USRE37536E1 - Split energy level radiation detection - Google Patents

Split energy level radiation detection Download PDF

Info

Publication number
USRE37536E1
USRE37536E1 US08/811,787 US81178797A USRE37536E US RE37536 E1 USRE37536 E1 US RE37536E1 US 81178797 A US81178797 A US 81178797A US RE37536 E USRE37536 E US RE37536E
Authority
US
United States
Prior art keywords
radiation
detector
energy
source
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/811,787
Inventor
Gary T. Barnes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UAB Research Foundation
Original Assignee
UAB Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UAB Research Foundation filed Critical UAB Research Foundation
Priority to US08/811,787 priority Critical patent/USRE37536E1/en
Application granted granted Critical
Publication of USRE37536E1 publication Critical patent/USRE37536E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/405Source units specially adapted to modify characteristics of the beam during the data acquisition process
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1644Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using an array of optically separate scintillation elements permitting direct location of scintillations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20181Stacked detectors, e.g. for measuring energy and positional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20182Modular detectors, e.g. tiled scintillators or tiled photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20185Coupling means between the photodiode and the scintillator, e.g. optical couplings using adhesives with wavelength-shifting fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Definitions

  • This invention relates to the field of medical diagnostic imaging and more particularly to an improved x-ray detector for use in digital radiography and fluoroscopy.
  • the detector provides separate simultaneous representations of different energy radiation emergent from a subject.
  • Radiography and fluoroscopy are long well known diagnostic imaging techniques.
  • an x-ray source is actuated to direct a divergent area beam of x-rays through a patient.
  • a cassette containing an x-ray sensitive phosphor screen and film is positioned in the x-ray path on the side of the patient opposite the source. Radiation passing through the patient's body is attenuated in varying degrees in accordance with the various types of tissue through which the x-rays pass. The attenuated x-rays from the patient emerge in a pattern, and strike the phosphor screen, which in turn exposes the film.
  • the x-ray film is processed to yield a visible image which can be interpreted by a radiologist as defining internal body structure and/or condition of the patient.
  • a continuous or rapidly pulsed area beam of x-rays is directed through the patient's body.
  • An image intensifier tube is positioned in the path of the beam opposite the source with respect to the patient.
  • the image intensifier tube receives the emergent radiation pattern from the patient, and converts it to a small, brightened visible image at an output face.
  • Either a mirror or closed circuit television system views the output face and produces a dynamic real time visual image, such as on a CRT, a visual image for interpretation by a radiologist.
  • digital radiography and fluoroscopy techniques have been developed.
  • the source directs x-radiation through a patient's body to a detector in the beam path beyond the patient.
  • the detector by use of appropriate sensor means, responds to incident radiation to produce analog signals representing the sensed radiation image, which signals are converted to digital information and fed to a digital data processing unit.
  • the data processing unit records, and/or processes and enhances the digital data.
  • a display unit responds to the appropriate digital data representing the image to convert the digital information back into analog form and produce a visual display of the patient's internal body structure derived from the acquired image pattern of radiation emergent from the patient's body.
  • the display system can be coupled directly to the digital data processing unit for substantially real time imaging, or can be fed stored digital data from digital storage means such as tapes or discs representing patient images from earlier studies.
  • Digital radiography includes radiographic techniques in which a thin fan beam of x-ray is used, and other techniques in which a more widely dispersed so-called “area beam” is used.
  • SPR scan (or slit) projection radiography
  • a fan beam of x-ray is directed through a patient's body. The fan is scanned across to the patient, or the patient is movably interposed between the fan beam x-ray source and an array of individual cellular detector segments which are aligned along an arcuate or linear path.
  • Relative movement is effected between the source-detector arrangement and the patient's body, keeping the detector aligned with the beam, such that a large area of the patient's body is scanned by the fan beam of x-rays.
  • Each of the detector segments produces analog signals indicating characteristics of the received x-rays.
  • These analog signals are digitized and fed to a data processing unit which operates on the data in a predetermined fashion to actuate display apparatus to produce a display image representing the internal structure and/or condition of the patient's body.
  • a divergent beam of x-ray is directed through the patient's body toward the input face of an image intensifier tube positioned opposite the patient with respect to the source.
  • the tube output face is viewed by a television camera.
  • the camera video signal is digitized, fed to a data processing unit, and subsequently converted to a tangible representation of the patient's internal body structure or condition.
  • One of the advantages of digital radiography and fluoroscopy is that the digital image information generated from the emergent radiation pattern incident on the detector can be processed, more easily than analog data, in various ways to enhance certain aspects of the image, to make the image more readily intelligible and to display a wider range of anatomical attenuation differences.
  • subtraction An important technique for enhancing a digitally represented image is called “subtraction”. There are two types of subtraction techniques, one being “temporal” substraction, the other “energy” subtraction.
  • Temporal subtraction is a technique that can be used to remove overlying and underlying structures from an image when the object of interest is enhanced by a radiopaque contrast agent, administered intra-arterially or intra-venously. Images are acquired with and without the contrast agent present and the data representing the former image is subtracted from the data representing the latter, substantially cancelling out all but the blood vessels or anatomical regions containing the contrast agent. Temporal subtraction is, theoretically, the optimum way to image the enhancement caused by an administered contrast agent. It “pulls” the affected regions out of an interfering background.
  • a principle limitation of digital temporal subtraction is the susceptibility to misregistration, or “motion” artifacts caused by patient movement between the acquisition of the images with and without the contrast agent.
  • temporal subtraction requires the use of a contrast material and changes in the contrast caused by the agent must occur rapidly, to minimize the occurrence of motion caused artifacts by reducing the time between the first and second exposure acquisition.
  • Temporal subtraction is also not useful in studies involving rapidly moving organs such as the heart. Also, the administration of contrast agents is contraindicated in some patients.
  • temporal subtraction which is less susceptible to motion artifacts
  • energy subtraction exploits energy-related differences in attenuation properties of various types of tissue, such as soft tissue and bone.
  • pulses of x-rays having alternating higher and lower energy levels are directed through the patient's body.
  • the detector and associated digital processing unit cooperate to acquire and store a set of digital data representing the image produced in response to the lower energy pulse.
  • the detector and digital processing unit again similarly co-operate to acquire and store a set of digital information representing the image produced by the higher energy pulse.
  • the values obtained representing the lower energy image are then subtracted from the values representing the higher energy image.
  • Energy subtraction has the advantage, relative to temporal subtraction, of being substantially not subject to motion artifacts resulting from the patient's movement between exposures.
  • the time separating the lower and higher energy image acquisitions is quite short, often less than one sixtieth of a second.
  • Dual energy subtraction has been accomplished, as noted above, by pulsing an x-ray source in a digital scanning slit device at two kVp's, typically 120 and 80 kVp, and sychronizing the pulses with a rotating filter which hardens the high kVp pulses by filtering out the lower energy x-ray.
  • a slit scanning device such as described above, sequentially pulsing the x-ray tube at 120 and 80 kVp is technically difficult and gives rise to very difficult problems in a practical clinical device.
  • the switching frequency has to be on the order of 500 Hz. and insufficient photons (x-ray energy per pulse) results when the highest capacity x-ray tubes are combined with realistically narrow slit widths and scanning times.
  • a two layer energy sensitive detector In connection with CT (computerized tomography) applications, a two layer energy sensitive detector has been proposed.
  • a first calcium fluoride layer is provided for sensing lower level x-ray radiation, and a second downstream sodium iodide layer senses higher energy radiation passing through the first layer.
  • Light caused by radiation in each of the two layers is separately sensed by respective photomultiplier tubes.
  • the disadvantages and problems of the prior art are alleviated or eliminated by the use of an energy discriminating radiation detector including three elements.
  • the detector includes a first element predominantly responsive to radiation of a first energy range, and a second element positioned behind the first, responsive to radiation in a second and higher energy range, along with a radiation filter interposed between the first and second elements.
  • an energy sensitive x-ray detector system for use in digital radiography is provided.
  • the detector For each picture element of the radiographic projection, the detector provides two readings from which the mass per unit area of bone and soft tissue through which the x-ray beam passes can be determined.
  • the energy sensitive x-ray detector employs a low atomic number phosphor screen or discrete array of phosphor segments coupled to a photodiode array, followed by a high atomic number of phosphor screen or discrete segment array similarly coupled.
  • An energy sensitive segment of an element of the detector system consists of a low atomic number phosphor coating layer coupled to a first photodiode, followed by a high atomic number phosphor coating layer coupled to a second photodiode.
  • the low atomic number phosphor preferentially absorbs the low energy photons emerging from the patient and transmits most of the higher energy photons, a larger percentage of which are absorbed in the second (higher atomic number) phosphor.
  • Placing an appropriate filter between the two phosphor/photodiode arrays increases or hardens the effective energy of the x-ray spectrum incident on the second phosphor and results in a greater and more desirable energy separation between the x-ray spectra absorbed in the two phosphor layers.
  • a split energy radiation detector including a first energy responsive element comprising a quantity of phosphor material including one of yttrium oxysulfide and zinc cadmium sulfide, and a second energy responsive element positioned to receive energy passing through said first element, said second element including one of gadolinium oxysulfide and cadmium tungstate.
  • the radiation filter interposed between the two elements or layers is made of a material containing copper.
  • a split energy radiation detector screen comprising a deck of separate detector elements at least partially mutually superposed, each element being capable of producing information spatially locating radiation incident on the screen.
  • FIG. 1 is a plan pictoral and block illustration of a system incorporating the present invention
  • FIGS. 1A-1E are detail views illustrating a portion of the system of FIG. 1;
  • FIG. 2 is a side view illustrating a portion of the system illustrated in FIG. 1;
  • FIG. 2A is a detailed side view illustrating a portion of the system of FIG. 1;
  • FIG. 3 is a perspective view of an alternate embodiment of a portion of the system of FIG. 1 .
  • FIG. 3A is a graphical description of a preferred feature of the portion of the system illustrated in FIG. 2 .
  • FIG. 4 is a graphical representation of operating characteristics of the portion of the system illustrated in FIG. 2;
  • FIG. 5 is a block diagram illustrating another system incorporating an embodiment of the present invention.
  • FIG. 1 illustrates a slit projection type of digital radiography system in which the present invention is incorporated.
  • the system S scans a thin fan beam of multi-energetic x-rays over a patient's chest and separately detects a pattern of x-rays of different energies emergent from the patient's body. Information represented by the detected x-rays is processed and displayed to illustrate a representation of an image of the patient's internal body structure or condition.
  • the system S includes an x-ray source X affixed to mounting structure M for projecting a thin fan beam B of x-rays through the body of a patient P, to strike an aligned array D of detector segments.
  • the fan beam B is confined by a forward slit K to substantially a vertical plane.
  • the detector array D constitutes a vertical stack of individual detector segments E, described in more detail below, and aligned with the vertical plane defined by the beam B.
  • An aft slit J attached to the detector D receives and aids in the definition of the planar beam B.
  • the x-ray source X is mounted on the structure M to rotate about a vertical axis, defined in FIG. 1 as extending into the paper.
  • Mechanical linkage L couples the x-ray tube X to the detector array D and causes the detector array D to scan behind the patient's body in the directions of the arrows A, A 1 , in order to maintain the detector D aligned with the beam B throughout the scanning rotative motion of the x-ray tube X.
  • the x-ray source X is controlled to emit either a continuous beam or a rapid succession of x-ray pulses in the form of the fan beam B.
  • the x-ray tube X and the detector D are synchronously scanned, about a vertical axis, across the patient from one side of his body to the other.
  • the detector output is periodically sampled. Each sampling produces signals representing a line of image information. Over the course of the scan from side to side, signals are developed describing a plurality of lines, which together constitute an area image of the patient's internal body structure.
  • the detector D separately detects x-rays of different energy ranges impinging on the detector array.
  • An element of the detector array by way of two sets of leads 01 , 02 , transmits analog signals representing detected x-rays within lower and higher energy ranges, respectively.
  • the signals on the lead sets 01 , 02 are provided to an analog-to-digital converter C which digitizes the outputs and feeds them to a digital processing and receiving unit DPU.
  • the DPU processes these digitized output signals to construct a digital representation of an image of the patient's internal body structure scanned by the x-ray beam B, on a line-by-line basis.
  • Digital signals from the DPU are converted to analog form by way of a digital-to-analog converter, and fed to a display unit T, which in response, produces an image in visual form corresponding to the image representing signals from the DPU.
  • digital storage means can be provided in conjunction with the DPU in order to digitally store the image representations for future use.
  • the digitally stored signals can be played black through the DPU, converted to analog form, and their corresponding images displayed at a later time on the display apparatus T.
  • FIGS. 1A and 1B illustrate (in simplified form, for clarity) particular configurations of the face of the detector array D, as viewed from the right in FIG. 1 .
  • the detector D comprises a linear vertically stacked elongated array of detector segments E.
  • FIG. 1 B An alternative embodiment to the vertical linear detector array shown in FIG. 1A is illustrated in FIG. 1 B. This is known as a “staggered” array.
  • the staggered array consists of two side-by-side vertical columns of detector segments E, E 1 .
  • One of the vertical columns is slightly vertically displaced with respect to the other, by a distance equal to one-half the height of a single detector segment.
  • FIGS. 1C-1E illustrate in simplified form several embodiments of the detector configuration of FIG. 1A as viewed from the right side in FIG. 1 A.
  • FIGS. 1C-1E are not intended to show the dual layered structure of the detector segments, which will be later discussed in detail, such as in connection with FIG. 2 A.
  • the detector arrays are divided into individual segments in one of three ways.
  • the detector array D comprises an elongated vertical screen strip 10 of particles of radiation sensitive material which are glued together with a binder and affixed to a backing of a suitable material such as polyester.
  • the radiation sensitive material respnds to incident radiation to produce light.
  • Behind the radiation sensitive screen 10 is a vertical array of adjacent photodiodes 12 .
  • Each photodiode responds to radiation-caused light in the screen 10 to produce an analog electrical signal indicating brightness of the flash caused by the sensed radiation events.
  • Each of the photodiodes 12 responds primarily to light from radiation events occurring within a portion of the screen material 10 located adjacent the photodiode.
  • FIGS. 1D and 1E Special “cellularized” detector configurations are illustrated in FIGS. 1D and 1E.
  • Cellularized detectors have the advantage of reducing the effects of energy scatter within the detector array.
  • the detector screen 10 is grooved as illustrated for example at reference character 14 , and the grooves are impregnated with a reflective material, such as aluminum oxide, to reduce the effects of light within the screen 10 .
  • the grooves are aligned with the junctions between each of the adjacent photodiodes 12 .
  • FIG. 1 E Another form of cellularized detector arrangement is illustrated in FIG. 1 E.
  • separate crystalline portions 16 of radiation sensitive material are employed.
  • Each crystal is matched to an adjoining photodiode and separated from adjacent crystals by a reflective layer.
  • the size of each of the crystals corresponds to the size of its adjoining photodiode 12 .
  • the photodiodes are adhered to the screen portion 10 by a mechanical pressing operation, which can optionally be aided by a small quantity of adhesive, and/or a small amount of optical coupling grease to enhance the degree of optical coupling between the screen 10 , or crystals 16 , and the photodiodes 12 .
  • FIG. 2 illustrates a particular layered detector segment structure for use as a component of an energy sensitive radiation detector array D.
  • the detector responds to radiation incident upon it, transmitted in a downward direction with respect to FIG. 2, to produce two outputs at leads 18 , 20 .
  • the output at lead 18 represents radiation incident upon the detector segment having an energy level in a lower energy range.
  • the output at the lead 20 represents the detector segment's response to incident x-ray radiation having an energy level in a second, higher energy range.
  • the detector segment includes a first elemental layer 22 primarily responsive to lower energy x-rays, and a second elemental layer 24 responsive to higher energy x-rays.
  • Each of the layers 22 , 24 includes a phosphor coating layer 26 , 28 , respectively, and a photodiode 30 , 32 , each respectively optically coupled to the phosphor layers 26 , 28 .
  • the choice of materials for the phosphor layers 26 , 28 is significant.
  • preferred phosphor material for the first phosphor layer 26 include yttrium oxysulfide, and zinc cadmium sulfide.
  • Alternative phosphors are barium sulfate, barium cadmium sulfate, lanthimum oxysulfide and barium fluorochloride.
  • preferred phosphors are gadolinium oxysulfide and cadmium tungstate.
  • Alternative phosphor materials for the phosphor layer 28 include calcium tungstate and barium lead sulfate.
  • a preferred phosphor coating weight for the first phosphor layer 26 is about 20 to 100 milligrams (mg) per square centimeter (cm 2 ).
  • Preferred phosphor coating weights for the second phosphor layer lie in the range from approximately 50 to 1000 mg/cm 2 .
  • a phosphor matrix embodying the detector can consist of either a single integral x-ray intensifying screen, a cellularized intensifying screen, or a cellularized matrix of individual phosphor crystals.
  • the segments have equal square dimensions in each layer.
  • the dimensions of the individual cell segments, where a cellularized structure is used, are equal to the photodiode matrix array spacing, such that each individual photodiode is congruent with its cell segment.
  • the cell segment dimensions are greater in the second layer of the detector than in the first.
  • the relationship between cell segment dimensions in the first and second layers is expressed by the following:
  • D 2 the second detector photodiode, dimension
  • D 1 the first detector photodiode dimension
  • F 2 the distance from the x-ray source focal spot to the second detector layer 24 .
  • F 1 the distance from the x-ray focal spot to the first detector layer 22 (see FIG. 3A for a graphical illustration of these values).
  • the phosphor material selected for the first phosphor layer 26 have a primary absorber atomic number lying in the range of 39 to 57 .
  • the corresponding desirable atomic number range for the phosphor materials' primary absorber selected for the second layer 28 is 56 to 83 .
  • a preferred filter material is one containing copper, such as brass.
  • a preferred filter thickness, where brass is used, is approximately 0.5 millimeters (mm).
  • the range of practical brass filter thicknesses is from about 0.2 mm to about 1.0 mm.
  • Alternative filters can comprise either single or multiple filter elements made of material ranging in atomic number from approximately 24 to 58.
  • a desirable energy spectrum for the x-ray source is from about 80 kVp to 150 kVp, or even higher, if tube technology permits.
  • the degree of spacing between the first and second layers 22 , 24 of the detector segment is not particularly critical. Spacing between the first and second layers can suitably vary from almost physical contact to about 3 or more centimeters (cm). The spacing between the filter layer 36 and the first and second layers 22 , 24 is not critical either.
  • FIG. 1C shows a side view of the detector array D in a form simplified for clarity.
  • FIG. 1C is simplified in that it shows only one of the two detector elements or layers which each contain a plurality of detector segments as defined by the dimensions of the photodiodes 12 .
  • FIG. 2A is provided to show the dual detector element (layer) structure which is the present subject.
  • FIG. 2A shows how the detailed structure of FIG. 2 appears, when incorporated into a linear detector array D.
  • FIG. 2A represents a side view of such an array.
  • FIG. 2A illustrates the two detector elements or layers 22 , 24 one positioned behind the other with respect to the incident radiation from the source.
  • Each element includes respectively a coating layer of phosphor 26 , 28 , and a set of photodiodes respectively indicated at 30 , 32 . Between the elements is located the filter element 36 .
  • Each photodiode has a lead emergent therefrom for transmitting its analog radiation indicating signal to the appropriate one of the lead groups 01 , 02 , as described generally above. For purposes of clarity, only representative leads are shown in FIG. 2 A.
  • the application of the split energy radiation detector of this invention is by no means limited to a linear array of detectors, for use in slit projection digital radiography, the environment described in detail above.
  • the present invention can also be embodied in a so-called “area” detector, i.e., a relatively large rectangular radiation detector covering a relatively expansive portion of the patient's body, designed for use with so-called “area” beams, which diverge from the source to expose the radiation detector simultaneously over its entire face.
  • area detector i.e., a relatively large rectangular radiation detector covering a relatively expansive portion of the patient's body, designed for use with so-called “area” beams, which diverge from the source to expose the radiation detector simultaneously over its entire face.
  • FIG. 3 One layer of such an area detector includes two such layers, one behind the other.
  • One such area detector includes a first phosphor layer of relatively low atomic number, as described above, coupled to a radiographic film layer, behind which is a second higher atomic number phosphor screen coupled to a second piece of film. Also, instead of the film portions, photoconductive or thermoluminescent plates could be used.
  • the present invention is applicable to radiation detector technology employing other than phosphor materials which convert radiation events into light energy.
  • the principles of this invention can be incorporated as well into radiation detection technology utilizing other types of radiation sensitive material, such as solid state materials which convert incident radiation into electrical signals which represent radiation incident on the material, without the need for converting such energy to the form of light.
  • the arrangement of the first and second detector layers employed in the experiment was in effect as shown in FIG. 2.
  • a Lucite and aluminum phantom 38 was employed to simulate soft tissue and bone.
  • the experimental results are tabulated in Table 1 for a typical 120 kVp radiation level and plotted in FIG. 4 .
  • the first phosphor layer was a 43 mg/cm 2 coating of yttrium oxysulfide.
  • the second phosphor layer was a 110 mg/cm 2 coating of gadolinium oxysulfide.
  • a split energy level radiation detector such as illustrated in detail in FIG. 2 is also applicable in conventional radiography systems as a phototimer.
  • FIG. 5 illustrates such a system.
  • An x-ray source 50 directs a beam 51 of x-ray through the body of a patient P and onto a conventional radiation screen 52 .
  • a split level radiation detector 54 constructed in accordance with the structure detailed in FIG. 2 is positioned as a phototimer behind the screen to receive that portion of the x-ray energy from the beam 51 which passes through the screen 52 .
  • the phototimer 54 produces, on leads 53 , 55 , signals indicating the amount of received energy in separate lower and higher energy ranges, respectively. These separate energy indicating signals are fed to a dual level energy integrator 56 .
  • the energy integrator 56 includes circuitry for separately integrating the amount of energy, over time, indicated by the outputs on the leads 53 , 55 .
  • the integrator 56 When the integrated energy values developed by the integrator 56 accumulate to a predetermined criteria, the integrator 56 produces a signal to a tube control circuit 58 which terminates operation of the source 50 in response to the accumulation of the particular predetermined integrated energy criterian.
  • the energy criterian governing the time of x-ray exposure can be selected in accordance with known principles by those with skill in the art. This criterion can be defined as the accumulation of a predetermined amount of energy in either of the sensed energy ranges, or can be a function of both sensed energy levels.

Abstract

An energy discriminating apparatus and method is disclosed for use in connection with digital radiography and fluoroscopy. In use of the detection system and method an x-ray source is actuated to direct x-rays through a patient's body, the x-rays including both higher and lower energy radiation. A first detector element, including a plurality of segments, is positioned opposite the source to receive and respond predominantly to x-rays in a lower energy range, the remaining x-rays, being generally of higher energy, passing through the first detector element. A second detector element, also including a plurality of segments, each segment including a phosphor coating layer and a sensor, is positioned to receive and respond to the higher energy radiation passing through the first element. The sensors are coupled respectively to each detector element segment for substantially simultaneously sensing the response and spatial location, relative to the detector elements, of radiation to which each detector element respectively responds. A filter element is interposed between the first and second detectors to enhance discrimination in the energy response of the respective detector elements. Particular preferred detector phosphor materials are identified. The sensors produce separately and simultaneously information representing patterns of relatively lower and higher energy emergent from the patient's body. Digital data processing and conversion equipment responds to the sensors to produce digital information representing each of said images, which can be digitally processed to enhance image characteristics.

Description

DESCRIPTION
1. Technical Field
This invention relates to the field of medical diagnostic imaging and more particularly to an improved x-ray detector for use in digital radiography and fluoroscopy. The detector provides separate simultaneous representations of different energy radiation emergent from a subject.
2. Background Art
Radiography and fluoroscopy are long well known diagnostic imaging techniques.
In a conventional radiography system, an x-ray source is actuated to direct a divergent area beam of x-rays through a patient. A cassette containing an x-ray sensitive phosphor screen and film is positioned in the x-ray path on the side of the patient opposite the source. Radiation passing through the patient's body is attenuated in varying degrees in accordance with the various types of tissue through which the x-rays pass. The attenuated x-rays from the patient emerge in a pattern, and strike the phosphor screen, which in turn exposes the film. The x-ray film is processed to yield a visible image which can be interpreted by a radiologist as defining internal body structure and/or condition of the patient.
In conventional fluoroscopy, a continuous or rapidly pulsed area beam of x-rays is directed through the patient's body. An image intensifier tube is positioned in the path of the beam opposite the source with respect to the patient. The image intensifier tube receives the emergent radiation pattern from the patient, and converts it to a small, brightened visible image at an output face. Either a mirror or closed circuit television system views the output face and produces a dynamic real time visual image, such as on a CRT, a visual image for interpretation by a radiologist.
More recently, digital radiography and fluoroscopy techniques have been developed. In digital radiography, the source directs x-radiation through a patient's body to a detector in the beam path beyond the patient. The detector, by use of appropriate sensor means, responds to incident radiation to produce analog signals representing the sensed radiation image, which signals are converted to digital information and fed to a digital data processing unit. The data processing unit records, and/or processes and enhances the digital data. A display unit responds to the appropriate digital data representing the image to convert the digital information back into analog form and produce a visual display of the patient's internal body structure derived from the acquired image pattern of radiation emergent from the patient's body. The display system can be coupled directly to the digital data processing unit for substantially real time imaging, or can be fed stored digital data from digital storage means such as tapes or discs representing patient images from earlier studies.
Digital radiography includes radiographic techniques in which a thin fan beam of x-ray is used, and other techniques in which a more widely dispersed so-called “area beam” is used. In the former technique, often called “scan (or slit) projection radiography” (SPR) a fan beam of x-ray is directed through a patient's body. The fan is scanned across to the patient, or the patient is movably interposed between the fan beam x-ray source and an array of individual cellular detector segments which are aligned along an arcuate or linear path. Relative movement is effected between the source-detector arrangement and the patient's body, keeping the detector aligned with the beam, such that a large area of the patient's body is scanned by the fan beam of x-rays. Each of the detector segments produces analog signals indicating characteristics of the received x-rays.
These analog signals are digitized and fed to a data processing unit which operates on the data in a predetermined fashion to actuate display apparatus to produce a display image representing the internal structure and/or condition of the patient's body.
In use of the “area” beam, a divergent beam of x-ray is directed through the patient's body toward the input face of an image intensifier tube positioned opposite the patient with respect to the source. The tube output face is viewed by a television camera. The camera video signal is digitized, fed to a data processing unit, and subsequently converted to a tangible representation of the patient's internal body structure or condition.
One of the advantages of digital radiography and fluoroscopy is that the digital image information generated from the emergent radiation pattern incident on the detector can be processed, more easily than analog data, in various ways to enhance certain aspects of the image, to make the image more readily intelligible and to display a wider range of anatomical attenuation differences.
An important technique for enhancing a digitally represented image is called “subtraction”. There are two types of subtraction techniques, one being “temporal” substraction, the other “energy” subtraction.
Temporal, sometimes called “mask mode” subtraction, is a technique that can be used to remove overlying and underlying structures from an image when the object of interest is enhanced by a radiopaque contrast agent, administered intra-arterially or intra-venously. Images are acquired with and without the contrast agent present and the data representing the former image is subtracted from the data representing the latter, substantially cancelling out all but the blood vessels or anatomical regions containing the contrast agent. Temporal subtraction is, theoretically, the optimum way to image the enhancement caused by an administered contrast agent. It “pulls” the affected regions out of an interfering background.
A principle limitation of digital temporal subtraction is the susceptibility to misregistration, or “motion” artifacts caused by patient movement between the acquisition of the images with and without the contrast agent.
Another disadvantage of temporal subtraction is that it requires the use of a contrast material and changes in the contrast caused by the agent must occur rapidly, to minimize the occurrence of motion caused artifacts by reducing the time between the first and second exposure acquisition. Temporal subtraction is also not useful in studies involving rapidly moving organs such as the heart. Also, the administration of contrast agents is contraindicated in some patients.
An alternative to temporal subtraction, which is less susceptible to motion artifacts, is energy subtraction Whereas temporal subtraction depends on changes in the contrast distribution with time, energy subtraction exploits energy-related differences in attenuation properties of various types of tissue, such as soft tissue and bone.
It is known that different tissues, such as soft tissue (which is mostly water) and bone, exhibit different characteristics in their capabilities to attenuate x-radiation of differing energy levels.
It is also known that the capability of soft tissue to attenuate x-radiation is less dependent on the x-ray's energy level than is the capability of bone to attenuate x-rays. Soft tissue shows less change in attenuation capability with respect to energy than does bone.
This phenomenon enables performance of energy subtraction. In practicing that technique, pulses of x-rays having alternating higher and lower energy levels are directed through the patient's body. When a lower energy pulse is so generated, the detector and associated digital processing unit cooperate to acquire and store a set of digital data representing the image produced in response to the lower energy pulse. A very short time later, when the higher energy pulse is produced, the detector and digital processing unit again similarly co-operate to acquire and store a set of digital information representing the image produced by the higher energy pulse. The values obtained representing the lower energy image are then subtracted from the values representing the higher energy image.
Since the attenuation of the lower energy x-rays by the soft tissue in the body is approximately the same as soft tissue attenuation of the higher energy x-rays, subtraction of the lower energy image data from the higher energy image data approximately cancels out the information describing the configuration of the soft tissue. When this information has been so cancelled, substantially all that remains in the image is the representation of bone. In this manner, the contrast and visibility of the bone is substantially enhanced by energy subtraction.
Energy subtraction has the advantage, relative to temporal subtraction, of being substantially not subject to motion artifacts resulting from the patient's movement between exposures. The time separating the lower and higher energy image acquisitions is quite short, often less than one sixtieth of a second.
Details of energy subtraction techniques in digital radiography and fluoroscopy are set forth in the following technical publications, all of which are hereby incorporated specifically by reference:
Hall, A.L. et al: “Experimental System for Dual Energy Scanned Projection Radiology”. Digital Radiography proc. of the SPIE 314: 155-159, 1981;
Summer, F.G. et al: “Abdominal Dual Energy Imaging” Digital Radiography proc. SPIE 314: 172-174, 1981;
Blank, N. et al: “Dual Energy Radiography: a Preliminary Study”. Digital Radiography proc. SPIE 314: 181-182, 1981; and
Lehman, L.A. et al: “Generalized Image Combinations in Dual kVp Digital Radiography”, Medical Physics 8: 659-667, 1981.
Dual energy subtraction has been accomplished, as noted above, by pulsing an x-ray source in a digital scanning slit device at two kVp's, typically 120 and 80 kVp, and sychronizing the pulses with a rotating filter which hardens the high kVp pulses by filtering out the lower energy x-ray. This results in the patient and x-ray detector sequentially seeing high energy and low energy beams from which the mass per unit area of bone and soft tissue can be solved for.
In energy subtraction, it is desirable that the two energy levels should be widely separated. This is necessary in order to accurately define the masses per unit area of bone and soft tissue.
With a slit scanning device, such as described above, sequentially pulsing the x-ray tube at 120 and 80 kVp is technically difficult and gives rise to very difficult problems in a practical clinical device. The switching frequency has to be on the order of 500 Hz. and insufficient photons (x-ray energy per pulse) results when the highest capacity x-ray tubes are combined with realistically narrow slit widths and scanning times.
In connection with CT (computerized tomography) applications, a two layer energy sensitive detector has been proposed. In this proposal, a first calcium fluoride layer is provided for sensing lower level x-ray radiation, and a second downstream sodium iodide layer senses higher energy radiation passing through the first layer. Light caused by radiation in each of the two layers is separately sensed by respective photomultiplier tubes.
DISCLOSURE OF THE INVENTION
The disadvantages and problems of the prior art are alleviated or eliminated by the use of an energy discriminating radiation detector including three elements. The detector includes a first element predominantly responsive to radiation of a first energy range, and a second element positioned behind the first, responsive to radiation in a second and higher energy range, along with a radiation filter interposed between the first and second elements.
Thus, an energy sensitive x-ray detector system for use in digital radiography is provided. For each picture element of the radiographic projection, the detector provides two readings from which the mass per unit area of bone and soft tissue through which the x-ray beam passes can be determined.
The energy sensitive x-ray detector employs a low atomic number phosphor screen or discrete array of phosphor segments coupled to a photodiode array, followed by a high atomic number of phosphor screen or discrete segment array similarly coupled.
An energy sensitive segment of an element of the detector system consists of a low atomic number phosphor coating layer coupled to a first photodiode, followed by a high atomic number phosphor coating layer coupled to a second photodiode. The low atomic number phosphor preferentially absorbs the low energy photons emerging from the patient and transmits most of the higher energy photons, a larger percentage of which are absorbed in the second (higher atomic number) phosphor.
Placing an appropriate filter between the two phosphor/photodiode arrays increases or hardens the effective energy of the x-ray spectrum incident on the second phosphor and results in a greater and more desirable energy separation between the x-ray spectra absorbed in the two phosphor layers.
In accordance with another embodiment, a split energy radiation detector is provided including a first energy responsive element comprising a quantity of phosphor material including one of yttrium oxysulfide and zinc cadmium sulfide, and a second energy responsive element positioned to receive energy passing through said first element, said second element including one of gadolinium oxysulfide and cadmium tungstate.
In accordance with another specific aspect of the invention, the radiation filter interposed between the two elements or layers is made of a material containing copper.
In accordance with a broader aspect of the invention, there is provided a split energy radiation detector screen comprising a deck of separate detector elements at least partially mutually superposed, each element being capable of producing information spatially locating radiation incident on the screen.
These and other aspects of the present invention will become more apparent from a consideration of the following description and of the drawings, in which:
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a plan pictoral and block illustration of a system incorporating the present invention;
FIGS. 1A-1E are detail views illustrating a portion of the system of FIG. 1;
FIG. 2 is a side view illustrating a portion of the system illustrated in FIG. 1;
FIG. 2A is a detailed side view illustrating a portion of the system of FIG. 1;
FIG. 3 is a perspective view of an alternate embodiment of a portion of the system of FIG. 1.
FIG. 3A is a graphical description of a preferred feature of the portion of the system illustrated in FIG. 2.
FIG. 4 is a graphical representation of operating characteristics of the portion of the system illustrated in FIG. 2;
FIG. 5 is a block diagram illustrating another system incorporating an embodiment of the present invention.
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 illustrates a slit projection type of digital radiography system in which the present invention is incorporated. The system S scans a thin fan beam of multi-energetic x-rays over a patient's chest and separately detects a pattern of x-rays of different energies emergent from the patient's body. Information represented by the detected x-rays is processed and displayed to illustrate a representation of an image of the patient's internal body structure or condition.
More specifically, the system S includes an x-ray source X affixed to mounting structure M for projecting a thin fan beam B of x-rays through the body of a patient P, to strike an aligned array D of detector segments. The fan beam B is confined by a forward slit K to substantially a vertical plane. The detector array D constitutes a vertical stack of individual detector segments E, described in more detail below, and aligned with the vertical plane defined by the beam B. An aft slit J attached to the detector D receives and aids in the definition of the planar beam B.
The x-ray source X is mounted on the structure M to rotate about a vertical axis, defined in FIG. 1 as extending into the paper. Mechanical linkage L couples the x-ray tube X to the detector array D and causes the detector array D to scan behind the patient's body in the directions of the arrows A, A1, in order to maintain the detector D aligned with the beam B throughout the scanning rotative motion of the x-ray tube X.
The x-ray source X is controlled to emit either a continuous beam or a rapid succession of x-ray pulses in the form of the fan beam B. The x-ray tube X and the detector D are synchronously scanned, about a vertical axis, across the patient from one side of his body to the other. The detector output is periodically sampled. Each sampling produces signals representing a line of image information. Over the course of the scan from side to side, signals are developed describing a plurality of lines, which together constitute an area image of the patient's internal body structure.
Details of some aspects of a digital radiography system such as described above are set forth in the following publications, hereby expressly incorporated by reference.
Arnold, B.A. et al, “Digital Radiography: An Overview” Proc. of S.P.I.E. Vol. 273, Mar. 1981;
Kruger, R.A. et al, “A Digital Video Image Processor for Real Time X-Ray Subtraction Imaging” Optical Engineering Vol. 17 No. 6 (1978).
The detector D separately detects x-rays of different energy ranges impinging on the detector array. An element of the detector array, by way of two sets of leads 01, 02, transmits analog signals representing detected x-rays within lower and higher energy ranges, respectively.
The signals on the lead sets 01, 02, are provided to an analog-to-digital converter C which digitizes the outputs and feeds them to a digital processing and receiving unit DPU. The DPU processes these digitized output signals to construct a digital representation of an image of the patient's internal body structure scanned by the x-ray beam B, on a line-by-line basis. Digital signals from the DPU are converted to analog form by way of a digital-to-analog converter, and fed to a display unit T, which in response, produces an image in visual form corresponding to the image representing signals from the DPU.
Optionally, digital storage means can be provided in conjunction with the DPU in order to digitally store the image representations for future use. In such event, the digitally stored signals can be played black through the DPU, converted to analog form, and their corresponding images displayed at a later time on the display apparatus T.
FIGS. 1A and 1B illustrate (in simplified form, for clarity) particular configurations of the face of the detector array D, as viewed from the right in FIG. 1. In FIG. 1A, for example, it is seen that the detector D comprises a linear vertically stacked elongated array of detector segments E.
An alternative embodiment to the vertical linear detector array shown in FIG. 1A is illustrated in FIG. 1B. This is known as a “staggered” array. The staggered array consists of two side-by-side vertical columns of detector segments E, E1. One of the vertical columns, however, is slightly vertically displaced with respect to the other, by a distance equal to one-half the height of a single detector segment.
FIGS. 1C-1E illustrate in simplified form several embodiments of the detector configuration of FIG. 1A as viewed from the right side in FIG. 1A. FIGS. 1C-1E, however, are not intended to show the dual layered structure of the detector segments, which will be later discussed in detail, such as in connection with FIG. 2A. The detector arrays are divided into individual segments in one of three ways. In one embodiment, shown in FIG. 1C, the detector array D comprises an elongated vertical screen strip 10 of particles of radiation sensitive material which are glued together with a binder and affixed to a backing of a suitable material such as polyester. The radiation sensitive material respnds to incident radiation to produce light. Behind the radiation sensitive screen 10 is a vertical array of adjacent photodiodes 12. Each photodiode responds to radiation-caused light in the screen 10 to produce an analog electrical signal indicating brightness of the flash caused by the sensed radiation events. Each of the photodiodes 12 responds primarily to light from radiation events occurring within a portion of the screen material 10 located adjacent the photodiode.
Special “cellularized” detector configurations are illustrated in FIGS. 1D and 1E. Cellularized detectors have the advantage of reducing the effects of energy scatter within the detector array.
In the form illustrated in FIG. 1D, the detector screen 10 is grooved as illustrated for example at reference character 14, and the grooves are impregnated with a reflective material, such as aluminum oxide, to reduce the effects of light within the screen 10. The grooves are aligned with the junctions between each of the adjacent photodiodes 12.
Another form of cellularized detector arrangement is illustrated in FIG. 1E. In that embodiment, rather than utilizing an homogeneous screen, with or without grooves, separate crystalline portions 16 of radiation sensitive material are employed. Each crystal is matched to an adjoining photodiode and separated from adjacent crystals by a reflective layer. The size of each of the crystals corresponds to the size of its adjoining photodiode 12.
In all of the foregoing detector arrangements, the photodiodes are adhered to the screen portion 10 by a mechanical pressing operation, which can optionally be aided by a small quantity of adhesive, and/or a small amount of optical coupling grease to enhance the degree of optical coupling between the screen 10, or crystals 16, and the photodiodes 12.
As pointed out above, it is desirable, when practicing the energy subtraction image processing technique, to be able to separately represent different energy radiation which impinges on the detector segments. Herein is disclosed a particular dual layered, energy discriminating structure for each detector segment which facilitates achievement of this goal.
FIG. 2 illustrates a particular layered detector segment structure for use as a component of an energy sensitive radiation detector array D. The detector responds to radiation incident upon it, transmitted in a downward direction with respect to FIG. 2, to produce two outputs at leads 18, 20. The output at lead 18 represents radiation incident upon the detector segment having an energy level in a lower energy range. The output at the lead 20 represents the detector segment's response to incident x-ray radiation having an energy level in a second, higher energy range.
The detector segment includes a first elemental layer 22 primarily responsive to lower energy x-rays, and a second elemental layer 24 responsive to higher energy x-rays. Each of the layers 22, 24, includes a phosphor coating layer 26, 28, respectively, and a photodiode 30, 32, each respectively optically coupled to the phosphor layers 26, 28.
The choice of materials for the phosphor layers 26, 28, is significant. For example, preferred phosphor material for the first phosphor layer 26 include yttrium oxysulfide, and zinc cadmium sulfide. Alternative phosphors are barium sulfate, barium cadmium sulfate, lanthimum oxysulfide and barium fluorochloride.
For the second phosphor layer 28, preferred phosphors are gadolinium oxysulfide and cadmium tungstate. Alternative phosphor materials for the phosphor layer 28 include calcium tungstate and barium lead sulfate.
A preferred phosphor coating weight for the first phosphor layer 26 is about 20 to 100 milligrams (mg) per square centimeter (cm2).
Preferred phosphor coating weights for the second phosphor layer lie in the range from approximately 50 to 1000 mg/cm2.
The detector segment described above as embodying this invention is useful not only in linear detector element arrays such as used in scan or slit projection radiography, but also in larger area detector screens used in digital radiography systems incorporated divergent, “area” x-ray beams. In the latter case, a phosphor matrix embodying the detector can consist of either a single integral x-ray intensifying screen, a cellularized intensifying screen, or a cellularized matrix of individual phosphor crystals.
The segments have equal square dimensions in each layer.
The dimensions of the individual cell segments, where a cellularized structure is used, are equal to the photodiode matrix array spacing, such that each individual photodiode is congruent with its cell segment.
The cell segment dimensions are greater in the second layer of the detector than in the first. The relationship between cell segment dimensions in the first and second layers is expressed by the following:
(D2/D1)=(F2/F1)
where
D2=the second detector photodiode, dimension;
D1=the first detector photodiode dimension;
F2=the distance from the x-ray source focal spot to the second detector layer 24, and
F1=the distance from the x-ray focal spot to the first detector layer 22 (see FIG. 3A for a graphical illustration of these values).
This relation applies irrespective of whether a slit projection or area screen is employed.
It is desirable that the phosphor material selected for the first phosphor layer 26 have a primary absorber atomic number lying in the range of 39 to 57. The corresponding desirable atomic number range for the phosphor materials' primary absorber selected for the second layer 28 is 56 to 83.
The capability of the detector structure of this invention to distinguish between incident x-rays of differing energy ranges can be enhanced by the interposition of a filter layer 36 between the first and second layers 22, 24. A preferred filter material is one containing copper, such as brass. A preferred filter thickness, where brass is used, is approximately 0.5 millimeters (mm). The range of practical brass filter thicknesses is from about 0.2 mm to about 1.0 mm. Alternative filters can comprise either single or multiple filter elements made of material ranging in atomic number from approximately 24 to 58.
When a detector element constructed in accordance with the presently indicated preferred embodiment is used, a desirable energy spectrum for the x-ray source is from about 80 kVp to 150 kVp, or even higher, if tube technology permits.
The degree of spacing between the first and second layers 22, 24 of the detector segment is not particularly critical. Spacing between the first and second layers can suitably vary from almost physical contact to about 3 or more centimeters (cm). The spacing between the filter layer 36 and the first and second layers 22, 24 is not critical either.
As mentioned above, figures such as FIG. 1C show a side view of the detector array D in a form simplified for clarity. FIG. 1C is simplified in that it shows only one of the two detector elements or layers which each contain a plurality of detector segments as defined by the dimensions of the photodiodes 12.
FIG. 2A is provided to show the dual detector element (layer) structure which is the present subject. FIG. 2A shows how the detailed structure of FIG. 2 appears, when incorporated into a linear detector array D. FIG. 2A represents a side view of such an array.
FIG. 2A illustrates the two detector elements or layers 22, 24 one positioned behind the other with respect to the incident radiation from the source. Each element includes respectively a coating layer of phosphor 26, 28, and a set of photodiodes respectively indicated at 30, 32. Between the elements is located the filter element 36.
Each photodiode has a lead emergent therefrom for transmitting its analog radiation indicating signal to the appropriate one of the lead groups 01, 02, as described generally above. For purposes of clarity, only representative leads are shown in FIG. 2A.
The application of the split energy radiation detector of this invention is by no means limited to a linear array of detectors, for use in slit projection digital radiography, the environment described in detail above. The present invention can also be embodied in a so-called “area” detector, i.e., a relatively large rectangular radiation detector covering a relatively expansive portion of the patient's body, designed for use with so-called “area” beams, which diverge from the source to expose the radiation detector simultaneously over its entire face. One layer of such an area detector is illustrated in FIG. 3, it being understood that such an area detector includes two such layers, one behind the other.
Other types of area detectors exist in which use of this invention is advantageous. One such area detector includes a first phosphor layer of relatively low atomic number, as described above, coupled to a radiographic film layer, behind which is a second higher atomic number phosphor screen coupled to a second piece of film. Also, instead of the film portions, photoconductive or thermoluminescent plates could be used.
The principles analogous to the construction of the cellularized and uncellularized detectors described above in conjunction with FIGS. 1A through 1E can also be applied to area detectors as well.
Where such an area detector is used, the decoding electronics for locating the sites of radiation events across the face of an area detector are more complicated than in the case of the linear detector array discussed above. Details of a system for accomplishing this, which could analogously be applied to an area detector embodying this invention, are set forth in publication entitled “A Practical Gamma Ray Camera System Using High Purity Germanium” published in the February 1974 issue of IEEE Trans Nuc Sci and prepared by the Ohio State University Department of Nuclear Engineering under the auspices of a National Institute of Health contract. This publication is expressly incorporated by reference herein.
As may be implied by the above incorporated publication, the present invention is applicable to radiation detector technology employing other than phosphor materials which convert radiation events into light energy. The principles of this invention can be incorporated as well into radiation detection technology utilizing other types of radiation sensitive material, such as solid state materials which convert incident radiation into electrical signals which represent radiation incident on the material, without the need for converting such energy to the form of light.
Energy Sensitive Experiment and Results
The arrangement of the first and second detector layers employed in the experiment was in effect as shown in FIG. 2. A Lucite and aluminum phantom 38 was employed to simulate soft tissue and bone. The experimental results are tabulated in Table 1 for a typical 120 kVp radiation level and plotted in FIG. 4. Note how the iso-Lucite and iso-aluminum lines are more distinct when the brass filter is inserted between the first and second detector layers. From the data in Table 1 the relative uncertainty in estimating the thickness of Lucite and aluminum can be calculated and these results are tabulated in Table 2. Note that the ability to discriminate Lucite and aluminum is improved when the brass filter is inserted between the first and second detector.
The first phosphor layer was a 43 mg/cm2 coating of yttrium oxysulfide. The second phosphor layer was a 110 mg/cm2 coating of gadolinium oxysulfide.
TABLE 1
Experimental Results for a Constant,
Typical Exposure Level
Brass Lucite Aluminum
(cm) (cm) (cm) (R1) (R2)
0 0 0 3167 3809
2.54 0 1662 2466
5.08 0 917 1451
8.89 0 398 679
10.16 0 309 2.59 529 3.18
11.43 0 235 415
10.16 .1  275 491
10.16 .2  249 455
10.16 .4  209 2.22 400 2.40
10.16 .8  150 308
.0558 0 0 3196 2293
2.54 0 1697 1390
5.08 0 945 338
8.89 0 408 400
10.16 0 312 2.47 316 3.06
11.43 0 242 249
10.16 .1  282 298
10.16 .2  255 278
10.16 .4  211 2.21 248 2.29
10.16 .8  154 197
TABLE 2
Lucite and Aluminum Discrimination for
10.2 cm of Lucite and 4 mm of aluminum
Brass filter Lucite Aluminum % Lucite % Aluminum
Thickness Resolution Resolution Resolution Resolution
  0 mm 0.24 cm 0.102 cm  2.4 19.0
0.56 cm 0.16 cm 0.05 cm 1.6 12.5
A split energy level radiation detector such as illustrated in detail in FIG. 2 is also applicable in conventional radiography systems as a phototimer. FIG. 5 illustrates such a system. An x-ray source 50 directs a beam 51 of x-ray through the body of a patient P and onto a conventional radiation screen 52. A split level radiation detector 54, constructed in accordance with the structure detailed in FIG. 2 is positioned as a phototimer behind the screen to receive that portion of the x-ray energy from the beam 51 which passes through the screen 52.
The phototimer 54 produces, on leads 53, 55, signals indicating the amount of received energy in separate lower and higher energy ranges, respectively. These separate energy indicating signals are fed to a dual level energy integrator 56.
The energy integrator 56 includes circuitry for separately integrating the amount of energy, over time, indicated by the outputs on the leads 53, 55.
When the integrated energy values developed by the integrator 56 accumulate to a predetermined criteria, the integrator 56 produces a signal to a tube control circuit 58 which terminates operation of the source 50 in response to the accumulation of the particular predetermined integrated energy criterian.
The energy criterian governing the time of x-ray exposure can be selected in accordance with known principles by those with skill in the art. This criterion can be defined as the accumulation of a predetermined amount of energy in either of the sensed energy ranges, or can be a function of both sensed energy levels.
It is to be understood that this description of one embodiment of the present invention is intended as illustrative, and not exhaustive, of the invention. It is to be further understood that those of ordinary skill in the relevant art may make certain additions, deletions and modifications to this embodiment of the invention as described herein, without departing from the spirit or the scope of the invention, as described in the appended claims.

Claims (42)

I claim:
1. An In an imaging system, an energy discriminating radiation detector comprising:
(a) a first element comprising a first material of a kind which is preferentially responsive to penetrative radiation of a first energy range;
(b) a second element comprising a second material different in kind from said first material and of a kind which is preferentially responsive to penetrative radiation of a second energy range extending higher than said first energy range and which is positioned to receive radiation which has penetrated through a portion of said first element; and
(c) a filter of penetrative radiation interposed between said first and second elements; and
(d) means coupled to said elements for producing an image of a portion of an object from radiation emerging from the object and incident on the first and second elements.
2. The detector of claim 1, wherein said filter contains copper.
3. The detector of claim 1, wherein said filter comprises brass.
4. The detector of claim 2 or 3, wherein said filter is selected to have a thickness of from about 0.2 mm to about 1.0 mm.
5. The detector of claim 1, An energy discriminating radiation detector comprising:
(a) a first element comprising a first material of a kind which is preferentially responsive to penetrative radiation of a first energy range;
(b) a second element comprising a second material different in kind from said first material and of a kind which is preferentially responsive to penetrative radiation of a second energy range extending higher than said first energy range and which is positioned to receive radiation which has penetrated through a portion of said first element; and
(c) a filter of penetrative radiation interposed between said first and second elements;
wherein each said element comprises:
(a) a phosphor layer, and
(b) a photodiode optically coupled to the phosphor.
6. A split energy radiation detector comprising:
(a) a first energy responsive element comprising a layer of phosphor material including one of yttrium oxysulfide and zinc cadmium sulfide; and
(b) a second energy responsive element positioned to receive energy penetrating through said first element, said second element including a second phosphor layer comprising one of gadolinium oxysulfide and cadmium tungstate.
7. The detector of claim 6 further comprising:
a copper containing filter element interposed between said first and second elements.
8. The detector of claim 6, wherein:
(a) said first phosphor layer has a coating weight of about 20 to 100 mg/cm2, and
(b) said second phosphor layer has a coating weight of about 50 mg/cm2 to 1000 mg/cm2.
9. A digital radiography system comprising:
(a) an x-ray source for directing x-rays along a path;
(b) a split energy radiation detector spaced from the source to receive x-rays from said source, said detector comprising:
(i) a first element comprising a first material of a kind which is preferentially responsive to radiation of a first energy range and being located in said path;
(ii) a first sensor for sensing radiation response of said first element;
(iii) a second element at least partially positioned to receive source radiation passing through said first element, said second element comprising a second material of a kind which is preferentially responsive to radiation of a second energy level extending higher than said first range;
(iv) a second sensor for sensing radiation response of said second element; and
(c) interpretive circuitry coupled to said sensors for at least partially digitizing information from said sensors and producing from said digitized information a representation of at least a portion of internal body structure of a subject when interposed in said path.
10. The system of claim 9 14, wherein said first material includes one of yttrium oxysulfide and zinc cadmium sulfide.
11. The system of claim 9 14, wherein said second material includes one of gadolinium oxysulfide and calcium tungstate.
12. The system of claim 9 14, further comprising: an x-ray filter layer between said first and second elements.
13. The system of claim 12, wherein said filter layer contains copper.
14. The system of claim 9, A digital radiography system comprising:
(a) an x-ray source for directing x-rays along a path;
(b) a split energy radiation detector spaced from the source to receive x-rays from said source, said detector comprising:
(i) a first element comprising a first material of a kind which is preferentially responsive to radiation of a first energy range and being located in said path;
(ii) a first sensor for sensing radiation response of said first element;
(iii) a second element at least partially positioned to receive source radiation passing through said first element, said second element comprising a second material of a kind which is preferentially responsive to radiation of a second energy level extending higher than said first range;
(iv) a second sensor for sensing radiation response of said second element; and
(c) interpretive circuitry coupled to said sensors for at least partially digitizing information from said sensors and producing from said digitized information a representation of at least a portion of internal body structure of a subject when interposed in said path;
wherein said sensors each comprise a photodiode.
15. The system of claim 9, A digital radiography system comprising:
(a) an x-ray source for directing x-rays along a path;
(b) a split energy radiation detector spaced from the source to receive x-rays from said source, said detector comprising:
(i) a first element comprising a first material of a kind which is preferentially responsive to radiation of a first energy range and being located in said path;
(ii) a first sensor for sensing radiation response of said first element;
(iii) a second element at least partially positioned to receive source radiation passing through said first element, said second element comprising a second material of a kind which is preferentially responsive to radiation of a second energy range extending higher than said first range;
(iv) a second sensor for sensing radiation response of said second element; and
(c) interpretive circuitry coupled to said sensors for at least partially digitizing information from said sensors and producing from said digitized information a representation of at least a portion of internal body structure of a subject when interposed in said path;
wherein said sensors each comprise a photodiode; and
wherein said x-ray source is capable of simultaneously producing x-rays in both said energy ranges.
16. The system of claim 9 14, wherein each of said elements is substantially planar, one said element being substantially behind the other with respect to the source.
17. An imaging method comprising the steps of:
(a) directing x-rays through a subject to be imaged, said x-rays including both higher and lower energy radiation;
(b) separately detecting higher and lower energy x-radiation emergent from the subject by passing said radiation successively through scintillators comprising respectively different kinds of materials each preferentially responsive to radiation of a different one of said lower and higher energy ranges, including sensing responses of said scintillators;
(c) at least partially digitizing information derived in said detecting step;
(d) processing said digitized information; and
(e) utilizing said processed digital information to produce a representation of internal structure of the subject.
18. The method of claim 17, wherein said digital processing step includes a step of subtracting information obtained in said lower energy sensing step from information obtained in said higher energy sensing step.
19. The method of claim 17, wherein said sensing step comprises producing information in response to radiation incident on a plurality of separate detector elements, said information including spatial location representation of said incident radiation with respect to a said sensing element.
20. An In an imaging system, an energy discriminating radiation detecting method utilizing first and second detector elements, a first of said elements being preferentially responsive to radiation of a first energy range, a second of said elements being preferentially responsive to energy radiation of a second energy range extending higher than said first energy range, said method comprising the steps of; :
(a) directing radiation extending over both said first and second energy ranges through a subject;
(b) positioning said first element to receive incident radiation emergent from the subject for response thereto;
(c) positioning said second element to receive radiation from the source passing through said first element, and
(d) filtering radiation transmitted through said first element prior to the arrival of said energy incident upon said second element; and
(e) producing an image of a portion of the subject from the radiation emerging from the subject and incident on the first and second elements.
21. A radiographic system comprising:
(a) an x-ray source;
(b) a radiation detector positioned to receive x-rays from the source;
(c) a phototimer comprising:
(i) an energy discriminating detector located to receive x-rays from the source and to produce signals indicating x-ray energy received in each of two energy ranges, and
(ii) circuitry coupled between the discriminating detector and the source for controlling the source as a function of the x-rays detected in said two energy ranges.
22. A radiation imaging system comprising:
(a) a source of penetrative radiation;
(b) a dual energy detector assembly comprising two side-by-side columns of individual detector elements, one column being staggered with respect to the other by a distance equal to less than the dimension of a single detector element taken along the direction of its column, and additional detector elements positioned behind said columns, relative to said source;
(c) mounting structure for maintaining said source and said detector assembly sufficiently spaced to provide a subject examining space and for maintaining said detector aligned continuously in said penetrative radiation when produced by said source;
(d) power means for actuating said source to direct penetrative radiation through the subject examination space and incident onto the detector assembly;
(e) means coupled to said detector elements for producing an image of a portion of a subject, when located in the subject space, from radiation emergent from said subject.
23. The system of claim 22, wherein said staggered columns of detector elements are offset with respect to one another by a distance equal approximately one-half the height of a single detector element taken in a direction along its column.
24. An energy discriminating radiation detector comprising:
(a) a first component comprising a first material of a first kind which is preferentially responsive to penetrative radiation of a first energy range;
(b) a second component comprising a second material different in kind from said first material and of a kind which is preferentially responsive to penetrative radiation of a second energy range extending higher than said first energy range, said second component being positioned to receive radiation which has penetrated through a portion of said first component, and
(c) means coupled to said first and second components to produce electrical signals representing radiation when incident respectively on said first and second components.
25. The detector of claim 24, wherein: said filter comprises further comprising a filtering material having an atomic number in the range of 24-58.
26. The detector of claim 24, wherein:
said first component comprises a phosphor layer comprising an element having an atomic number lying in the range of 39-57.
27. The detector of claim 24, wherein said second component comprises:
a phosphor layer comprising an element having an atomic number lying within the range of 56-83.
28. The detector of claim 24, wherein one of said first and second components comprises:
a phosphor layer proximate and aligned with a layer of light sensitive film.
29. The detector of claim 24 1, wherein one of said first and second componentselements comprises:
a phosphor layer; and
wherein said means for producing an image comprises a photoconductive plate, said phosphor layer being proximate and aligned with a portion of said photoconductive plate.
30. The detector of claim 24 1, wherein one of said first and second componentselements comprises:
a phosphor layer; and
wherein said means for producing an image comprises a thermoluminescent plate, said phosphor layer being proximate and aligned with a portion of said thermoluminescent plate.
31. The detector of claim 24, further comprising:
a filter of said penetrative radiation interposed between said first and second components.
32. The detector of claim 31, wherein:
said filter comprises material having an atomic number in the range of 24-58, and a thickness in the range of about 0.2 mm to 1.0 mm.
33. the detector of claim 24, wherein said second material comprises material having a primary radiation absorber having a higher atomic number than that of said first material.
34. The detector of claim 24, wherein:
(a) said first material comprises one of yttrium oxysulfite oxysulfide, zinc cadmium sulfide, barium sulfate, barium cadmium sulfate, lanthium oxysulide lanthanum oxysulfide and barium fluorochloride,
(b) said second material comprises one of gadolinium oxysulfide, cadmium tungstate, calcium tungstate and barium lead sulfate.
35. The detector of claim 24, wherein:
(a) said first material comprises a first layer of phosphor material having a coating weight of about 20 to 100 mg/cm2, and
(b) said second material comprises a second phosphor layer having a coating weight of about 50 mg/cm2 to 1000 mg/cm2.
36. The detector of claim 24, wherein:
(a) said first component comprises a portion of a first scintillator material, and
(b) said second component comprises a portion of a second scintillator material.
37. The detector of claim 24, further comprising:
a portion of penetrative radiation filtering material interposed between said first and second components and being capable of absorbing substantially all radiation incident on said filter element lying within said first energy range, while not absorbing substantially all such radiation of said second energy range.
38. A method for detecting area distribution of differing energy levels of penetrative radiation, said method comprising:
(a) detecting preferentially lower energy radiation by passing it through a first detector element including a scintillator and a plurality of segments;
(b) detecting higher energy radiation by transmitting radiation emergent from said first detector incident onto a second detector element including a scintillator and a plurality of segments;
(c) filtering penetrative radiation emergent from said first detector before said second detecting step, and
(d) producing information in said first and second detecting steps spatially locating radiation over an area with respect to at least one of said detector elements.
39. An energy discriminating radiation detector comprising:
(a) a first component comprising a first phosphor material including a primary radiation absorber having an atomic number lying the range of 39-57;
(b) a second component comprising a second phosphor material aligned with said first phosphor material to receive radiation when said radiation has penetrated through a portion of said first component, said second phosphor material including a primary radiation absorber having an atomic number lying within the range of 56-83, and
(c) means coupled to said first and second components for producing electrical signals representing radiation when incident on said detector.
40. An energy discriminating radiation detector comprising:
(a) a first component comprising a first material of a first kind which is preferentially responsive to penetrative radiation of a first energy range;
(b) a second component comprising a second material different in kind from said first material and of a kind which is responsive to penetrative radiation of a second energy range extending higher than said first energy range, said second component being aligned with said first component to receive radiation when said radiation has penetrated through a portion of said first component, and
(c) means coupled to said first and second components to produce electrical signals representing penetrative radiation when incident on said detector.
41. A radiation imaging system comprising:
(a) a source for propagating penetrative radiation along a path from a focal spot;
(b) a detector assembly spaced from said source and interposed in said path, said detector assembly comprising:
(i) a front array of individual detector elements, each front array element including a penetrative radiation sensitive receiving face having a discrete geometry, said front array element faces being located at substantially a distance F1 from said focal spot;
(ii) a rear array of individual detector elements, each said rear array element including a penetrative radiation sensitive receiving face having a discrete geometry, wherein each element of said rear array is substantially aligned behind a corresponding element of said front array, with respect to said focal spot, and in which each rear array element has a receiving face which has a larger area then the receiving face of its corresponding aligned front array element, said rear array receiving faces being located at substantially a distance F2 from said focal spot, and
(c) circuitry coupled to said detector arrays for producing a representation of radiation when incident on said detector elements.
42. The system of claim 41, wherein:
(a) said receiving faces of said detector elements of said front and rear arrays have similar geometry, and
(b) a dimension D1 of one of said front array elements is related to a corresponding dimension D2 of one of said rear array elements by the following relation:
D2/D1=F2/F1.
US08/811,787 1982-11-26 1997-03-04 Split energy level radiation detection Expired - Lifetime USRE37536E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/811,787 USRE37536E1 (en) 1982-11-26 1997-03-04 Split energy level radiation detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/444,605 US4626688A (en) 1982-11-26 1982-11-26 Split energy level radiation detection
US08/811,787 USRE37536E1 (en) 1982-11-26 1997-03-04 Split energy level radiation detection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06/444,605 Reissue US4626688A (en) 1982-11-26 1982-11-26 Split energy level radiation detection

Publications (1)

Publication Number Publication Date
USRE37536E1 true USRE37536E1 (en) 2002-02-05

Family

ID=23765594

Family Applications (2)

Application Number Title Priority Date Filing Date
US06/444,605 Ceased US4626688A (en) 1982-11-26 1982-11-26 Split energy level radiation detection
US08/811,787 Expired - Lifetime USRE37536E1 (en) 1982-11-26 1997-03-04 Split energy level radiation detection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US06/444,605 Ceased US4626688A (en) 1982-11-26 1982-11-26 Split energy level radiation detection

Country Status (4)

Country Link
US (2) US4626688A (en)
EP (4) EP0115125B1 (en)
JP (1) JPS59145983A (en)
CA (1) CA1217883A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529573B2 (en) * 2001-03-09 2003-03-04 The Regents Of The University Of California Proton recoil scintillator neutron rem meter
US20030215120A1 (en) * 2002-05-15 2003-11-20 Renuka Uppaluri Computer aided diagnosis of an image set
US20040017879A1 (en) * 2002-07-23 2004-01-29 Hoffman David M. Methods and apparatus for performing a computed tomography scan
US20040218715A1 (en) * 2003-05-02 2004-11-04 Siemens Westinghouse Power Corporation Method and apparatus for detecting defects using digital radiography
US20050082488A1 (en) * 2003-10-15 2005-04-21 Ivan Mollov Multi-slice flat panel computed tomography
US20050147201A1 (en) * 2003-12-30 2005-07-07 Hoffman David M. Multidetector CT imaging method and apparatus with reducing radiation scattering
US20050178971A1 (en) * 2004-02-17 2005-08-18 Hoge Michael F. Methods and apparatus for radiation detection
US20060171504A1 (en) * 2004-03-01 2006-08-03 Sommer Edward J Method and apparatus for sorting materials according to relative composition
WO2006114716A3 (en) * 2005-04-26 2007-03-08 Koninkl Philips Electronics Nv Double decker detector for spectral ct
WO2008131825A1 (en) * 2007-04-30 2008-11-06 DüRR DENTAL AG X-ray apparatus and detection unit for an x-ray apparatus
US20090014630A1 (en) * 2007-07-09 2009-01-15 Bio-Rad Laboratories Extended dynamic range system design
US20090147910A1 (en) * 2007-12-07 2009-06-11 General Electric Company System and method for energy sensitive computed tomography
US7589326B2 (en) 2003-10-15 2009-09-15 Varian Medical Systems Technologies, Inc. Systems and methods for image acquisition
US20090261024A1 (en) * 2004-03-01 2009-10-22 Spectramet, Llc Method and Apparatus for Sorting Materials According to Relative Composition
US20090313187A1 (en) * 2008-06-16 2009-12-17 International Business Machines Corporation Data pattern generation, modification and management utilizing a semantic network-based graphical interface
US20090309712A1 (en) * 2008-06-16 2009-12-17 International Business Machines Corporation Pattern-driven communication architecture
US20100020922A1 (en) * 2006-08-09 2010-01-28 Koninklijke Philips Electronics N. V. Apparatus and method for spectral computed tomography
US20100219109A1 (en) * 2009-02-27 2010-09-02 Roos Charles E Methods for sorting materials
US20100220833A1 (en) * 2005-04-26 2010-09-02 Koninklijke Philips Electronics N. V. Detector array for spectral ct
US20100278296A1 (en) * 2009-04-29 2010-11-04 General Electric Company Method for energy sensitive computed tomography using checkerboard filtering
US20120025086A1 (en) * 2009-02-20 2012-02-02 Hamamatsu Photonics K.K. Radiation detection device
US20120145910A1 (en) * 2009-09-18 2012-06-14 Hamamatsu Photonics K.K. Radiation detecting device
US8692148B1 (en) 2010-07-19 2014-04-08 National Recovery Technologies, Llc Method and apparatus for improving performance in container sorting
US9114433B2 (en) 2012-01-17 2015-08-25 Mineral Separation Technologies, Inc. Multi-fractional coal sorter and method of use thereof
US9227229B2 (en) 2013-04-08 2016-01-05 National Recovery Technologies, Llc Method to improve detection of thin walled polyethylene terephthalate containers for recycling including those containing liquids
US9234838B2 (en) 2013-04-08 2016-01-12 National Recovery Technologies, Llc Method to improve detection of thin walled polyethylene terephthalate containers for recycling including those containing liquids
US9329301B2 (en) 2009-09-18 2016-05-03 Hamamatsu Photonics K. K. Radiation detecting device
US11156727B2 (en) * 2015-10-02 2021-10-26 Varian Medical Systems, Inc. High DQE imaging device

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626688A (en) 1982-11-26 1986-12-02 Barnes Gary T Split energy level radiation detection
NL8401946A (en) * 1984-06-19 1986-01-16 Optische Ind De Oude Delft Nv SYSTEM FOR DETECTING TWO X-RAY RADIATION ENERGIES.
US4817123A (en) * 1984-09-21 1989-03-28 Picker International Digital radiography detector resolution improvement
US4709382A (en) * 1984-11-21 1987-11-24 Picker International, Inc. Imaging with focused curved radiation detectors
DE3517101C1 (en) * 1985-05-11 1986-10-09 Deutsches Elektronen-Synchrotron Desy, 2000 Hamburg Device for digital subtraction angiography in energy subtraction mode
US4845731A (en) * 1985-06-05 1989-07-04 Picker International Radiation data acquistion
JPS625336A (en) * 1985-07-01 1987-01-12 松下電器産業株式会社 X-ray irradiation apparatus
NL8502910A (en) * 1985-10-24 1987-05-18 Sipko Luu Boersma ROENTGEN VIEW IMAGER.
US4980904A (en) * 1985-11-15 1990-12-25 Picker International, Inc. Radiation imaging calibration
US4780897A (en) * 1986-05-06 1988-10-25 General Electric Company Dual energy imaging with kinestatic charge detector
IL79733A (en) * 1986-08-15 1990-04-29 Elscint Ltd Bone mineral density mapping
US4963746A (en) * 1986-11-25 1990-10-16 Picker International, Inc. Split energy level radiation detection
US4813064A (en) * 1987-02-09 1989-03-14 Jackson Iii David Method and apparatus for counterbalancing rotating bodies
FR2621705B1 (en) * 1987-10-09 1990-03-30 Thomson Csf MULTI-RADIATION DETECTOR, IN PARTICULAR DOUBLE ENERGY X-RAY DETECTOR
US4872188A (en) * 1987-11-27 1989-10-03 Picker International, Inc. Registration correction for radiographic scanners with sandwich detectors
US5262649A (en) * 1989-09-06 1993-11-16 The Regents Of The University Of Michigan Thin-film, flat panel, pixelated detector array for real-time digital imaging and dosimetry of ionizing radiation
US6031892A (en) 1989-12-05 2000-02-29 University Of Massachusetts Medical Center System for quantitative radiographic imaging
US4975574A (en) * 1990-01-05 1990-12-04 Henry Lucas Method of and apparatus for measuring the mean concentration of thoron and/or radon in a gas mixture
DE69104756T2 (en) * 1990-03-22 1995-06-01 Matsushita Electric Ind Co Ltd Method for determining the mass fraction of a target material using a multi-channel X-ray image sensor.
US5138167A (en) * 1991-01-23 1992-08-11 University Of Alabama - Birmingham Split energy radiation detection
US5841832A (en) * 1991-02-13 1998-11-24 Lunar Corporation Dual-energy x-ray detector providing spatial and temporal interpolation
US5216252A (en) * 1991-06-20 1993-06-01 Thomas Jefferson University Binary screen, system and method for single pulse dual energy radiography
US5451793A (en) * 1991-06-20 1995-09-19 Thomas Jefferson University Binary screen, system and method for single pulse dual energy radiology
US5247559A (en) * 1991-10-04 1993-09-21 Matsushita Electric Industrial Co., Ltd. Substance quantitative analysis method
DE4204116C2 (en) * 1992-02-12 1995-04-06 Siemens Ag X-ray diagnostic device
US5221843A (en) * 1992-04-23 1993-06-22 Alvarez Robert E Active energy selective x-ray image detection
US5334843A (en) * 1992-08-17 1994-08-02 Zeman Herbert D Composite scintillator screen
US5367172A (en) * 1993-06-01 1994-11-22 E. I. Du Pont De Nemours And Company Radiological system employing phosphors of different densities
US5548123A (en) * 1994-12-06 1996-08-20 Regents Of The University Of California High resolution, multiple-energy linear sweep detector for x-ray imaging
US5508526A (en) * 1995-02-01 1996-04-16 Keithley Instruments, Inc. Dual entrance window ion chamber for measuring X-ray exposure
JP2000500586A (en) * 1995-11-22 2000-01-18 ピッカー インターナショナル,インコーポレイテッド Scattering filter for emission tomography
DE19711927A1 (en) * 1997-03-21 1998-09-24 Siemens Ag Energy selective detector arrangement esp. X=ray and gamma detector
DE19826062B4 (en) * 1998-06-12 2006-12-14 Smiths Heimann Gmbh Method and device for detecting X-rays
WO2000068710A2 (en) * 1999-05-10 2000-11-16 Lippens Francois Energy-selective x-ray radiation detection system
JP2001099996A (en) * 1999-09-29 2001-04-13 Fuji Photo Film Co Ltd Accumulative phosphor sheet
US6683934B1 (en) 2000-06-05 2004-01-27 General Electric Company Dual energy x-ray imaging system and method for radiography and mammography
DE10044357A1 (en) 2000-09-07 2002-03-21 Heimann Systems Gmbh & Co Detector arrangement for the detection of X-rays
US6927379B2 (en) * 2000-12-22 2005-08-09 Ge Medical Systems Global Technology Company, Llc Hermetically sealed digital detector
JP4334226B2 (en) 2001-02-23 2009-09-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and system for determining volume density in an image data set
JP2003065972A (en) * 2001-08-23 2003-03-05 Ishida Co Ltd X-ray inspection apparatus
DE10143131B4 (en) * 2001-09-03 2006-03-09 Siemens Ag Method for determining density and atomic number distributions in radiographic examination methods
US7072440B2 (en) * 2001-10-19 2006-07-04 Control Screening, Llc Tomographic scanning X-ray inspection system using transmitted and Compton scattered radiation
US7415146B2 (en) * 2002-04-12 2008-08-19 Ge Medical Systems Global Technology Company, Llc Method and apparatus to determine bone mineral density utilizing a flat panel detector
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US6891918B2 (en) * 2002-11-27 2005-05-10 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for acquiring perfusion data
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
DE10330595A1 (en) * 2003-07-07 2005-02-17 Siemens Ag X-ray detector and method for producing X-ray images with spectral resolution
US8085898B2 (en) * 2009-05-08 2011-12-27 Osteometer Meditech, Inc. Apparatus for bone density assessment and monitoring
US20100135458A1 (en) * 2003-07-18 2010-06-03 Neeraj Agrawal X-Ray Apparatus for Bone Density Assessment and Monitoring
US7010092B2 (en) * 2003-08-08 2006-03-07 Imaging Dynamics Company Ltd. Dual energy imaging using optically coupled digital radiography system
DE102004001790A1 (en) * 2004-01-12 2005-08-04 Commodas Daten- Und Systemtechnik Nach Mass Gmbh Device for separating bulk materials
US20050161609A1 (en) * 2004-01-16 2005-07-28 Bjoern Heismann X-ray detector module for spectrally resolved measurements
US20060067472A1 (en) * 2004-09-30 2006-03-30 Possin George E Method and apparatus for measuring X-ray energy
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
CN100573116C (en) * 2005-06-01 2009-12-23 同方威视技术股份有限公司 A kind of module structure of detector in double arrays that is used for radiant image
JP4839050B2 (en) * 2005-09-21 2011-12-14 独立行政法人放射線医学総合研究所 Multicolor X-ray measuring device
US7342233B2 (en) 2005-11-18 2008-03-11 Sectra Mamea Ab Method and arrangement relating to x-ray imaging
WO2007110793A1 (en) * 2006-03-28 2007-10-04 Philips Intellectual Property & Standards Gmbh Scanning unit, tomography apparatus and tomography method
US7526064B2 (en) 2006-05-05 2009-04-28 Rapiscan Security Products, Inc. Multiple pass cargo inspection system
US7742568B2 (en) * 2007-06-09 2010-06-22 Spectrum San Diego, Inc. Automobile scanning system
CN101470086B (en) * 2007-12-29 2012-11-28 清华大学 Detector apparatus and CT checking system with the same
GB0803640D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803642D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Drive-through scanning systems
GB0803644D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803643D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Mobile scanning systems
US9036779B2 (en) 2008-02-28 2015-05-19 Rapiscan Systems, Inc. Dual mode X-ray vehicle scanning system
GB0803641D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0809107D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Scannign systems
GB0809109D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Scanner systems
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
GB0810638D0 (en) 2008-06-11 2008-07-16 Rapiscan Security Products Inc Photomultiplier and detection systems
US8963094B2 (en) 2008-06-11 2015-02-24 Rapiscan Systems, Inc. Composite gamma-neutron detection system
WO2010001281A1 (en) * 2008-06-30 2010-01-07 Koninklijke Philips Electronics N.V. Spectral ct
US9310323B2 (en) 2009-05-16 2016-04-12 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
US8314394B1 (en) 2009-11-04 2012-11-20 Science Applications International Corporation System and method for three-dimensional imaging using scattering from annihilation coincidence photons
JP2011112623A (en) * 2009-11-30 2011-06-09 Ihi Inspection & Instrumentation Co Ltd Two-stage x-ray detector
GB201004121D0 (en) 2010-03-12 2010-04-28 Durham Scient Crystals Ltd Detector device, inspection apparatus and method
WO2012109273A2 (en) 2011-02-08 2012-08-16 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
GB2544687B (en) * 2011-02-22 2017-09-13 Rapiscan Systems Inc X-ray inspection system
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
DE102011089595A1 (en) * 2011-12-22 2013-06-27 Siemens Aktiengesellschaft X-ray detector used for diagnostic investigation in e.g. surgery, has active matrix layers that include pixel elements which have electrical switching element for converting light into image information
US9044186B2 (en) 2012-06-25 2015-06-02 George W. Ma Portable dual-energy radiographic X-ray perihpheral bone density and imaging systems and methods
CN103675931B (en) 2012-09-26 2016-09-28 同方威视技术股份有限公司 CT system and the detection device for CT system
PL2952068T3 (en) 2013-01-31 2021-07-26 Rapiscan Systems, Inc. Portable security inspection system
US9405021B2 (en) * 2013-06-03 2016-08-02 Unfors Raysafe Ab Detector for detecting x-ray radiation parameters
US9383472B2 (en) 2013-12-30 2016-07-05 Halliburton Energy Services, Inc. Position-sensitive gamma detectors
US9557427B2 (en) 2014-01-08 2017-01-31 Rapiscan Systems, Inc. Thin gap chamber neutron detectors
US10539687B2 (en) 2014-10-16 2020-01-21 Analogic Corporation Indirect conversion detector array
CN110100191B (en) * 2016-12-21 2023-05-30 皇家飞利浦有限公司 Protection member for gamma radiation detector
US11000701B2 (en) * 2017-08-01 2021-05-11 Varex Imaging Corporation Dual-layer detector for soft tissue motion tracking
JP2021076393A (en) * 2019-11-05 2021-05-20 キヤノン株式会社 Radiation imaging device and radiation imaging system
GB2618277A (en) 2021-02-23 2023-11-01 Rapiscan Systems Inc Systems and methods for eliminating cross-talk in scanning systems having multiple x-ray sources
CN113628304B (en) * 2021-10-09 2021-12-03 湖北芯擎科技有限公司 Image processing method, image processing device, electronic equipment and storage medium

Citations (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1624443A (en) 1921-10-20 1927-04-12 Union Carbide & Carbon Res Lab X-ray filter
US2445305A (en) 1944-12-13 1948-07-13 Socony Vacuum Oil Co Inc Radiation detector
US2541599A (en) 1944-10-31 1951-02-13 Morrison Philip Radiography
US3247377A (en) 1962-04-12 1966-04-19 Texaco Inc Scintillation-type well logging device with two crystals responding separately to thermal neutrons and gamma rays
US3267283A (en) 1964-06-04 1966-08-16 Optics Tcchnology Inc Color display apparatus for images produced in different frequency ranges
US3399302A (en) 1964-06-19 1968-08-27 North American Rockwell Gamma radiation sensor and detection system
GB1154973A (en) 1966-01-10 1969-06-11 Ibm Analysing Apparatus
US3535660A (en) 1967-12-28 1970-10-20 Philips Corp Signal processing utilizing magnetic body whose properties are influenced by light waves
US3582651A (en) 1968-08-22 1971-06-01 Westinghouse Electric Corp X-ray image storage,reproduction and comparison system
US3699340A (en) 1968-10-31 1972-10-17 Oesterr Studien Atomenergie Compton spectrometer having primary and secondary detectors with low and high atomic numbers, respectively
US3725704A (en) 1971-01-28 1973-04-03 Lockheed Aircraft Corp Rare earth phosphors for x-ray conversion screens
US3790799A (en) 1972-06-21 1974-02-05 American Science & Eng Inc Radiant energy imaging with rocking scanning
US3801785A (en) 1972-11-01 1974-04-02 Raytheon Co Spatially modulated imaging system
US3848130A (en) 1973-06-25 1974-11-12 A Macovski Selective material x-ray imaging system
US3854049A (en) 1973-12-10 1974-12-10 Wisconsin Alumni Res Found Compensation for patient thickness variations in differential x-ray transmission imaging
US3859527A (en) 1973-01-02 1975-01-07 Eastman Kodak Co Apparatus and method for producing images corresponding to patterns of high energy radiation
US3860817A (en) 1973-08-10 1975-01-14 Gen Electric Reducing patient X-ray dose during fluoroscopy with an image system
US3872309A (en) 1971-12-31 1975-03-18 Agfa Gevaert Nv Radiographic intensifying screens
DE2457853A1 (en) 1973-12-07 1975-06-12 Minnesota Mining & Mfg AMPLIFIER FOR X-RAY FILMS
US3894181A (en) 1973-06-14 1975-07-08 Wisconsin Alumni Res Found Differential enhancement of periodically variable images
US3925678A (en) 1973-07-18 1975-12-09 Siemens Ag Absorption layer for use during x-ray fluorescence analysis which prevents hard x-rays
US3936638A (en) 1973-07-06 1976-02-03 Emi Limited Radiology
US3965358A (en) 1974-12-06 1976-06-22 Albert Macovski Cross-sectional imaging system using a polychromatic x-ray source
US3974386A (en) 1974-07-12 1976-08-10 Wisconsin Alumni Research Foundation Differential X-ray method and apparatus
JPS522777A (en) 1975-06-24 1977-01-10 Jeol Ltd Radiation detector
US4008400A (en) 1975-03-18 1977-02-15 Picker Corporation Transverse tomography system having multibeam orbital scanning with all beams offset from the center of orbit
US4029963A (en) 1976-07-30 1977-06-14 The Board Of Trustees Of Leland Stanford Junior University X-ray spectral decomposition imaging system
US4031401A (en) 1975-03-14 1977-06-21 American Science & Engineering, Inc. Radiant energy imaging scanning
US4037104A (en) 1976-04-29 1977-07-19 Nucleonic Data Systems, Inc. Dual beam X-ray thickness gauge
US4047029A (en) 1976-07-02 1977-09-06 Allport John J Self-compensating X-ray or γ-ray thickness gauge
US4047037A (en) 1976-02-09 1977-09-06 The Ohio State University Gamma ray camera for nuclear medicine
NL7703994A (en) 1976-04-13 1977-10-17 Bfg Glassgroup METHOD AND EQUIPMENT FOR FORMING A METAL OR METAL JOINT COATING ON A CONTINUOUS LENGTH-DIRECTLY SURFACE MOVING GLASS RIBBON THROUGH THIS PLANE, WHILE IT IS AT INCREASED TEMPERATURE, TO BRING IN CONTACT WITH A MEDIUM, SUBSTANCE, OR SUBSTANCE OR CONSTITUTED THAT UNDERGO A CHEMICAL REACTION OR DEFEAT ON THE SURFACE IN THE FORM OF THE METAL OR METAL COMPOUND.
US4055765A (en) 1976-04-27 1977-10-25 The Ohio State University Gamma camera system with composite solid state detector
US4055766A (en) 1976-04-27 1977-10-25 The Ohio State University Control system for gamma camera
GB2005405A (en) 1977-09-29 1979-04-19 Machlett Lab Inc Radiation detector
US4176280A (en) 1977-04-19 1979-11-27 Siemens Aktiengesellschaft Tomographic x-ray apparatus for producing transverse layer images
US4179100A (en) 1977-08-01 1979-12-18 University Of Pittsburgh Radiography apparatus
US4187427A (en) 1978-01-09 1980-02-05 General Electric Company Structure for collimated scintillation detectors useful in tomography
US4204226A (en) 1978-05-16 1980-05-20 Wisconsin Alumni Research Foundation Real-time digital X-ray time interval difference imaging
US4204225A (en) 1978-05-16 1980-05-20 Wisconsin Alumni Research Foundation Real-time digital X-ray subtraction imaging
US4217498A (en) 1976-09-13 1980-08-12 General Electric Company Tomographic scanning apparatus with ionization detector means
US4217641A (en) 1978-04-28 1980-08-12 U.S. Philips Corporation Correction for polychromatic X-ray distortion in CT images
US4225789A (en) 1977-09-14 1980-09-30 U.S. Philips Corporation Device for computer tomography
US4242583A (en) 1978-04-26 1980-12-30 American Science And Engineering, Inc. X-ray imaging variable resolution
US4247774A (en) 1978-06-26 1981-01-27 The United States Of America As Represented By The Department Of Health, Education And Welfare Simultaneous dual-energy computer assisted tomography
WO1981000457A1 (en) 1979-08-08 1981-02-19 Technicare Corp Shaped detector
US4255666A (en) 1979-03-07 1981-03-10 Diagnostic Information, Inc. Two stage, panel type x-ray image intensifier tube
US4258264A (en) 1978-07-12 1981-03-24 Fuji Photo Film Co., Ltd. Method of and apparatus for reading out a radiation image recorded in a stimulable phosphor
US4260898A (en) 1978-09-28 1981-04-07 American Science And Engineering, Inc. X-ray imaging variable resolution
US4260895A (en) 1978-07-14 1981-04-07 Siemens Aktiengesellschaft Radiation diagnostic apparatus for generating tomographic images
GB2058511A (en) 1979-08-27 1981-04-08 Thompson C J Positron annihilation imaging device using multiple offset rings of detectors
FR2468999A1 (en) * 1979-10-30 1981-05-08 Thomson Csf Radiation detector consists of low capacitance photodiode - with several small diodes on semiconductor substrate near to scintillator
US4267446A (en) 1979-04-03 1981-05-12 Geoco, Inc. Dual scintillation detector for determining grade of uranium ore
US4266425A (en) 1979-11-09 1981-05-12 Zikonix Corporation Method for continuously determining the composition and mass flow of butter and similar substances from a manufacturing process
US4274005A (en) 1978-09-29 1981-06-16 Tokyo Shibaura Denki Kabushiki Kaisha X-ray apparatus for computed tomography scanner
US4317037A (en) 1978-06-09 1982-02-23 Hitachi, Ltd. Radiation detection apparatus
US4366382A (en) 1980-09-09 1982-12-28 Scanray Corporation X-Ray line scan system for use in baggage inspection
EP0077018A1 (en) * 1981-10-09 1983-04-20 Heimann GmbH Device to produce X-ray images of an object
EP0089665A1 (en) 1982-03-20 1983-09-28 Fuji Photo Film Co., Ltd. Subtraction processing method and apparatus for radiation images
US4413353A (en) 1981-09-03 1983-11-01 Albert Macovski X-Ray encoding system using an optical grating
US4425426A (en) 1982-09-30 1984-01-10 Eastman Kodak Company Radiographic elements exhibiting reduced crossover
US4426721A (en) 1980-10-07 1984-01-17 Diagnostic Information, Inc. X-ray intensifier detector system for x-ray electronic radiography
US4445226A (en) 1981-05-05 1984-04-24 The Board Of Trustees Of The Leland Stanford Junior University Multiple-energy X-ray subtraction imaging system
EP0115125A1 (en) 1982-11-26 1984-08-08 The Board Of Trustees Of The University Of Alabama For Its Division University Of Alabama In Birmingham Radiation detectors and energy discriminating apparatus and methods using such detectors
US4472822A (en) 1980-05-19 1984-09-18 American Science And Engineering, Inc. X-Ray computed tomography using flying spot mechanical scanning mechanism
JPS59200983A (en) 1983-04-28 1984-11-14 Toshiba Corp Radiant ray detector
US4511799A (en) 1982-12-10 1985-04-16 American Science And Engineering, Inc. Dual energy imaging
US4535245A (en) 1980-11-13 1985-08-13 U.S. Philips Corporation Wavelength-sensitive radiography apparatus
US4578808A (en) 1981-12-30 1986-03-25 Plessey Overseas Limited Electro-acoustic transducers
US4578803A (en) 1981-12-07 1986-03-25 Albert Macovski Energy-selective x-ray recording and readout system
US4618773A (en) 1982-10-04 1986-10-21 Drukier Andrej K Apparatus for the diagnosis of body structures into which a gammaemitting radioactive isotope has been introduced
US4639599A (en) 1984-05-10 1987-01-27 Kabushiki Kaisha Toshiba Ring type single-photon emission CT imaging apparatus
US4670892A (en) 1977-11-15 1987-06-02 Philips Medical Systems, Inc. Method and apparatus for computed tomography of portions of a body plane
US4855598A (en) 1982-11-04 1989-08-08 Fuji Photo Film Co., Ltd. Energy subtraction processing method for radiation images, stimulable phosphor sheet, stimulable phosphor sheet composite member & stimulable phosphor sheet filter composite member used for the method
US4947412A (en) 1988-10-20 1990-08-07 Picker International, Inc. X-ray detector for CT scanners
US4963746A (en) 1986-11-25 1990-10-16 Picker International, Inc. Split energy level radiation detection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7703944A (en) * 1977-04-12 1978-10-16 Philips Nv Multichannel X=ray detector esp. for computer tomography - has cells of differing measuring capacity increasing speed and accuracy
JPS5425189A (en) * 1977-07-28 1979-02-24 Toshiba Corp X-ray tomogram diagnosis unit
JPS57122850A (en) * 1981-01-23 1982-07-30 Tokyo Shibaura Electric Co Radioactive ray tomogram photograph apparatus

Patent Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1624443A (en) 1921-10-20 1927-04-12 Union Carbide & Carbon Res Lab X-ray filter
US2541599A (en) 1944-10-31 1951-02-13 Morrison Philip Radiography
US2445305A (en) 1944-12-13 1948-07-13 Socony Vacuum Oil Co Inc Radiation detector
US3247377A (en) 1962-04-12 1966-04-19 Texaco Inc Scintillation-type well logging device with two crystals responding separately to thermal neutrons and gamma rays
US3267283A (en) 1964-06-04 1966-08-16 Optics Tcchnology Inc Color display apparatus for images produced in different frequency ranges
US3399302A (en) 1964-06-19 1968-08-27 North American Rockwell Gamma radiation sensor and detection system
GB1154973A (en) 1966-01-10 1969-06-11 Ibm Analysing Apparatus
US3535660A (en) 1967-12-28 1970-10-20 Philips Corp Signal processing utilizing magnetic body whose properties are influenced by light waves
US3582651A (en) 1968-08-22 1971-06-01 Westinghouse Electric Corp X-ray image storage,reproduction and comparison system
US3699340A (en) 1968-10-31 1972-10-17 Oesterr Studien Atomenergie Compton spectrometer having primary and secondary detectors with low and high atomic numbers, respectively
US3725704A (en) 1971-01-28 1973-04-03 Lockheed Aircraft Corp Rare earth phosphors for x-ray conversion screens
US3872309A (en) 1971-12-31 1975-03-18 Agfa Gevaert Nv Radiographic intensifying screens
US3790799A (en) 1972-06-21 1974-02-05 American Science & Eng Inc Radiant energy imaging with rocking scanning
US3801785A (en) 1972-11-01 1974-04-02 Raytheon Co Spatially modulated imaging system
US3859527A (en) 1973-01-02 1975-01-07 Eastman Kodak Co Apparatus and method for producing images corresponding to patterns of high energy radiation
US3894181A (en) 1973-06-14 1975-07-08 Wisconsin Alumni Res Found Differential enhancement of periodically variable images
US3848130A (en) 1973-06-25 1974-11-12 A Macovski Selective material x-ray imaging system
US3936638A (en) 1973-07-06 1976-02-03 Emi Limited Radiology
US3925678A (en) 1973-07-18 1975-12-09 Siemens Ag Absorption layer for use during x-ray fluorescence analysis which prevents hard x-rays
US3860817A (en) 1973-08-10 1975-01-14 Gen Electric Reducing patient X-ray dose during fluoroscopy with an image system
DE2457853A1 (en) 1973-12-07 1975-06-12 Minnesota Mining & Mfg AMPLIFIER FOR X-RAY FILMS
US3854049A (en) 1973-12-10 1974-12-10 Wisconsin Alumni Res Found Compensation for patient thickness variations in differential x-ray transmission imaging
US3974386A (en) 1974-07-12 1976-08-10 Wisconsin Alumni Research Foundation Differential X-ray method and apparatus
US3965358A (en) 1974-12-06 1976-06-22 Albert Macovski Cross-sectional imaging system using a polychromatic x-ray source
US4031401A (en) 1975-03-14 1977-06-21 American Science & Engineering, Inc. Radiant energy imaging scanning
US4008400A (en) 1975-03-18 1977-02-15 Picker Corporation Transverse tomography system having multibeam orbital scanning with all beams offset from the center of orbit
JPS522777A (en) 1975-06-24 1977-01-10 Jeol Ltd Radiation detector
US4047037A (en) 1976-02-09 1977-09-06 The Ohio State University Gamma ray camera for nuclear medicine
NL7703994A (en) 1976-04-13 1977-10-17 Bfg Glassgroup METHOD AND EQUIPMENT FOR FORMING A METAL OR METAL JOINT COATING ON A CONTINUOUS LENGTH-DIRECTLY SURFACE MOVING GLASS RIBBON THROUGH THIS PLANE, WHILE IT IS AT INCREASED TEMPERATURE, TO BRING IN CONTACT WITH A MEDIUM, SUBSTANCE, OR SUBSTANCE OR CONSTITUTED THAT UNDERGO A CHEMICAL REACTION OR DEFEAT ON THE SURFACE IN THE FORM OF THE METAL OR METAL COMPOUND.
US4055765A (en) 1976-04-27 1977-10-25 The Ohio State University Gamma camera system with composite solid state detector
US4055766A (en) 1976-04-27 1977-10-25 The Ohio State University Control system for gamma camera
US4037104A (en) 1976-04-29 1977-07-19 Nucleonic Data Systems, Inc. Dual beam X-ray thickness gauge
US4047029A (en) 1976-07-02 1977-09-06 Allport John J Self-compensating X-ray or γ-ray thickness gauge
US4029963A (en) 1976-07-30 1977-06-14 The Board Of Trustees Of Leland Stanford Junior University X-ray spectral decomposition imaging system
US4217498A (en) 1976-09-13 1980-08-12 General Electric Company Tomographic scanning apparatus with ionization detector means
US4176280A (en) 1977-04-19 1979-11-27 Siemens Aktiengesellschaft Tomographic x-ray apparatus for producing transverse layer images
US4179100A (en) 1977-08-01 1979-12-18 University Of Pittsburgh Radiography apparatus
US4225789A (en) 1977-09-14 1980-09-30 U.S. Philips Corporation Device for computer tomography
GB2005405A (en) 1977-09-29 1979-04-19 Machlett Lab Inc Radiation detector
US4234792A (en) 1977-09-29 1980-11-18 Raytheon Company Scintillator crystal radiation detector
US4670892A (en) 1977-11-15 1987-06-02 Philips Medical Systems, Inc. Method and apparatus for computed tomography of portions of a body plane
US4187427A (en) 1978-01-09 1980-02-05 General Electric Company Structure for collimated scintillation detectors useful in tomography
US4242583A (en) 1978-04-26 1980-12-30 American Science And Engineering, Inc. X-ray imaging variable resolution
US4217641A (en) 1978-04-28 1980-08-12 U.S. Philips Corporation Correction for polychromatic X-ray distortion in CT images
US4204225A (en) 1978-05-16 1980-05-20 Wisconsin Alumni Research Foundation Real-time digital X-ray subtraction imaging
US4204226A (en) 1978-05-16 1980-05-20 Wisconsin Alumni Research Foundation Real-time digital X-ray time interval difference imaging
US4317037A (en) 1978-06-09 1982-02-23 Hitachi, Ltd. Radiation detection apparatus
US4247774A (en) 1978-06-26 1981-01-27 The United States Of America As Represented By The Department Of Health, Education And Welfare Simultaneous dual-energy computer assisted tomography
US4258264A (en) 1978-07-12 1981-03-24 Fuji Photo Film Co., Ltd. Method of and apparatus for reading out a radiation image recorded in a stimulable phosphor
US4260895A (en) 1978-07-14 1981-04-07 Siemens Aktiengesellschaft Radiation diagnostic apparatus for generating tomographic images
US4260898A (en) 1978-09-28 1981-04-07 American Science And Engineering, Inc. X-ray imaging variable resolution
US4274005A (en) 1978-09-29 1981-06-16 Tokyo Shibaura Denki Kabushiki Kaisha X-ray apparatus for computed tomography scanner
US4255666A (en) 1979-03-07 1981-03-10 Diagnostic Information, Inc. Two stage, panel type x-ray image intensifier tube
US4267446A (en) 1979-04-03 1981-05-12 Geoco, Inc. Dual scintillation detector for determining grade of uranium ore
US4292538A (en) 1979-08-08 1981-09-29 Technicare Corporation Shaped detector
WO1981000457A1 (en) 1979-08-08 1981-02-19 Technicare Corp Shaped detector
GB2058511A (en) 1979-08-27 1981-04-08 Thompson C J Positron annihilation imaging device using multiple offset rings of detectors
FR2468999A1 (en) * 1979-10-30 1981-05-08 Thomson Csf Radiation detector consists of low capacitance photodiode - with several small diodes on semiconductor substrate near to scintillator
US4266425A (en) 1979-11-09 1981-05-12 Zikonix Corporation Method for continuously determining the composition and mass flow of butter and similar substances from a manufacturing process
US4472822A (en) 1980-05-19 1984-09-18 American Science And Engineering, Inc. X-Ray computed tomography using flying spot mechanical scanning mechanism
US4366382A (en) 1980-09-09 1982-12-28 Scanray Corporation X-Ray line scan system for use in baggage inspection
US4366382B2 (en) 1980-09-09 1997-10-14 Scanray Corp X-ray line scan system for use in baggage inspection
US4366382B1 (en) 1980-09-09 1996-01-23 Scanray Corp X-ray line scan system for use in baggage inspection
US4426721A (en) 1980-10-07 1984-01-17 Diagnostic Information, Inc. X-ray intensifier detector system for x-ray electronic radiography
US4535245A (en) 1980-11-13 1985-08-13 U.S. Philips Corporation Wavelength-sensitive radiography apparatus
US4445226A (en) 1981-05-05 1984-04-24 The Board Of Trustees Of The Leland Stanford Junior University Multiple-energy X-ray subtraction imaging system
US4413353A (en) 1981-09-03 1983-11-01 Albert Macovski X-Ray encoding system using an optical grating
EP0077018A1 (en) * 1981-10-09 1983-04-20 Heimann GmbH Device to produce X-ray images of an object
US4578803A (en) 1981-12-07 1986-03-25 Albert Macovski Energy-selective x-ray recording and readout system
US4578808A (en) 1981-12-30 1986-03-25 Plessey Overseas Limited Electro-acoustic transducers
EP0089665A1 (en) 1982-03-20 1983-09-28 Fuji Photo Film Co., Ltd. Subtraction processing method and apparatus for radiation images
US4425426B1 (en) 1982-09-30 1988-08-09
US4425426A (en) 1982-09-30 1984-01-10 Eastman Kodak Company Radiographic elements exhibiting reduced crossover
US4618773A (en) 1982-10-04 1986-10-21 Drukier Andrej K Apparatus for the diagnosis of body structures into which a gammaemitting radioactive isotope has been introduced
US4855598A (en) 1982-11-04 1989-08-08 Fuji Photo Film Co., Ltd. Energy subtraction processing method for radiation images, stimulable phosphor sheet, stimulable phosphor sheet composite member & stimulable phosphor sheet filter composite member used for the method
EP0115125A1 (en) 1982-11-26 1984-08-08 The Board Of Trustees Of The University Of Alabama For Its Division University Of Alabama In Birmingham Radiation detectors and energy discriminating apparatus and methods using such detectors
US4626688A (en) 1982-11-26 1986-12-02 Barnes Gary T Split energy level radiation detection
US4511799A (en) 1982-12-10 1985-04-16 American Science And Engineering, Inc. Dual energy imaging
JPS59200983A (en) 1983-04-28 1984-11-14 Toshiba Corp Radiant ray detector
US4639599A (en) 1984-05-10 1987-01-27 Kabushiki Kaisha Toshiba Ring type single-photon emission CT imaging apparatus
US4963746A (en) 1986-11-25 1990-10-16 Picker International, Inc. Split energy level radiation detection
US4947412A (en) 1988-10-20 1990-08-07 Picker International, Inc. X-ray detector for CT scanners

Non-Patent Citations (38)

* Cited by examiner, † Cited by third party
Title
"Absorption Edge Fluoroscopy Using Quasi-monoenergetic X-ray Beams", C.A. Mistretta, PhD, M.G. Ort, MS, F. Kelcz, MS, J.R. Cameron, PhD., .P. Siedband, MS and A.B. Crummy, MD, Investigative Radiology, vol. 8, Nov./Dec. 1973, pp. 402-412.
"Design and Physical Characteristics of a Digital Chest Unit", R.A. Mattson, R.A. Sones, J.B. Stickney, M.M. Tesic, G.T. Barnes, SPIE, vol. 314 Digital Radiography, 1981, pp. 160-163.
"Energy-selective Reconstructions in X-ray Computerized Tomography", Robert E. Alvarez and Albert Macovski, Phys. Med. Biol., 1976, vol. 21, No. 5, 733-744.
"Generalized Image Combinations in Dual KVP Digital Radiography", L.A. Lehmann, R.E. Alvarez, A. Macovski, and W.R. Brody, Medical Physics, vol. 8, No. 5, Sep./Oct. 1981, pp. 659-667.
"Hybrid Subtraction in Digital Fluorography", G.S. Keyes, S.J. Riederer, B.F. Belanger, W.R. Brody, SPIE, vol. 347 Application of Optical Instrumentation in Medicine X, 1982, pp. 34-41.
"Noise considerations in dual energy CT scanning", Kelcz, Joseph and Hilal, Medical Physics, vol. 6, No. 5, Sep./Oct. 1979, pp. 418-425.
"Split Xenon Detector for Tomochemistry in Computed Tomography", Aaron Fenster, Journal of Computer Assisted Tomography, vol. 2, No. 3, 243-252, Jul. 1978.
"Split-Detector Computed Tomography: A Preliminary Report", Rodney A. Brooks, PhD., and Glovanni Di Chiro, M.D., Radiology, vol. 126, pp. 255-257, Jan., 1978.
"Split-Filter Computed Tomography: A Simple Technique for Dual Energy Scanning", Brian Rutt and Aaron Fenster, J. Comput Assist Tomogr, vol. 4., No. 4, 1980, pp. 501-509.
"The Assessment of Bone Mineralization from the Relative Transmission of 241Am and 137Cs Radlations", G.W. Reed, First International Conference on Medical Physics, p. 174. (1966).
"The Effect of the kVp Level on EMI Values", Leslie M. Zatz, M.D., Radiology, vol. 119, Jun., 1976, pp. 683-688.
"Time Delay and Integration Imager in GaAs", S. Chamberlain and R.F. Rutz, IBM Technical Disclosure Bulletin, vol. 23, No. 12, May 1981.
Adler, I., Gerald, J., Trombka, J., Schmadeback R., Lowman, P., Blodget H., Yin L., Eller E., Lamothe, R., Gorenstein, P., Bjorkholm P., Harris B., Gursky A., The Apollo 15 X-ray Flourescence Experiment, Proc. Third Lunar Sci. Conference, Grochim, Cosmo Chim Acta, Suppl. 3, vol. E., pp. 2157-2178 (1972).
Alvarez, R.E. and D. Cassell, "Film based digital x-rays: Using energy-selecting processing to substract unwanted materials", Diagnostic Imaging, vol. 5, No. 5, pp. 36-41, 1983.
Alvarez, R.E., "Extraction of Energy Dependent Information in Radiography", PhD Dissertation, Dept. of Electrical Engineering, Stanford University, 1976.
Arnold, B.A. et al, "A Digital Radiography: An Overview", Proc. of SPIE, vol. 273, Mar. 1981.
B.W. Gorski, "New Sensitomoetric Method", Proceedings of the Society of PhotoOptical Instrumentation Engineers, vol. 173. Application of Optical Instrumentation in Medicine VII, Toronto, Canada, Mar. 25-27, 1979 (Bellingham, WA, USA: Soc. Photo-Optical Instrumentation Engineers, 1979), pp. 28-32.
Barnes, Radiology, vol. 156, pp. 537-540, 1985.
Barnes, Sones, Tesic, Morgan, Sanders, "Detector for Dual Energy Radiography", presented at 69th Scientific Assembly and Annual Meeting of Radiological Society of North America, Chicago, IL, Nov. 1983.
Blank, N. et al: "Dual Energy Radiography: A Preliminary Study", Digital Radiography, proc. SPIE 314: 181-182, 1981.
Chan, J. L-H. "Some applications of filtered bremsstrahlung spectra in radiology", PhD Dissertation, Dept. of Electrical Engineering, Stanford University, 1980.
D.J. Drost, "Experimental Dual Xenon Detectors for Quantitative CT and Spectral Artifact Correction", Medical Physics (USA), vol. 7, No. 2, pp. 101-107 (Mar.-Apr. 1980).
D.R. Morgan, R.A. Sones, and G.T. Barnes, "Performance characteristics of a dual energy detector for digital scan projection radiography", Medical Physics, vol. 14, pp. 728-735, Sep./Oct. 1987.
Ergum, et al., Single Exposure Dual-Energy Computed Radiography: Improved Detection and Processing, Radiology, pp. 174, 243-249, 1990.
Hall, A.L. et al., "Experimental System for Dual Energy Scanned Projection Radiology", Digital Radiology, proc. of SPIE 314: 155-159, 1981.
Handbook of Chemistry and Physics, 50th Ed. 1970, Chemical Rubber Co. R.C. Weast, Ed. pp. E-185-E196.
I.T. Steinberger, et al, "Gudden-Pohl and Memory Effects in an Infra-Red Stimulated Phosphor", Dept. of Physics, the Hebrew Univ., J. Phys. Chem. Solids, Pergamon Press 1957, vol. 3, p. 133-140.
Jacobson, "Dichromatic Absorption Radiography: Dichromography", ACTA Radiologica, vol. 39, Jun. 1953, pp. 437-453.
Kruger, R.A. et al, "A Digital Video Image Processor for Real Time X-ray Subtraction Imaging", Optical Engineering, vol. 17, No. 6, 1978.
L. Brixner and H.Y. Chen, "On the Structural and Luminescent Properties of the M'LnTaO4 Rare Earth Tantalstes,"Journal of the Electrochemical Soc., vol. 130, No. 12 (Dec. 1983) pp. 2435-2443.
L. Brixner, R.S. Holland, R.E. Kellogg, D. Miekish, S.H. Putten and W. Gegarski, "Low Print-Through Technology With Rare Earth Tantalate Phospors." No Date.
Low, W., J. T. Steinberger, and E.A. Braun "The effect of alternating . . . ", Journal of the Optical Society of American, vol. 44, pp. 504-505., 1954, (Sep. 1976).
McCullough, E.C., "Photon Attenuation in Computed Tomography", Med. Phys., vol. 2, pp. 307-320, 1975.
MP Siedebend, et al, "Differential Energy Absorption X-Ray Cassette", Journal of Applied Photographic Eng., (USA), vol. 3, No. 3, p. 162 (Summer 1977).
Radiological Health Handbook, Jan. 1970.
Richard A. Sones, et al, "Measured performance characteristics of a solid-state linear detector array", Med. Phys. 12(2), Mar./Apr. 1985, pp. 136-143.
Summer, F.G. et al., "Abdominal Dual Energy Imaging", Digital Radiography, proc. SPIE 314: 172-174, 1981.
Yeh, P-S, "Selective material imaging using multiple energy measurements", PhD Dissertation, Dept. of Electrical Engineering, Stanford Univ., 1980.

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529573B2 (en) * 2001-03-09 2003-03-04 The Regents Of The University Of California Proton recoil scintillator neutron rem meter
US20030215120A1 (en) * 2002-05-15 2003-11-20 Renuka Uppaluri Computer aided diagnosis of an image set
US7295691B2 (en) 2002-05-15 2007-11-13 Ge Medical Systems Global Technology Company, Llc Computer aided diagnosis of an image set
US7050529B2 (en) 2002-07-23 2006-05-23 Ge Medical Systems Global Technolgy Company, Llc Methods and apparatus for performing a computed tomography scan
US20040017879A1 (en) * 2002-07-23 2004-01-29 Hoffman David M. Methods and apparatus for performing a computed tomography scan
US20080031507A1 (en) * 2002-11-26 2008-02-07 General Electric Company System and method for computer aided detection and diagnosis from multiple energy images
US7796795B2 (en) 2002-11-26 2010-09-14 General Electric Co. System and method for computer aided detection and diagnosis from multiple energy images
US20040218715A1 (en) * 2003-05-02 2004-11-04 Siemens Westinghouse Power Corporation Method and apparatus for detecting defects using digital radiography
US6873680B2 (en) 2003-05-02 2005-03-29 Siemens Westinghouse Power Corporation Method and apparatus for detecting defects using digital radiography
WO2005037075A2 (en) * 2003-10-15 2005-04-28 Varian Medical Systems Technologies, Inc. Multi-slice flat panel computed tomography
WO2005037075A3 (en) * 2003-10-15 2005-11-17 Varian Med Sys Tech Inc Multi-slice flat panel computed tomography
US7589326B2 (en) 2003-10-15 2009-09-15 Varian Medical Systems Technologies, Inc. Systems and methods for image acquisition
US7095028B2 (en) * 2003-10-15 2006-08-22 Varian Medical Systems Multi-slice flat panel computed tomography
US20050082488A1 (en) * 2003-10-15 2005-04-21 Ivan Mollov Multi-slice flat panel computed tomography
US7187748B2 (en) 2003-12-30 2007-03-06 Ge Medical Systems Global Technology Company, Llc Multidetector CT imaging method and apparatus with reducing radiation scattering
US20050147201A1 (en) * 2003-12-30 2005-07-07 Hoffman David M. Multidetector CT imaging method and apparatus with reducing radiation scattering
US7235790B2 (en) 2004-02-17 2007-06-26 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for radiation detection
US20050178971A1 (en) * 2004-02-17 2005-08-18 Hoge Michael F. Methods and apparatus for radiation detection
US20090261024A1 (en) * 2004-03-01 2009-10-22 Spectramet, Llc Method and Apparatus for Sorting Materials According to Relative Composition
US7099433B2 (en) 2004-03-01 2006-08-29 Spectramet, Llc Method and apparatus for sorting materials according to relative composition
US7848484B2 (en) 2004-03-01 2010-12-07 Spectramet, Llc Method and apparatus for sorting materials according to relative composition
US20110116596A1 (en) * 2004-03-01 2011-05-19 Spectramet, Llc Method and Apparatus for Sorting Materials According to Relative Composition
US8861675B2 (en) 2004-03-01 2014-10-14 Spectramet, Llc Method and apparatus for sorting materials according to relative composition
US8144831B2 (en) 2004-03-01 2012-03-27 Spectramet, Llc Method and apparatus for sorting materials according to relative composition
US20060171504A1 (en) * 2004-03-01 2006-08-03 Sommer Edward J Method and apparatus for sorting materials according to relative composition
US20080210877A1 (en) * 2005-04-26 2008-09-04 Koninklijke Philips Electronics N. V. Double Decker Detector For Spectral Ct
US8391439B2 (en) 2005-04-26 2013-03-05 Koninklijke Philips Electronics N.V. Detector array for spectral CT
US7968853B2 (en) 2005-04-26 2011-06-28 Koninklijke Philips Electronics N.V. Double decker detector for spectral CT
CN101166469B (en) * 2005-04-26 2015-05-06 皇家飞利浦电子股份有限公司 Double decker detector for spectral CT
WO2006114716A3 (en) * 2005-04-26 2007-03-08 Koninkl Philips Electronics Nv Double decker detector for spectral ct
US20100220833A1 (en) * 2005-04-26 2010-09-02 Koninklijke Philips Electronics N. V. Detector array for spectral ct
US8243874B2 (en) * 2006-08-09 2012-08-14 Koninklijke Philips Electronics N.V. Apparatus and method for spectral computed tomography
US20100020922A1 (en) * 2006-08-09 2010-01-28 Koninklijke Philips Electronics N. V. Apparatus and method for spectral computed tomography
WO2008131825A1 (en) * 2007-04-30 2008-11-06 DüRR DENTAL AG X-ray apparatus and detection unit for an x-ray apparatus
US7952056B2 (en) 2007-07-09 2011-05-31 Bio-Rad Laboratories, Inc. Extended dynamic range light detection systems and methods
US7683299B2 (en) 2007-07-09 2010-03-23 Bio-Rad Laboratories, Inc. Extended dynamic range system design using a photomultiplier tube and solid state detector
US20100133427A1 (en) * 2007-07-09 2010-06-03 Bio-Rad Laboratories Extended dynamic range light detection systems and methods
US20090014630A1 (en) * 2007-07-09 2009-01-15 Bio-Rad Laboratories Extended dynamic range system design
US20090147910A1 (en) * 2007-12-07 2009-06-11 General Electric Company System and method for energy sensitive computed tomography
WO2009073284A1 (en) * 2007-12-07 2009-06-11 General Electric Company Filter with alternating pattern for use in energy sensitive computed tomography
US7885372B2 (en) 2007-12-07 2011-02-08 Morpho Detection, Inc. System and method for energy sensitive computed tomography
US8086547B2 (en) 2008-06-16 2011-12-27 International Business Machines Corporation Data pattern generation, modification and management utilizing a semantic network-based graphical interface
US7864037B2 (en) * 2008-06-16 2011-01-04 International Business Machines Corporation Pattern-driven communication architecture
US20090313187A1 (en) * 2008-06-16 2009-12-17 International Business Machines Corporation Data pattern generation, modification and management utilizing a semantic network-based graphical interface
US20090309712A1 (en) * 2008-06-16 2009-12-17 International Business Machines Corporation Pattern-driven communication architecture
US20120025086A1 (en) * 2009-02-20 2012-02-02 Hamamatsu Photonics K.K. Radiation detection device
US20100219109A1 (en) * 2009-02-27 2010-09-02 Roos Charles E Methods for sorting materials
US8610019B2 (en) 2009-02-27 2013-12-17 Mineral Separation Technologies Inc. Methods for sorting materials
US8853584B2 (en) 2009-02-27 2014-10-07 Mineral Separation Technologies Inc. Methods for sorting materials
US9126236B2 (en) 2009-02-27 2015-09-08 Mineral Separation Technologies, Inc. Methods for sorting materials
US20100278296A1 (en) * 2009-04-29 2010-11-04 General Electric Company Method for energy sensitive computed tomography using checkerboard filtering
US8111803B2 (en) 2009-04-29 2012-02-07 General Electric Company Method for energy sensitive computed tomography using checkerboard filtering
US20120145910A1 (en) * 2009-09-18 2012-06-14 Hamamatsu Photonics K.K. Radiation detecting device
US9329301B2 (en) 2009-09-18 2016-05-03 Hamamatsu Photonics K. K. Radiation detecting device
US8981310B2 (en) * 2009-09-18 2015-03-17 Hamamatsu Photonics K.K. Radiation detecting device
US8692148B1 (en) 2010-07-19 2014-04-08 National Recovery Technologies, Llc Method and apparatus for improving performance in container sorting
US9114433B2 (en) 2012-01-17 2015-08-25 Mineral Separation Technologies, Inc. Multi-fractional coal sorter and method of use thereof
US9234838B2 (en) 2013-04-08 2016-01-12 National Recovery Technologies, Llc Method to improve detection of thin walled polyethylene terephthalate containers for recycling including those containing liquids
US9227229B2 (en) 2013-04-08 2016-01-05 National Recovery Technologies, Llc Method to improve detection of thin walled polyethylene terephthalate containers for recycling including those containing liquids
US11156727B2 (en) * 2015-10-02 2021-10-26 Varian Medical Systems, Inc. High DQE imaging device

Also Published As

Publication number Publication date
US4626688A (en) 1986-12-02
JPS59145983A (en) 1984-08-21
EP0270761A3 (en) 1989-05-31
EP0287707A2 (en) 1988-10-26
EP0115125B1 (en) 1989-10-11
EP0287707A3 (en) 1989-06-07
EP0115125A1 (en) 1984-08-08
EP0270761A2 (en) 1988-06-15
EP0271655A2 (en) 1988-06-22
EP0271655A3 (en) 1989-06-28
CA1217883A (en) 1987-02-10

Similar Documents

Publication Publication Date Title
USRE37536E1 (en) Split energy level radiation detection
US5138167A (en) Split energy radiation detection
US4963746A (en) Split energy level radiation detection
EP0182529B1 (en) Radiographic system
US7105828B2 (en) Hybrid x-ray detector
US4179100A (en) Radiography apparatus
US5150394A (en) Dual-energy system for quantitative radiographic imaging
US6031892A (en) System for quantitative radiographic imaging
US3790785A (en) Radiographic imaging
US10539683B2 (en) Device and method for simultaneous X-ray and gamma photon imaging with a stacked detector
EP0785674A1 (en) Radiographic apparatus and image processing method
Sashin et al. Diode array digital radiography: initial clinical experience
CA2254877A1 (en) A system for quantitative radiographic imaging
CA2083064C (en) X-ray backscatter detection system
EP0212836A1 (en) Radiation imaging systems
CA1131805A (en) Radiography apparatus
Borrás Radiation Protection in Diagnostic Radiology
JPH0133171B2 (en)
Sashin et al. Improvements in or relating to radiography apparatus
Sashin et al. Improved Diagnostic Radiography and Reduced Radiation Exposure Using a 1024× 1024 Pixels Linear Diode Array Imaging System