Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE37814 E1
Publication typeGrant
Application numberUS 09/526,310
Publication date6 Aug 2002
Filing date15 Mar 2000
Priority date12 Sep 1996
Fee statusPaid
Also published asEP1030587A2, EP1030587A4, EP1030587B1, US5730758, WO1998025508A2, WO1998025508A3
Publication number09526310, 526310, US RE37814 E1, US RE37814E1, US-E1-RE37814, USRE37814 E1, USRE37814E1
InventorsDean O. Allgeyer
Original AssigneeDean Allgeyer, M.D., Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Staple and staple applicator for use in skin fixation of catheters
US RE37814 E1
Abstract
An inexpensive surgical stapler, such as for use in securing vascular catheters, has a plastic applicator made for use with a single staple. The applicator has a backbone and two identical arms. The inside face of the backbone has a retaining channel that secures the crown portion of the staple against movement. The inside faces of the arms have guidance grooves that direct the movement of the staple as the applicator arms are squeezed with finger pressure. The outside faces of the arms are configured to permit gripping by the operator's fingers. The stapler can be used in lieu of suturing. Other staple and applicator assemblies can include two or more of such assemblies.
Images(14)
Previous page
Next page
Claims(61)
What is claimed is:
1. An assembly for applying a single surgical staple, comprising:
a surgical staple configured to have a crown portion with two ends and two legs disposed at each of said ends, said legs terminating at distal ends with piercing points, each of said legs comprising at least two segments disposed angularly to each other; and
a flexible, anvilless, digitally manipulable staple applicator with inner and outer faces,
said applicator being comprised of a backbone and two arms extending from said backbone and including means for retaining, guiding, and stabilizing said staple,
whereby said staple is releasably mounted in said retaining, guiding, and stabilizing means.
2. The invention of claim 1 further comprising means for facilitating the digital manipulation of said applicator, said means being mounted on said applicator arms.
3. The invention of claim 2 wherein said stabilizing means includes a channel.
4. The invention of claim 3 wherein said channel is disposed within a stabilizing block, said block being disposed upon said inner surface of said backbone.
5. The invention of claim 2 wherein said applicator is manufactured of medical grade plastic.
6. The invention of claim 1 further including at least one groove for guiding said staple during application.
7. The invention of claim 6 wherein said groove is configured to provide all of the functions of retaining, guiding, and stabilizing.
8. The invention of claim 1 wherein each of said staple legs is comprised of at least three adjacent leg segments such that at least a portion of two of said adjacent segments of each of said legs is disposed within said guiding means.
9. The invention of claim 1 wherein said retaining means is located on at least a portion of one of said applicator arms.
10. The invention of claim 9 wherein said retaining, guiding, and stabilizing means comprises at least a pair of tabs mounted on said inner face of said applicator.
11. The invention of claim 1 wherein said retaining and guiding means comprise a groove disposed on said inner face of each of said applicator arms.
12. A dual applicator for holding two surgical staples, each of said staples having a crown portion and two legs, said dual applicator comprising:
two anvilless, digitally manipulable staple applicators with inner and outer faces, each of said applicators being comprised of a backbone and two arm portions extending from said backbone,
each of said applicators including means for retaining, guiding, and stabilizing one of said staples, in which said one staple is releasably mounted; and,
whereby said dual applicator is formed by joining said two applicators.
13. The invention of claim 12 wherein said applicators are arranged in a ferris wheel configuration.
14. The invention of claim 12, further comprising at least one additional of said surgical staples and one additional of said applicators.
15. A method of applying a surgical staple to a patient comprising the steps of:
furnishing an assembly of a single, pre-formed deformable surgical staple and a digitally manipulable, anvilless staple applicator configured to hold said staple, said staple applicator having a backbone connecting two associated digitally manipulable arm portions, said applicator further having inner and outer faces, and said surgical staple having legs terminating at distal ends with piercing points, said applicator including means for retaining, guiding and stabilizing said surgical staple, whereby said surgical staple is releasably mounted in at least one of said retaining, guiding, and stabilizing means;
holding said assembly in the fingers of one hand;
placing said staple piercing points adjacent to a location on said skin where said surgical staple is to be applied;
squeezing said applicator arms to apply force directly to said surgical staple, wherein said staple will bend in response to said force applied by said arms; and
releasing said digitally manipulable applicator arms and disengaging said applicator from said staple.
16. The method of claim 15, wherein said staple and applicator assembly comprises at least two applicators and two associated staples, and wherein all steps of claim 11 are performed in applying a first of said two staples, further comprising:
the step of manually repositioning said applicator for application of said second staple; and,
repeating said steps of claim 11 for application of said second staple, beginning with said step of holding said assembly in the fingers of one hand.
17. The method of claim 15, further comprising the additional steps of:
tenting said skin; and,
holding a catheter hub in close proximity with said tented skin such that at least one of said staple points can pass through said hub, securing said hub to said skin said additional steps of tenting the skin and holding the catheter hub being performed proximate the steps of holding and placing in claim 11.
18. The method of claim 15, wherein said guiding, retaining, and stabilizing means comprises grooves disposed on said inside face of said applicator arms and at least one of a stabilizing channel, tab, and clip disposed on said inside face of said applicator.
19. The invention of claim 1 wherein said stabilizing means comprises at least one of a stabilizing channel, a clip, and tabs.
20. An assembly for applying a surgical staple, comprising:
a staple applicator with an exterior and an interior, the applicator including first and second digitally manipulable arms with inner and outer surfaces, the first arm being movable toward the interior of the applicator;
a surgical staple disposed between and operatively connected to the inner surfaces of the digitally manipulable applicator arms, the staple terminating with spaced apart piercing points; and
at least one staple holder associated with the interior of the applicator and in which the surgical staple is mounted, whereby digital manipulation of the first applicator arm toward the interior of the applicator reduces the space between the staple piercing points.
21. The invention of claim 20, wherein the second applicator arm is also movable toward the interior of the applicator.
22. The invention of claim 21, wherein the first and second applicator arms are flexible.
23. The invention of claim 20, wherein the staple holder is associated with the inner surface of one of the applicator arms.
24. The invention of claim 23, wherein the staple holder comprises a groove in the interior surface of the applicator arm.
25. An assembly for applying a surgical staple, comprising:
a digitally manipulable staple applicator with an exterior and interior, the applicator including two connected, digitally manipulable, and oppositely disposed arms with inner and outer surfaces;
a surgical staple disposed between the digitally manipulable applicator arms, the staple having a crown and two legs terminating with spaced apart piercing points; and
a staple holder associated with the inner surface of each arm which receives and holds each staple leg, whereby digital manipulation of the arms toward the interior of the applicator reduces the space between the staple points and facilitates the release of the surgical staple from the applicator.
26. The invention of claim 25, wherein each staple holder comprises a groove for receiving and holding a staple leg.
27. The invention of claim 25, further comprising a staple crown holder.
28. The invention of claim 27, wherein the staple crown holder is a channel.
29. The invention of claim 28, wherein the channel is disposed in a block extending into the interior of the applicator.
30. The invention of claim 29, wherein the outer surface of each applicator arm facilitates the digital manipulation of the applicator arm.
31. An assembly for applying a surgical staple, comprising:
an anvilless staple applicator with an exterior and an interior, the applicator including an upper portion connecting two digitally manipulable arms with inner and outer surfaces;
a surgical staple disposed in the interior of the applicator and having an upper portion and legs terminating with spaced apart piercing points, wherein the upper portion of the staple is oriented toward the upper portion of the applicator and the staple legs are operatively connected to the inner surfaces of the digitally manipulable applicator arms; and
at least two staple holders associated with the interior of the applicator and in which the surgical staple is mounted, whereby digital manipulation of the arms moves the staple piercing points toward each other to secure the staple.
32. The invention of claim 31, further comprising a third staple holder, wherein at least one of the staple holders is associated with the upper portion of the applicator.
33. The invention of claim 31, wherein each staple holder comprises a groove in the inner surface of each applicator arm.
34. The invention of claim 32, wherein the staple holder associated with the upper portion of the applicator comprises a channel for receiving and holding the upper portion of the staple.
35. A method for applying a surgical staple to a patient, comprising the steps of:
a) furnishing an assembly for applying a surgical staple, the assembly comprising:
a staple applicator with an exterior and an interior, the applicator including two connected, digitally manipulable arms with inner and outer surfaces, at least one of the arms being movable;
a surgical staple disposed in the interior of the applicator, the staple terminating with spaced apart piercing points; and
at least one staple holder associated with the interior of the applicator, whereby digital manipulation of the at least one movable arm toward the interior of the applicator reduces the space between the staple piercing points;
b) placing the surgical staple piercing points at a location of the patient where the staple is to be applied;
c) digitally manipulating the at least one movable applicator arm to move toward the other arm to secure the surgical staple; and
d) disengaging the applicator from the surgical staple.
36. The method of claim 35 wherein the at least one staple holder is associated with one of the applicator arms.
37. The method of claim 36, wherein the staple holder comprises a groove for receiving and holding the staple.
38. The method of claim 35 further comprising the step of supplying a catheter with a hub, whereby when the staple is secured, the catheter hub is attached to the patient.
39. A method for applying a surgical staple to a patient, comprising the steps of:
a) furnishing an assembly for applying a surgical staple, the assembly comprising:
a staple applicator with an exterior and an interior, the applicator including an upper portion connecting two oppositely disposed, digitally manipulable arms with inner and outer surfaces;
a surgical staple disposed in the interior of the applicator, the staple having an upper portion and terminating with spaced apart piercing points; and
at least one staple holder associated with the upper portion of the applicator which receives and holds the upper portion of the staple, whereby movement of the digitally manipulable applicator arms toward the interior of the applicator reduces the space between the staple piercing points;
b) placing the surgical staple piercing points at a location of the patient where the staple is to be applied;
c) digitally manipulating the applicator arms to move toward the interior of the applicator to secure the surgical staple; and
d) disengaging the applicator from the surgical staple.
40. The method of claim 39, further comprising a second staple holder associated with the upper portion of the applicator.
41. The method of claim 39, wherein the at least one staple holder comprises a channel for receiving and holding the upper portion of the staple.
42. The method of claim 39, wherein the channel is disposed within a block extending from the upper portion of the interior of the applicator.
43. The method of claim 39, wherein the staple holder comprises at least one pair of tabs extending from the upper portion of the interior of the applicator.
44. A method for applying a surgical staple to a patient, comprising the steps of:
a) furnishing an assembly for applying a surgical staple, the assembly comprising:
a staple applicator with an exterior and an interior, the applicator including an upper portion connecting two oppositely disposed, digitally manipulable arms with inner and outer surfaces;
a surgical staple disposed between the digitally manipulable applicator arms, the staple having a crown and two legs terminating with spaced apart piercing points;
a staple holder associated with the upper portion of the applicator which receives and holds the staple crown; and
a staple holder associated with the inner surface of each digitally manipulable applicator arm which receives and holds each staple leg, whereby digital manipulation of the applicator arms toward the interior of the applicator reduces the space between the staple piercing points;
b) placing the staple piercing points at a location of the patient where the surgical staple is to be applied;
c) moving one applicator arm toward the other arm to secure the surgical staple; and
d) disengaging the applicator from the surgical staple.
45. The method of claim 44, further comprising the step of supplying a catheter with a hub, whereby when the staple is secured, the catheter hub is attached to the patient.
46. The method of claim 44, wherein the holder associated with the inner surface of each arm comprises a groove for receiving and holding each staple leg.
47. The method of claim 44 wherein the holder associated with upper portion of the applicator comprises a channel for receiving and holding the staple crown.
48. The method of claim 44, wherein the staple crown holder comprises a pair of tabs extending from the upper portion of the interior of the applicator.
49. A digitally manipulable applicator for applying a surgical staple terminating in piercing points, comprising:
a first digitally manipulable arm with an inner and outer surface;
a connecting member connected to the first digitally manipulable arm;
a second digitally manipulable arm with an inner and outer surface, the second arm being connected to the first arm by the connecting member and movable toward an applicator interior defined by the first and second digitally manipulable arms and the connector member; and
a surgical staple holder associated with the interior of the applicator and disposed to hold the surgical staple, whereby digital manipulation of the second arm toward the applicator interior secures the staple.
50. The applicator of claim 49, wherein the first arm is also movable toward the interior of the applicator.
51. The applicator of claim 50, wherein both arms are flexible.
52. The applicator of claim 51, wherein the staple holder is associated with one of the arms of the applicator.
53. The applicator of claim 52, further comprising a second staple holder associated with the other arm of the applicator.
54. The applicator of claim 53, wherein each of the staple holders is a groove in the interior of the applicator arms.
55. The applicator of claim 53, further comprising a third staple holder associated with the connecting member.
56. The applicator of claim 49, further comprising an additional staple holder associated with the interior of the applicator, wherein at least one of the staple holders is a pair of tabs.
57. The invention of claim 22, wherein the staple applicator is a unitary structure.
58. The assembly of claim 31, wherein the staple applicator is a unitary structure.
59. The assembly of claim 58, wherein the applicator arms are flexible.
60. The method of claim 35, wherein the two digitally manipulable arms are both movable.
61. The method of claim 60, wherein the staple applicator comprises a unitary structure with flexible arms.
Description
BACKGROUND OF THE INVENTION

This invention relates to medical staples and stapling devices. More particularly, the invention relates to a staple in combination with a flexible, digitally manipulable, anvilless staple applicator that is useful for affixing catheters to the skin and for other medical procedures.

Medical stapling devices have been routinely in use for some time. They are designed chiefly to replace the suturing process because of the significantly less time used in stapling. A variety of devices are known. For example, Green, U.S. Pat. No. 5,158,567, describes an anvilless surgical stapler with articulated handles and a slidable staple cartridge mounted in a block at the distal end of the handles. Samuels, U.S. Pat. No. 4,399,810, describes a skin clip applied with an articulating device containing a substantial number of staples. The staples are closed by a lateral pressure from the articulating applier. U.S. Pat. Nos. 4,719,917 and 4,526,174 disclose other medical staples.

In surgical and anesthetic practice, it is common to place indwelling catheters for vascular access. These catheters require fixation to the skin to maintain their position, thus avoiding potential injury to the patient or withdrawal of the catheter. Currently, fixation to the skin is accomplished by suturing the catheter hub to the underlying skin. A needle and suture are passed through the skin and hub eye, or eyes, and tied into a knot.

This procedure includes an attendant risk of needle stick. To avoid that risk would require the use of a stapler kit, which is far too costly to justify its use for one or two staples. The use of a stapler would save considerable time over suturing, especially when considering the daily frequency of catheter fixations in clinical situations, but the cost of a stapler kit is orders of magnitude greater than that for a suturing kit.

SUMMARY OF THE INVENTION

The present invention allows fixation of catheters to the skin in a less time-consuming and safer manner than either suturing or the use of traditional medical staplers. The cost of the materials is anticipated to be, for practical purposes, approximately the equivalent of suturing.

The present invention is a method of stapling and a device for performing that method. The device comprises an applicator assembly, preferably made of sterilizable, medical grade plastic, and is disposable. A staple is fabricated from stainless steel or other commonly used FDA approved staple material, and is inserted into the applicator to form the assembly. The applicator has no anvil and is both flexible and digitally manipulable.

The staple includes a crown portion with legs obliquely positioned at the ends of the crown. The legs terminate in points capable of piercing the skin. In the preferred embodiments of the invention, a single staple is mounted in the applicator.

The applicator is shaped generally like an inverted “U,” with an open bottom to permit the exiting of a closed staple attached to the skin. The inner faces of the applicator include a stabilizing channel and grooves that retain the staple during both storage and application, and guide it during the application process. The outside faces of the two opposing arms of the applicator are preferably a relatively non-slip surface to facilitate a digital grasp of the applicator and to permit digital deformation of the applicator, which in turn deforms the staple.

In its preferred use, an applicator with staple is positioned to cause one of the two staple legs to traverse the catheter hub eye and both staple legs to pierce the skin when lateral forces are manually applied to the applicator arms. Closure of the staple then results in fixation of the catheter to the skin. The applicator can subsequently be slid off the staple, which is no longer held by the applicator due to the change in staple configuration relative to the released applicator.

In an alternate embodiment, two or more applicator and staple combinations are joined together to provide a device that can be used when two or more staples are necessary.

Accordingly, there are several objects and advantages to my invention. One advantage provides a means for securing a catheter to the skin using a surgical staple and applicator in a less time-consuming procedure than suturing.

Another advantage permits securing the catheter to the skin with less risk of needle stick injury when compared to the traditional method of suturing.

An object of the invention is to provide a stapler for affixing a catheter to the skin that is, relative to other staplers, less expensive to manufacture, easy to distribute and store in a clinical environment, and is both simple and reliable to use.

Still another object of the invention is to provide the availability of a small number of staples when the use of a traditional stapler kit is not economical.

These and other objects and advantages will become apparent in conjunction with the detailed description and the following drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a surgical staple in the open position.

FIG. 2 shows the staple in the closed position.

FIG. 3 is a perspective view of a staple applicator and staple.

FIG. 4 is a cross section of one embodiment of the applicator and staple.

FIG. 5 is an elevation view of the applicator with the staple in the open position.

FIG. 6 is an elevation view of the applicator containing the staple in the closed position.

FIG. 7 is a perspective view of the applicator and staple adjacent to, and prior to the clamping of, the skin and hub eye.

FIG. 8 is a perspective view of the applicator and staple after clamping the skin and hub eye.

FIG. 9 is an elevation view of the applied staple after the legs of the applicator have been released.

FIG. 10 depicts a standard staple remover, which is part of the prior art.

FIG. 11 is a cross section of a staple being removed.

FIG. 12 is an alternate embodiment of the invention, with two applicators joined together.

FIG. 13 is a perspective view of the alternate embodiment.

FIG. 14 is a perspective view of another alternate embodiment.

FIG. 15 is a cross section of one of the tabs in FIG. 14.

FIG. 16 is yet another embodiment, with deeper grooves.

FIG. 17 is another embodiment of the dual applicator assembly.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIG. 1, a staple 10 is constructed of stainless steel, titanium, or other similarly deformable material which retains the shape to which it has been deformed. The staple 10 includes a crown portion 20 and opposingly disposed legs 22. In the preferred embodiment, the crown 20 is generally horizontal and connected to legs 22 at each end. Legs 22 are preferably identical and comprised of three segments, 24, 26, and 28, terminating in skin piercing point 29. The three leg segments 24, 26, 28 are offset by three oblique angles A, B, and C, which are approximately 120 degrees each.

FIG. 2 depicts the staple in its closed, deformed configuration. After the staple has been completely closed and the applicator withdrawn, angle A between crown 20 and leg segment 24 should be approximately a 90 degree right angle.

FIGS. 3, 4, and 5 depict an anvilless applicator 30 holding a staple 10 in the open position. The applicator comprises a top or backbone portion 32 and two arms 34. The inside face 33 of backbone 32 includes a stabilizing block 40 with stabilizing channel 42 that prevents the staple from rotating about point 25 between leg segments 24 and 26.

The inside faces 35 of the applicator arms 34 contain guidance and retaining grooves 44 into which staple leg points 25 are slidably and releasably mounted. Grooves 44 terminate in a curved portion 46, so that contact between the staple and the applicator is maintained while the staple is compressed during application. The staple should be mounted and retained in the applicator with a slight degree of snugness, so the staple does not fall out prior to use. At the same time, the staple should be easily releasable from grooves 44 and channel 42 once the staple has been applied. The outside face of the applicator arms 34 includes a means for digitally holding and compressing the applicator arms 34. In the present invention, that means is preferably a series of ribs 52 on each applicator arm 34. Other cupped, polygonal, non-uniform, or rough surfaces are equivalent to the ribs, as those of skill in the art will appreciate.

It should be noted that the present invention comprises a Class I medical device, e.g., a skin stapler with removable staples and nonabsorbent legs. Under FDA regulations, a Class I medical device does not require pre-notification of, or approval from, the FDA. Thus, this invention can be practiced with little or no regulatory costs or delays.

Prior to using the present invention, a transcutaneous vascular catheter is placed in the patient in the usual manner (not shown). Referring now to the additional figures, the applicator 30 containing a staple 10 is held between the thumb and second finger of the operator's dominant hand. The open staple points 29 are held away from the operator. The operator's other hand is used to manipulate the catheter hub 60 and underlying skin 62, so the skin 62 is tented (see FIG. 7) and positioned to receive staple 10. The applicator and staple assembly is positioned so one staple piercing point 29 traverses the eye 64 of catheter tub 60 and both points 29 come to rest on the base of the tented skin. The tented skin 62 has been manipulated to rest between the open staple legs 22 through a combination of tenting by the non-dominant hand and positioning of the applicator 30 and staple 10 by the dominant hand.

The staple is closed by squeezing the applicator arms 34 with one's fingers, which generates a closing force F (see FIG. 8). This causes the piercing points 29 to penetrate the skin. The medical progress of the applicator arms 34 is arrested by the ends of crown 20 at approximately a ninety degree angel D (see FIGS. 5 and 6). After the applicator arms 34 are released (see FIG. 9), there is a small, almost imperceptible, spring-like rebound of the staple legs 22. For practical purposes, the angle between the staple crown 20 and legs 22 remains approximately 90 degrees.

A staple used in the described embodiment must have at least two leg segments that form an angle whose intersecting point is outside the ends of crown portion 20. Such a configuration would be analogous to leg segments 24,26 meeting at point 25, which is outside the end of staple crown 20—a necessary configuration so that the applicator arms 34 can provide a lateral force to secure the staple to the skin. While the preferred embodiment contemplates a staple like that shown in FIG. 1, it is possible to employ other, differently shaped staples that come within the scope of the patent. Indeed, the applicator and staple could be configured so that the applicator backbone and arms would begin the application with angle D at approximately 90 degrees.

When the squeezed applicator arms 34 are released, applicator arms 34 generally regain their original configuration in relation to applicator backbone 32. Applicator 30 can then be removed from staple 10, because staple 10 is no longer held by grooves 44. In the preferred embodiment, it is contemplated that grooves 44 frictionally hold staple 10 prior to use, although only a small force is required to release staple 10 from grooves 44. Here that force would simply consist of the rebound of plastic applicator arms 34. Also in the preferred embodiment, stabilizing channel 42 is large enough so that staple crown 20 can be loosely contained in the space of channel 42. Thus, in FIG. 9 the upward force FF required to lift the applicator 30 off staple 10 after use is simply the force required to overcome the weight of the applicator 30.

Once the staple is applied, the applicator can be discarded. When the staple must be removed from the patient, it can be accomplished in a traditional, prior art manner (see FIGS. 10-11) and a dressing applied as necessary.

For a catheter hub with two eyes, one can approach the problem in at least two different ways. First, one can use two separate assemblies of a single applicator and staple. Alternatively, one can use a second embodiment of the invention, a dual applicator 100 (FIG. 12) that is made from two separate assemblies 100A, 100B, with each assembly made of a single staple 110 and single applicator 130. The assemblies are preferably connected by a plastic bridge or joining member 120. The second staple can be applied by rotating the applicator one hundred eighty degrees with the dominant hand. Thus, a two-eyed hub can be secured to the skin without setting down the staple applicator. In a similar manner, two staples can be used in a situation not requiring a catheter, such as for a small wound that would otherwise be closed by suturing.

Another embodiment contemplates three or more staples and applicators. There are a number of ways to join the applicators. One way would be to add additional joining members and assemblies in a manner similar to that in FIG. 12. The preferred arrangement comprises a series of spoke-like joining members emanating from a hub or hub-like point 511 (see FIG. 7) and can be called the L-shaped or partial “ferris wheel” configuration. Two or more spokes 520, like joining member 120 above, the applicator assemblies 530, can be added to the device depicted in FIG. 17. In FIG. 17, ribs 552 correspond to ribs 52 discussed above, and are disposed on the outside face of applicator arms 534.

Another multi-assembly configuration could contain a substantial number of staples mounted inside applicators and arranged in a “centipede” like strip of 4,10,20, or more assemblies. Each assembly could be joined by a short connecting piece, like plastic connector or joining member 120 (FIG. 12). Then the medical care giver could cut off one or two assemblies as necessary.

Numerous other embodiments and uses are contemplated of the present invention, resulting from the simple geometry underlying the staple and staple applicator. As one of ordinary skill in the art can appreciate, grooves 44 and channel 42 function to (1) retain staple 10 in applicator 30 prior to and during the use of the invention, (2) guide the staple downward while it is closing, and (3) stabilize the staple so that is does not rotate around axis A—A through points 25.

Given the nature of the invention, innumerable additional embodiments can be envisioned. Some examples appear in FIGS. 13-16. In FIG. 13, stabilizing block 40 and channel 42 of FIG. 3 have been replaced by two small stabilizing blocks 240 and two corresponding stabilizing channels 242. Leg segment intersections 225 (FIG. 13), like intersection points 25 (FIG. 3), slide in grooves 244 that retain intersection points 225 and guide the staple in the direction of the skin (not shown). If the intersection points 225 sit shallowly in grooves 244, and the staple is elastic enough, the intersection points may function more like points rather than three dimensional structures. Thus, without stabilizing blocks 240 and channels 242, staple 210 might rotate about axis A—A (FIG. 13).

The device in FIG. 13 could function with only one thin stabilizing block 240 and channel 242, or even simply a clip (not shown) attached to inner backbone face 233 and into which staple crown 220 could fit. An equivalent structure to a stabilizing block and channel (small or large, one or many) would replace block 240 and channel 242 with a slot or hole in applicator backbone 232 into which a pin, hump, or raised portion atop staple crown 220 could be inserted. In other words, any number of male-female attachments could be used to interrelate staple crown 220 and backbone 232 of applicator 230.

FIGS. 14 and 15 show still another embodiment of the present invention. Two pairs 341 of tabs 341 a and 341 b are fastened to inner face 333 of backbone 332. Each tab holds one end of staple crown 320 and an upper portion of leg segment 324. Together, the two tabs 341 both guide staple 310 downward when the applicator arms 334 are squeezed. In addition, the same tabs 341 also stabilize staple 310, preventing it from rotating about an axis through leg segment intersection points 325. The same functions can be accomplished by placing tabs 341 at the top of inner face 335 of applicator arms 334.

Tabs 341 must also retain single 310 in applicator 330 until the staple is secured to the skin. In the preferred embodiment discussed above (e.g., FIG. 3), staple 10 is fit with slight frictional resistance into grooves 44. FIG. 15 depicts an alternative that can be used with the embodiment of FIG. 14. Two small nubs 345 a and 345 b retain crown 320 of staple 310, so that a small force must be used to disengage the staple from the tabs by pulling crown 320 through hubs 345 a and 345 b. An equivalent structure for accomplishing the same result would eliminate hubs 345 a,b and instead angle tabs 341 a,b so that tab ends 346 a,b are separated by a distance slightly less than the diameter of staple 310.

Thus, one of ordinarly skill in the art will understand that a singular structure may provide more than one function. As described above, for example, two sets of tabs 341, as depicted in FIG. 14, could provide the retaining, guiding, and stabilizing functions of the present invention. Grooves 444 in FIG. 16 do likewise.

In keeping with the numerous structures that can comprise the present invention, one of ordinary skill will understand that an improvement of the embodiment in FIG. 14 can be created by adding the guidance grooves 44 depicted in FIG. 3. FIG. 16 alters that configuration by eliminating the tabs, so that grooves 444 accomplish the function of both guiding staple 410 toward its application while retaining the staple in applicator 430 and preventing rotation about intersection points 425 (not shown) where leg segments 424 and 426 meet. Grooves 444 in FIG. 16 differ from grooves 44 in FIG. 3 in that grooves 444 must be deeper than grooves 44, and points 425 must protrude into grooves 444 deeper than do intersection points 25 into grooves 44. Consequently, in FIG. 16, grooves 444 of staple 410 retain the staple so it does not fall out of applicator 430, guide the staple as it changes shape and is secured to the patient, and stabilizes it against rotation. This differs from the configuration in FIG. 3 in that leg segments 24,26 of both legs 22 are inserted into groove 44 shallowly enough that as a practical matter leg segments 24,26 are secured at intersection points 25 more as points than as three dimensional structures.

To described yet another alternative embodiment, the grooves 444 in FIG. 16 are depicted without curves at the bottom of applicator arm 434. As shown in FIG. 4, the preferred structure terminates grooves 44 with a curved and/or inwardly facing portion 46. In FIG. 16, grooves 444 terminate before the end of applicator arms 434 to ensure that staple 410 does not slide out of groove 444.

The applicator itself can be configured in still other ways, such as by using a different finger grip on the outside face of the applicator arms (e.g., finger cups, polygonal ridges, or simply a rough surface that will not slip) or by shaping the applicator backbone in a different manner. As the preceding discussion demonstrates, there are numerous equivalent structures that can be utilized in the present invention, which one of ordinary skill will understand and appreciate.

Staples of different configuration can be used as long as they function properly with the applicator. They may, for example, include small notches at various positions on the staple to facilitate bending during application, or they may simply be shaped differently than described above.

As noted above, it is contemplated that the present invention could be used in a non-catheter situation for small wounds that require only a few staples, although at some point it becomes more efficient to use a traditional stapler if the wound is too large. Conversely, a dual applicator could be used for only one staple. The wasted material would be of minimal cost and would eliminate the need to manufacture and stock two different varieties of the device. In the claimed method of medical stapling, it is also contemplated that the staple and applicator assembly can be created or fabricated in a number of ways, and that an emergency might even require one to manually insert a single staple into a single applicator. Nor should one be able to defeat the intent of this invention by squeezing the applicator with forceps or the like, rather than with one's own fingers. One could, however, include short handles attached to the applicator arms for ease of handling or leverage in squeezing the applicator arms.

Therefore, it will be understood by those of skill in the art that changes may be made to the present invention in its fabrication and configuration, and that the invention may be used differently without departing from its spirit. The invention is defined in the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US255105 *13 Jan 188221 Mar 1882 Hog-ringing device
US119965310 May 191626 Sep 1916Giulio BacoliniSurgical instrument.
US15120402 Feb 192321 Oct 1924United Shoe Machinery CorpStaple
US214278215 Sep 19383 Jan 1939Elmon C GilletteStaple
US306426328 Apr 195820 Nov 1962Powers Wire Products Company ITool for applying hog-rings and the like
US307781229 Dec 195819 Feb 1963Josef KihlbergStaple
US321870020 Jan 196423 Nov 1965Elastic Ag Vorm M Vogel A GStaple and method of and apparatus for applying it
US3973570 *18 Jun 197410 Aug 1976Mikhail Mikhailovich RazgulovSurgical clip formed from a suture material for end-to-end suturing of hollow organs on a mandrel
US420686326 Mar 197910 Jun 1980Savino Dominick JStaple and anviless stapling apparatus therefor
US432100224 Sep 197923 Mar 1982Minnesota Mining And Manufacturing CompanyMedical stapling device
US4340331 *19 May 198020 Jul 1982Savino Dominick JStaple and anviless stapling apparatus therefor
US439981026 Oct 198123 Aug 1983Samuels Peter BSkin clip and applier
US440728613 May 19824 Oct 1983United States Surgical CorporationSurgical staples
US443479619 Feb 19826 Mar 1984Vsesojuzny Nauchno-Issledovatelsky I Ispytatelny Institut Meditsinskoi TekhnikiSurgical staple, a method of and forceps for its removal
US448987525 May 198225 Dec 1984United States Surgical CorporationSelf-centering surgical staple and stapler for applying the same
US45261747 Nov 19832 Jul 1985Minnesota Mining And Manufacturing CompanyStaple and cartridge for use in a tissue stapling device and a tissue closing method
US471991717 Feb 198719 Jan 1988Minnesota Mining And Manufacturing CompanySurgical staple
US4821942 *11 Jul 198818 Apr 1989Ophthalmic Ventures Limited PartnershipDriver for surgical microstapler
US515856723 May 199127 Oct 1992United States Surgical CorporationOne-piece surgical staple
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6916332 *23 May 200112 Jul 2005Scimed Life Systems, Inc.Endoluminal fundoplication device and related method for installing tissue fastener
US764484831 Jan 200612 Jan 2010Ethicon Endo-Surgery, Inc.Electronic lockouts and surgical instrument including same
US76583119 Feb 2010Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a geared return mechanism
US766564723 Feb 2010Ethicon Endo-Surgery, Inc.Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US766974631 Aug 20052 Mar 2010Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US766974729 Jun 20072 Mar 2010Ethicon Endo-Surgery, Inc.Washer for use with a surgical stapling instrument
US767378128 Feb 20079 Mar 2010Ethicon Endo-Surgery, Inc.Surgical stapling device with staple driver that supports multiple wire diameter staples
US767378229 Jun 20079 Mar 2010Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US7699871 *30 May 200720 Apr 2010Ethicon Endo-Surgery, Inc.Surgical instrument
US772193110 Jan 200725 May 2010Ethicon Endo-Surgery, Inc.Prevention of cartridge reuse in a surgical instrument
US772193430 May 200725 May 2010Ethicon Endo-Surgery, Inc.Articulatable drive shaft arrangements for surgical cutting and fastening instruments
US772193610 Jan 200725 May 2010Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US773107218 Jun 20078 Jun 2010Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with improved anvil opening features
US773570329 Jun 200715 Jun 2010Ethicon Endo-Surgery, Inc.Re-loadable surgical stapling instrument
US773897110 Jan 200715 Jun 2010Ethicon Endo-Surgery, Inc.Post-sterilization programming of surgical instruments
US774015922 Jun 2010Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US775324522 Jun 200713 Jul 2010Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US775390413 Jul 2010Ethicon Endo-Surgery, Inc.Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US77662103 Aug 2010Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with user feedback system
US777077510 Aug 2010Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US779381214 Sep 2010Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US779447514 Sep 2010Ethicon Endo-Surgery, Inc.Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same
US779838621 Sep 2010Ethicon Endo-Surgery, Inc.Surgical instrument articulation joint cover
US779903921 Sep 2010Ethicon Endo-Surgery, Inc.Surgical instrument having a hydraulically actuated end effector
US781069212 Oct 2010Ethicon Endo-Surgery, Inc.Disposable loading unit with firing indicator
US781069312 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with articulatable end effector
US781929626 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with retractable firing systems
US781929726 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with reprocessible handle assembly
US781929826 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US784553731 Jan 20067 Dec 2010Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US785718514 Feb 200828 Dec 2010Ethicon Endo-Surgery, Inc.Disposable loading unit for surgical stapling apparatus
US786190614 Feb 20084 Jan 2011Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with articulatable components
US786652711 Jan 2011Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US79008058 Mar 2011Ethicon Endo-Surgery, Inc.Surgical instrument with enhanced battery performance
US791389129 Mar 2011Ethicon Endo-Surgery, Inc.Disposable loading unit with user feedback features and surgical instrument for use therewith
US79346303 May 2011Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US795468210 Jan 20077 Jun 2011Ethicon Endo-Surgery, Inc.Surgical instrument with elements to communicate between control unit and end effector
US79546847 Jun 2011Ehticon Endo-Surgery, Inc.Surgical stapling instrument with a firing member return mechanism
US796679928 Jun 2011Ethicon Endo-Surgery, Inc.Method of manufacturing staples
US798044319 Jul 2011Ethicon Endo-Surgery, Inc.End effectors for a surgical cutting and stapling instrument
US802074320 Sep 2011Ethicon Endo-Surgery, Inc.Powered articulatable surgical cutting and fastening instrument with flexible drive member
US804331023 May 200525 Oct 2011Boston Scientific Scimed, Inc.Endoluminal fundoplication device and related method
US805678728 Mar 200715 Nov 2011Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with travel-indicating retraction member
US81134109 Feb 201114 Feb 2012Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features
US814176219 Nov 200927 Mar 2012Ethicon Endo-Surgery, Inc.Surgical stapler comprising a staple pocket
US815714517 Apr 2012Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US815715317 Apr 2012Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US816197724 Apr 2012Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US81671851 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US81721248 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US818655531 Jan 200629 May 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US818656029 May 2012Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US819679513 Aug 201012 Jun 2012Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US819679612 Jun 2012Ethicon Endo-Surgery, Inc.Shaft based rotary drive system for surgical instruments
US820578126 Jun 2012Ethicon Endo-Surgery, Inc.Surgical stapler with apparatus for adjusting staple height
US821553129 Jan 201010 Jul 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US822069017 Jul 2012Ethicon Endo-Surgery, Inc.Connected surgical staples and stapling instruments for deploying the same
US826730018 Sep 2012Ethicon Endo-Surgery, Inc.Dampening device for endoscopic surgical stapler
US82921552 Jun 201123 Oct 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with tactile position feedback
US830804013 Nov 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US831707028 Feb 200727 Nov 2012Ethicon Endo-Surgery, Inc.Surgical stapling devices that produce formed staples having different lengths
US832245527 Jun 20064 Dec 2012Ethicon Endo-Surgery, Inc.Manually driven surgical cutting and fastening instrument
US83225894 Dec 2012Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US833331318 Dec 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a firing member return mechanism
US83481298 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapler having a closure mechanism
US834813129 Sep 20068 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US83534371 Feb 201015 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a geared return mechanism
US835343819 Nov 200915 Jan 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid cap assembly configured for easy removal
US835343919 Nov 200915 Jan 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with radially-openable distal end portion
US836029629 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US836029729 Jan 2013Ethicon Endo-Surgery, Inc.Surgical cutting and stapling instrument with self adjusting anvil
US8365976 *29 Sep 20065 Feb 2013Ethicon Endo-Surgery, Inc.Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US83819614 Dec 200926 Feb 2013Covidien LpSurgical stapling apparatus including staple with plate
US839351430 Sep 201012 Mar 2013Ethicon Endo-Surgery, Inc.Selectively orientable implantable fastener cartridge
US83979715 Feb 200919 Mar 2013Ethicon Endo-Surgery, Inc.Sterilizable surgical instrument
US840843922 Apr 20102 Apr 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US84145779 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instruments and components for use in sterile environments
US84247404 Nov 201023 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a directional switching mechanism
US84539084 Jun 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US845952011 Jun 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US845952511 Jun 2013Ethicon Endo-Sugery, Inc.Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US846492328 Jan 201018 Jun 2013Ethicon Endo-Surgery, Inc.Surgical stapling devices for forming staples with different formed heights
US847467730 Sep 20102 Jul 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and a cover
US84799699 Feb 20129 Jul 2013Ethicon Endo-Surgery, Inc.Drive interface for operably coupling a manipulatable surgical tool to a robot
US848541229 Sep 200616 Jul 2013Ethicon Endo-Surgery, Inc.Surgical staples having attached drivers and stapling instruments for deploying the same
US84854135 Feb 200916 Jul 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising an articulation joint
US85172395 Feb 200927 Aug 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising a magnetic element driver
US851724314 Feb 201127 Aug 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US85172449 Jul 201227 Aug 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US852960030 Sep 201010 Sep 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix
US854012811 Jan 200724 Sep 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US854012926 Jul 201024 Sep 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US85401308 Feb 201124 Sep 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US854013317 Mar 201024 Sep 2013Ethicon Endo-Surgery, Inc.Staple cartridge
US856187028 Feb 201122 Oct 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US856765628 Mar 201129 Oct 2013Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US85734619 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Surgical stapling instruments with cam-driven staple deployment arrangements
US85734659 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US858491914 Feb 200819 Nov 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 Jun 200726 Nov 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US86022871 Jun 201210 Dec 2013Ethicon Endo-Surgery, Inc.Motor driven surgical cutting instrument
US86022889 Feb 201210 Dec 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860804510 Oct 200817 Dec 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86164319 Feb 201231 Dec 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227414 Feb 20087 Jan 2014Ethicon Endo-Surgery, Inc.Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US862227519 Nov 20097 Jan 2014Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid distal end portion
US863198717 May 201021 Jan 2014Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US863246213 Jul 201121 Jan 2014Ethicon Endo-Surgery, Inc.Trans-rectum universal ports
US86325353 Jun 201021 Jan 2014Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US86361873 Feb 201128 Jan 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems that produce formed staples having different lengths
US863673614 Feb 200828 Jan 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US865212010 Jan 200718 Feb 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US865717414 Feb 200825 Feb 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US86571789 Jan 201325 Feb 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US866813024 May 201211 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US867220730 Jul 201018 Mar 2014Ethicon Endo-Surgery, Inc.Transwall visualization arrangements and methods for surgical circular staplers
US86722085 Mar 201018 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US868425327 May 20111 Apr 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US870195811 Jan 200722 Apr 2014Ethicon Endo-Surgery, Inc.Curved end effector for a surgical stapling device
US872076629 Sep 200613 May 2014Ethicon Endo-Surgery, Inc.Surgical stapling instruments and staples
US872719729 Jun 200720 May 2014Ethicon Endo-Surgery, Inc.Staple cartridge cavity configuration with cooperative surgical staple
US873361329 Sep 201027 May 2014Ethicon Endo-Surgery, Inc.Staple cartridge
US873447813 Jul 201127 May 2014Ethicon Endo-Surgery, Inc.Rectal manipulation devices
US874003430 Sep 20103 Jun 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with interchangeable staple cartridge arrangements
US874003730 Sep 20103 Jun 2014Ethicon Endo-Surgery, Inc.Compressible fastener cartridge
US874003829 Apr 20113 Jun 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising a releasable portion
US87465292 Dec 201110 Jun 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US874653028 Sep 201210 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US874653529 Apr 201110 Jun 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising detachable portions
US874723828 Jun 201210 Jun 2014Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US875269930 Sep 201017 Jun 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising bioabsorbable layers
US875274720 Mar 201217 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US875274927 May 201117 Jun 2014Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US875746530 Sep 201024 Jun 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and an alignment matrix
US875839114 Feb 200824 Jun 2014Ethicon Endo-Surgery, Inc.Interchangeable tools for surgical instruments
US87638756 Mar 20131 Jul 2014Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US876387730 Sep 20101 Jul 2014Ethicon Endo-Surgery, Inc.Surgical instruments with reconfigurable shaft segments
US87638791 Mar 20111 Jul 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US877700429 Apr 201115 Jul 2014Ethicon Endo-Surgery, Inc.Compressible staple cartridge comprising alignment members
US87835419 Feb 201222 Jul 2014Frederick E. Shelton, IVRobotically-controlled surgical end effector system
US878354230 Sep 201022 Jul 2014Ethicon Endo-Surgery, Inc.Fasteners supported by a fastener cartridge support
US878354330 Jul 201022 Jul 2014Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US87897396 Sep 201129 Jul 2014Ethicon Endo-Surgery, Inc.Continuous stapling instrument
US878974030 Jul 201029 Jul 2014Ethicon Endo-Surgery, Inc.Linear cutting and stapling device with selectively disengageable cutting member
US878974123 Sep 201129 Jul 2014Ethicon Endo-Surgery, Inc.Surgical instrument with trigger assembly for generating multiple actuation motions
US879449718 Dec 20125 Aug 2014Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US88008389 Feb 201212 Aug 2014Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US880084115 Mar 201112 Aug 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges
US880173430 Jul 201012 Aug 2014Ethicon Endo-Surgery, Inc.Circular stapling instruments with secondary cutting arrangements and methods of using same
US880173530 Jul 201012 Aug 2014Ethicon Endo-Surgery, Inc.Surgical circular stapler with tissue retention arrangements
US880832519 Nov 201219 Aug 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with staples having crown features for increasing formed staple footprint
US881402430 Sep 201026 Aug 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of connected retention matrix elements
US88206031 Mar 20112 Sep 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US88206059 Feb 20122 Sep 2014Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instruments
US882713311 Jan 20079 Sep 2014Ethicon Endo-Surgery, Inc.Surgical stapling device having supports for a flexible drive mechanism
US882790313 Jul 20119 Sep 2014Ethicon Endo-Surgery, Inc.Modular tool heads for use with circular surgical instruments
US88336326 Sep 201116 Sep 2014Ethicon Endo-Surgery, Inc.Firing member displacement system for a stapling instrument
US884000330 Sep 201023 Sep 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with compact articulation control arrangement
US88406033 Jun 201023 Sep 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US88447899 Feb 201230 Sep 2014Ethicon Endo-Surgery, Inc.Automated end effector component reloading system for use with a robotic system
US885769429 Apr 201114 Oct 2014Ethicon Endo-Surgery, Inc.Staple cartridge loading assembly
US885857125 Mar 201014 Oct 2014Ethicon Endo-Surgery, Inc.Hydraulically and electrically actuated articulation joints for surgical instruments
US885859013 Jul 201114 Oct 2014Ethicon Endo-Surgery, Inc.Tissue manipulation devices
US886400730 Sep 201021 Oct 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge having a non-uniform arrangement
US886400929 Apr 201121 Oct 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US88759711 Dec 20104 Nov 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US889394628 Mar 200725 Nov 2014Ethicon Endo-Surgery, Inc.Laparoscopic tissue thickness and clamp load measuring devices
US889394923 Sep 201125 Nov 2014Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US889946330 Sep 20102 Dec 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges supporting non-linearly arranged staples and surgical stapling instruments with common staple-forming pockets
US88994655 Mar 20132 Dec 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising drivers for deploying a plurality of staples
US889946619 Nov 20092 Dec 2014Ethicon Endo-Surgery, Inc.Devices and methods for introducing a surgical circular stapling instrument into a patient
US89059771 Jun 20059 Dec 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US891147114 Sep 201216 Dec 2014Ethicon Endo-Surgery, Inc.Articulatable surgical device
US891593522 Sep 201123 Dec 2014Boston Scientific Scimed, Inc.Endoluminal fundoplication device and related method
US892578230 Sep 20106 Jan 2015Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising multiple layers
US89257883 Mar 20146 Jan 2015Ethicon Endo-Surgery, Inc.End effectors for surgical stapling instruments
US893168227 May 201113 Jan 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US89738039 Sep 201010 Mar 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US897380418 Mar 201410 Mar 2015Ethicon Endo-Surgery, Inc.Cartridge assembly having a buttressing member
US897895429 Apr 201117 Mar 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising an adjustable distal portion
US897895513 Jul 201117 Mar 2015Ethicon Endo-Surgery, Inc.Anvil assemblies with collapsible frames for circular staplers
US897895630 Sep 201017 Mar 2015Ethicon Endo-Surgery, Inc.Jaw closure arrangements for surgical instruments
US899167629 Jun 200731 Mar 2015Ethicon Endo-Surgery, Inc.Surgical staple having a slidable crown
US899167721 May 201431 Mar 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US899242227 May 201131 Mar 2015Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US899805820 May 20147 Apr 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US900523018 Jan 201314 Apr 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US902849428 Jun 201212 May 2015Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US90285197 Feb 201112 May 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US903320330 Sep 201019 May 2015Ethicon Endo-Surgery, Inc.Fastening instrument for deploying a fastener system comprising a retention matrix
US903320413 Jul 201119 May 2015Ethicon Endo-Surgery, Inc.Circular stapling devices with tissue-puncturing anvil features
US904422730 Sep 20102 Jun 2015Ethicon Endo-Surgery, Inc.Collapsible fastener cartridge
US904422830 Sep 20102 Jun 2015Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of fastener cartridges
US904423013 Feb 20122 Jun 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US905008323 Sep 20089 Jun 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US905008423 Sep 20119 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck arrangement
US905594123 Sep 201116 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck
US906077027 May 201123 Jun 2015Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US907251525 Jun 20147 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US907253527 May 20117 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US907253628 Jun 20127 Jul 2015Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US907865326 Mar 201214 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US908460115 Mar 201321 Jul 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US908933013 Jul 201128 Jul 2015Ethicon Endo-Surgery, Inc.Surgical bowel retractor devices
US909533919 May 20144 Aug 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US910135815 Jun 201211 Aug 2015Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US910138528 Jun 201211 Aug 2015Ethicon Endo-Surgery, Inc.Electrode connections for rotary driven surgical tools
US91076636 Sep 201118 Aug 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising resettable staple drivers
US911386230 Sep 201025 Aug 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a variable staple forming system
US911386430 Sep 201025 Aug 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
US911386529 Apr 201125 Aug 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a layer
US911387424 Jun 201425 Aug 2015Ethicon Endo-Surgery, Inc.Surgical instrument system
US911388313 Jul 201125 Aug 2015Ethicon Endo-Surgery, Inc.Collapsible anvil plate assemblies for circular surgical stapling devices
US911388413 Jul 201125 Aug 2015Ethicon Endo-Surgery, Inc.Modular surgical tool systems
US911965728 Jun 20121 Sep 2015Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US912565413 Jul 20118 Sep 2015Ethicon Endo-Surgery, Inc.Multiple part anvil assemblies for circular surgical stapling devices
US912566228 Jun 20128 Sep 2015Ethicon Endo-Surgery, Inc.Multi-axis articulating and rotating surgical tools
US913194021 Feb 201315 Sep 2015Ethicon Endo-Surgery, Inc.Staple cartridge
US913822526 Feb 201322 Sep 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US914927417 Feb 20116 Oct 2015Ethicon Endo-Surgery, Inc.Articulating endoscopic accessory channel
US916803829 Apr 201127 Oct 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a tissue thickness compensator
US917991123 May 201410 Nov 2015Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US917991227 May 201110 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US918614325 Jun 201417 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US91986616 Sep 20111 Dec 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising a plurality of staple cartridges stored therein
US919866226 Jun 20121 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator having improved visibility
US920487814 Aug 20148 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US920487928 Jun 20128 Dec 2015Ethicon Endo-Surgery, Inc.Flexible drive member
US920488028 Mar 20128 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising capsules defining a low pressure environment
US921112028 Mar 201215 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US921112113 Jan 201515 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US921112213 Jul 201115 Dec 2015Ethicon Endo-Surgery, Inc.Surgical access devices with anvil introduction and specimen retrieval structures
US921601923 Sep 201122 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapler with stationary staple drivers
US922050028 Mar 201229 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising structure to produce a resilient load
US922050128 Mar 201229 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensators
US922675128 Jun 20125 Jan 2016Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US923294128 Mar 201212 Jan 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US92329457 Jul 201412 Jan 2016Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US923789127 May 201119 Jan 2016Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US924171428 Mar 201226 Jan 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator and method for making the same
US927179925 Jun 20141 Mar 2016Ethicon Endo-Surgery, LlcRobotic surgical system with removable motor housing
US92724068 Feb 20131 Mar 2016Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US927791928 Mar 20128 Mar 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising fibers to produce a resilient load
US92829628 Feb 201315 Mar 2016Ethicon Endo-Surgery, LlcAdhesive film laminate
US92829667 Feb 201415 Mar 2016Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US928297428 Jun 201215 Mar 2016Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US928305423 Aug 201315 Mar 2016Ethicon Endo-Surgery, LlcInteractive displays
US928920615 Dec 201422 Mar 2016Ethicon Endo-Surgery, LlcLateral securement members for surgical staple cartridges
US928921021 May 201222 Mar 2016Ethicon Endo-Surgery, LlcSurgical stapler with apparatus for adjusting staple height
US928922522 Jun 201022 Mar 2016Ethicon Endo-Surgery, LlcEndoscopic surgical instrument with a handle that can articulate with respect to the shaft
US928925628 Jun 201222 Mar 2016Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US929546429 Apr 201129 Mar 2016Ethicon Endo-Surgery, Inc.Surgical stapler anvil comprising a plurality of forming pockets
US930175228 Mar 20125 Apr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising a plurality of capsules
US930175328 Mar 20125 Apr 2016Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US930175529 Apr 20115 Apr 2016Ethicon Endo-Surgery, LlcCompressible staple cartridge assembly
US93017599 Feb 20125 Apr 2016Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US930796525 Jun 201212 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-microbial agent
US9307985 *10 Dec 201212 Apr 2016Iridex CorporationFasteners, deployment systems, and methods for ophthalmic tissue closure and fixation of ophthalmic prostheses and other uses
US93079861 Mar 201312 Apr 2016Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US930798828 Oct 201312 Apr 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US930798926 Jun 201212 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorportating a hydrophobic agent
US931424625 Jun 201219 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US931424726 Jun 201219 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating a hydrophilic agent
US932051825 Jun 201226 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an oxygen generating agent
US932052019 Aug 201526 Apr 2016Ethicon Endo-Surgery, Inc.Surgical instrument system
US932052129 Oct 201226 Apr 2016Ethicon Endo-Surgery, LlcSurgical instrument
US932052328 Mar 201226 Apr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising tissue ingrowth features
US93267671 Mar 20133 May 2016Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US932676812 Mar 20133 May 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US93267696 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267706 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267714 Mar 20113 May 2016Ethicon Endo-Surgery, LlcStaple cartridge
US933297428 Mar 201210 May 2016Ethicon Endo-Surgery, LlcLayered tissue thickness compensator
US933298427 Mar 201310 May 2016Ethicon Endo-Surgery, LlcFastener cartridge assemblies
US933298714 Mar 201310 May 2016Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US934547725 Jun 201224 May 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US934548113 Mar 201324 May 2016Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US935172614 Mar 201331 May 2016Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US935172714 Mar 201331 May 2016Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US935173028 Mar 201231 May 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US93580031 Mar 20137 Jun 2016Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US935800522 Jun 20157 Jun 2016Ethicon Endo-Surgery, LlcEnd effector layer including holding features
US936423028 Jun 201214 Jun 2016Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US936423328 Mar 201214 Jun 2016Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US937035819 Oct 201221 Jun 2016Ethicon Endo-Surgery, LlcMotor-driven surgical cutting and fastening instrument with tactile position feedback
US93703645 Mar 201321 Jun 2016Ethicon Endo-Surgery, LlcPowered surgical cutting and stapling apparatus with manually retractable firing system
US93752187 Oct 201328 Jun 2016Datascope Corp.Systems and methods of tissue closure
US938698327 May 201112 Jul 2016Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US93869848 Feb 201312 Jul 2016Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US938698828 Mar 201212 Jul 2016Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US939301510 May 201319 Jul 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with cutting member reversing mechanism
US93989111 Mar 201326 Jul 2016Ethicon Endo-Surgery, LlcRotary powered surgical instruments with multiple degrees of freedom
US940262618 Jul 20122 Aug 2016Ethicon Endo-Surgery, LlcRotary actuatable surgical fastener and cutter
US940860428 Feb 20149 Aug 2016Ethicon Endo-Surgery, LlcSurgical instrument comprising a firing system including a compliant portion
US940860628 Jun 20129 Aug 2016Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
US941483828 Mar 201216 Aug 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprised of a plurality of materials
US20030220657 *23 May 200127 Nov 2003Ronald AdamsEndoluminal fundoplication device and related method
US20040162567 *23 May 200119 Aug 2004Ronald AdamsEndoluminal fundoplication device and related method
US20070194080 *28 Feb 200723 Aug 2007Swayze Jeffrey SSurgical stapling device with staple driver that supports multiple wire diameter staples
US20080300627 *30 May 20074 Dec 2008Ethicon Endo-Surgery, Inc.Surgical Instrument
US20100217314 *26 Aug 2010Holsten Henry ESurgical stapling apparatus including staple with plate
US20130168432 *10 Dec 20124 Jul 2013Iridex CorporationFasteners, Deployment Systems, and Methods for Ophthalmic Tissue Closure and Fixation of Ophthalmic Prostheses and Other Uses
Classifications
U.S. Classification606/219, 227/175.1
International ClassificationA61B17/068, A61B17/064, A61B17/10
Cooperative ClassificationA61B17/0682, A61B17/10, A61B17/0644
European ClassificationA61B17/10
Legal Events
DateCodeEventDescription
26 Sep 2005FPAYFee payment
Year of fee payment: 8
24 Sep 2009FPAYFee payment
Year of fee payment: 12