Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE36774 E
Publication typeGrant
Application numberUS 08/842,528
Publication date11 Jul 2000
Filing date24 Apr 1997
Priority date1 Oct 1989
Also published asUS5270004
Publication number08842528, 842528, US RE36774 E, US RE36774E, US-E-RE36774, USRE36774 E, USRE36774E
InventorsLouis C. Cosentino, Jeffrey A. Lee, Daniel A. Baker
Original AssigneeBaxter Healthcare Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cylindrical blood heater/oxygenator
US RE36774 E
Abstract
A combination heat exchanger and oxygenator device is provided. The device includes a generally cylindrical housing having first and second compartments with hollow heat exchange tubes and hollow gas exchange tubes disposed therein, a blood inlet, a blood outlet, a heat exchanges medium inlet, a heat exchange medium outlet, an oxygenating fluid inlet and an oxygenating fluid outlet. The housing has a central axis with the second compartment being concentric thereto. The blood flow passage is defined by blood entering the device generally axially through a path extending along the central axis of the housing and flows generally radially through the second, oxygenating compartment.
Images(3)
Previous page
Next page
Claims(22)
What is claimed is:
1. A combination heat exchanger and oxygenator device comprising:
a housing including structure defining first and second compartments, a blood inlet, a blood outlet, a heat exchange medium inlet, a heat exchange medium outlet, an oxygenating fluid inlet and an oxygenating fluid outlet, said housing having a central axis, said second compartment being concentric to said axis;
structure defining a flow passage for blood through said housing from said blood inlet to said blood outlet;
structure defining a flow passage for heat exchange medium from said heat exchange medium inlet to said heat exchange medium outlet;
structure defining a flow passage for oxygenating fluid from said oxygenating fluid inlet to said oxygenating fluid outlet;
a plurality of hollow gas exchange tubes disposed in said second compartment;
said blood flow passage comprising a heat exchange path through said first compartment, said blood flow passage further comprising a central path extending along at least a portion of said central axis of said housing, said blood flow passage further comprising an oxygenating path extending generally radially through said second compartment, around said gas exchange tubes, said central path being upstream of said oxygenating path, whereby blood flows axially along at least a portion of the central axis of said housing and then generally radially through said second compartment.
2. The combination heat exchanger and oxygenator device of claim 1, wherein said blood outlet has a central fluid flow axis disposed in a plane substantially transverse to said central axis of said housing.
3. The combination heat exchanger and oxygenator device of claim 1, wherein said oxygenating fluid inlet and oxygenating fluid outlet respectively comprise a gas inlet and a gas outlet.
4. The combination heat exchanger and oxygenator device of claim 1, wherein said heat exchange path extends generally radially through said first compartment.
5. The combination heat exchanger and oxygenator device of claim 1, wherein said central path is upstream of said heat exchange path.
6. The combination heat exchanger and oxygenator device of claim 1, wherein said heat exchange path is upstream of said oxygenating path.
7. The combination heat exchanger and oxygenator device of claim 1, wherein said first and second compartments are concentric.
8. The combination heat exchanger and oxygenator device of claim 1 wherein said plurality of hollow gas exchange tubes disposed in said second compartment are comprised of hollow gas exchange tubes generally longitudinally disposed within said .[.first.]. .Iadd.second .Iaddend.compartment.
9. The combination heat exchanger and oxygenator device of claim 1 wherein said plurality of hollow gas exchange tubes disposed in said second compartment are comprised of hollow gas exchange tubes that are spirally wound in concentric layers extending generally longitudinally.
10. The combination heat exchanger and oxygenator device of claim 1 wherein said first compartment is upstream of said second compartment.
11. The combination heat exchanger and oxygenator device of claim 1 wherein said structure defining a flow passage for heat exchange medium from said heat exchange medium inlet to said heat exchange medium outlet includes a plurality of hollow heat exchange tubes disposed in said first compartment.
12. The combination heat exchanger and oxygenator device of claim 11, wherein said heat exchange path is defined around said heat exchange tubes and said heat exchange medium flows through said heat exchange tubes.
13. The combination heat exchanger and oxygenator device of claim 11, wherein said blood flow passage extends axially of said first compartment, via said central path, and then radially through said first compartment, around said heat exchange tubes, via said heat exchange path, and then radially through said second compartment, around said gas exchange tubes, via said oxygenating path.
14. The combination heat exchanger and oxygenator device of claim 11 wherein said plurality of hollow heat exchange tubes disposed in said first compartment are comprised of heat exchange tubes generally longitudinally disposed within said first compartment.
15. The combination heat exchanger and oxygenator device of claim 1, wherein said blood flow passage extends axially of said first compartment, via said central path, and then radially through said first compartment, via said heat exchange path, and then radially through said second compartment, via said oxygenating path. .Iadd.16. The combination heat exchanger and oxygenator device of claim 1, wherein said housing is constructed and arranged and said flow passage for blood is defined such that blood flows vertically upwardly along at least a portion of the central path. .Iaddend..Iadd.17. A combination heat exchange and oxygenator device comprising:
a housing including first and second compartments, a blood inlet, a blood outlet, a heat exchange medium inlet, a heat exchange medium outlet, an oxygenating fluid inlet, an oxygenating fluid outlet, said housing having a central axis, said second compartment being concentric to said axis, wherein the first and second compartments are concentric along at least a substantial portion of their length;
a flow passage for blood through said housing from said blood inlet to said blood outlet;
a flow passage for heat exchange medium from said heat exchange medium inlet to said heat exchange medium outlet;
a flow passage for oxygenating fluid from said oxygenating fluid inlet to said oxygenating fluid outlet;
a plurality of hollow gas exchange tubes disposed in said second compartment;
said blood flow passage comprising a heat exchange path through said first compartment and an oxygenating path extending generally radially through said second compartment, around said gas exchange tubes, at least a portion of said blood flow passage including a generally central path generally parallel to said central axis of said housing, said central path being upstream of said oxygenating path, whereby blood in said central path flows in a direction generally parallel to the central axis of the housing and then generally radially through said second compartment.
.Iaddend..Iadd.18. The combination heat exchanger and oxygenator device of claim 17, wherein said central path is upstream of said heat exchange path. .Iaddend..Iadd.19. The combination heat exchanger and oxygenator device of claim 17, comprising a tubular wall member defining said central path. .Iaddend..Iadd.20. The combination heat exchanger and oxygenator device of claim 19, wherein said tubular wall member is porous.
.Iaddend..Iadd.21. A blood heater and oxygenating device for heating and then oxygenating a patient's blood, and which is designed to reduce priming volume required by the device, comprising:
a housing including first and second compartments internal to the housing, a blood inlet, a blood outlet, a heat exchange medium inlet, a heat exchange medium outlet, an oxygenating fluid inlet and an oxygenating fluid outlet, said housing having a central axis, said second compartment being concentric to said axis and including a plurality of hollow gas exchange tubes contained therein;
said housing including a blood flow passage entirely internal to said housing and extending from said blood inlet to said blood outlet thereof;
a heat exchange medium flow passage internal to said housing, connected to and extending between said heat exchange medium inlet and said heat exchange medium outlet, whereby heat exchange medium may be introduced into said heat exchange medium flow passage through the heat exchange medium inlet and circulated out of said heat exchange medium flow passage through said heat exchange medium outlet;
an oxygenating fluid flow passage internal to said housing, connected to and extending between said oxygenation fluid inlet and said oxygenating fluid outlet, whereby an oxygenating fluid may be introduced into said hollow tubes through said oxygenating fluid inlet, and circulated out of and away from said hollow tubes through said oxygenating fluid outlet;
said blood inlet connected to said first compartment so that the blood diffuses directly from said blood inlet into said first compartment without significant collection of the blood between said blood inlet and said first compartment, and the blood being heated as it passes through said first compartment; and
said blood flow passage comprising a heat exchange path through said first compartment, said blood flow passage further comprising a central path extending along at least a portion of said central axis of said housing, said blood flow passage further comprising an oxygenating path extending generally radially through said second compartment, and around said hollow gas exchange tubes, and said central path being upstream of said oxygenating path, whereby blood flows axially along at least a portion of the central axis of said housing and then generally radially through said
second compartment. .Iaddend..Iadd.22. The device of claim 21, wherein said blood outlet has a central fluid flow axis disposed in a plane substantially transverse to said central axis of said housing. .Iaddend..Iadd.23. The device of claim 21, wherein said oxygenating fluid inlet and oxygenating fluid outlet respectively comprise a gas inlet and a gas outlet. .Iaddend..Iadd.24. The device of claim 21, wherein said first and second compartments are cylindrical. .Iaddend..Iadd.25. The device of claim 21 wherein said plurality of hollow gas exchange tubes disposed in said second compartment are comprised of hollow gas exchange tubes that are spirally wound around said central axis. .Iaddend..Iadd.26. The device of claims 21 or 24 wherein said first compartment is upstream of said second compartment. .Iaddend..Iadd.27. The device of claim 21 wherein said housing is constructed and arranged and said flow passage for blood is defined such that blood flows in a vertically upward direction along at
least a portion of said central path. .Iaddend..Iadd.28. A blood heater and oxygenating device for heating and then oxygenating a patient's blood, and which is designed to reduce priming volume required by the device, comprising:
a housing including first and second compartments internal to the housing, a blood inlet, a blood outlet, a heat exchange medium inlet, a heat exchange medium outlet, an oxygenating fluid inlet and an oxygenating fluid outlet, said housing having a central axis, said second compartment being concentric to said axis and including a plurality of hollow gas exchange tubes contained therein;
said housing including a blood flow passage entirely internal to said housing and extending from said blood inlet to said blood outlet thereof;
a heat exchange medium flow passage internal to said housing, connected to and extending between said heat exchange medium inlet and said heat exchange medium outlet, whereby heat exchange medium may be introduced into said heat exchange medium flow passage through the heat exchange medium inlet and circulated out of said heat exchange medium flow passage through said heat exchange medium outlet;
an oxygenating fluid flow passage internal to said housing, connected to and extending between said oxygenation fluid inlet and said oxygenating fluid outlet, whereby an oxygenating fluid may be introduced into said hollow tubes through said oxygenating fluid inlet, and circulated out of and away from said hollow tubes through said oxygenating fluid outlet;
said blood inlet connected to a chamber which is porous throughout so that the blood diffuses directly into said first compartment without significant collection of the blood in said chamber, and the blood being heated as it passes through said first compartment; and
said blood flow passage comprising a heat exchange path through said first compartment, said blood flow passage further comprising a central path extending along at least a portion of said central axis of said housing, said blood flow passage further comprising an oxygenating path extending generally radially through said second compartment, and around said hollow gas exchange tubes, and said central path being upstream of said oxygenating path, whereby blood flows axially along at least a portion of the central axis of said housing and then generally radially through said second compartment. .Iaddend..Iadd.29. The device of claim 28, wherein said blood outlet has a central fluid flow axis disposed in a plane substantially transverse to said central axis of said housing. .Iaddend..Iadd.30. The device of claim 28, wherein said oxygenating fluid inlet and oxygenating fluid outlet respectively comprise a gas inlet and a gas outlet. .Iaddend..Iadd.31. The device of claim 28, wherein said first and second compartments are cylindrical. .Iaddend..Iadd.32. The device of claim 28 wherein said plurality of hollow gas exchange tubes disposed in said second compartment are comprised of hollow gas exchange tubes that are spirally wound around said central axis. .Iaddend..Iadd.33. The device of claims 28 or 31 wherein said first compartment is upstream of said second compartment. .Iaddend..Iadd.34. The device of claim 28 wherein said housing is constructed and arranged and said flow passage for blood is defined such that blood flows in a vertically upward direction along at
least a portion of said central path. .Iaddend..Iadd.35. A blood heater and oxygenating device for heating and then oxygenating a patient's blood, and which is designed to reduce priming volume required by the device, comprising:
a housing including first and second compartments internal to the housing, a blood inlet, a blood outlet, a heat exchange medium inlet, a heat exchange medium outlet, an oxygenating fluid inlet and an oxygenating fluid outlet, said housing having a central axis, said second compartment being concentric to said axis and including a plurality of hollow gas exchange tubes contained therein;
said housing including a blood flow passage entirely internal to said housing and extending from said blood inlet to said blood outlet thereof;
a heat exchange medium flow passage internal to said housing, connected to and extending between said heat exchange medium inlet and said heat exchange medium outlet, whereby heat exchange medium may be introduced into said heat exchange medium flow passage through the heat exchange medium inlet and circulated out of said heat exchange medium flow passage through said heat exchange medium outlet;
an oxygenating fluid flow passage internal to said housing, connected to and extending between said oxygenation fluid inlet and said oxygenating fluid outlet, whereby an oxygenating fluid may be introduced into said hollow tubes through said oxygenating fluid inlet, and circulated out of and away from said hollow tubes through said oxygenating fluid outlet;
said blood inlet connected to a chamber and from which blood diffuses directly into said first compartment along substantially the entire length of said chamber without significant collection of the blood in said chamber, and the blood being heated as it passes through said first compartment; and
said blood flow passage comprising a heat exchange path through said first compartment, said blood flow passage further comprising a central path extending along at least a portion of said central axis of said housing, said blood flow passage further comprising an oxygenating path extending generally radially through said second compartment, and around said hollow gas exchange tubes, and said central path being upstream of said oxygenating path, whereby blood flows axially along at least a portion of the central axis of said housing and then generally radially through said second compartment. .Iaddend..Iadd.36. The device of claim 35, wherein said blood outlet has a central fluid flow axis disposed in a plane substantially transverse to said central axis of said housing. .Iaddend..Iadd.37. The device of claim 35, wherein said oxygenating fluid inlet and oxygenating fluid outlet respectively comprise a gas inlet and a gas outlet. .Iaddend..Iadd.38. The device of claim 35, wherein said first and second compartments are cylindrical. .Iaddend..Iadd.39. The device of claim 35, wherein said plurality of hollow gas exchange tubes disposed in said second compartment are comprised of hollow gas exchange tubes that are spirally wound around said central axis. .Iaddend..Iadd.40. The device of claims 35 or 38 wherein said first compartment is upstream of said second compartment. .Iaddend..Iadd.41. The device of claim 35 wherein said housing is constructed and arranged and said flow passage for blood is defined such that blood flows in a vertically upward direction along at
least a portion of said central path. .Iaddend..Iadd.42. A combination heat exchanger and oxygenator device comprising:
a housing including first and second compartments internal to the housing, a blood inlet, a blood outlet, a heat exchange medium inlet, a heat exchange medium outlet, an oxygenating fluid inlet and an oxygenating fluid outlet, said housing having a central axis, said second compartment being concentric to said axis;
a blood flow passage entirely internal to said housing extending through said housing from said blood inlet to said blood outlet;
a heat exchange medium flow passage connected to and extending from said heat exchange medium inlet to said heat exchange medium outlet;
an oxygenating fluid flow passage connected to and extending from said oxygenating fluid inlet to said oxygenating fluid outlet;
a plurality of hollow gas exchange tubes disposed in said second compartment; and
said blood flow passage comprising a heat exchange path through said first compartment, said blood flow passage further comprising a central path extending along at least a portion of said central axis of said housing, said blood flow passage further comprising an oxygenating path extending generally radially through said second compartment, and around said hollow gas exchange tubes, said central path being upstream of said oxygenating path, whereby blood flows axially along at least a portion of the central axis of said housing and then generally radially through said second compartment. .Iaddend..Iadd.43. The device of claim 42, wherein said blood outlet has a central fluid flow axis disposed in a plane substantially
transverse to said central axis of said housing. .Iaddend..Iadd.44. The device of claim 42, wherein said oxygenating fluid inlet and oxygenating fluid outlet respectively comprise a gas inlet and a gas outlet. .Iaddend..Iadd.45. The device of claim 42, wherein said first and second compartments are cylindrical. .Iaddend..Iadd.46. The device of claim 42 wherein said plurality of hollow gas exchange tubes disposed in said second compartment are comprised of hollow gas exchange tubes that are spirally wound around said central axis. .Iaddend..Iadd.47. The device of claims 42 or 45 wherein said first compartment is upstream of said second compartment. .Iaddend..Iadd.48. The device of claim 42 wherein said housing is constructed and arranged and said flow passage for blood is defined such that blood flows in a vertically upward direction along at least a portion of said central path. .Iaddend.
Description

This is a continuation of application Ser. No. 08/263,817, filed on Jun. 22, 1994, now abandoned which is a divisional of application Ser. No. 08/115,996, filed on Sep. 2, 1993, now abandoned, which is a continuation of application Ser. No. 07/844,620, now U.S. Pat. No. 5,270,004 filed on May 11, 1992, .[.which claims priority to PCT/US89/04314 filed Oct. 1, 1990.]. .Iadd.which is a national stage application under 35 U.S.C. 371 of PCT/US89/04314, filed Oct. 1, 1989, .Iaddend.the entireties of which are hereby incorporated by reference.

FIELD OF THE INVENTION

This invention relates to a blood oxygenator having an integral heat exchanging unit, the oxygenator being of the outside perfusion type.

BACKGROUND OF THE INVENTION Blood Oxygenators

In known blood oxygenators, hollow fibers are used as a means to bring blood into contact with oxygen and provide a means for removal of carbon dioxide from the blood. The fibers are typically made of a homogeneous membrane of gas-permeable material such as silicone or of hollow fibers made of a microporous membrane of hydrophobic polymeric material such as polyolefins.

There are two types of hollow fiber blood oxygenators: the inside perfusion type in which blood is passed through the bores of the hollow fibers while oxygen is passed on the outside of the hollow fibers, and the outside perfusion type. Blood oxygenators of the outside perfusion type pass oxygen through the bores of the hollow fibers while blood is flowed past the outside of the hollow fibers.

Examples of inside perfusion type hollow-fiber oxygenators are disclosed in U.S. Pat. Nos. 4,239,729 and 4,749,551.

In blood oxygenators of the outside perfusion type the oxygen can be distributed uniformly through the spaces between adjacent fibers and the blood can be expected to move with better mixing. However, outside perfusion has had the disadvantage of being subject to less than the desired oxygenation of the blood because of region channeling of the blood as it passes the outsides of the hollow fibers. Blood-side convective mixing is essential for efficient gas transfer in blood oxygenators. Without such mixing, sharply defined boundary layers of fully oxygenated blood develop near the exchange surfaces and the fluxes of oxygen and carbon dioxide tend to be low. Low transport efficiency results in bulky devices with undesirable high blood priming volumes.

Outside perfusion type blood oxygenators are known in which the hollow fibers are in perpendicular orientation to the direction of blood flow so as to produce more mixing of the blood as the blood flows than inside perfusion constructions. This arrangement can bring about an improvement in oxygenation rate. However, if the number of fibers used in such a blood oxygenator is large (as is desirable) and/or the flow rate of blood is increased in order to treat large volumes of blood, problems arise. For example, unacceptable pressure drop of the blood between inlet and outlets and/or channeling of the blood between groups of fibers may occur. By channeling it is to be understood that a significant flow of blood takes place through relatively large area voids between fibers so that there is little or no mixing. As the rate of oxygen transfer primarily takes place in a thin boundary layer adjacent the hollow fibers, the effectiveness of desired oxygenation is reduced.

Examples of blood oxygenators of the outside perfusion type are disclosed in copending application PCT/US89/00146 filed Jan. 13, 1989; WO 89/00864; and U.S. Pat. Nos. 3,794,468; 4,352,736; 4,622,206; 4,659,549; 4,639,353; 4,620,965; 4,791,054; and 4,808,378, all incorporated herein by reference.

Combined Oxygenator and Heat Exchanger Devices

In the prior art it has been recognized that there is considerable heat loss in all extracorporeal circuits and various devices have been introduced for the purpose of maintaining the temperature of blood within the normal physiological range. Devices which combine the function of blood heating and oxygenation are known. U.S. Pat. No. 4,111,659 describes an embossed film membrane heater/oxygenator. U.S. Pat. No. 4,138,288 describes a bubble-type oxygenator with an integral heater at the blood outlet side of the oxygenator. U.S. Pat. No. 4,620,965 describes an outside perfusion type hollow fiber blood oxygenator with an associated heat exchanger, also located on the blood outlet side of the device, in which the blood flows longitudinally through the oxygenator portion of the device and generally parallel to the hollow gas exchange fibers. U.S. Pat. Nos. 4,639,353, 4,659,549 and 4,791,054 also disclose outside perfusion type hollow-fiber oxygenators in which blood flowing longitudinally through a generally rectangular or cylindrical device passes through multiple hollow fiber exchange chambers separated by narrow channel baffles. In some embodiments of the latter device, separate heat and Oxygen exchange chambers are provided.

U.S. Pat. No. 4,645,645 describes a hollow-fiber blood oxygenator to which a helical heat exchanger may be attached. Heat exchange is accomplished by passing blood across the outside of a helical coated metal coil.

U.S. Pat. No. 4,424,910 describes another form of hollow-fiber oxygenator with an attached heater compartment displaced longitudinally on a generally cylindrical device.

A problem with prior blood oxygenator/heater combination devices which has been recognized in the prior art is the considerable bulk, with consequent large priming volume of the combined devices. A flat device is described in WO 89/00864 and co-pending application, PCT/US89/00146 filed Jan. 13, 1989, which locates heated exchange fibers and gas exchange fibers in adjacent compartments separated by a porous wall so as to eliminate collection and distribution manifolds between the devices. Such flat devices, however, are difficult to manufacture because of the difficulty of properly packing the gas exchange fibers for optimal efficiency.

SUMMARY OF THE INVENTION

The present invention pertains to a novel compact integrated blood heater/oxygenator in which the blood advantageously flows transversely to the axial direction of hollow heat exchange and oxygenation fibers, the device having a minimal priming volume and which is easily assembled using conventional fiber winding techniques for packing the gas exchange fibers.

The inventive blood heater oxygenator is a generally cylindrical device which is constructed so that the blood enters a central chamber extending longitudinally along the axis of the device and then moves radially through respective annular hollow heat exchange and oxygenation fiber bundles in a direction generally perpendicular to the axis of the device and generally transverse to the axial direction of the fibers toward the outer wall of the device where the temperature adjusted and oxygenated blood is collected and passed out of the device via an exit port.

DESCRIPTION OF THE FIGURES

FIG. 1 is a side perspective view of a blood heat exchanger/oxygenator of the invention.

FIG. 2 is a side plan view with parts cut away of the heat exchanger/oxygenator of FIG. 1.

FIG. 3 shows a sectional view of the heat exchanger/oxygenator of the invention taken along line 3--3 of FIG. 2.

FIG. 4 is a side view of a portion of the device as seen from line 4--4 of FIG. 3.

FIG. 5 is an enlarged perspective view of the portion of FIG. 2 indicated by the bold numeral 5.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The invention is best described by reference to the preferred embodiment as illustrated in FIGS. 1-5.

The preferred heat exchanger/oxygenator device of the invention is generally designated in the figures by the numeral 10. The exterior of device 10 comprises a generally cylindrical exterior wall portion 12, proximal cover member 14 and distal cover member 20. The distal cover 20 includes a central blood inlet port 26, a heating fluid outlet port 28 and a gas outlet port 30.

The proximal cap 14 includes a blood outlet port 32, a heater exchange fluid inlet port 36 and a gas inlet port 38. Raised circular portions 40 and 42 define heat exchange fluid and gas distribution manifolds, respectively, which provide fluid communication between the respective inlet ports 36 and 38 and respective hollow bundles of heat exchange and gas exchange fibers, respectively, within the device. A raised circular portion 44 defines a blood collecting manifold which, as shown in FIG. 1, increases in dimension as it approaches the exit port 32.

On the distal cover 16 there are also included raised circular portions 46 and 48 which define manifolds for collecting and directing heat exchange fluid and oxygenation gas from the fiber bundles to their respective outlet ports.

The interior of the device includes a series of annular cylindrical chambers 50, 54, 58 and 62 separated by tubular porous wall members 52, 56 and 60.

The central chamber 50 communicates with blood inlet port 26. The next outward annular chamber 54 comprises the heat exchanger portion of the device and is filled with heat exchange tubes 70 of known type which extend generally in an axial direction. Annular chamber 58 comprises the oxygenator portion of the device and is filled with tubes 74 of a gas exchange membrane material, also of known type. The gas exchange tubes 74 are also preferably oriented generally in an axial direction. Between the porous wall 60 and the inner surface of the outer wall 12 of the device is a hollow cylindrical blood collection chamber 62.

The tubular porous walls 52, 56, 60, the heat exchange tubes 70, and gas exchange tubes 74 are all potted together with a conventional potting material 76 which holds the various interior components of the device together as a unit and isolates the open ends of the tubes 70 and 74 from the blood flow path.

The respective bundles of heat exchange and gas exchange fibers are desirably simultaneously end potted so as to produce a unitary assembly which can be readily sheared to produce open tube ends as best shown in FIG. 5. The covers 14 and 16 are aligned so that they sealingly engage the potted assembly between the respective fiber bundles. Suitably the porous tubular wall members 52, 56 and 60 are provided with continuous non-porous end portions 80 entrained in the potting material such that when the potted assembly is sheared the end portions 80 expose continuous annular rings which provide sealing surface to engage the covers and isolate the respective gas blood and heating fluid distribution and collection manifolds, as shown in FIGS. 2 and 5. Most preferably the cover assemblies are heat or sonically welded to the end portions 80 and to the ends of outer cylindrical wall 12.

The tubular porous wall members 52, 56 and 60 provide separation between the chambers while allowing blood to pass therethrough without offering substantial resistance or directional change. Any porous structure which allows the passage of blood without significant damage may be used. However, it is preferred that these wall members be constructed of a biocompatible plastic material containing a plurality of spaced orifices 82. The orifices 82 are preferably no greater than 1/2 inch (1.27 cm) and preferably 3/8 inches (0.95 cm) in diameter. Larger diameter orifices will allow the fibers to bulge into the orifices and thereby potentially create void spots in the fiber bundle therebelow. Another disadvantage in fibers bulging into the orifices is that pinching to close a fiber may occur. Smaller diameter orifices may be used, by spacing must be selected so that the total area of the orifices 82 is sufficient to assure that the respective porous tubular wall members do not themselves create significant resistance to blood flow or dead spots where blood may collect and coagulate.

Suitable gas exchange membrane material for fibers 74 may be made of polypropylene, polyethylene or other biocompatible material which provides gas exchange. The fibers are liquid impermeable. Suitable fibers for this purpose are well known and commercially available from a number of manufacturers including Mitsubishi Rayon Sale, Ltd. of Tokyo, Japan and Celanese Chemical Company of New York, N.Y., U.S.A.

The heat exchange tubes 70 are preferably formed from a polyurethane resin such as B. F. Goodrich Estane 58091. The tubes are much larger than the hollow fibers in the oxygenator, typically being about 0.033 inches (840 microns) in outside diameter with a wall thickness of about 0.004 inches (102 microns). In contrast, a typical oxygenator fiber has an outside diameter of about 200-450 microns and a wall thickness of less than 50 microns. The formation of heat exchanger tubes from polyurethane rather than the stainless steel, polyethylene, or polypropylene is preferred. While the efficiency of the heat exchange it an important design consideration, it is vital that there must be no leakage. The end seals where polyurethane potting compounds are used with stainless steel tubes represent potential leakage areas of the cooling fluid into the blood.

The use of polyurethane heat exchange tubes with the polyurethane end potting compounds provides a positive seal which ensures that no leakage will occur. This compatibility with the potting compound greatly increases the safety of the product.

The hollow heat exchange tubes are packed into chamber 70 such that channeling is minimized. However, performance of the heat exchanger is not greatly affected if some channeling is present. A pack density of between about 40% and 60% provides an efficient heat exchanger with an accept&hie pressure drop. It is preferred to pack the polyurethane tubes at about 45%-55% pack density which provides an efficient unit, low pressure drop and low blood priming volume. The thin walled polyurethane hollow tubes provide good heat transfer. The efficiency desired is in ensuring that all of the blood is heated or cooled as desired, not in how much heat exchange fluid is required. The temperature differential between the blood and heat exchange fluid should be low to provide better control.

In the preferred embodiment the overall size of the unit is approximately 5 inches (12.5 cm) in diameter by 7.5 inches (18.75 cm) long. The heat exchange tubes are polymeric tubes having an approximate diameter of 0.033 inches (0.83 mm or 830 μ), and the heat exchange chamber containing approximately 2750 tubes. The gas exchange fibers suitably are microporous hollow polypropylene membrane is sufficient quantity to provide a total blood contact surface area of approximately 3.8 square meters. The device permits an outlet blood oxygen tension of 150 torr or more, tested on bovine blood with a hemoglobin concentration of 12 gram-percent; with an inlet saturation of 55% a blood flow of 6 liters per minute and an oxygen flow of 6 liters per minute. The heat exchanger provides an effectiveness level of 45% as measured by the protocol of the American Association of Medical Instrumentation (AAMI).

The heat exchange tubes are preferably cut to length and then placed into the chamber 52. Winding the tubes about central core 52 is less preferable as it tends to cause the hollow tubes to bend and may cause cracks or breaks.

The gas exchange fiber bundle is most suitably prepared by spiral winding fibers 74 around the tubular wall member 56, successive layers being angled relative to each other to produce a crisscross pattern. The crossing fiber arrangement is preferred over parallel fiber packing since it forces the blood into effective but gentle transverse, mixing without traumatizing the blood. Winding techniques for producing cylindrical bundles of hollow fibers are well known and are described in such references as U.S. Pat. No. 3,755,034, 3,794,468, 4,224,094, 4,336,138, 4,368,124 and 4,430,219, all incorporated herein by reference. The preferred angle between the fibers of successive layers is in the range of between about 10 and 30, more preferably between about 15 and 20, most preferably 18. The fibers run in a generally axial direction, so that an axial plane bisects the angle between the successive layers of the fibers. For instance, in the most preferred embodiment, one layer will deviate from the axial direction by +9 and the next layer will deviate from the axial direction by -9. The pack density of the gas exchange fibers 74 should be between about 45% and 60%, most preferably about 50% and 55%. When the pack density is too high the resulting resistance to blood flow reduces oxygenation efficiency. Likewise, when the pack density is too low channeling and reduced turbulent flow of the blood also reduces oxygenation efficiency. Within the preferred range oxygenation efficiency is maximized.

For potting the ends of the assembly of fiber bundles and porous wall members 52, 56 and 60, a polyurethane potting compound is preferred. Suitable potting compounds are available from Caschem, Inc. of Bayonne, N.J., U.S.A. A polyurethane casting system of Caschem, Inc. is described in U.S. Pat. Reissue No. 31,389. After potting the hollow fibers are reopened by conventional techniques such as shearing the potting with a sharp knife so as to expose the interiors of the fibers.

After insertion of the potted and sheared assembly into cylinder 12 the cover members 14 and 20 are inserted in line so that they sealingly engage the potted assembly between the respective fiber bundles.

The covers 14 and 20, cylinder case 12 and the porous tubular wall members 52, 56 and 60 are all preferably made from nontoxic biocompatible plastic resins. Suitable resins are polycarbonate resins such as the Lexan brand resins of General Electric Company, Polymer Product Department, Pittsfield, Mass. Lexan 144 grade polycarbonate resins are currently preferred.

In operation, blood entering the device through the central inlet port 26, fills chamber 50 and then passes in a direction generally perpendicular to the axis through porous wall 52, around heat exchange fibers 70, through porous wall 56, around gas exchange fibers 74, through wall 60, into collection chamber 62 and then up into the blood collecting manifold 44 in cover 14, finally exiting the device via blood exit port 32.

An advantage provided by the compact structure of the device is a reduction in priming volume which results because blood is directly passed from the heat exchange chamber 54 to the oxygenation chamber 58 without passing through intermediate collection and distribution manifolds.

Yet another advantage of the invention compared to many of the prior art devices described in the Background section, above, is the location of the heat exchange chamber upstream from the gas exchange chamber. Since gas solubility varies significantly with temperature, it is important that the blood is oxygenated at the temperature it will enter the body. If the blood is heated after it is oxygenated, the oxygenation level may exceed the gas saturation point at the higher temperature, resulting in formation of dangerous emboli. If blood is cooled after oxygenation inefficient oxygenation can result.

Compared to the rectangular devices of WO 89/0864 and PCT/US89/00146, the device of the present invention also provides a significantly less complicated device to manufacture. In particular, to obtain the desired angular and Offset orientation of the gas exchange fibers in the prior art rectangular device it was necessary to employ a manufacturing technique which not only laid alternate layers in a crisscross pattern angled with respect to each other approximately 18', but also required offsetting each successive parallel layer to minimize channeling. In the cylindrical device of the invention the desired crisscrossing of successive layers can readily be performed by conventional spiral winding techniques and the increasing diameter of the winding naturally results in an offset of successive parallel layers without complex controls.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US27100 *14 Feb 1860 Robert f
US32186 *30 Apr 1861 Improved telegraphic cable
US33932 *17 Dec 1861 Improvement in the base-pin and rammer of revolving pistols
US2659368 *28 May 194917 Nov 1953Jefferson Medical College Of PExtracorporeal circulation device
US2684728 *17 May 195227 Jul 1954Ind Rayon CorpApparatus for removing air from viscose solution
US2937644 *15 Oct 195724 May 1960Corco IncBlood oxygenator for facilitating heart surgery
US3026871 *27 Jan 195927 Mar 1962Const Mecaniques De Stains SocApparatus for oxygenating blood
US3058464 *22 Apr 195716 Oct 1962Baxter Laboratories IncOxygenator
US3142296 *31 May 196228 Jul 1964Jack W LoveBlood oxygenator
US3171475 *6 Apr 19622 Mar 1965Baxter Laboratories IncApparatus for blood handling
US3211148 *25 May 196212 Oct 1965Jr John E GalajdaRotary disk oxygenator and heater
US3256883 *8 Aug 196321 Jun 1966Wall Richard A DeOxygenator with heat exchanger
US3315740 *14 Jan 196525 Apr 1967Du PontFlexible plastic tube bundle and method of making
US3342729 *9 Dec 196419 Sep 1967Dow Chemical CoPermeability separatory cell and apparatus and method of using the same
US3413095 *14 Jun 196526 Nov 1968Mogens L. BramsonMembrane oxygenator
US3466148 *15 Feb 19669 Sep 1969Everett Hazen FBlood oxygenator
US3484211 *8 Dec 196416 Dec 1969Us ArmyMembrane oxygenator
US3492991 *23 Feb 19673 Feb 1970Dyer Richard H JrAutotransfusion apparatus
US3513845 *15 Sep 196626 May 1970United Aircraft CorpBypass heart pump and oxygenator system
US3527572 *11 Oct 19658 Sep 1970Urkiewicz A EdwardApparatus for treating blood
US3547591 *16 Oct 196815 Dec 1970Torres Jose CBubble film oxygenator
US3557962 *28 Jun 196826 Jan 1971North American RockwellReverse osmosis fabric
US3651616 *13 Feb 196928 Mar 1972Rhone Poulenc SaProcess for effecting absorption or removal of gas from a liquid
US3691068 *8 Jan 197112 Sep 1972Amicon CorpDialysis membrane and its use
US3722694 *10 Jun 197027 Mar 1973Romicon IncFiltration device
US3755034 *10 Dec 197128 Aug 1973Dow Chemical CoMethod for making a hollow fiber separatory element
US3764271 *10 Jan 19729 Oct 1973R BrumfieldBlood oxygenator in combination with a low pressure heat exchanger
US3768653 *21 Mar 197230 Oct 1973Brumfield RFiltering cardiotomy reservoir
US3769162 *26 Aug 197130 Oct 1973R BrumfieldBlood oxygenator and thermoregulator apparatus
US3769163 *8 Nov 197130 Oct 1973R BrumfieldBlood oxygenator flow guide
US3794468 *10 Jan 197226 Feb 1974Baxter Laboratories IncMass transfer device having a wound tubular diffusion membrane
US3807958 *5 Jun 197230 Apr 1974Harvey Res Corp WilliamA bubble oxygenerator including a blood foam return exchanger device
US3848660 *22 Sep 197219 Nov 1974Du PontPlastic heat exchange apparatus and a method for making
US3853479 *23 Jun 197210 Dec 1974Sherwood Medical Ind IncBlood oxygenating device with heat exchanger
US3870470 *18 Jun 197311 Mar 1975Fumitake YoshidaBubble-type blood oxygenator with baffles
US3881483 *12 Sep 19736 May 1975Rhone Poulenc SaExtracorporeal blood circuit
US3884814 *23 Jul 197320 May 1975Rhone Poulenc SaApparatus for fractionating fluids
US3890969 *21 Jan 197424 Jun 1975Baxter Laboratories IncCardiopulmonary bypass system
US3918912 *15 Oct 197311 Nov 1975Sherwood Medical Ind IncBlood oxygenator
US3927981 *30 Aug 197323 Dec 1975Rhone Poulenc SaMembrane-type blood oxygenator with recycle of oxygen-containing gas
US3956112 *13 Mar 197511 May 1976Allied Chemical CorporationOf solute from immiscible liquid
US3957504 *11 Nov 197418 May 1976Allied Chemical CorporationMetals, chelate compounds
US3993816 *10 Jul 197423 Nov 1976Rhone-Poulenc S.A.Hollow fiber assembly for use in fluid treatment apparatus
US3994689 *31 Oct 197330 Nov 1976Dewall Richard AMetabolic bubble oxygenator
US4022692 *1 Aug 197510 May 1977Erika, Inc.Non-woven support screen for mass transfer devices
US4026669 *14 Jul 197531 May 1977Baxter Laboratories, Inc.Variable capacity reservoir assembly
US4036231 *20 Nov 197519 Jul 1977Sherwood Medical Industries Inc.Thoracic drainage unit with defoaming means
US4038190 *29 May 197426 Jul 1977Rhone-Poulenc S.A.Fluid fractionation apparatus and method of manufacturing the same
US4065264 *10 May 197627 Dec 1977Shiley Laboratories, Inc.Blood oxygenator with integral heat exchanger for regulating the temperature of blood in an extracorporeal circuit
US4077578 *13 Feb 19767 Mar 1978Baxter Travenol Laboratories, Inc.Machine for winding hollow filaments
US4111659 *27 Dec 19765 Sep 1978Graeme L. HammondBlood oxygenator
US4140637 *6 Oct 197720 Feb 1979Walter Carl WPermeability separatory method and apparatus
US4158693 *29 Dec 197719 Jun 1979Texas Medical Products, Inc.Blood oxygenator
US4168293 *7 Mar 197718 Sep 1979Bramson Mogens LBlood oxygenator
US4180896 *16 Oct 19781 Jan 1980Texas Medical Products, Inc.Blood oxygenator assembly method
US4186713 *25 Oct 19775 Feb 1980Lucas Industries LimitedIgnition systems for internal combustion engine
US4187180 *7 Oct 19775 Feb 1980Nippon Zeon Co. Ltd.Hollow-fiber permeability apparatus
US4188360 *8 Sep 197812 Feb 1980Japan Medical Supply Co., Ltd.Artificial lung with a built-in heat exchanger
US4202776 *27 Jan 197813 May 1980Nippon Zeon Co., Ltd.Hollow-fiber permeability apparatus
US4205042 *23 Jun 197827 May 1980Cobe Laboratories, Inc.Blood oxygenator with a gas filter
US4213858 *17 Nov 197822 Jul 1980Gambro AbSupporting net
US4225439 *13 Oct 197830 Sep 1980Gambro Dialysatoren Gmbh & Co. KgApparatus for selective separation of matter through semi-permeable membranes
US4239729 *1 Jun 197916 Dec 1980Terumo CorporationOxygenator
US4244094 *25 Oct 197913 Jan 1981Fabryka Narzedzi ChirurgicznychInstrument for removing exchangeable blades from surgical scalpes
US4254081 *21 Sep 19793 Mar 1981Research Partners LimitedBlood oxygenator
US4256692 *1 Feb 197917 Mar 1981C. R. Bard, Inc.Prevention of accidental leakage; fluid flow prevents mixing of blood and water
US4268279 *6 Jun 197919 May 1981Mitsubishi Rayon Co., Ltd.Gas transfer process with hollow fiber membrane
US4280981 *6 Nov 197928 Jul 1981C. R. Bard, Inc.Blood oxygenator
US4282180 *9 Aug 19774 Aug 1981Bentley Laboratories, Inc.Blood oxygenator
US4306018 *26 Jun 198015 Dec 1981The Board Of Regents Of The University Of NebraskaMethod of gas-heat exchange
US4308230 *29 May 197929 Dec 1981Bramson Mogens LBlood oxygenator
US4315819 *12 Jun 197816 Feb 1982Monsanto CompanyHollow fiber permeator apparatus
US4346006 *24 Mar 198024 Aug 1982Baxter Travenol Laboratories, Inc.For dialysis of blood
US4352736 *8 Dec 19805 Oct 1982Toyo Boseki Kabushiki KaishaWound flattened hollow fiber assembly having plural spaced core sections
US4372914 *27 Apr 19818 Feb 1983Bentley Laboratories, Inc.Blood oxygenator
US4374802 *16 Sep 198122 Feb 1983Terumo CorporationOxygenator
US4376095 *14 Aug 19818 Mar 1983Terumo CorporationHollow fiber-type artificial lung having enclosed heat exchanger
US4389363 *3 Nov 198021 Jun 1983Baxter Travenol Laboratories, Inc.Method of potting microporous hollow fiber bundles
US4411872 *16 Dec 198125 Oct 1983Bramson Mogens LWater unit for use with a membrane blood oxygenator
US4414110 *12 Jan 19818 Nov 1983Cordis Dow Corp.Sealing for a hollow fiber separatory device
US4424190 *22 Feb 19823 Jan 1984Cordis Dow Corp.Rigid shell expansible blood reservoir, heater and hollow fiber membrane oxygenator assembly
US4425234 *30 Jul 197910 Jan 1984Hospal Ltd.Hollow fiber separatory device
US4428403 *4 Jun 198231 Jan 1984Extracorporeal Medical Specialties, Inc.Conduit having spirally wound monofilament material
US4428934 *29 Jul 198131 Jan 1984Bentley Laboratories, Inc.Method for oxygenating blood
US4440722 *2 Oct 19813 Apr 1984Dideco S.P.ADevice for oxygenating blood circulating in an extracorporeal circuit with a heat exchanger
US4440723 *10 Jul 19813 Apr 1984Bentley Laboratories, Inc.Blood oxygenator
US4445500 *30 Sep 19821 May 1984Thomas Jefferson UniversityStroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4455230 *26 Apr 198219 Jun 1984Cobe Laboratories, Inc.Pleated membrane transfer device utilizing potting and thixotropic adhesive
US4466804 *24 Sep 198121 Aug 1984Tsunekazu HinoExtracorporeal circulation of blood
US4493692 *29 Sep 198215 Jan 1985Reed Charles CBlood gas concentration control apparatus and method
US4533516 *6 Jul 19826 Aug 1985Gambro Cardio AbApparatus for the transfer of one or more substances between a gas and a liquid
US4540492 *20 Dec 198210 Sep 1985Millipore CorporationMethod and apparatus for treating whole blood
US4556489 *9 Mar 19833 Dec 1985Shiley IncorporatedMembrane oxygenator
US4559999 *8 Apr 198324 Dec 1985Shiley, Inc.Heat exchanger for extracorporeal circuit
US4588026 *22 Oct 198113 May 1986Raytheon CompanyCoiled heat exchanger
US4599093 *2 Aug 19848 Jul 1986Steg Jr Robert FOxygenation, medical equipment
US4612170 *13 Jun 198316 Sep 1986Luther Ronald BBlood oxygenator with dual sparger and reuseable heat exchanger
US4622140 *30 Oct 198011 Nov 1986Extracorporeal Medical Specialties, Inc.Device useful in the treatment of blood
US4622206 *21 Nov 198311 Nov 1986University Of PittsburghMembrane oxygenator and method and apparatus for making the same
Non-Patent Citations
Reference
1Belter et al, "Bioseparations: Downstream Processing for Biotechnology", A Wiley-Interscience Publication, Chapter 9 (Ultrafiltration and Electrophoresis), (1986), pp. 237-270.
2 *Belter et al, Bioseparations: Downstream Processing for Biotechnology , A Wiley Interscience Publication, Chapter 9 (Ultrafiltration and Electrophoresis), (1986), pp. 237 270.
3 *Bird et al, Transport Phenomena, Wiley, 1980, Sections 2.3,6.2, 6.4.
4 *Cussler, A Mass Transfer Tutorial, Chemtech, (Jul., 1986), pp. 422 425.
5Cussler, A Mass Transfer Tutorial, Chemtech, (Jul., 1986), pp. 422-425.
6 *Cussler, Diffusion: Mass transfer in fluid systems, Cambridge University Press, 1984, Chapter 2,, pp. 15 54 and Chapter 9, pp. 215 248.
7Cussler, Diffusion: Mass transfer in fluid systems, Cambridge University Press, 1984, Chapter 2,, pp. 15-54 and Chapter 9, pp. 215-248.
8 *Semmens et al, Ammonia Removal From Water Using Microporous Hollow Fibers, undated paper, pp. 1 21.
9Semmens et al, Ammonia Removal From Water Using Microporous Hollow Fibers, undated paper, pp. 1-21.
10 *Treybal, Mass Transfer Operations, Third Edition, McGraw Hill Book Company, (1980), pp. 47 54, 74 75.
11Treybal, Mass-Transfer Operations, Third Edition, McGraw-Hill Book Company, (1980), pp. 47-54, 74-75.
12Wickramasinghe et al, "Mass transfer in various hollow fiber geometrics", Journal of Membrane Science, 69 (1992) pp. 235-250.
13 *Wickramasinghe et al, Mass transfer in various hollow fiber geometrics , Journal of Membrane Science, 69 (1992) pp. 235 250.
14Wickramasingle, et al, "Hollow Fiber Modules Made With Hollow Fiber Fabric", Undated Paper, pp. 1-21.
15 *Wickramasingle, et al, Hollow Fiber Modules Made With Hollow Fiber Fabric , Undated Paper, pp. 1 21.
16 *Winston, et al, Membrane Handbook, Prasad et al, Membrane Based Solvent Extraction, (1992) Chapter 41, pp. 727 763.
17Winston, et al, Membrane Handbook, Prasad et al, Membrane-Based Solvent Extraction, (1992) Chapter 41, pp. 727-763.
18Yang et al, "Artifical Gills", Journal of Membrane Science, 42 (1989) pp. 273-284.
19 *Yang et al, Artifical Gills , Journal of Membrane Science, 42 (1989) pp. 273 284.
20 *Yang et al, Designing Hollow Fiber Contactors, AlChE. Journal, (Nov. 1986), vol. 32, No. 11, pp. 1910 1916.
21Yang et al, Designing Hollow-Fiber Contactors, AlChE. Journal, (Nov. 1986), vol. 32, No. 11, pp. 1910-1916.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6402967 *29 Apr 199811 Jun 2002Eclipse Environmental Australia Pty LimitedGrease separating device and method
US668269823 Aug 200127 Jan 2004Michigan Critical Care Consultants, Inc.Apparatus for exchanging gases in a liquid
US83885666 Oct 20105 Mar 2013Sorin Group Italia, S.r.l.Oxygenator with integrated arterial filter including filter frame
US839404920 Aug 201012 Mar 2013Sorin Group Italia S.R.L.Blood processing unit with modified flow path
US865240630 Jan 201318 Feb 2014Sorin Group Italia S.R.L.Blood processing unit with modified flow path
US879522016 Nov 20105 Aug 2014Politecnico Di MilanoBlood processing unit with circumferential blood flow
US20120018367 *30 Mar 201026 Jan 2012Kubota CorporationMembrane separator
EP2524712A1 *17 May 201121 Nov 2012Sorin Group Italia S.r.l.Blood processing unit with cross blood flow
WO2012156907A1 *15 May 201222 Nov 2012Sorin Group Italia S.R.L.Blood processing unit with cross blood flow
Classifications
U.S. Classification422/46, 261/DIG.28, 426/48, 210/321.88, 210/321.79, 210/321.64
International ClassificationB01D63/04, A61M1/16, B01D63/02
Cooperative ClassificationY10S128/03, Y10S261/28, B01D2313/38, B01D63/025, A61M1/1698, B01D63/02, A61M2206/16, B01D63/04, A61M1/1625, A61M1/1629
European ClassificationB01D63/02, B01D63/04, A61M1/16S
Legal Events
DateCodeEventDescription
19 Jun 2001ASAssignment
Owner name: EDWARDS LIFESCIENCES CORPORATION, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAXTER HEALTHCARE CORPORATION;REEL/FRAME:011979/0094
Effective date: 20010607
Owner name: EDWARDS LIFESCIENCES CORPORATION ONE EDWARDS WAY I
Owner name: EDWARDS LIFESCIENCES CORPORATION ONE EDWARDS WAYIR
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAXTER HEALTHCARE CORPORATION /AR;REEL/FRAME:011979/0094
10 Jun 1999ASAssignment
Owner name: BAXTER HEALTHCARE CORPORATION, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MINNTECH CORPORATION;REEL/FRAME:010018/0314
Effective date: 19981123