USRE37509E1 - Smectic liquid crystal devices - Google Patents

Smectic liquid crystal devices Download PDF

Info

Publication number
USRE37509E1
USRE37509E1 US08/371,035 US37103595A USRE37509E US RE37509 E1 USRE37509 E1 US RE37509E1 US 37103595 A US37103595 A US 37103595A US RE37509 E USRE37509 E US RE37509E
Authority
US
United States
Prior art keywords
cholesteric
liquid crystal
smectic
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/371,035
Inventor
Madeline J. Bradshaw
Edward P. Raynes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinetiq Ltd
Original Assignee
UK Secretary of State for Defence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Secretary of State for Defence filed Critical UK Secretary of State for Defence
Priority to US08/371,035 priority Critical patent/USRE37509E1/en
Application granted granted Critical
Publication of USRE37509E1 publication Critical patent/USRE37509E1/en
Assigned to QINETIQ LIMITED reassignment QINETIQ LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SECRETARY OF STATE FOR DEFENCE, THE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K19/126Compounds containing at least one asymmetric carbon atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K19/2021Compounds containing at least one asymmetric carbon atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • G02F1/1416Details of the smectic layer structure, e.g. bookshelf, chevron, C1 and C2

Definitions

  • the invention relates to smectic liquid crystal devices.
  • Liquid crystal devices commonly comprise a thin layer of a liquid crystal material contained between two glass plates or walls. A thin transparent electrode is deposited on the inner face of both walls. The combination of liquid crystal layer, walls, and electrode is often termed a liquid crystal cell. When an electric field is applied between the two electrodes, liquid crystal molecules rotate in the field to an ON state. On removal of the field the molecules rotate back to an OFF state, determined by a surface treatment applied to the walls before cell assembly and by the type of liquid crystal material. The optical transmission characteristics of the ON and OFF states are different. Some devices need one or two polarisers and/or dyes to visibly distinguish between ON and OFF states.
  • liquid crystal material There are broadly three different types of liquid crystal material, nematic, cholesteric, and smectic, each distinguished by a different molecular ordering.
  • Such materials only show a liquid crystal phase over a limited temperature range between the solid and isotropic liquid phases.
  • a material may exhibit one or more of the nematic, cholesteric or smectic phase types. Normally a material is chosen such that it forms only one type of liquid crystal phase over its working temperature range.
  • the present invention concerns devices using smectic liquid crystal materials.
  • Displays have been made with the electrodes formed These collectively form an x, y matrix of separately addressable elements on a large display.
  • One way of addressing such a display is by multiplexing i.e. addressing each row in sequence until the whole display has been addressed. This is repeated all the time that a display is needed.
  • Another type of display uses the ON and OFF states to form an electrically switchable optical shutter.
  • Yet another type of display is used as an optical storage device. Nematic cholesteric and smectic liquid crystal material have been used for such devices.
  • a problem with many displays is the time taken to switch between the two states i.e. the response times. For many displays a fast response time is needed.
  • a nematic material, arranged in a 90° twisted structure typically has a response time of 100 milliseconds.
  • a method of making a liquid crystal display device comprises the steps;
  • a tilted chiral smectic liquid crystal material having a cholesteric phase at an elevated temperature above ambient between the chiral smectic and isotropic phases with a cholesteric pitch p greater than half the layer thickness d at a temperature at least 0.1° C. above a cholesteric to smectic transition temperature and a significant spontaneous polarization Ps in the chiral smectic phase,
  • the heating step may be before or after introduction of the material to the space.
  • the liquid crystal material may be a single component or a mixture of components.
  • the material may combine one or more chiral components with laevo (left hand) cholesteric twist sense with one or more chiral components with dextro (right hand) cholesteric twist sense. With such a mixture none of the laevo components can be the racemates of the dextro components.
  • This chiral mixture may be a chiral smectic itself or may be used as an additive to a non-chiral and/or racemate tilted smectic liquid crystal host material.
  • the chiral component or components may have the same cholesteric twist sense providing the cholesteric pitch and Ps have the above values.
  • the smectic phase has at least one of the following chiral tilted smectic phases C*, I*, F*, J*, G*, K*, H* depending on temperature and may include a smectic A phase between the cholesteric to chiral smectic phase transition.
  • the layer thickness may be up to 15 ⁇ m or more, but is typically 1-12 ⁇ m, e.g. 2 ⁇ m and 6 ⁇ m.
  • the p/d ratio is large enough to prevent the material, in its cholesteric phase close to the cholesteric to smectic phase transition, adopting more than a 3 ⁇ twist, ideally the pitch p is greater than 4d, so that less than ⁇ twist can occur in the cholesteric phase near the transition.
  • this value of p is large over the whole cholesteric phase, preferably is large for 5° C. above the smectic/cholesteric transition.
  • the pitch in the smectic phase is greater than 0.1 ⁇ m and preferably much greater, e.g. greater than layer thickness.
  • the value of Ps is at least 0.1 and preferably 1 or more nC/cm 2 . All the chiral components may have substantial values of Ps and the same sense of Ps. Alternatively one or more components may have Ps values of opposite senses providing the net Ps is substantial.
  • the cooling is at a rate of between 0.05° and 2° C./minute within +/ ⁇ 5° C. of the cholesteric to smectic phase transition.
  • the rate of cooling depends upon the amount of compensation in the cholesteric phase.
  • the cell may be cooled as quickly as is convenient, e.g. 20° C./minute or more.
  • a liquid crystal device comprises a layer of a tilted chiral smectic liquid crystal material contained between two cell walls each carrying electrode structures and at least one wall surface treated to give alignment to the liquid crystal molecules, a first linear polarizer and either a second polarizer or an amount of dichroic dye in the liquid crystal material,
  • liquid crystal material having a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at a higher, above ambient, temperature, with a cholesteric pitch greater than half the layer thickness in the cholesteric phase for at least 0.1° C. above the cholesteric to smectic transition temperature, and a substantial spontaneous polarization.
  • the device cell may be arranged between two polarizer arranged with their optical axes parallel or at a non zero angle to one another.
  • the liquid crystal mixture may include an amount of a dichroic dye. In this case only one polariser is needed.
  • the device may further include means for applying two d.c. voltages of opposite polarity to the electrode structures whereby the molecules of the mixture are forced to lie in one of two different positions depending on the polarity of applied voltage and switch between these two positions as the polarity is changed.
  • the cell wall surface treatment may provide similar alignment, in the same or different directions, or different types of alignment, e.g. homogeneous and homoetropic, on the two walls. Alternatively one wall may be left cleaned but with no surface alignment.
  • a liquid material mixture for use in a tilted chiral smectic liquid crystal device comprises a material having a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at an elevated temperature, the mixture having a cholesteric pitch greater than 4 ⁇ m in the cholesteric phase at least 0.1° C. above a cholesteric to smectic transition temperature, and a substantial spontaneous polarization coefficient Ps, in the smectic phase.
  • the device operating temperature typically falls within the range of 0° to 40° C. although for some devices mounted on equipment the upper operating temperature may be about 100° C. or even higher.
  • chiral components in nematic liquid crystal material is well known.
  • the addition of a chiral component imparts a twist direction to the nematic material director and results in a cholesteric material.
  • the direction of this twist can either be clockwise or anticlockwise, i.e. right or left rotation.
  • Adding two different chiral materials of opposite twist can result in zero twist depending upon the composition and temperature of the mixture.
  • Some compounds can have molecules with both right and left rotary power, these are optical isomers when the optical isomers are present in equal amounts a racemic mixture is formed with is indistinguisable from ordinary non-chiral liquid crystalline materials.
  • FIGS. 1, 2 are plan and section views of a liquid crystal display device
  • FIGS. 3, 4 , 5 are stylised views of a layer of aligned liquid crystal material showing smectic A, smectic C and smectic C* material respectively;
  • FIG. 6 is a plan view of a S C * cell showing both Ps UP and Ps DOWN molecular alignment states.
  • FIGS. 7 (a), (b), (c) are graphs of cholestric pitch vs temperature for various mixtures
  • FIG. 8 is a graph showing variation of half cone angle between UP and
  • FIG. 9 is a graph showing variation of Ps with temperature for one material mixture.
  • the cell 1 shown in FIGS. 1, 2 comprises two glass walls, 2 , 3 , spaced about 1-6 ⁇ m apart by a spacer ring 4 and/or distributed spacers. Electrode structures 5 , 6 of transparent tin oxide are formed on the inner face of both walls. These electrodes may be of conventional row and column shape or seven segment display. A layer 7 of liquid crystal material is contained between the walls 2 , 3 and spacer ring 4 . Polarizers 8 , 9 are arranged in front of and behind the cell 1 . The alignment of the optical axis of each polarizer is discussed later. To an approximation the polarizers are crossed and the optical axis of one is nearly parallel or perpendicular to a liquid crystal molecular alignment direction. A d.c. voltage source 10 supplies power through control logic 11 to driver circuits 12 , 13 connected to the electrode structures 5 , 6 , by lead wires 14 , 15 .
  • the walls 2 , 3 Prior to assembly the walls 2 , 3 are surface treated by spinning on a thin layer of polyamide or polyimide, drying and where appropriate curing; then buffing with a soft cloth (e.g. rayon) in a single direction R 1 , R 2 .
  • This known treatment provides a surface alignment for liquid crystal molecules.
  • the molecules align themselves along the rubbing direction R 1 , R 2 , and at an angle of about 2° to the surface.
  • the directions R 1 , R 2 may in the same or opposition directions.
  • R 1 , R 2 are arranged in the same direction the contacting liquid crystal molecules tilt towards the layer centre and adapt a splayed configuration across the layer thickness.
  • Surface alignment may be provided by the known process of obliquely evaporating silicon oxide onto the cell walls. As for rubbing alignment the alignment can be parallel in the same or opposite direction. Alternatively one wall may be either left uncoated, or coated with e.g. polyamide and not buffed. Alignment is then provided by the
  • the device may operate in a transmissive or reflective mode. In the former light passing through the device e.g. from a tungsten bulb is selectively transmitted or blocked to form the desired display. In the reflective mode a mirror is placed behind the second polarizer 9 to reflect ambient light back through the cell 1 and two polarizer. By making the mirror partly reflecting the device may be operated both in a transmissive and reflective mode.
  • Pleochroic dyes may be added to the material 7 . In this case only one polarizer is needed.
  • FIGS. 3, 4 , 5 An idealised, and somewhat simplistic, arrangement of liquid crystal molecules within a cell is shown diagrammatically in FIGS. 3, 4 , 5 . In practice these arrangements may differ considerably from those illustrated, depending in part on cell wall surface effects.
  • FIG. 3 shows a layer 7 of smectic A (S A ) material.
  • Axes x, y, z, are used to define directions.
  • the liquid crystal layer lies in x, y plane, layer thickness is in the z direction, rubbing directions R 1 , R 2 , are +x, and ⁇ x for the upper and lower wall respectively.
  • R 1 , R 2 rubbing directions
  • ⁇ x for the upper and lower wall respectively.
  • FIG. 4 shows a layer of smectic C (S C ) material. Surface alignment is +x and ⁇ x as in FIG. 3 .
  • the liquid crystal molecules 21 form into layers 20 parallel to the y, z plane.
  • S C molecules 21 adopt a tilted formation within each layer.
  • the tilt is in an x, y plane and at an angle ⁇ to the x axis.
  • is 15°-25° depending on material composition and temperature.
  • FIG. 5 illustrates smectic pitch in a layer 7 of smectic C* (S C *), material.
  • This material forms in layers 20 n, with the molecules 21 n in each layer lying at an angle 15°-25° to the x axis and with this angle 15°-25° varying in each layer 21 .
  • Collectively the molecules form into a twisted structure with the twist axis along the x axis. This is shown in FIG. 5 where the molecular alignment in successive layers 21 is shown lying along the surface of a cone with a 45° change between each layer.
  • the structure of FIG. 5 is termed a tilted chiral smectic phase.
  • Such materials can be produced by the addition of a chiral material to a smectic material.
  • the chiral additive may have either a clockwise or anticlockwise twist, some compounds may have molecules with both senses of twist direction, in which case the material can be racemate.
  • Tilted chiral smectic materials can have a spontaneous polarization and there are two opposing directions for this depending on the configuration of the molecule. In a racemate material the two spontaneous polarization (Ps) directions are equal and cancel one another and there is no net Ps. With a mixture of chiral compounds of opposite twist directions Ps can either be additive or subtractive. Providing there is a net Ps the mixture will exhibit a ferroelectric characteristic.
  • One way of producing an aligned S C * layer 7 is heating the material into an S A phase where it is aligned by the cell surface treatment, and then cooling to the S C * phase. Unfortunately this cooling can also form the material into a small focal conic structure; a state with layers of molecules lying in many planes at different angles to one another.
  • the present invention overcomes this problem by using a material having a cholesteric phase above the smectic phase and providing a suitable cholesteric pitch as follows:
  • the material is one having the following phases with increasing temperature
  • X* is at least one of the following:—C*, I*, F*, J*, G*, K*, H*.
  • X* is at least one of the following:—C*, I*, F*, J*, G*, K*, H*.
  • the pitch p in the cholesteric phase is arranged to ensure that the maximum twist across the layer thickness d is not greater than 3 ⁇ .
  • a 3 ⁇ twist can occur when p is about 2/3d; a 2 ⁇ twist when p is about d; a ⁇ twist when p is about 2d; and zero twist when p>4d.
  • This cholesteric pitch is necessary for a temperature range of 0.1° C. above the smectic/cholesteric transition. Preferably this range is 5° C. above the transition and ideally over the entire cholesteric phase.
  • Another way of achieving the above material is to use one or more chiral components with the same cholesteric twist sense and S C * polarisation sense but still satisfying the cholesteric pitch values noted above.
  • Such a mixture may be used alone or in combination with a non-chiral or a racemate liquid crystal material, e.g. a S C host.
  • the material cools into the S A phase with uniform alignment caused by the cell wall treatment.
  • the result is alignment as in FIG. 3 .
  • the material adopts the S C * phase with alignment approximately as in FIG. 6 for mixtures with sufficiently long S C * pitch such that the surface alignment unwinds the helical pitch, i.e. the S C * pitch is about d, or FIG. 5 for shorter pitch lengths.
  • Materials without an S A phase are cooled from the cholesteric to a chiral smectic phase. Providing the cholesteric pitch is sufficiently long the cell is well aligned in the S* phase.
  • the pitch in the tilted smectic phase is arranged to be greater than about 1 ⁇ m and preferably very much greater.
  • FIGS. 7 (a), (b), (c) The compensation of pitch in the cholesteric phase is illustrated in FIGS. 7 (a), (b), (c).
  • FIG. 7 (a) shows cholesteric pitch against temperature for a noncompensated material having a cholesteric to smectic transition. At this transition the pitch tends to infinity.
  • the compensated material shown in FIG. 7 (b) shows a pitch increase to infinity a few degrees above the transition temperature with a pitch reduction below.
  • the compensation temperature where the pitch goes to infinity occurs just below the smectic to cholesteric transition temperature.
  • dopants e.g. CC10, CC12 can be used alone in small amounts to give a characteristic shown in FIG. 7 (c). In this case the material is not compensated as in FIG. 7 (b) but inherently has a long pitch.
  • the molecules adopt one of two different alignments, D 1 , D 2 , depending upon the polarity of the pulse. This is shown in FIG. 6 at 21 , 22 . Note these alignments may not correspond to a zero field alignment.
  • the two molecules direction D 1 , D 2 represent two different Ps directions, i.e. UP and DOWN directions.
  • the polarisers 7 , 8 are arranged with their optical axis orthogonal and with the optical axis of one polarizer 7 or 8 parallel to direction 21 , or 22 . Alternatively the polarizers 7 , 8 axis may be at non parallel and non orthogonal directions. In each case a different effect is observed in the two switched states.
  • the cell is observed to change rapidly between a dark and a light state as the d.c. pulses are applied.
  • the angle between directions 21 , 22 depends upon the liquid crystal material. Ideally it will be about 45°. Alternatively, when a dye is incorporated into the liquid material, the ideal angle between directions 21 , 22 is about 90° with the single polarizer aligned along or perpendicular to one of the two directions 21 , 22 .
  • FIG. 8 shows how the angle ⁇ (half the angle between 21 , 22 ) varies with temperature for one material mixture, example 5. The variation of Ps with temperature for this same example 5 is shown in FIG. 9 .
  • the cell 1 may also be used as a shutter when the electrodes 5 , 6 are sheet electrodes. Light is blocked or transmitted in the cells of two different switched states.
  • This shutter may also be combined with coloured polarizers to provide a colour switch, arranged in front of a monochrome cathode ray tube (C.R.T.).
  • C.R.T. monochrome cathode ray tube
  • a C.R.T. emits light in two different wavelengths.
  • the colour switch is switched to transmit the two different colours a frame at a time. This is synchronised to the C.R.T. emitting frame sequential images representing the two different colours. Providing the frame time is high enough an observer's eye integrates the two different colour images as one multicolour image.
  • the present invention provides a colour switch by using a neutral polarizer on one side of the cell 1 and two different colour, e.g. red and blue, polarizers on the opposite side the cell. These coloured polarizers are arranged with their optical axis orthogonal. The axis of one coloured polarizer is parallel to that of the neutral polarizer.
  • the cell is switched at the C.R.T. frame rate as in G.B. 1,491,471.
  • the cell may also be used as a 90° polarization switch.
  • the polarizers are arranged with one parallel to the liquid crystal molecules in one of the switched states 21 , 22 .
  • the second polarizer is crossed with respect to the first polariser.
  • the angle between the two directions 21 , 22 is about 45°.
  • Providing the birefringence ⁇ n is suitably arranged, cf of the known expression ⁇ nd/ ⁇ , the plane of polarization of light is rotated by 90°.
  • Polarization switches are useful for example in three dimensional (3-D) television. In this alternate left and right eye frames are displayed. An observer wears polarizing glasses and a polarization switch in front of the TV screen is switched in synchronism with the frame rate. This is described in G.B. 2,062,281 B. A similar effect is obtained if an observer wears glasses that have left and right eye liquid crystal shutters that are switched in synchronism with left and right eye frames on the TV screen.
  • Is isotropic
  • N nematic
  • S smectic
  • Ch cholesteric
  • This material had the following phases with increasing temperature solid—S C *—S A —cholesteric—Isotropic.
  • Examples 2, 3, 4 use compensated chiral mixtures. These mixtures are composed of chiral components with opposite sense of cholesteric twist, but the same sense of S * spontaneous polarization.
  • CD1 ⁇ 23% CC1+77% CC3.
  • phase transition temperature Isotropic 114° Chol 93.4° S A 71.5° S C * 50° Solid.
  • the cholesteric pitch/temperature curve is similar to FIG. 7b, the compensation temperature (i.e. where the pitch is infinite) occurs at ⁇ 99° C.
  • a ⁇ twist state can be maintained for up to 1° C. above the S A to cholesteric phase transition temperature; with slow cooling good alignment can be achieved in the smectic phases.
  • a 61.5° C. the mixture showed a Ps ⁇ 25 nC/cm 2 and a tilt angle (i.e. half cone angle) of ⁇ 18.5°.
  • CD3 ⁇ 22% CC1+78% CC3.
  • phase transition temperatures Isotropic 115° Chol 94.6° S A 72.6° S C * 47° Solid.
  • the cholesteric pitch/temperature curve is similar to FIG. 7b; the compensation temperature (i.e. where the pitch is infinite) occurs at ⁇ 98° C.
  • a zero twist state can be obtained, and a ⁇ twist can be maintained for up to ⁇ 6° C. above the S A to cholesteric phase transition temperature.
  • CD9 ⁇ 20% CC8+80% CC3.
  • phase transition temperatures Isotropic 120.1° Chol 93.0° S A 78 0° S C * 43° Solid.
  • the cholesteric pitch/temperature curve is similar to FIG. 7b, the compensation temperature (i.e. where the pitch is infinite) occurs at ⁇ 102° C.
  • a 2 ⁇ twist state can be obtained for up to 0.5° C. above the S A to cholesteric phase transition.
  • Examples 5, 6, 7, 8 use a compensated chiral mixture in an S C host.
  • CM6 43.5% CD3+56.5% H1.
  • phase-temperature values Isotropic 132.8° Cholesteric 106.8° S A 83.9° S C * 14° S—solid.
  • the pitch/temperature curve is similar to FIG. 7b; the mixture being compensated (i.e. infinite pitch) at ⁇ 113° C. In a 2 ⁇ m and 6 ⁇ m cell, respectively, a zero twist state is obtained for up to 14° C. and up to 8° C. above the S A to cholesteric phase transition temperature.
  • FIGS. 8 and 9 show the tilt angle (i.e. half cone angle) and spontaneous polarization, Ps, as a function of temperature for CM6.
  • phase-temperature values Isotropic 126.1° Cholesteric 84° S A 65° S C * 5° S
  • the pitch/temperature curve is similar to FIG. 7b; the mixture being compensated (i.e. infinite pitch) at ⁇ 119.5° C. In a 2 ⁇ m cell a zero twist state is obtained for a few °C. above the smectic A to cholesteric phase transition temperature.
  • CM3 ⁇ 40% (20% CC1+80% CC3)+60% H3.
  • phase transition temperatures Isotropic 127.5° Cholesteric 92.4° S A 72° S C * 10° S.
  • the pitch/temperature curve is similar to FIG. 7 c.
  • phase transition temperatures Isotropic 147.1° Chol 101.1° S A 85.1° S C * 13° S.
  • the pitch/temperature curve is similar to FIG. 7b; the compensation temperature (i.e. where the pitch is infinite) occurs at ⁇ 119° C. In a 2 ⁇ m cell, a zero twist state can be obtained just above the smectic A to cholesteric phase transition temperature.
  • CM13 ⁇ 90% (90% H4+10% M7)+10% (49% CC1+51% CC4)
  • the spontaneous polarization of the mixture is 2 nC/cm 2 and .6.2 nC/cm 2 , respectively.
  • Examples 11, 12 use a single cholesteric twist sense chiral component in an S C host.
  • This mixture has the following phase transition temperatures: Isotropic 151° Cholesteric 113.5° S A 104.5° S C * 28° S
  • the cholesteric pitch/temperature curve is similar to FIG. 7 c.
  • a zero twist state can be achieved for ⁇ 0.5° C. above the smectic A to cholesteric transition temperature.
  • the spontaneous polarization of the mixture is 1.7 nC/cm 2 and 4.2 nC/cm 2 at 80° C. and 40° C., respectively.
  • This mixture has the following phase transition temperatures: Isotropic 158° Cholesteric 91° S A 89° S C * 18° S 8° S.
  • the cholesteric pitch/temperature curve is similar to FIG. 7 c.
  • a zero twist state can be achieved for ⁇ 4° C. above the smectic A to cholesteric phase transition temperature.
  • a zero twist state can be achieved for up to 0.2° C. above the smectic C* to cholesteric transition temperature.
  • the mixture has the following phases
  • This mixture has the following phases:
  • CD18 34% CC1+66% CC11
  • Ps 10 nC/cm 2 at 20° C. and 5 nC/cm 2 at 46° C.

Abstract

A method, device, and material for providing a fast switching liquid crystal display employs the ferro electric effect of chiral smectic liquid crystal material. To provide a uniform appearance the liquid crystal material is arranged to have a long cholesteric pitch at a temperature close to a smectic/cholesteric phase transistion temperature. This long cholesteric pitch allows liquid crystal molecules to cool from the cholesteric to smectic phase with a uniform alignment. The smectic material is contained in a cell between wells (2, 3) bearing electrodes (5, 6) and surface treated to provide homogeneous alignment of liquid crystal material (7).

Description

This application is a continuation of PCT/GB00222 filed Apr. 1, 1987 which is based on British Patent Application 86 08114 filed Apr. 3, 1986.
The invention relates to smectic liquid crystal devices.
Liquid crystal devices commonly comprise a thin layer of a liquid crystal material contained between two glass plates or walls. A thin transparent electrode is deposited on the inner face of both walls. The combination of liquid crystal layer, walls, and electrode is often termed a liquid crystal cell. When an electric field is applied between the two electrodes, liquid crystal molecules rotate in the field to an ON state. On removal of the field the molecules rotate back to an OFF state, determined by a surface treatment applied to the walls before cell assembly and by the type of liquid crystal material. The optical transmission characteristics of the ON and OFF states are different. Some devices need one or two polarisers and/or dyes to visibly distinguish between ON and OFF states.
There are broadly three different types of liquid crystal material, nematic, cholesteric, and smectic, each distinguished by a different molecular ordering.
Such materials only show a liquid crystal phase over a limited temperature range between the solid and isotropic liquid phases. Within the liquid crystal phase temperature range a material may exhibit one or more of the nematic, cholesteric or smectic phase types. Normally a material is chosen such that it forms only one type of liquid crystal phase over its working temperature range.
The present invention concerns devices using smectic liquid crystal materials.
Displays have been made with the electrodes formed These collectively form an x, y matrix of separately addressable elements on a large display. One way of addressing such a display is by multiplexing i.e. addressing each row in sequence until the whole display has been addressed. This is repeated all the time that a display is needed. Another type of display uses the ON and OFF states to form an electrically switchable optical shutter. Yet another type of display is used as an optical storage device. Nematic cholesteric and smectic liquid crystal material have been used for such devices. A problem with many displays is the time taken to switch between the two states i.e. the response times. For many displays a fast response time is needed. A nematic material, arranged in a 90° twisted structure typically has a response time of 100 milliseconds.
Devices comprising smectic materials have not been used as widely as devices with nematic or cholesteric materials. Available display devices based on smectic materials did not have the necessary characteristics. Recently however ferro electric smectic devices with fast switching and bistability characteristics have become of interest. N. A. Clark & S. T. Lagerwall, App. Phys. Letters 35 (11) 1090 pp 899-901. Chiral liquid crystal materials in a tilted smectic phase, e.g. SC*, SI*, SF*, SJ*, SG*, SH* are known to exhibit ferroelectric properties. This has been described by R. B. Meyer, L. Liebert, L. Strzelecki and P. Keller, J. de Physique (Lett), 36, L-69 (1975).
According to this invention a method of making a liquid crystal display device comprises the steps;
providing two cell walls spaced apart by a spacer to contain a layer of a liquid crystal material, the wall inner surfaces having formed thereon electrode structures and at least one wall surface treated to provide a liquid crystal alignment,
providing a tilted chiral smectic liquid crystal material having a cholesteric phase at an elevated temperature above ambient between the chiral smectic and isotropic phases with a cholesteric pitch p greater than half the layer thickness d at a temperature at least 0.1° C. above a cholesteric to smectic transition temperature and a significant spontaneous polarization Ps in the chiral smectic phase,
heating the mixture to the cholesteric phase,
introducing and sealing the mixture into the space between the walls,
cooling the material to the tilted chiral smectic phase.
The heating step may be before or after introduction of the material to the space.
The liquid crystal material may be a single component or a mixture of components. The material may combine one or more chiral components with laevo (left hand) cholesteric twist sense with one or more chiral components with dextro (right hand) cholesteric twist sense. With such a mixture none of the laevo components can be the racemates of the dextro components. This chiral mixture may be a chiral smectic itself or may be used as an additive to a non-chiral and/or racemate tilted smectic liquid crystal host material. Alternatively the chiral component or components may have the same cholesteric twist sense providing the cholesteric pitch and Ps have the above values.
The smectic phase has at least one of the following chiral tilted smectic phases C*, I*, F*, J*, G*, K*, H* depending on temperature and may include a smectic A phase between the cholesteric to chiral smectic phase transition.
The layer thickness may be up to 15 μm or more, but is typically 1-12 μm, e.g. 2 μm and 6 μm.
The p/d ratio is large enough to prevent the material, in its cholesteric phase close to the cholesteric to smectic phase transition, adopting more than a 3 π twist, ideally the pitch p is greater than 4d, so that less than π twist can occur in the cholesteric phase near the transition. Ideally this value of p is large over the whole cholesteric phase, preferably is large for 5° C. above the smectic/cholesteric transition.
The pitch in the smectic phase is greater than 0.1 μm and preferably much greater, e.g. greater than layer thickness.
The value of Ps is at least 0.1 and preferably 1 or more nC/cm2. All the chiral components may have substantial values of Ps and the same sense of Ps. Alternatively one or more components may have Ps values of opposite senses providing the net Ps is substantial.
For some mixtures the cooling is at a rate of between 0.05° and 2° C./minute within +/−5° C. of the cholesteric to smectic phase transition. The rate of cooling depends upon the amount of compensation in the cholesteric phase. For well compensated material the cell may be cooled as quickly as is convenient, e.g. 20° C./minute or more.
According to this invention a liquid crystal device comprises a layer of a tilted chiral smectic liquid crystal material contained between two cell walls each carrying electrode structures and at least one wall surface treated to give alignment to the liquid crystal molecules, a first linear polarizer and either a second polarizer or an amount of dichroic dye in the liquid crystal material,
a liquid crystal material having a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at a higher, above ambient, temperature, with a cholesteric pitch greater than half the layer thickness in the cholesteric phase for at least 0.1° C. above the cholesteric to smectic transition temperature, and a substantial spontaneous polarization.
The device cell may be arranged between two polarizer arranged with their optical axes parallel or at a non zero angle to one another. Alternatively the liquid crystal mixture may include an amount of a dichroic dye. In this case only one polariser is needed.
The device may further include means for applying two d.c. voltages of opposite polarity to the electrode structures whereby the molecules of the mixture are forced to lie in one of two different positions depending on the polarity of applied voltage and switch between these two positions as the polarity is changed.
The cell wall surface treatment may provide similar alignment, in the same or different directions, or different types of alignment, e.g. homogeneous and homoetropic, on the two walls. Alternatively one wall may be left cleaned but with no surface alignment.
According to this invention a liquid material mixture for use in a tilted chiral smectic liquid crystal device comprises a material having a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at an elevated temperature, the mixture having a cholesteric pitch greater than 4 μm in the cholesteric phase at least 0.1° C. above a cholesteric to smectic transition temperature, and a substantial spontaneous polarization coefficient Ps, in the smectic phase.
The device operating temperature typically falls within the range of 0° to 40° C. although for some devices mounted on equipment the upper operating temperature may be about 100° C. or even higher.
Use of chiral components in nematic liquid crystal material is well known. The addition of a chiral component imparts a twist direction to the nematic material director and results in a cholesteric material. The direction of this twist can either be clockwise or anticlockwise, i.e. right or left rotation. Adding two different chiral materials of opposite twist can result in zero twist depending upon the composition and temperature of the mixture. Some compounds can have molecules with both right and left rotary power, these are optical isomers when the optical isomers are present in equal amounts a racemic mixture is formed with is indistinguisable from ordinary non-chiral liquid crystalline materials.
BRIEF DESCRIPTION OF THE DRAWINGS
One form of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
FIGS. 1, 2, are plan and section views of a liquid crystal display device;
FIGS. 3, 4, 5, are stylised views of a layer of aligned liquid crystal material showing smectic A, smectic C and smectic C* material respectively;
FIG. 6 is a plan view of a SC* cell showing both Ps UP and Ps DOWN molecular alignment states.
FIGS. 7(a), (b), (c) are graphs of cholestric pitch vs temperature for various mixtures;
FIG. 8 is a graph showing variation of half cone angle between UP and
DOWN states for one material mixture;
FIG. 9 is a graph showing variation of Ps with temperature for one material mixture.
DESCRIPTION OF PREFERRED EMBODIMENT
The cell 1 shown in FIGS. 1, 2 comprises two glass walls, 2, 3, spaced about 1-6 μm apart by a spacer ring 4 and/or distributed spacers. Electrode structures 5, 6 of transparent tin oxide are formed on the inner face of both walls. These electrodes may be of conventional row and column shape or seven segment display. A layer 7 of liquid crystal material is contained between the walls 2, 3 and spacer ring 4. Polarizers 8, 9 are arranged in front of and behind the cell 1. The alignment of the optical axis of each polarizer is discussed later. To an approximation the polarizers are crossed and the optical axis of one is nearly parallel or perpendicular to a liquid crystal molecular alignment direction. A d.c. voltage source 10 supplies power through control logic 11 to driver circuits 12, 13 connected to the electrode structures 5, 6, by lead wires 14, 15.
Prior to assembly the walls 2, 3 are surface treated by spinning on a thin layer of polyamide or polyimide, drying and where appropriate curing; then buffing with a soft cloth (e.g. rayon) in a single direction R1, R2. This known treatment provides a surface alignment for liquid crystal molecules. The molecules align themselves along the rubbing direction R1, R2, and at an angle of about 2° to the surface. The directions R1, R2 may in the same or opposition directions. When R1, R2 are arranged in the same direction the contacting liquid crystal molecules tilt towards the layer centre and adapt a splayed configuration across the layer thickness. Surface alignment may be provided by the known process of obliquely evaporating silicon oxide onto the cell walls. As for rubbing alignment the alignment can be parallel in the same or opposite direction. Alternatively one wall may be either left uncoated, or coated with e.g. polyamide and not buffed. Alignment is then provided by the other, rubbed wall surface.
The device may operate in a transmissive or reflective mode. In the former light passing through the device e.g. from a tungsten bulb is selectively transmitted or blocked to form the desired display. In the reflective mode a mirror is placed behind the second polarizer 9 to reflect ambient light back through the cell 1 and two polarizer. By making the mirror partly reflecting the device may be operated both in a transmissive and reflective mode.
Pleochroic dyes may be added to the material 7. In this case only one polarizer is needed.
An idealised, and somewhat simplistic, arrangement of liquid crystal molecules within a cell is shown diagrammatically in FIGS. 3, 4, 5. In practice these arrangements may differ considerably from those illustrated, depending in part on cell wall surface effects.
FIG. 3 shows a layer 7 of smectic A (SA) material. Axes x, y, z, are used to define directions. The liquid crystal layer lies in x, y plane, layer thickness is in the z direction, rubbing directions R1, R2, are +x, and −x for the upper and lower wall respectively. For an SA material with these alignments the individual molecules 21 align in the x direction in layers 20 parallel to the y, z plane.
FIG. 4 shows a layer of smectic C (SC) material. Surface alignment is +x and −x as in FIG. 3.
As in FIG. 3 the liquid crystal molecules 21 form into layers 20 parallel to the y, z plane. However SC molecules 21 adopt a tilted formation within each layer. The tilt is in an x, y plane and at an angle θ to the x axis. Typically θ is 15°-25° depending on material composition and temperature.
FIG. 5 illustrates smectic pitch in a layer 7 of smectic C* (SC*), material. This material forms in layers 20n, with the molecules 21n in each layer lying at an angle 15°-25° to the x axis and with this angle 15°-25° varying in each layer 21. Collectively the molecules form into a twisted structure with the twist axis along the x axis. This is shown in FIG. 5 where the molecular alignment in successive layers 21 is shown lying along the surface of a cone with a 45° change between each layer.
The structure of FIG. 5 is termed a tilted chiral smectic phase. Such materials can be produced by the addition of a chiral material to a smectic material. The chiral additive may have either a clockwise or anticlockwise twist, some compounds may have molecules with both senses of twist direction, in which case the material can be racemate. Tilted chiral smectic materials can have a spontaneous polarization and there are two opposing directions for this depending on the configuration of the molecule. In a racemate material the two spontaneous polarization (Ps) directions are equal and cancel one another and there is no net Ps. With a mixture of chiral compounds of opposite twist directions Ps can either be additive or subtractive. Providing there is a net Ps the mixture will exhibit a ferroelectric characteristic.
One way of producing an aligned SC* layer 7 is heating the material into an SA phase where it is aligned by the cell surface treatment, and then cooling to the SC* phase. Unfortunately this cooling can also form the material into a small focal conic structure; a state with layers of molecules lying in many planes at different angles to one another.
The present invention overcomes this problem by using a material having a cholesteric phase above the smectic phase and providing a suitable cholesteric pitch as follows:
The material is one having the following phases with increasing temperature;
solid—smectic X*—smectic A—cholesteric—isotropic
solid—smectic X*—cholesteric—isotropic
where X* is at least one of the following:—C*, I*, F*, J*, G*, K*, H*. For materials having more than one such smectic phase the phase varies with temperature.
The pitch p in the cholesteric phase is arranged to ensure that the maximum twist across the layer thickness d is not greater than 3 π. A 3 π twist can occur when p is about 2/3d; a 2 πtwist when p is about d; a π twist when p is about 2d; and zero twist when p>4d. Preferably p>4d.
This cholesteric pitch is necessary for a temperature range of 0.1° C. above the smectic/cholesteric transition. Preferably this range is 5° C. above the transition and ideally over the entire cholesteric phase.
There are a number of ways of achieving the above material. For example combining one or more chiral components with laevo (left) cholesteric twist sense with one or more chiral components with dextro (right) cholesteric twist sense, with the proviso that none of the laevo components are the racemates of the dextro components. Such a mixture may be used by itself if it has the necessary smectic phases. Alternatively the chiral mixture may be added to a non-chiral or a racemate liquid crystal material, e.g. a smectic C host. Different chiral components may have different temperature/pitch characteristics. In this case it is necessary to ensure that the resultant pitch has the required value in the temperature range above the smectic/choesteric phase transition.
When using chiral components of opposite twist sense it is necessary to ensure that the resultant mixture has the required spontaneous polarization value Ps. Thus all of the chiral components, regardless of their cholesteric twist sense, may have the same sense of SC* polarization, i.e. their Ps add. Alternatively one or more of the chiral components may have the opposite sense of Ps providing the net Ps has a sufficient value.
Another way of achieving the above material is to use one or more chiral components with the same cholesteric twist sense and SC* polarisation sense but still satisfying the cholesteric pitch values noted above. Such a mixture may be used alone or in combination with a non-chiral or a racemate liquid crystal material, e.g. a SC host.
As a result of the long pitch in the cholesteric phase the material cools into the SA phase with uniform alignment caused by the cell wall treatment. The result is alignment as in FIG. 3. On further cooling the material adopts the SC* phase with alignment approximately as in FIG. 6 for mixtures with sufficiently long SC* pitch such that the surface alignment unwinds the helical pitch, i.e. the SC* pitch is about d, or FIG. 5 for shorter pitch lengths. Materials without an SA phase are cooled from the cholesteric to a chiral smectic phase. Providing the cholesteric pitch is sufficiently long the cell is well aligned in the S* phase.
The pitch in the tilted smectic phase is arranged to be greater than about 1 μm and preferably very much greater.
The compensation of pitch in the cholesteric phase is illustrated in FIGS. 7(a), (b), (c). FIG. 7(a) shows cholesteric pitch against temperature for a noncompensated material having a cholesteric to smectic transition. At this transition the pitch tends to infinity. The compensated material shown in FIG. 7(b) shows a pitch increase to infinity a few degrees above the transition temperature with a pitch reduction below. In FIG. 7 the compensation temperature where the pitch goes to infinity occurs just below the smectic to cholesteric transition temperature. By suitable selection of materials this pitch increase can be made to occur even closer to the transition temperature, but a few degrees difference does not seem to affect the end result.
Some dopants e.g. CC10, CC12 can be used alone in small amounts to give a characteristic shown in FIG. 7(c). In this case the material is not compensated as in FIG. 7(b) but inherently has a long pitch.
When a d.c. pulse of sufficient magnitude is applied to the electrodes 5, 6 the molecules adopt one of two different alignments, D1, D2, depending upon the polarity of the pulse. This is shown in FIG. 6 at 21, 22. Note these alignments may not correspond to a zero field alignment. The two molecules direction D1, D2 represent two different Ps directions, i.e. UP and DOWN directions. The polarisers 7, 8 are arranged with their optical axis orthogonal and with the optical axis of one polarizer 7 or 8 parallel to direction 21, or 22. Alternatively the polarizers 7, 8 axis may be at non parallel and non orthogonal directions. In each case a different effect is observed in the two switched states.
The cell is observed to change rapidly between a dark and a light state as the d.c. pulses are applied. The angle between directions 21, 22 depends upon the liquid crystal material. Ideally it will be about 45°. Alternatively, when a dye is incorporated into the liquid material, the ideal angle between directions 21, 22 is about 90° with the single polarizer aligned along or perpendicular to one of the two directions 21, 22. FIG. 8 shows how the angle θ (half the angle between 21, 22) varies with temperature for one material mixture, example 5. The variation of Ps with temperature for this same example 5 is shown in FIG. 9.
The cell 1 may also be used as a shutter when the electrodes 5, 6 are sheet electrodes. Light is blocked or transmitted in the cells of two different switched states. This shutter may also be combined with coloured polarizers to provide a colour switch, arranged in front of a monochrome cathode ray tube (C.R.T.).
A similar arrangement is described in G.B. 1,491,471. In this a C.R.T. emits light in two different wavelengths. The colour switch is switched to transmit the two different colours a frame at a time. This is synchronised to the C.R.T. emitting frame sequential images representing the two different colours. Providing the frame time is high enough an observer's eye integrates the two different colour images as one multicolour image.
The present invention provides a colour switch by using a neutral polarizer on one side of the cell 1 and two different colour, e.g. red and blue, polarizers on the opposite side the cell. These coloured polarizers are arranged with their optical axis orthogonal. The axis of one coloured polarizer is parallel to that of the neutral polarizer. The cell is switched at the C.R.T. frame rate as in G.B. 1,491,471.
The cell may also be used as a 90° polarization switch. In this case the polarizers are arranged with one parallel to the liquid crystal molecules in one of the switched states 21, 22. The second polarizer is crossed with respect to the first polariser. The angle between the two directions 21, 22 is about 45°. Providing the birefringence Δn is suitably arranged, cf of the known expression Δnd/λ, the plane of polarization of light is rotated by 90°.
Polarization switches are useful for example in three dimensional (3-D) television. In this alternate left and right eye frames are displayed. An observer wears polarizing glasses and a polarization switch in front of the TV screen is switched in synchronism with the frame rate. This is described in G.B. 2,062,281 B. A similar effect is obtained if an observer wears glasses that have left and right eye liquid crystal shutters that are switched in synchronism with left and right eye frames on the TV screen.
EXAMPLES OF MATERIALS: CHIRAL COMPONENTS
Absolute Sense of Sense of
configuration cholesteric spontaneous
Code of chiral groups twist polarization
CC1
Figure USRE037509-20020115-C00001
S L (+)
CC2
Figure USRE037509-20020115-C00002
R D (−)
CC3
Figure USRE037509-20020115-C00003
S D (−)
CC4
Figure USRE037509-20020115-C00004
SS D (+)
CC5
Figure USRE037509-20020115-C00005
SS D (+)
CC6
Figure USRE037509-20020115-C00006
S D (+)
CC7
Figure USRE037509-20020115-C00007
SS L (+)
CC8
Figure USRE037509-20020115-C00008
S L (+)
CC9
Figure USRE037509-20020115-C00009
SS L (+)
CC10
Figure USRE037509-20020115-C00010
L (+)
CC11
Figure USRE037509-20020115-C00011
D (+)
CC12
Figure USRE037509-20020115-C00012
D (+)
CC13
Figure USRE037509-20020115-C00013
D (+)
Figure USRE037509-20020115-C00014
Non-Chiral Materials
M1
Figure USRE037509-20020115-C00015
M2
Figure USRE037509-20020115-C00016
M3
Figure USRE037509-20020115-C00017
M4
Figure USRE037509-20020115-C00018
M5
Figure USRE037509-20020115-C00019
M6
Figure USRE037509-20020115-C00020
M7
Figure USRE037509-20020115-C00021
Racemate Materials
R1
Figure USRE037509-20020115-C00022
Sc Host Mixtures
Code Composition Transition Temperature ° C.
H1: M1 + M2 + M3 (1:1:1) Is 151.7 N 112.7 SA 107.3 SC 27.8 S
H2: M2 + M3 + R1  (1:1:1)
H3: M1 + M6 + M4 (1:1:1) Is N 60 SC
H4: M2 + M3 + M5 (1:1:1) Is 155.8 N 89.7 S C 15 Solid
Key:
Is = isotropic,
N = nematic,
S = smectic,
Ch = Cholesteric
Where no subscript is given to a smectic material the particular phase is unknown.
Key: Is=isotropic, N=nematic, S=smectic, Ch=cholesteric Where no subscript is given to a smectic material the particular phase is unknown.
EXAMPLE 1
(a) 7.9% R1
(b) 2.2% CC1
(c) 90% M6
This material had the following phases with increasing temperature solid—SC*—SA—cholesteric—Isotropic.
Materials (a), (b) have opposite senses of cholesteric twist, but the same sense of SC* polarization.
When tested in a cell having a 6 μm thick layer excellent alignment was achieved on cooling down to the SA and then SC* phases. When tested in a cell with a 12 μm thick layer the mixture showed a pi twist in the heated cholesteric phase. Providing the cooling rate was slow e.g. about 0.2° C./min. good alignment was achieved and the device could be rapidly switched using the ferroelectric effect. The spontaneous polarization Ps was measured to be about 1 nC/square cm.
The following Examples 2, 3, 4 use compensated chiral mixtures. These mixtures are composed of chiral components with opposite sense of cholesteric twist, but the same sense of S * spontaneous polarization.
EXAMPLE 2
CD1: −23% CC1+77% CC3.
This has the phase transition temperature of: Isotropic 114° Chol 93.4° SA 71.5° SC* 50° Solid.
The cholesteric pitch/temperature curve is similar to FIG. 7b, the compensation temperature (i.e. where the pitch is infinite) occurs at ˜99° C.
In a 2 μm cell, a π twist state can be maintained for up to 1° C. above the SA to cholesteric phase transition temperature; with slow cooling good alignment can be achieved in the smectic phases. A 61.5° C. the mixture showed a Ps˜25 nC/cm2 and a tilt angle (i.e. half cone angle) of ˜18.5°.
EXAMPLE 3
CD3: −22% CC1+78% CC3.
This has the following phase transition temperatures: Isotropic 115° Chol 94.6° SA 72.6° SC* 47° Solid.
The cholesteric pitch/temperature curve is similar to FIG. 7b; the compensation temperature (i.e. where the pitch is infinite) occurs at ˜98° C.
In a 2 μm cell, a zero twist state can be obtained, and a π twist can be maintained for up to ˜6° C. above the SA to cholesteric phase transition temperature.
EXAMPLE 4
CD9: −20% CC8+80% CC3.
This has the following phase transition temperatures: Isotropic 120.1° Chol 93.0° SA 78 0° SC* 43° Solid.
The cholesteric pitch/temperature curve is similar to FIG. 7b, the compensation temperature (i.e. where the pitch is infinite) occurs at ˜102° C.
In a 6 μm cell, a 2π twist state can be obtained for up to 0.5° C. above the SA to cholesteric phase transition.
Examples 5, 6, 7, 8 use a compensated chiral mixture in an SC host.
EXAMPLE 5
CM6=43.5% CD3+56.5% H1.
This has phase-temperature values: Isotropic 132.8° Cholesteric 106.8° SA 83.9° SC* 14° S—solid.
The pitch/temperature curve is similar to FIG. 7b; the mixture being compensated (i.e. infinite pitch) at ˜113° C. In a 2 μm and 6 μm cell, respectively, a zero twist state is obtained for up to 14° C. and up to 8° C. above the SA to cholesteric phase transition temperature. FIGS. 8 and 9 show the tilt angle (i.e. half cone angle) and spontaneous polarization, Ps, as a function of temperature for CM6.
EXAMPLE 6
CM8 19.6% (49% CC1+51% CC4)+80.4% H1
This has phase-temperature values: Isotropic 126.1° Cholesteric 84° SA 65° SC* 5° S
The pitch/temperature curve is similar to FIG. 7b; the mixture being compensated (i.e. infinite pitch) at ˜119.5° C. In a 2 μm cell a zero twist state is obtained for a few °C. above the smectic A to cholesteric phase transition temperature.
EXAMPLE 7
CM3: −40% (20% CC1+80% CC3)+60% H3.
This has the following phase transition temperatures: Isotropic 127.5° Cholesteric 92.4° SA 72° SC* 10° S.
The pitch/temperature curve is similar to FIG. 7c.
In a 6 μm cell a zero twist state is obtained for up to 3° C. above the smectic A to cholesteric phase transition temperature.
EXAMPLE 8
CM11: −25% CD9+75% H4.
This has the following phase transition temperatures: Isotropic 147.1° Chol 101.1° SA 85.1° SC* 13° S.
The pitch/temperature curve is similar to FIG. 7b; the compensation temperature (i.e. where the pitch is infinite) occurs at ˜119° C. In a 2 μm cell, a zero twist state can be obtained just above the smectic A to cholesteric phase transition temperature.
EXAMPLE 9
CM13: −90% (90% H4+10% M7)+10% (49% CC1+51% CC4)
Isotropic 135° Cholesteric 52.3° SC* −15° S −25° C.
In a 6 μm cell, a 0° twist state was obtained for up to ˜10° C. above the smectic A to cholesteric phase transition temperature. At 30° C. the spontaneous polarization of the mixture was 3.4 nC/cm2 and the tilt angle (i.e. half the cone angle) was 21°.
EXAMPLE 10
CM 15: 15.9% (31.4% CC9+68.6% CC4)+94.1% H1.
Isotropic 135° Cholesteric 56.1° SC* 20° Solid.
In a 6 μm cell, a π twist state was maintained for a few degrees Celsius above the smectic C* to Cholesteric transition. The alignment was poor after critically cooling into the SC* phase, however, by applying ˜20 Vpk 10 Hz square wave, zero twist alignment in the smectic C* could be induced. Heating back up to just into the cholesteric phase and cooling with a d.c. field of appropriate sign then gave the desired alignment.
At 50° C. and 30° C. the spontaneous polarization of the mixture is 2 nC/cm2 and .6.2 nC/cm2, respectively.
Examples 11, 12 use a single cholesteric twist sense chiral component in an SC host.
EXAMPLE 11
LPC2: 1% CC10+99% H1.
This mixture has the following phase transition temperatures: Isotropic 151° Cholesteric 113.5° SA 104.5° SC* 28° S
The cholesteric pitch/temperature curve is similar to FIG. 7c.
In a 2 μm cell, a zero twist state can be achieved for ˜0.5° C. above the smectic A to cholesteric transition temperature.
The spontaneous polarization of the mixture is 1.7 nC/cm2 and 4.2 nC/cm2 at 80° C. and 40° C., respectively.
EXAMPLE 12
LPC3: 1% CC10+99% H4.
This mixture has the following phase transition temperatures: Isotropic 158° Cholesteric 91° SA 89° SC* 18° S 8° S.
The cholesteric pitch/temperature curve is similar to FIG. 7c.
In a 2 μm cell, a zero twist state can be achieved for ˜4° C. above the smectic A to cholesteric phase transition temperature.
EXAMPLE 13
LPC6: 0.5% CC10+99.5% (95% H4+5% M7)
Isotropic 152° Cholesteric 76.8° SC*<0° S.
In a 6 μm cell, a zero twist state can be achieved for up to 0.2° C. above the smectic C* to cholesteric transition temperature.
EXAMPLE 14
UCM30: 92.5% (85% H4+15% M7)+7.5% CC12.
The mixture has the following phases
Is 155.8° Ch 60.5° SC* 15° S.
The cholesteric pitch/temperature curve is similar to FIG. 7(c). Ps=4.4 nC/cm2 at 50.5° C. and 8.4 nC/cm2 at 25° C. In a 6.2 μm thick cell a zero twist state can be achieved for ˜7° C. above the SC* to cholesteric phase transition temperature.
EXAMPLE 15
CM20: 85% H1+15% CD18
This mixture has the following phases:
Is 133.7° Ch 92.8° SA 63.2 SC*.
In a 2 μm thick cell a zero twist can be obtained just above the SA to Ch transition temperature.
Ps=18 nC/cm2 at 25° C.
CD18=34% CC1+66% CC11
EXAMPLE 16
LPM13: 72.5% H1+25% M7+2.5% CC13
Is 118° Ch 56.3 Sc*<0 Solid.
Ps=10 nC/cm2 at 20° C. and 5 nC/cm2 at 46° C.
This shows zero twist in a 2 μm cell in the cholesteric phase.

Claims (83)

We claim:
1. A method of making a liquid crystal display device comprises the steps;
providing two cell walls spaced apart by a spacer to contain a layer of a liquid crystal material, the wall inner surfaces having formed thereon electrode structures and at least one wall surface treated to provide a liquid crystal alignment,
providing a tilted chiral smectic liquid crystal material having a cholesteric phase at an elevated temperature above ambient between the chiral smectic and isotropic phases with a cholesteric pitch p greater than half the layer thickness d at a temperature at least 0.1° C. above a cholesteric to smectic transition temperature and a significant spontaneous polarization Ps in the chiral smectic phase,
heating the material to the cholesteric phase,
introducing and sealing the material into the space between the walls,
cooling the material to the tilted chiral smectic phase.
2. The method of claim 1A method of making a liquid crystal display device comprising the steps:
providing two cell walls spaced apart by a spacer to contain a layer of a liquid crystal material, the wall inner surfaces having formed thereon electrode structures and at least one wall surface treated to provide a liquid crystal alignment,
providing a tilted chiral smectic liquid crystal material having a cholesteric phase at an elevated temperature above ambient between the chiral smectic and isotropic phases with a cholesteric pitch p greater than half the layer thickness d at a temperature at least 0.1° C. above a cholesteric to smectic transition temperature and a significant spontaneous polarization Ps n the chiral smectic phase,
heating the material to the cholesteric phase,
introducing and sealing the material into the space between the walls,
cooling the material to the tilted chiral smectic phase,
and comprising the further steps of reheating to above the smectic/cholesteric transition temperature and slowly cooling, whilst a unidirectional voltage pulse is applied.
3. The method of claim 1 wherein the material is cooled at a rate of less than 20° C./minute within +/−5° C. of the cholesteric/smectic phase transition.
4. The method of claim 1 wherein the material is cooled at a rate of less than 2° C./minute within +/−5° C. of the cholesteric/smectic phase transition.
5. The method of claim 1 2wherein both walls are surface alignment treated and the cell is arranged with the alignment direction parallel in the same direction.
6. The method of claim 1 2wherein both walls are surface alignment treated and the cell is arranged with the alignment direction parallel in opposite directions.
7. The method of claim 1 wherein the alignment is produced by unidirectional rubbing.
8. The method of claim 1 wherein the alignment is produced by oblique evaporation of silicon oxide.
9. A liquid crystal device comprising a layer of a tilted chiral smectic liquid crystal material contained between two cell walls each carrying electrode structures and at least one wall surface treated to give alignment to the liquid crystal molecules, a first linear polarizer and one of a second polarizer and an amount of dichroic dye in the liquid crystal material, the liquid crystal material having switched states and a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at a higher, above ambient, temperature, with a cholesteric pitch greater than half the layer thickness d in the cholesteric phase for at least 0.1° C. above the cholesteric to smectic transition temperature, and a spontaneous polarization.
10. The device of claim 9 wherein the cell walls are surface treated to align liquid crystal molecules in the same direction with a splayed configuration across the layer thickness.
11. The device of claim 9 wherein the electrodes on each wall are formed as strip electrodes with strip electrodes on one wall forming an angle with strip electrodes on another wall thereby forming a matrix format.
12. The device of claim 9 wherein the electrodes are formed as strip electrodes arranged in a segment format.
13. The device of claim 9 wherein the electrodes are formed as sheet electrodes.
14. The device of claim 9 wherein the liquid crystal layer thickness is up to 15 μm.
15. The device of claim 9 wherein the cholesteric pitch p is greater than d/2 at a temperature at least 5° C. above the transition temperature.
16. The device of claim 9 wherein one polarizer is a neutral polarizer and a second polarizer is comprised of two differently coloured polarizers arranged with their optical axis orthogonal with respect to each other.
17. The device of claim 9 wherein said first polarizer is arranged with an optical axis parallel to the liquid crystal molecular alignment in one of said switched states, and another polarizer is arranged with an optical axis crossed with respect to the first polarizer.
18. The device of claim 9 wherein the cholesteric pitch within 0.1° C. of the cholesteric/smectic trasition is greater than four times the liquid crystal layer thickness.
19. The device of claim 9 and further comprising means for applying the two d.c. voltages of opposite polarity to the electrode structures to switch the liquid crystal material into two different states.
20. A liquid crystal material mixture for use in a liquid crystal display device comprising a material having a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at an elevated temperature, the mixture having a cholesteric pitch greater than 4 μm in the cholesteric phase at least 0.1° C. above a cholesteric to smectic transition temperature, and a substantial spontaneous polarization coefficient Ps, in the smectic phase.
21. The material of claim 20 wherein the material has the following phases with temperature:
isotropic⇄cholesteric⇄smectic A⇄chiral smectic⇄solid.
22. The material of claim 20 wherein the material has the following phases with temperature:
isotropic⇄cholesteric⇄chiral smectic⇄solid.
23. The material of claim 20 wherein the pitch in the cholesteric phase is greater than 4 μm over a temperature range up to 5° C. above the cholesteric smectic phase transition.
24. The material of claim 20 wherein the smectic pitch is greater than 2 μm.
25. The material of claim 20 wherein the spontaneous polarization is greater than 0.1 nC/cm2.
26. The material of claim 20 wherein the cholesteric/smectic phase transition is above 40° C.
27. The material of claim 20 wherein the cholesteric smectic phase transition is above 100° C.
28. The material of claim 20 and further including an amount of a dichroic dye.
29. A method of making a liquid crystal display device comprises the steps:
providing two cell walls spaced apart by a spacer to contain a layer of a liquid crystal material, the wall inner surfaces having formed thereon electrode structures and at least one wall surface treated to provide a liquid crystal alignment,
providing a tilted chiral smectic liquid crystal material having a cholesteric phase at an elevated temperature above ambient between the chiral smectic and isotropic phases with a cholesteric pitch p greater than half the layer thickness d at a temperature for at least 0.1° C. above a cholesteric to smectic transition temperature and a significant spontaneous polarization Ps in the chiral smectic phase,
heating the material to the cholesteric phase,
introducing and sealing the material into the space between the walls,
cooling the material to the tilted chiral smectic phase, and
realigning the liquid crystal material with respect to said at least one treated wall surface.
30. The method of claim 29 wherein said step of realigning comprises the steps of reheating said liquid crystal material to above the smectic/cholesteric temperature and recooling to below the smectic/cholesteric transition temperature.
31. The method of claim 30, wherein said recooling step includes the step of recooling whilst a unidirectional voltage pulse is applied.
32. A method of making a liquid crystal display device comprises the steps:
providing two cell walls spaced apart by a spacer to contain a layer of a liquid crystal material, the wall inner surfaces having formed thereon electrode structures and at least one wall surface treated to provide a liquid crystal alignment,
providing a tilted chiral smectic liquid crystal material having a cholesteric phase at an elevated temperature above ambient between the chiral smectic and isotropic phases with a cholesteric pitch p greater than half the layer thickness d at a temperature for at least 0.1° C. above a cholesteric to smectic transition temperature and a significant spontaneous polarization Ps in the chiral smectic phase,
heating the material to the cholesteric phase,
introducing and sealing the material into the space between the walls,
cooling the material to the tilted chiral smectic phase, wherein both walls are surface alignment treated and the cell is arranged with the alignment direction parallel in the same direction.
33. The method of claim 32, wherein said step of surface alignment treating of said walls comprises providing surface alignment and surface tilt.
34. A method of making a liquid crystal display device comprises the steps:
providing two cell walls spaced apart by a spacer to contain a layer of a liquid crystal material, the wall inner surfaces having formed thereon electrode structures and at least one wall surface treated to provide a liquid crystal alignment,
providing a tilted chiral smectic liquid crystal material having a cholesteric phase at an elevated temperature above ambient between the chiral smectic and isotropic phases with a cholesteric pitch p greater than half the layer thickness d at a temperature for at least 0.1° C. above a cholesteric to smectic transition temperature and a significant spontaneous polarization Ps in the chiral smectic phase,
heating the material to the cholesteric phase,
introducing and sealing the material into the space between the walls,
cooling the material to the tilted chiral smectic phase, wherein both walls are surface alignment treated and the cell is arranged with the alignment direction parallel in opposite direction.
35. The method of claim 34, wherein said step of surface alignment treating of said walls comprises providing surface alignment and surface tilt.
36. A liquid crystal device comprising a layer of a tilted chiral smectic liquid crystal material contained between two cell walls each carrying electrode structures and at least one wall surface treated to give alignment to the liquid crystal molecules, a first linear polarizer and one of a second polarizer and an amount of dichroic dye in the liquid crystal material, the liquid crystal material having switched states and a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at a higher, above ambient, temperature, with a cholesteric pitch greater than half the layer thickness d in the cholesteric phase for at least 0.1° C. above the cholesteric to smectic transition temperature, and a spontaneous polarization, wherein the cell walls are surface treated to align liquid crystal molecules in the same direction with a splayed configuration across the layer thickness.
37. A liquid crystal device comprising a layer of a tilted chiral smectic liquid crystal material contained between two cell walls each carrying electrode structures and both wall surfaces treated to give parallel alignment and surface tilt to the liquid crystal molecules, a first linear polarizer and one of a second polarizer and an amount of dichroic dye in the liquid crystal material, the liquid crystal material having switched states and a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at a higher, above ambient, temperature, with a cholesteric pitch greater than half the layer thickness d in the cholesteric phase for at least 0.1° C. above the cholesteric to smectic transition temperature, and a spontaneous polarization.
38. The device of claim 37, wherein said surface tilt is about 2°.
39. The device of claim 37, wherein said liquid crystal material is comprised of a liquid crystal material having the following phases with temperature:
cholesteric⇄smectic A⇄chiral smectic.
40. The device of claim 38, wherein said liquid crystal material is comprised of a liquid crystal material having the following phases with temperature:
cholesteric⇄smectic A⇄chiral smectic.
41. The device of claim 37, wherein said wall surfaces are treated to give parallel alignment in the same direction.
42. The device of claim 37, wherein said wall surfaces are treated to give parallel alignment in the opposite direction.
43. The device of claim 41, wherein said wall surfaces are treated to provide a splayed configuration across the layer thickness.
44. A liquid crystal device comprising a layer of a tilted chiral smectic liquid crystal material contained between two cell walls each carrying electrode structures and at least one wall surface treated to give alignment to the liquid crystal molecules, a first linear polarizer and one of a second polarizer and an amount of dichroic dye in the liquid crystal material, the liquid crystal material having switched states and a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at a higher, above ambient, temperature, with a cholesteric pitch greater than half the layer thickness d in the cholesteric phase for at least 0.1° C. above the cholesteric to smectic transition temperature, and a spontaneous polarization, said align liquid crystal material having substantially zero twist above the cholesteric to smectic transition temperature.
45. The device of claim 44, wherein said zero twist is from the cholesteric to smectic transition temperature to a temperature at least 3° C. above the cholesteric to smectic transition temperature.
46. The device of claim 44, wherein said zero twist is from the cholesteric to smectic transition temperature to a temperature at least 8° C. above the cholesteric to smectic transition temperature.
47. A liquid crystal device comprising a layer of a tilted chiral smectic liquid crystal material contained between two cell walls each carrying electrode structures and at least one wall surface treated to give alignment to the liquid crystal molecules, a first linear polarizer and one of a second polarizer and an amount of dichroic dye in the liquid crystal material, the liquid crystal material having switched states and a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at a higher, above ambient, temperature, with a cholesteric pitch greater than half the layer thickness d in the cholesteric phase for at least 0.1° C. above the cholesteric to smectic transition temperature, and a spontaneous polarization, one polarizer is a neutral polarizer and a second polarizer is comprised of two differently colored polarizers arranged with their optical axis orthogonal with respect to each other.
48. The device of 11, further including driver circuits connected to said electrodes.
49. A liquid crystal material mixture for use in a liquid crystal display device comprising a material having a tilted chiral smectic phase at normal device operating temperatures and a cholesteric phase at an elevated temperature, the mixture having a cholesteric pitch greater than 4 μm in the cholesteric phase at least 0.1° C. above a cholesteric to smectic transition temperature and a substantial spontaneous polarization coefficient Ps, in the smectic phase, wherein said mixture has substantially zero twist at a temperature above the cholesteric to smectic transition temperature in a liquid crystal cell.
50. The material of claim 49 wherein the material has the following phases with temperature:
isotropic⇄cholesteric⇄smectic A⇄chiral smectic⇄solid.
51. The material of claim 49 wherein the material has the following phases with temperature:
isotropic⇄cholesteric⇄chiral smectic⇄solid.
52. The material of claim 49 wherein the pitch in the cholesteric phase is greater than 4 μm over a temperature range up to 5° C. above the cholesteric smectic phase transition.
53. The material of claim 49 wherein the smectic pitch is greater than 2 μm.
54. The material of claim 49 wherein the spontaneous polarization is greater than 0.1 nC/cm2 .
55. The material of claim 49 wherein the cholesteric/smectic phase transition temperature is above 40° C.
56. The material of claim 49 wherein the cholesteric/smectic phase transition temperature is above 100° C.
57. The material of claim 49 and further including an amount of a dichroic dye.
58. The material of claim 49 wherein said mixture has a zero twist from the cholesteric to smectic transition temperature to a temperature at least 3° C. above the cholesteric to smectic transition temperature.
59. The material of claim 49 wherein said mixture has a zero twist from the cholesteric to smectic transition temperature to a temperature at least 8° C. above the cholesteric to smectic transition temperature.
60. A method of making a liquid crystal display device in accordance with claim 1, wherein said liquid crystal material has substantially zero twist at a temperature above the cholesteric to smectic transition temperature.
61. A method of making a liquid crystal display device in accordance with claim 9, wherein said liquid crystal material has substantially zero twist at a temperature above the cholesteric to smectic transition temperature.
62. A method of making a liquid crystal display device comprises the steps:
providing two cell walls spaced apart by a spacer to contain a layer of a liquid crystal material, the wall inner surfaces having formed thereon electrode structures and at least one wall surface treated to provide a liquid crystal alignment,
providing a tilted chiral smectic liquid crystal material having a cholesteric phase at an elevated temperature above ambient between the chiral smectic and isotropic phases with a substantially zero twist cholesteric pitch p at a temperature for at least 0.1° C. above a cholesteric to smectic transition temperature and a significant spontaneous polarization Ps in the chiral smectic phase,
heating the material to the cholesteric phase,
introducing and sealing the material into the space between the walls,
cooling the material at a controlled rate from the cholesteric phase to the tilted chiral smectic phase, and
realigning the liquid crystal material with respect to said at least one treated wall surface.
63. The method of claim 62 wherein said step of realigning comprises the steps of reheating said liquid crystal material to above the smectic/cholesteric transition temperature and recooling to below the smectic/cholesteric transition temperature.
64. The method of claim 63, wherein said recooling step includes the step of recooling whilst a unidirectional voltage pulse is applied.
65. The method of claim 62 wherein the material is cooled at a rate of less than 20° C./minute within +/−5° C. of the cholesteric/smectic phase transition.
66. The method of claim 62 wherein the material is cooled at a rate of less than 2° C./minute within +/−5° C. of the cholesteric/smectic phase transition.
67. The method of claim 62 wherein both walls are surface alignment treated and the cell is arranged with the alignment direction parallel in the same direction.
68. The method of claim 62 wherein both walls are surface alignment treated and the cell is arranged with the alignment direction parallel in opposite directions.
69. The method of claim 62 wherein the alignment is produced by the unidirectional rubbing.
70. The method of claim 62 wherein the alignment is produced by oblique evaporation of silicon oxide.
71. The method of claim 29, wherein said step of realigning comprises the step of applying pulses of an alternating voltage to said liquid crystal material while in said smectic phase to give zero twist in said smectic phase.
72. The method of claim 29, wherein said step of realigning comprises the steps of applying pulses of an alternating voltage to said liquid crystal material while in said smectic phase to give zero twist alignment in said smectic phase, reheating said liquid crystal material to above the smectic/cholesteric transition temperature and recooling to below the smectic/cholesteric transition temperature.
73. The method of claim 29, wherein said step of realigning comprises the steps of applying pulses of an alternating voltage to said liquid crystal material while in said smectic phase to give zero twist alignment in said smectic phase, reheating said liquid crystal material to above the smectic/cholesteric transition temperature and recooling to below the smectic/cholesteric transition temperature while a unidirectional voltage pulse is applied.
74. The method of claim 2, wherein said liquid crystal material has a smectic pitch greater than 0.1 μm in its smectic phase.
75. The method of claim 29, wherein said liquid crystal material has a smectic pitch greater than 0.1 μm in its smectic phase.
76. The method of claim 2, wherein said liquid crystal material has a smectic pitch greater than said layer thickness d in its smectic phase.
77. The method of claim 29, wherein said liquid crystal material has a smectic pitch greater than said layer thickness d in its smectic phase.
78. The device of claim 9, including means for heating the liquid crystal material to its cholesteric phase and for applying a unidirectional voltage to said material while said material cools to its tilted chiral smectic phase.
79. The device of claim 9, wherein said liquid crystal material at a normal device operating temperature has a smectic pitch of greater than 0.1 μm.
80. The device of claim 9, wherein said liquid crystal material at a normal device operating temperature has a smectic pitch of greater than said layer thickness d.
81. The method of claim 2, wherein said material has zero twist at a temperature up to 14° C. above the cholesteric to smectic transition temperature.
82. The method of claim 29, wherein both walls are surface treated to provide similar alignment in the same direction.
83. The method of claim 29, wherein both walls are surface treated to provide similar alignment in different directions.
US08/371,035 1986-04-03 1995-01-10 Smectic liquid crystal devices Expired - Lifetime USRE37509E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/371,035 USRE37509E1 (en) 1986-04-03 1995-01-10 Smectic liquid crystal devices

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB8608114 1986-04-03
GB868608114A GB8608114D0 (en) 1986-04-03 1986-04-03 Smectic liquid crystal devices
PCT/GB1987/000222 WO1987006022A1 (en) 1986-04-03 1987-04-01 Smectic liquid crystal devices
US07/279,553 US5061047A (en) 1986-04-03 1988-12-01 Smectic liquid crystal devices
US08/371,035 USRE37509E1 (en) 1986-04-03 1995-01-10 Smectic liquid crystal devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/279,553 Reissue US5061047A (en) 1986-04-03 1988-12-01 Smectic liquid crystal devices

Publications (1)

Publication Number Publication Date
USRE37509E1 true USRE37509E1 (en) 2002-01-15

Family

ID=10595593

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/279,553 Ceased US5061047A (en) 1986-04-03 1988-12-01 Smectic liquid crystal devices
US08/371,035 Expired - Lifetime USRE37509E1 (en) 1986-04-03 1995-01-10 Smectic liquid crystal devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/279,553 Ceased US5061047A (en) 1986-04-03 1988-12-01 Smectic liquid crystal devices

Country Status (11)

Country Link
US (2) US5061047A (en)
EP (1) EP0295266B1 (en)
JP (2) JP2659381B2 (en)
KR (1) KR960011148B1 (en)
CA (1) CA1336643C (en)
DE (1) DE3786015T2 (en)
GB (2) GB8608114D0 (en)
HK (1) HK178696A (en)
MY (1) MY102698A (en)
SG (1) SG142493G (en)
WO (1) WO1987006022A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060187993A1 (en) * 2003-01-09 2006-08-24 Lukishova Svetlana G Efficient room-temperature source of polarized single photons
US20090244442A1 (en) * 2008-03-31 2009-10-01 Industrial Technology Research Institute Color cholesteric liquid crystal display devices and fabrication methods thereof

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249019A (en) * 1985-04-26 1986-11-06 Canon Inc Liquid crystal element
GB8608114D0 (en) 1986-04-03 1986-05-08 Secr Defence Smectic liquid crystal devices
GB8726996D0 (en) * 1987-11-18 1987-12-23 Secr Defence Multiplex addressing of ferro-electric liquid crystal displays
JPH01198724A (en) * 1988-02-03 1989-08-10 Hitachi Ltd Liquid crystal optical modulating device and its driving method
DE3909354A1 (en) * 1989-03-22 1990-09-27 Hoechst Ag FERROELECTRIC LIQUID CRYSTAL SYSTEMS HAVING HIGH SPONTANEOUS POLARIZATION AND GOOD ORIENTATION PROPERTIES
JP2982330B2 (en) * 1990-04-28 1999-11-22 ソニー株式会社 Liquid crystal display device
US5539555A (en) * 1990-07-20 1996-07-23 Displaytech, Inc. High contrast distorted helex effect electro-optic devices and tight ferroelectric pitch ferroelectric liquid crystal compositions useful therein
JPH0534697A (en) * 1991-07-25 1993-02-12 Canon Inc Ferroelectric liquid crystal display element
DE69216548T2 (en) * 1991-10-30 1997-07-31 Canon Kk Liquid crystal device and display device
US5172257A (en) * 1991-11-08 1992-12-15 Bell Communications Research, Inc. Twisted ferroelectric liquid crystal modulator for providing gray scale
SG50667A1 (en) * 1992-02-21 1999-06-22 Rolic Ag Method and means for disclination-free orienting of liquid crystals
JPH05265001A (en) * 1992-03-18 1993-10-15 Canon Inc Ferroelectric liquid crystal element and orientation treatment
SG47357A1 (en) * 1993-12-28 1998-04-17 Shimadzu Corp Light modulator using a liquid crystal thick cell
GB9407116D0 (en) * 1994-04-11 1994-06-01 Secr Defence Ferroelectric liquid crystal display with greyscale
GB9417480D0 (en) * 1994-08-31 1994-10-19 Secr Defence Ferroelectric liquid crystal devices
GB2321718A (en) * 1997-01-31 1998-08-05 Nat Science Council LIquid crystal display
KR100607007B1 (en) 1997-10-08 2006-08-01 휴렛-팩커드 컴퍼니(델라웨어주법인) Liquid Crystal Device and a Method Manufacturing the Same
KR100519323B1 (en) * 1997-12-04 2005-12-21 엘지전자 주식회사 Flat panel display for using color device of a reversible reaction by heat
JP2000178557A (en) * 1998-12-14 2000-06-27 Minolta Co Ltd Liquid crystal composition and liquid crystal light modulation element
JP2001033747A (en) 1999-07-16 2001-02-09 Nec Corp Liquid crystal display element
JP4605978B2 (en) * 2002-08-30 2011-01-05 富士通株式会社 Manufacturing method of liquid crystal display device

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025164A (en) * 1975-03-17 1977-05-24 Bbc Brown Boveri & Company Limited Liquid crystal display device for colored display of information with a selective polarizer
GB1491471A (en) 1974-01-21 1977-11-09 Secr Defence Colour display systems
GB2007865A (en) 1977-11-07 1979-05-23 Secr Defence Liquid display devices
EP0008956A1 (en) 1978-09-13 1980-03-19 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Improvements in or relating to liquid crystal materials and devices
GB1569686A (en) 1977-11-10 1980-06-18 Standard Telephones Cables Ltd Smectic display cell
US4264148A (en) * 1978-06-22 1981-04-28 Siemens Aktiengesellschaft Liquid crystal display devices having an induced cholesteric phase
JPS5695977A (en) 1979-12-28 1981-08-03 Seiko Epson Corp Liquid crystal composition
US4328493A (en) * 1979-01-24 1982-05-04 National Research Development Corporation Liquid crystal color displays
US4367924A (en) 1980-01-08 1983-01-11 Clark Noel A Chiral smectic C or H liquid crystal electro-optical device
JPS58173719A (en) 1982-04-05 1983-10-12 Hitachi Ltd Liquid crystal display
EP0092181A2 (en) 1982-04-16 1983-10-26 Hitachi, Ltd. Method for driving liquid crystal element employing ferroelectric liquid crystal
JPS5953815A (en) 1982-09-22 1984-03-28 Hitachi Ltd Liquid crystal display element
EP0136725A2 (en) 1983-10-05 1985-04-10 Chisso Corporation Ferroelectric chiral smectic liquid crystal composition and light switching element
EP0138006A2 (en) 1983-09-17 1985-04-24 MERCK PATENT GmbH Liquid-crystal phase
EP0149398A2 (en) 1984-01-03 1985-07-24 Thomson-Csf Display device with a memory using a ferroelectric material
DE3502160A1 (en) * 1984-01-23 1985-07-25 Canon K.K., Tokio/Tokyo LIQUID CRYSTAL DEVICE
JPS60143422A (en) 1983-12-29 1985-07-29 Fuji Photo Film Co Ltd Method and device for recording tracking servo signal
JPS60161326A (en) 1984-01-16 1985-08-23 アライド・コーポレーシヨン Process for wet baking alkali metal hydrogen carbonate in hydrophobic medium
EP0156726A1 (en) 1984-03-20 1985-10-02 Thomson-Csf Process for the preparation of a smectic C-chiral ferroelectric liquid crystal, liquid crystal and display device using the same.
FR2563018A1 (en) 1984-04-16 1985-10-18 Canon Kk LIQUID CRYSTAL OPTICAL DEVICE
EP0160302A2 (en) 1984-05-01 1985-11-06 Hitachi, Ltd. Ferroelectric liquid crystal cell
US4561725A (en) 1983-02-09 1985-12-31 Canon Kabushiki Kaisha Electro-optical device having homogeneous alignment layer hardened with cross-linking agents
US4563059A (en) 1983-01-10 1986-01-07 Clark Noel A Surface stabilized ferroelectric liquid crystal devices
FR2567533A1 (en) 1984-07-13 1986-01-17 Canon Kk LIQUID CRYSTAL DEVICE
US4582396A (en) * 1983-05-09 1986-04-15 Tektronix, Inc. Field sequential color display system using optical retardation
EP0179592A2 (en) 1984-10-25 1986-04-30 Itt Industries, Inc. Ferroelectric liquid crystal display cells
JPS61174294A (en) 1985-01-29 1986-08-05 Asahi Glass Co Ltd Ferroelectric liquid crystal composition
JPS61252532A (en) 1985-05-02 1986-11-10 Asahi Glass Co Ltd Ferroelectric smectic liquid crystal electrooptic device
EP0201341A2 (en) 1985-05-08 1986-11-12 Chisso Corporation Liquid crystal display element and process for producing same
GB2174820A (en) 1985-04-26 1986-11-12 Canon Kk Ferroelectric smectic liquid-crystal device
US4655561A (en) 1983-04-19 1987-04-07 Canon Kabushiki Kaisha Method of driving optical modulation device using ferroelectric liquid crystal
EP0227419A2 (en) 1985-12-17 1987-07-01 Matsushita Electric Industrial Co., Ltd. Ferroelectric liquid crystal mixture and optical modulation element using same
JPS62192724A (en) 1986-02-20 1987-08-24 Toshiba Corp Ferroelectric liquid crystal element and its production
US4689176A (en) * 1984-12-26 1987-08-25 Chisso Corporation Novel optically active compound and liquid crystal composition containing same
WO1987006022A1 (en) 1986-04-03 1987-10-08 The Secretary Of State For Defence In Her Britanni Smectic liquid crystal devices
WO1987006021A1 (en) 1986-04-03 1987-10-08 The Secretary Of State For Defence In Her Britanni Smectic liquid crystal devices
US4709994A (en) 1984-09-12 1987-12-01 Canon Kabushiki Kaisha Liquid crystal device using ferroelectric liquid crystal twisted in two stable states
US4720173A (en) 1984-03-09 1988-01-19 Canon Kabushiki Kaisha Display having an orientation treatment between 0° and 15° to the spacer wall
GB2204606A (en) * 1987-03-13 1988-11-16 J L B Textiles Limited Tubular bandage
US4838663A (en) * 1986-10-07 1989-06-13 S.A.R.L. S.T. Lagerwall Device for submicrosecond electro-optic modulation in the liquid crystal smectic-A phase using orthogonal bookshelf geometry
US4882085A (en) * 1985-08-13 1989-11-21 Canon Kabushiki Kaisha Lactic acid derivative and liquid crystal composition containing same
US4909607A (en) 1986-04-01 1990-03-20 Stc Plc Addressing liquid crystal cells

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013590A (en) * 1983-07-05 1985-01-24 Canon Inc Electronic apparatus
JPS6147641A (en) * 1984-08-15 1986-03-08 Toshiba Corp Formation of resist pattern
JPS6147640A (en) * 1984-08-15 1986-03-08 Canon Inc Projected exposure apparatus
JPS62143030A (en) * 1985-12-17 1987-06-26 Matsushita Electric Ind Co Ltd Ferroelectric liquid crystal display device
JPS62205189A (en) * 1986-03-05 1987-09-09 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPS62205190A (en) * 1986-03-05 1987-09-09 Matsushita Electric Ind Co Ltd Liquid crystal composition

Patent Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1491471A (en) 1974-01-21 1977-11-09 Secr Defence Colour display systems
US4025164A (en) * 1975-03-17 1977-05-24 Bbc Brown Boveri & Company Limited Liquid crystal display device for colored display of information with a selective polarizer
GB2007865A (en) 1977-11-07 1979-05-23 Secr Defence Liquid display devices
GB1569686A (en) 1977-11-10 1980-06-18 Standard Telephones Cables Ltd Smectic display cell
US4264148A (en) * 1978-06-22 1981-04-28 Siemens Aktiengesellschaft Liquid crystal display devices having an induced cholesteric phase
EP0008956A1 (en) 1978-09-13 1980-03-19 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Improvements in or relating to liquid crystal materials and devices
US4328493A (en) * 1979-01-24 1982-05-04 National Research Development Corporation Liquid crystal color displays
JPS5695977A (en) 1979-12-28 1981-08-03 Seiko Epson Corp Liquid crystal composition
US4367924A (en) 1980-01-08 1983-01-11 Clark Noel A Chiral smectic C or H liquid crystal electro-optical device
EP0091637A2 (en) 1982-04-05 1983-10-19 Hitachi, Ltd. Liquid crystal display
JPS58173719A (en) 1982-04-05 1983-10-12 Hitachi Ltd Liquid crystal display
EP0092181A2 (en) 1982-04-16 1983-10-26 Hitachi, Ltd. Method for driving liquid crystal element employing ferroelectric liquid crystal
JPS5953815A (en) 1982-09-22 1984-03-28 Hitachi Ltd Liquid crystal display element
US4563059A (en) 1983-01-10 1986-01-07 Clark Noel A Surface stabilized ferroelectric liquid crystal devices
US4561725A (en) 1983-02-09 1985-12-31 Canon Kabushiki Kaisha Electro-optical device having homogeneous alignment layer hardened with cross-linking agents
US4655561A (en) 1983-04-19 1987-04-07 Canon Kabushiki Kaisha Method of driving optical modulation device using ferroelectric liquid crystal
US4582396A (en) * 1983-05-09 1986-04-15 Tektronix, Inc. Field sequential color display system using optical retardation
EP0138006A2 (en) 1983-09-17 1985-04-24 MERCK PATENT GmbH Liquid-crystal phase
EP0136725A2 (en) 1983-10-05 1985-04-10 Chisso Corporation Ferroelectric chiral smectic liquid crystal composition and light switching element
JPS60143422A (en) 1983-12-29 1985-07-29 Fuji Photo Film Co Ltd Method and device for recording tracking servo signal
EP0149398A2 (en) 1984-01-03 1985-07-24 Thomson-Csf Display device with a memory using a ferroelectric material
JPS60161326A (en) 1984-01-16 1985-08-23 アライド・コーポレーシヨン Process for wet baking alkali metal hydrogen carbonate in hydrophobic medium
US4639089A (en) 1984-01-23 1987-01-27 Canon Kabushiki Kaisha Liquid crystal device
JPS60156043A (en) 1984-01-23 1985-08-16 Canon Inc Liquid crystal element
DE3502160A1 (en) * 1984-01-23 1985-07-25 Canon K.K., Tokio/Tokyo LIQUID CRYSTAL DEVICE
US4720173A (en) 1984-03-09 1988-01-19 Canon Kabushiki Kaisha Display having an orientation treatment between 0° and 15° to the spacer wall
EP0156726A1 (en) 1984-03-20 1985-10-02 Thomson-Csf Process for the preparation of a smectic C-chiral ferroelectric liquid crystal, liquid crystal and display device using the same.
FR2563018A1 (en) 1984-04-16 1985-10-18 Canon Kk LIQUID CRYSTAL OPTICAL DEVICE
EP0160302A2 (en) 1984-05-01 1985-11-06 Hitachi, Ltd. Ferroelectric liquid crystal cell
FR2567533A1 (en) 1984-07-13 1986-01-17 Canon Kk LIQUID CRYSTAL DEVICE
GB2163273A (en) 1984-07-13 1986-02-19 Canon Kk Liquid crystal device
US4709994A (en) 1984-09-12 1987-12-01 Canon Kabushiki Kaisha Liquid crystal device using ferroelectric liquid crystal twisted in two stable states
EP0179592A2 (en) 1984-10-25 1986-04-30 Itt Industries, Inc. Ferroelectric liquid crystal display cells
US4689176A (en) * 1984-12-26 1987-08-25 Chisso Corporation Novel optically active compound and liquid crystal composition containing same
JPS61174294A (en) 1985-01-29 1986-08-05 Asahi Glass Co Ltd Ferroelectric liquid crystal composition
GB2174820A (en) 1985-04-26 1986-11-12 Canon Kk Ferroelectric smectic liquid-crystal device
JPS61252532A (en) 1985-05-02 1986-11-10 Asahi Glass Co Ltd Ferroelectric smectic liquid crystal electrooptic device
EP0201341A2 (en) 1985-05-08 1986-11-12 Chisso Corporation Liquid crystal display element and process for producing same
US4882085A (en) * 1985-08-13 1989-11-21 Canon Kabushiki Kaisha Lactic acid derivative and liquid crystal composition containing same
EP0227419A2 (en) 1985-12-17 1987-07-01 Matsushita Electric Industrial Co., Ltd. Ferroelectric liquid crystal mixture and optical modulation element using same
JPS62192724A (en) 1986-02-20 1987-08-24 Toshiba Corp Ferroelectric liquid crystal element and its production
US4909607A (en) 1986-04-01 1990-03-20 Stc Plc Addressing liquid crystal cells
WO1987006021A1 (en) 1986-04-03 1987-10-08 The Secretary Of State For Defence In Her Britanni Smectic liquid crystal devices
WO1987006022A1 (en) 1986-04-03 1987-10-08 The Secretary Of State For Defence In Her Britanni Smectic liquid crystal devices
US4838663A (en) * 1986-10-07 1989-06-13 S.A.R.L. S.T. Lagerwall Device for submicrosecond electro-optic modulation in the liquid crystal smectic-A phase using orthogonal bookshelf geometry
GB2204606A (en) * 1987-03-13 1988-11-16 J L B Textiles Limited Tubular bandage

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters, vol. 47, No. 12, Dec. 15, 1985; Am. Institute of Physics, (Woodbury, N.Y. U.S.A.); pp. 1277-1279.*
Bahadur; "Liquid Crystal Displays"; Nol. Cryst. Liq. Cryst; vol. 109, No. 1, 1984, pp. 59-71.
Barney; "Fast LC Switch Handles Color"; Electronics; vol. 56; May 19, 1993; pp. 52-53.
Becker et al.; "Alignment Properties of Rubbed Polymer Surfaces"; Mol. Cryst. Liq. Cryst. vol. 132, 1986, pp. 167-180.
Chandrasekhar; "Liquid Crystals"; Rep. Prog. Phys.; vol. 39, 1976, pp. 670-673.
Clark et al.; "Submicrosecond Bistable Electro-Optic Switching in Liquid Crystals"; Appl. Phys. Lett., 36(11), Jun. 1, 1980; pp. 899-901.
Electronics International, vol. 56, No. 10, May 1983, (New York U.S.A.), C. Electronics International, vol. 56, No. 10, May 1983, (New York U.S.A.), C. Barney: "FastLC Switch Handles Color"; pp. 52, 54.*
European Search Report.*
Flatischler et al,; "Thin Ferroelectric Liquid Crystal Cells with Surface-Induced Alignment: Optical Characterization and Electro-Optic Performance"; Mol. Cryst. Liq. Cryst.; vol. 131, 1985, pp. 21-46.
Fukuda et al.; "High Speed Displays Using Ferroelectric Liquid Crystal"; Optronics; No. 9, pp. 64-70.
Goodby et al.; "Ferroelectric Liquid Crystals-Structure and Design"; Mol. Cryst. Liq. Cryst.; 1984; vol. 110; pp. 175-203.
J. Dijon, Ferroelectric LCDs, 1987.*
Lagerwall et al.; "Ferroelectric Liquid Crystals for Display" 1985 International Display Research Conference; 1985; pp. 213-221.
Le Pesant et al.; "Optical Switching of Chiral Smectic C at Room Temperature"; Mol. Cryst. Liq. Cryst., vol. 129, 1985, pp. 61-74.
Matsumoto et al.; Polarity of Spontaneous Polarization of Ferroelectric Liquid Crystal Materials; Preprint of 11th Forum on Liquid Crystals; 1985, pp. 1-6.
Molecular Crystals & Liquid Crystals, vol. 110, 1984; Gordon & Breach, Science Pub., Inc., J. W. Goodby et al. "Ferroelectric Liquid Crystals)", pp. 175-203.*
Patel et al.; "A Reliable Method of Alignment for Smectic Liquid Crystals"; Ferroelectrics, vol. 59, 1984, pp. 137-144.
Patel, "Room-Temperature Switching Behavior of Ferroelectric Liquid Crystals in Thin Cells"; Appl. Phys. Lett. 47 (12), Dec. 15, 1985; pp. 1277-1279.
Pelzl et al. "Tilt angle determination of a Smectic C phase by Field-Induced Freedericksz Transition and X-ray investigations", Mol. Cryst. Liq. Cryst., vol. 53, pp. 167-180.*
Williams et al.; Alignment of Chiral Smectic Liquid Crystals; J. Phys. D: Appl. Phys.; vol. 19, No. 3, Mar. 14, 1986, pp. L37-L41.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060187993A1 (en) * 2003-01-09 2006-08-24 Lukishova Svetlana G Efficient room-temperature source of polarized single photons
US7253871B2 (en) * 2003-01-09 2007-08-07 University Of Rochester Efficient room-temperature source of polarized single photons
US20090244442A1 (en) * 2008-03-31 2009-10-01 Industrial Technology Research Institute Color cholesteric liquid crystal display devices and fabrication methods thereof
US8264642B2 (en) 2008-03-31 2012-09-11 Industrial Technology Research Institute Color cholesteric liquid crystal display devices and fabrication methods thereof

Also Published As

Publication number Publication date
DE3786015D1 (en) 1993-07-01
GB2209610B (en) 1990-07-25
EP0295266B1 (en) 1993-05-26
US5061047A (en) 1991-10-29
EP0295266A1 (en) 1988-12-21
WO1987006022A1 (en) 1987-10-08
KR880701393A (en) 1988-07-26
JPH01500856A (en) 1989-03-23
HK178696A (en) 1996-10-04
MY102698A (en) 1992-09-30
JP2710759B2 (en) 1998-02-10
KR960011148B1 (en) 1996-08-21
GB2209610A (en) 1989-05-17
GB8823166D0 (en) 1988-11-30
JPH07207265A (en) 1995-08-08
SG142493G (en) 1994-10-14
DE3786015T2 (en) 1993-09-16
CA1336643C (en) 1995-08-15
JP2659381B2 (en) 1997-09-30
GB8608114D0 (en) 1986-05-08

Similar Documents

Publication Publication Date Title
USRE37509E1 (en) Smectic liquid crystal devices
US5214523A (en) Ferroelectric liquid crystal display device having monostabilized state as an initial state and continuous gray-scale
US4997264A (en) Ferroelectric liquid crystal devices having a high surface tilt
US4969719A (en) Smectic liquid crystal devices
EP0091661B1 (en) Liquid crystal optical modulation element
TWI415925B (en) Liquid crystalline medium and liquid crystal display
EP1715371B1 (en) Liquid crystal display device
JP2005504993A (en) ELECTRO-OPTICAL LIGHT CONTROL ELEMENT, DISPLAY AND MEDIUM
JPH07113112B2 (en) Ferroelectric chiral smectic liquid crystal composition
JPS6311648B2 (en)
US5189535A (en) Liquid crystal display element and method for driving same
US5825447A (en) Liquid crystal device with a bistable chiral smectic liquid crystal having a phase transition series lacking a cholesteric phase #16
JPH0264194A (en) Ferroelectric liquid crystal composition
US5278684A (en) Parallel aligned chiral nematic liquid crystal display element
KR100654082B1 (en) Monostable ferroelectric active-matrix display and a process for producing the same
US6111631A (en) Ferroelectric liquid crystal cell with a saturated switching angle or sufficient to give rise to linear liquid crystal domains
US5702639A (en) Use of complex ligands for ions in ferroelectric liquid-crystal mixtures
US20010046568A1 (en) Liquid crystal display device
JP2953624B2 (en) Ferroelectric liquid crystal composition
JP2692815B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2001316667A (en) Liquid crystal display element
Kondo et al. A new operation mode of a ferroelectric liquid crystal cell with an asymmetrical surface condition II
Korenic A millennium of liquid crystals
LCDs et al. LETI/DOPT/CMO 85 X 38041 Grenoble Cedex FRANCE
JPS62235932A (en) Liquid crystal element

Legal Events

Date Code Title Description
AS Assignment

Owner name: QINETIQ LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SECRETARY OF STATE FOR DEFENCE, THE;REEL/FRAME:012831/0459

Effective date: 20011211

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12