nerve stimulation electrodes and methods of use
US20100042186A1 (en) * 2008-08-13 2010-02-18 Tamir Ben-David Electrode devices for nerve stimulation and cardiac sensing
US8615294B2 (en) 2008-08-13 2013-12-24 Bio Control Medical (B.C.M.) Ltd. Electrode devices for nerve stimulation and cardiac sensing
US11806537B2 (en) 2008-10-01 2023-11-07 Inspire Medical Systems, Inc. Transvenous method of treating sleep apnea
US9889299B2 (en) 2008-10-01 2018-02-13 Inspire Medical Systems, Inc. Transvenous method of treating sleep apnea
US11083899B2 (en) 2008-10-01 2021-08-10 Inspire Medical Systems, Inc. Transvenous method of treating sleep apnea
US20100125304A1 (en) * 2008-11-18 2010-05-20 Faltys Michael A Devices and methods for optimizing electrode placement for anti-inflamatory stimulation
US8412338B2 (en) 2008-11-18 2013-04-02 Setpoint Medical Corporation Devices and methods for optimizing electrode placement for anti-inflamatory stimulation
US9744354B2 (en) 2008-12-31 2017-08-29 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US10105538B2 (en) 2008-12-31 2018-10-23 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US10632306B2 (en) 2008-12-31 2020-04-28 Livanova Usa, Inc. Obstructive sleep apnea treatment devices, systems and methods
US10737094B2 (en) 2008-12-31 2020-08-11 Livanova Usa, Inc. Obstructive sleep apnea treatment devices, systems and methods
US11400287B2 (en) 2008-12-31 2022-08-02 Livanova Usa, Inc. Obstructive sleep apnea treatment devices, systems and methods
US20110160794A1 (en) * 2008-12-31 2011-06-30 Apnex Medical Inc. Obstructive Sleep Apnea Treatment Devices, Systems and Methods
US9211410B2 (en) 2009-05-01 2015-12-15 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9849286B2 (en) 2009-05-01 2017-12-26 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9174041B2 (en) 2009-06-09 2015-11-03 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US10716936B2 (en) 2009-06-09 2020-07-21 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US10220203B2 (en) 2009-06-09 2019-03-05 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US20100312320A1 (en) * 2009-06-09 2010-12-09 Faltys Michael A Nerve cuff with pocket for leadless stimulator
US9700716B2 (en) 2009-06-09 2017-07-11 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US8886339B2 (en) 2009-06-09 2014-11-11 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US20110060380A1 (en) * 2009-09-10 2011-03-10 Mark Gelfand Respiratory rectification
US8233987B2 (en) 2009-09-10 2012-07-31 Respicardia, Inc. Respiratory rectification
US11883659B2 (en) 2009-09-10 2024-01-30 Zoll Respicardia, Inc. Systems for treating disordered breathing by comparing stimulated and unstimulated breathing
US11065443B2 (en) 2009-09-10 2021-07-20 Zoll Respicardia, Inc. Respiratory rectification
US9999768B2 (en) 2009-09-10 2018-06-19 Respicardia, Inc. Respiratory rectification
US8996116B2 (en) 2009-10-30 2015-03-31 Setpoint Medical Corporation Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
US11051744B2 (en) 2009-11-17 2021-07-06 Setpoint Medical Corporation Closed-loop vagus nerve stimulation
US11110287B2 (en) 2009-12-23 2021-09-07 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US20110190849A1 (en) * 2009-12-23 2011-08-04 Faltys Michael A Neural stimulation devices and systems for treatment of chronic inflammation
US9162064B2 (en) 2009-12-23 2015-10-20 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US8612002B2 (en) 2009-12-23 2013-12-17 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US8855767B2 (en) 2009-12-23 2014-10-07 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US9993651B2 (en) 2009-12-23 2018-06-12 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US10384068B2 (en) 2009-12-23 2019-08-20 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US8423134B2 (en) 2010-04-29 2013-04-16 Medtronic, Inc. Therapy using perturbation and effect of physiological systems
US9468764B2 (en) 2010-04-29 2016-10-18 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US8639327B2 (en) 2010-04-29 2014-01-28 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US8888699B2 (en) 2010-04-29 2014-11-18 Medtronic, Inc. Therapy using perturbation and effect of physiological systems
US11129988B2 (en) 2010-04-29 2021-09-28 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US8620425B2 (en) 2010-04-29 2013-12-31 Medtronic, Inc. Nerve signal differentiation in cardiac therapy
US8406868B2 (en) 2010-04-29 2013-03-26 Medtronic, Inc. Therapy using perturbation and effect of physiological systems
US10207112B2 (en) 2010-04-29 2019-02-19 Medtronic, Inc. Cardiac therapy including vagal stimulation
US8565896B2 (en) 2010-11-22 2013-10-22 Bio Control Medical (B.C.M.) Ltd. Electrode cuff with recesses
US9211413B2 (en) 2011-01-19 2015-12-15 Medtronic, Inc. Preventing use of vagal stimulation parameters
US8706223B2 (en) 2011-01-19 2014-04-22 Medtronic, Inc. Preventative vagal stimulation
US9155893B2 (en) 2011-01-19 2015-10-13 Medtronic, Inc. Use of preventative vagal stimulation in treatment of acute myocardial infarction or ischemia
US8781582B2 (en) 2011-01-19 2014-07-15 Medtronic, Inc. Vagal stimulation
US8718763B2 (en) 2011-01-19 2014-05-06 Medtronic, Inc. Vagal stimulation
US8781583B2 (en) 2011-01-19 2014-07-15 Medtronic, Inc. Vagal stimulation
US8725259B2 (en) 2011-01-19 2014-05-13 Medtronic, Inc. Vagal stimulation
US10231645B2 (en) 2011-01-28 2019-03-19 Livanova Usa, Inc. Screening devices and methods for obstructive sleep apnea therapy
US9555247B2 (en) 2011-01-28 2017-01-31 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US8855771B2 (en) 2011-01-28 2014-10-07 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US9113838B2 (en) 2011-01-28 2015-08-25 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US8386046B2 (en) 2011-01-28 2013-02-26 Apnex Medical, Inc. Screening devices and methods for obstructive sleep apnea therapy
US11529514B2 (en) 2011-01-28 2022-12-20 Livanova Usa, Inc. Obstructive sleep apnea treatment devices, systems and methods
US11000208B2 (en) 2011-01-28 2021-05-11 Livanova Usa, Inc. Screening devices and methods for obstructive sleep apnea therapy
US9913982B2 (en) 2011-01-28 2018-03-13 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9126048B2 (en) 2011-04-28 2015-09-08 Interventional Autonomics Corporation Neuromodulation systems and methods for treating acute heart failure syndromes
US8788034B2 (en) 2011-05-09 2014-07-22 Setpoint Medical Corporation Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9757564B2 (en) 2011-05-12 2017-09-12 Cyberonics, Inc. Devices and methods for sleep apnea treatment
US9205262B2 (en) 2011-05-12 2015-12-08 Cyberonics, Inc. Devices and methods for sleep apnea treatment
US9446240B2 (en) 2011-07-11 2016-09-20 Interventional Autonomics Corporation System and method for neuromodulation
US9067071B2 (en) 2011-07-11 2015-06-30 Interventional Autonomics Corporation System and method for neuromodulation
US9884182B2 (en) 2011-07-11 2018-02-06 Interventional Autonomics Corporation Catheter system for acute neuromodulation
US9833621B2 (en) 2011-09-23 2017-12-05 Setpoint Medical Corporation Modulation of sirtuins by vagus nerve stimulation
US8983611B2 (en) 2011-09-27 2015-03-17 Cardiac Pacemakers, Inc. Neural control of central sleep apnea
US10864375B2 (en) 2011-10-03 2020-12-15 Livanova Usa, Inc. Devices and methods for sleep apnea treatment
US10052484B2 (en) 2011-10-03 2018-08-21 Cyberonics, Inc. Devices and methods for sleep apnea treatment
US10512772B2 (en) 2012-03-05 2019-12-24 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US11369787B2 (en) 2012-03-05 2022-06-28 Lungpacer Medical Inc. Transvascular nerve stimulation apparatus and methods
US9572983B2 (en) 2012-03-26 2017-02-21 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
US10449358B2 (en) 2012-03-26 2019-10-22 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
US8880192B2 (en) 2012-04-02 2014-11-04 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
US9439598B2 (en) 2012-04-12 2016-09-13 NeuroMedic, Inc. Mapping and ablation of nerves within arteries and tissues
US10406367B2 (en) 2012-06-21 2019-09-10 Lungpacer Medical Inc. Transvascular diaphragm pacing system and methods of use
US10561844B2 (en) 2012-06-21 2020-02-18 Lungpacer Medical Inc. Diaphragm pacing systems and methods of use
US10589097B2 (en) 2012-06-21 2020-03-17 Lungpacer Medical Inc. Transvascular diaphragm pacing systems and methods of use
US11357985B2 (en) 2012-06-21 2022-06-14 Lungpacer Medical Inc. Transvascular diaphragm pacing systems and methods of use
US9370660B2 (en) 2013-03-29 2016-06-21 Rainbow Medical Ltd. Independently-controlled bidirectional nerve stimulation
US11707619B2 (en) 2013-11-22 2023-07-25 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
US10391314B2 (en) 2014-01-21 2019-08-27 Lungpacer Medical Inc. Systems and related methods for optimization of multi-electrode nerve pacing
US11311730B2 (en) 2014-01-21 2022-04-26 Lungpacer Medical Inc. Systems and related methods for optimization of multi-electrode nerve pacing
US11383083B2 (en) 2014-02-11 2022-07-12 Livanova Usa, Inc. Systems and methods of detecting and treating obstructive sleep apnea
US11311725B2 (en) 2014-10-24 2022-04-26 Setpoint Medical Corporation Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation
US11406833B2 (en) 2015-02-03 2022-08-09 Setpoint Medical Corporation Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator
US10596367B2 (en) 2016-01-13 2020-03-24 Setpoint Medical Corporation Systems and methods for establishing a nerve block
US11278718B2 (en) 2016-01-13 2022-03-22 Setpoint Medical Corporation Systems and methods for establishing a nerve block
US10314501B2 (en) 2016-01-20 2019-06-11 Setpoint Medical Corporation Implantable microstimulators and inductive charging systems
US11547852B2 (en) 2016-01-20 2023-01-10 Setpoint Medical Corporation Control of vagal stimulation
US10695569B2 (en) 2016-01-20 2020-06-30 Setpoint Medical Corporation Control of vagal stimulation
US11471681B2 (en) 2016-01-20 2022-10-18 Setpoint Medical Corporation Batteryless implantable microstimulators
US10583304B2 (en) 2016-01-25 2020-03-10 Setpoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
US11383091B2 (en) 2016-01-25 2022-07-12 Setpoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
US10293164B2 (en) 2017-05-26 2019-05-21 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
US11883658B2 (en) 2017-06-30 2024-01-30 Lungpacer Medical Inc. Devices and methods for prevention, moderation, and/or treatment of cognitive injury
US10195429B1 (en) 2017-08-02 2019-02-05 Lungpacer Medical Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US11090489B2 (en) 2017-08-02 2021-08-17 Lungpacer Medical, Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10926087B2 (en) 2017-08-02 2021-02-23 Lungpacer Medical Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10940308B2 (en) 2017-08-04 2021-03-09 Lungpacer Medical Inc. Systems and methods for trans-esophageal sympathetic ganglion recruitment
US11944810B2 (en) 2017-08-04 2024-04-02 Lungpacer Medical Inc. Systems and methods for trans-esophageal sympathetic ganglion recruitment
US11173307B2 (en) 2017-08-14 2021-11-16 Setpoint Medical Corporation Vagus nerve stimulation pre-screening test
US11890471B2 (en) 2017-08-14 2024-02-06 Setpoint Medical Corporation Vagus nerve stimulation pre-screening test
US11857788B2 (en) 2018-09-25 2024-01-02 The Feinstein Institutes For Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
US11260229B2 (en) 2018-09-25 2022-03-01 The Feinstein Institutes For Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
US11717673B2 (en) 2018-11-08 2023-08-08 Lungpacer Medical Inc. Stimulation systems and related user interfaces
US10987511B2 (en) 2018-11-08 2021-04-27 Lungpacer Medical Inc. Stimulation systems and related user interfaces
US11890462B2 (en) 2018-11-08 2024-02-06 Lungpacer Medical Inc. Stimulation systems and related user interfaces
US11357979B2 (en) 2019-05-16 2022-06-14 Lungpacer Medical Inc. Systems and methods for sensing and stimulation
US11771900B2 (en) 2019-06-12 2023-10-03 Lungpacer Medical Inc. Circuitry for medical stimulation systems
US11938324B2 (en) 2020-05-21 2024-03-26 The Feinstein Institutes For Medical Research Systems and methods for vagus nerve stimulation

Similar Documents

Publication Publication Date Title
USRE38705E1 (en) Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US6006134A (en) Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US8126560B2 (en) Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US6532388B1 (en) Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US8024050B2 (en) Lead for stimulating the baroreceptors in the pulmonary artery
US6735471B2 (en) Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US5700282A (en) Heart rhythm stabilization using a neurocybernetic prosthesis
EP1706177B1 (en) Lead for stimulating the baroreceptors in the pulmonary artery
US7072720B2 (en) Devices and methods for vagus nerve stimulation
US8386056B2 (en) Parasympathetic stimulation for treating atrial arrhythmia and heart failure
US8386053B2 (en) Subclavian ansae stimulation
US6487446B1 (en) Method and system for spinal cord stimulation prior to and during a medical procedure
JPH07504596A (en) Electrical medical stimulators and electrical stimulation methods
WO2001000273A9 (en) Devices and methods for vagus nerve stimulation
JP2005537819A (en) Method and apparatus for treatment of sleep apnea using bichamber pacing
WO1997040885A1 (en) Method and device for electronically controlling the beating of a heart
Chang et al. Radiofrequency catheter atrioventricular node ablation in patients with permanent cardiac pacing systems
US20150231389A1 (en) Selective autonomic stimulation of the av node fat pad to control rapid post-operative atrial arrhythmias

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12