Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE35916 E
Publication typeGrant
Application numberUS 08/552,486
Publication date6 Oct 1998
Filing date9 Nov 1995
Priority date26 Dec 1991
Also published asUS5235633, WO1993013618A1
Publication number08552486, 552486, US RE35916 E, US RE35916E, US-E-RE35916, USRE35916 E, USRE35916E
InventorsEverett Dennison, Edwin L. Nass, Timothy J. Duffy, Gregory T. Pauley, Scott L. Jones, Deborah J. Shale
Original AssigneeDennison; Everett, Nass; Edwin L., Duffy; Timothy J., Pauley; Gregory T., Jones; Scott L., Shale; Deborah J.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cellular telephone system that uses position of a mobile unit to make call management decisions
US RE35916 E
Abstract
A cellular telephone system includes a plurality of cell sites and a mobile telephone switching office. Call management, including selection of a cell site most appropriate for a call associated with a mobile unit, are made based on the geographic location of the mobile unit as opposed to the strength of the signal associated with the call. The geographic location of the mobile unit is precisely determined using a NAVSTAR global positioning system, or its equivalent. Each mobile unit includes a GPS receiver that receives information from a geostationary satellite to determine the precise location of the mobile unit. This position information is relayed to the cell site initially managing the mobile unit, and the mobile unit is handed off to a cell site that is most appropriate for the call. Initial selection of an entrance cell site is made based on signal strength, but further call management decisions are made based on location of the mobile unit.
Images(13)
Previous page
Next page
Claims(15)
We claim:
1. A cellular communications system that includes one or more cell sites and an MTSO, said system comprising:
A) locating means in a mobile unit of a cellular communications system for determining the exact geographic location of the mobile unit, said locating means including means using a satellite communication system for establishing an exact geographic location of said mobile unit and for emitting a position signal of said exact geographic location;
B) means in the MTSO for receiving the position signal transmitted by the mobile unit and using that position signal to establish the exact geographic location of the mobile unit vis . .e.!. .Iadd.a .Iaddend.vis cell sites in the cellular communications . .network.!. .Iadd.system.Iaddend.; and
C) data storage and comparison means in the MTSO storing cell site location data giving a geographic location for each of the cell sites in the cellular communications . .network.!. .Iadd.system .Iaddend.and effecting a comparison between said position signal and . .said.!. .Iadd.the .Iaddend.cell site location data and selecting a chosen cell site for use by said mobile unit based on said comparison and establishing communication between said mobile unit and said chosen cell site based on the exact geographic location of the mobile unit .Iadd.and using the geographic location of the mobile unit for taxing and billing wherein said taxing and billing is irrespective of cell site geographic location.Iaddend..
2. The cellular communication system defined in claim 1 wherein said locating means includes a means for communicating with a satellite.
3. The cellular communication system defined in claim 2 wherein said means in the MTSO for determining the geographic location of a cell site includes a look-up table.
4. The cellular communication system defined in claim 3 wherein said locating means includes a GPS.
5. The cellular communication system defined in claim 3 wherein said locating means includes a GPS receiver connected to logic circuitry in said mobile unit.
6. The cellular communications system defined in claim 5 wherein said mobile unit includes a duplexer.
7. The cellular communications system defined in claim 6 wherein said mobile unit includes a GPS receiver located between said duplexer and said logic circuitry.
8. The cellular communications system defined in claim 7 further including means for placing location data on voice and data communication signals.
9. The cellular communications system defined in claim 8 further including means for making call management decisions based on signal strength.
10. A cellular communications system that includes one or more cell sites and an MTSO, said system comprising:
A) locating means in a mobile unit in . .a.!. .Iadd.the .Iaddend.cellular communications system for determining the exact geographic location of the mobile unit; and
B) management means in the MTSO for making management decisions based on the geographic location of the mobile unit, said management means including means for storing the geographic location for each cell site in the cellular communications system and for comparing the exact geographic location of the mobile unit to the geographic location of each cell site and for selecting a .Iadd.chosen .Iaddend.cell site for use by the mobile unit based on such .Iadd.comparison and for call routing to provide proper services for the mobile unit.Iaddend..
11. A method of making call management decisions in a cellular telephone system having a plurality of cell sites and an MTSO comprising:
A) establishing a geographic location for a mobile unit;
B) matching the geographic location of the mobile unit to a cell site location; . .and.!.
C) using the cell site matched to the mobile unit to handle calls associated with the mobile unit. ...!. .Iadd.and
D) taxing and billing for the mobile unit irrespective of cell site geographic location..Iaddend.
12. The method defined in claim 11 further including a step of handing off the mobile unit to a second cell site based on the position of the mobile unit.
13. The method defined in claim 12 further including a step of continuously monitoring the position of the mobile unit as the mobile unit moves, and handing off the mobile unit to various cell sites based on the instantaneous location of the mobile unit.
14. The method defined in claim 13 further including assessing message unit charges to a call made from the mobile unit.
15. The method defined in claim 13 wherein said call management decisions include deciding which cell site will initially handle a call to or from a mobile unit.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates to the general art of cellular mobile radiotelephone (CMR) technology, and to the particular field of managing the calls in a cellular system.

BACKGROUND OF THE INVENTION

CMR is a rapidly growing telecommunications system. The typical CMR system includes a multiplicity of cells, such as indicated in FIG. 1. A particular geographic area is subdivided into a multiplicity of subareas, with each of the subareas being serviced by a stationary transmitter/receiver setup. The cells are set up to carry signals to and from mobile units M in the range of the cell. If one cell becomes too crowded, it can be divided into smaller cells, by a process known as cell splitting. As can be seen from FIG. 1, any particular geographic area can become quite complicated with cells overlapping each other, and overlapping cells of other neighboring cellular systems. It is noted that the term "cellular" is intended to be a term of convenience, and is not intended to be limiting. The present disclosure is intended to encompass any communication system in which an overall area can be divided into one or more subareas such as shown in FIG. 1.

A typical CMR set up is indicated in FIGS. 2 through 7, and will be described so an understanding of the problem to which this invention is directed can be obtained.

FIGS. 2, 3 and 4 show a typical cellular telephone unit 2 having a unique mobile identification number stored in a suitable location such as an electrically erasable programmable read-only memory (not shown). Telephone units of this kind are known to those skilled in this art, and thus will not be described in detail.

The telephone unit 2 includes a handset 4 having a keypad 5 as well as a speaker 6 and a microphone 7. A transceiver 8, ordinarily built into the telephone unit 2, exchanges signals via an antenna 10 with a mobile telecommunications switching office or MTSO 12 via a cell site 14. A duplexer 15 connects the antenna to the transceiver. The cell site 14 includes an antenna 16 connected to a control terminal 17 via a transceiver 18. The cell 14 is connected to the MTSO via a transmission link 20.

Referring to FIGS. 4, 4A and 5, the operation of the CMR can be understood. The mobile unit M moves about the geographic areas covered by the various cells as indicated in FIG. 1. As that mobile unit moves about, it decodes the overhead message control signals generated by various cell site control channels. The mobile unit locks onto the cell site that is emitting the strongest signal. The mobile unit rescans channels periodically to update its status. If, for example, a fixed-position land-based telephone T is used to call the mobile unit, a signal is sent via landlines L, to the central office CO of a public/switched telephone system (PTSN) 12A. This system then utilizes the switching network SN associated therewith to call the MTSO 12 via a transmission link L1. The MTSO then utilizes its own switching network and generates a page request signal to all cell sites via transmission links, such as the transmission link 20. The cell site which has been notified of the presence of the mobile unit M sends a signal back to the MTSO via the landlines alerting the MTSO of the presence of the mobile unit. The MTSO then orders the mobile unit, via the notifying cell site, to tune to an assigned channel and receive the call. Billing and other business information are recorded in the MTSO at this time.

On the other hand, during call origination, the mobile unit rescans the control channels to determine which is the best server based on signal strength. Upon selecting the best server, the mobile unit transmits call site information on the control channel receive frequency and then receives a voice channel to tune to if the mobile unit is authorized to place a call.

As the mobile unit moves, the signal strength between that mobile unit and the originating cell site changes, and perhaps diminishes. Since signal strength is an inverse function of the square of the distance between the mobile unit and the cell site, signal strength can change rapidly and drastically as the mobile unit moves with respect to the cell site and therefore must be monitored closely. Moreover, signal strength can be strongly affected by terrain, environmental conditions as well as interference from other sources. The MTSO has a signal strength table ST, and signal strength from the mobile unit is constantly compared to acceptable signal strength levels in the table. Such a table can be located in each cell site if desired.

Should signal strength diminish below a preset range, the MTSO generates a "locate request" signal to all cell sites that neighbor the original cell site. Each of such neighboring cell sites receiving a signal from the mobile unit signals the MTSO, and the signal strength from such neighboring cell sites are checked against the signal strength table. The MTSO makes a decision as to which cell site should control the call, and notifies the original cell site to order the mobile unit to retune to a voice channel of the new cell site.

As soon as the mobile unit retunes, the mobile unit completes the call via the new cell site channel. This transfer of control is known as a handoff.

While this method of making switching decisions has worked well in the past, the growth and sophistication of the cellular industry has resulted in severe drawbacks to this method. First, due to uneven terrain, unpredictable environmental conditions, interference and the like, many cellular companies have been required to construct numerous cell sites. These cells often overlap neighboring cell sites and provide redundant coverage. This is extremely expensive, not only from the standpoint of construction costs, but due to monitoring and staffing costs as well. Even at this, conditions can change so rapidly that coverage may still be inconsistent.

Still further, due to idiosyncrasies in terrain and environment, a mobile unit may use a cell that is located far from the mobile unit rather than a cell located immediately adjacent to that mobile unit. Hilly terrain is a common example of this problem. While this may not be a technical problem, it is important because a cellular company cannot assess long distance charges and/or message units to the calls. This deprives the cellular company of income that it could otherwise receive and customers of optimum service. Communities are also deprived of tax income that might be assessed against such calls as well.

Still further, since only signal strength is used to make switching decisions, the location of a caller is not ascertainable. This could be important in keeping track of calls.

Other problems that have been experienced in such cellular systems include the inability to completely control the cell site transmit signal, crosstalk noise interference, dropped calls, overlap and an inability to adequately service areas with undulating terrain without infringing the borders of other cellular territories.

Therefore, there is a need for a cellular system that can provide consistently high quality service, yet can do so with a minimum number of cell sites in a particular geographic area. Still further, there is a need for a cellular system that can accurately assess charges for all CMR services including message units for calls covering a certain distance within the geographic area.

OBJECTS OF THE INVENTION

It is a main object of the present invention to provide a cellular system that can provide high quality service using only a minimum number of cell sites within a given geographic area.

It is another object of the present invention to provide a cellular system that can accurately track a mobile unit within the geographic area covered by the cellular system.

It is another object of the present invention to provide a cellular system that can assess charges for calls based on the geographic location of the call.

SUMMARY OF THE INVENTION

These, and other, objects are achieved by a cellular system that makes switching and call management decisions based on the location of a mobile unit rather than on the strength of the signal associated with that mobile unit. The exact location of each mobile unit is determined using a Global Positioning System (GPS), LORAN, or other position determining system. The NAVSTAR global positioning system, or GPS, is a system employing ultimately eighteen satellites in twelve hour orbits of 55 inclination. The system is being implemented by the Department of Defense for military use. However, it has a "clear access" (C/A) channel that is available for general civil use. The GPS is a passive navigation system on the part of the user, in that only reception of satellite-transmitted signals is required by the user to compute position. The GPS provides a capability for continuous position determination, and a position can be computed on the order of every second of time, and thus provides a capability of determining the position of a highly mobile vehicle. A full discussion of the GPS is presented in textbooks, such as "Handbook of Modern Electronics and Electrical Engineering," edited by Charles Belove and published in 1986 by Wiley-Interscience (see chapter 54 thereof, the disclosure of which is incorporated herein by reference), and includes a satellite positioned in a geostationary orbit and communicating with ground-based receivers. Based on the signals received from the satellite, the exact position in longitude and latitude, of the ground-based receiver can be determined with an extremely high degree of accuracy and precision.

The exact longitude and latitude of the mobile unit is then communicated to the MTSO, and the cell site that services that particular position is signalled by the MTSO to carry the call associated with the mobile unit. The position of the mobile unit is constantly updated, and call management decisions, such as handoffs, can be made based on the location of the mobile unit rather than the strength of the signal associated with that unit. The MTSO has a look-up table in its data storage facilities that compares positional data from the mobile units to data associated with cell site coverage areas. Based on a look up in this table, the MTSO can select the cell site most appropriate to a call.

Since the position of the mobile unit is known to the MTSO, the assessment of message units, taxes, and other charges can be made. The billing will be more consistent than is possible with present systems. Of course, call routing will be greatly improved in the system of the present invention as compared to prior systems.

Still further, since call management decisions are made based on position of the mobile unit, the number of cell sites can be reduced as communication is not subject to vagaries of weather or the like to the degree that call management decisions based on signal strength are. Even with the reduced number of cell sites, the quality of calls using such a system is improved due to proper handoff. The system is quite flexible, and cell site placement and frequency reuse are extremely efficient since call management is much more precise than in systems that use signal strength to make call management decisions.

The cellular system of the present invention in which call management decisions are made based on position of the mobile unit can reduce or eliminate the provision of cellular service beyond the authorized area, in effect reducing the interference to and from neighboring cellular carriers (reduction of inter-system interference) and more precisely define the inter-system service boundaries and handoff parameters. This system also permits precise definition of service boundaries for individual cell sites thereby allowing for greater system control and the reduction of intra-system interference. Still further, accurate and detailed cell site usage and traffic pattern data can be developed in the present system, thereby enabling accurate and precise control of system growth. The present cellular system can also be real-time tailored based on current cellular use.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

FIG. 1 illustrates a geographic area divided into a multiplicity of cells.

FIG. 2 illustrates a typical prior art mobile cellular telephone and its link with a fixed cell site and an MTSO.

FIG. 3 illustrates the mobile unit of the cellular telephone system shown in FIG. 2.

FIG. 4 illustrates a typical prior art cellular system in which a mobile unit can be connected with a fixed-position unit.

FIG. 4A is a block diagram showing systems included in the MTSO shown in FIG. 4.

FIG. 5 is a flow diagram of a call originated by the PTSN (public service telephone network) and a mobile unit using a prior art cellular system.

FIG. 6 is a block diagram of a mobile unit of a cellular telephone system which incorporates a GPS location determining system embodying the present invention.

FIG. 7 illustrates a cellular system incorporating a GPS position locating system for a mobile unit communicating with other units, such as the fixed-position unit shown.

FIG. 7A is a block diagram showing systems included in the MTSO shown in FIG. 7.

FIG. 8 is a block diagram illustrating the cellular system embodying the present invention.

FIG. 9 illustrates a look-up table that is incorporated into the MTSO of the present invention to make call management decisions based on the location of a mobile unit.

FIG. 10 is a block diagram illustrating a landline-to-mobile unit call in which position data are exchanged between the mobile unit and the MTSO.

FIG. 11A and 11B comprise a flow chart illustrating a call sequence between a mobile unit and another unit in which switching decisions are made based on the position of the mobile unit rather than the strength of the signal associated with the mobile unit.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION

Shown in FIGS. 6, 7 and 7A is a cellular system 20 embodying the present invention. The cellular system 20 uses positional data associated with the mobile unit M' to make call management decisions. To this end, the cellular system 20, while similar in all other respects to the cellular system illustrated in FIGS. 2 and 3, includes means for accurately and precisely determining the exact position of the mobile unit M', and then further includes means for using this positional information to determine which cell site is best suited to handle a call associated with that mobile unit M'.

The means for accurately determining the precise position of the mobile unit includes a Global Positioning System. The GPS includes satellites, such as satellite 22 in geostationary orbit about the earth. Each mobile unit further includes a GPS receiver 24 located between the duplexer and the logic circuitry 25 of the mobile unit. The GPS receiver communicates with the satellite 22 and the exact longitude and latitude of the mobile unit are determined. This information is sent to the MTSO via a cell site, and the MTSO uses a look-up table such as disclosed in FIG. 9, containing the geographic location of each cell site in the cellular system, to determine which cell site is most appropriate for use by the mobile unit. The mobile unit communicates with cell sites using unused bits of the aforediscussed overhead messages to send its positional information to the MTSO when the mobile unit is first activated. This positional information is relayed to the MTSO by the first cell site to communicate with the mobile unit. The MTSO then selects the cell site most appropriate for the mobile unit and hands that mobile unit off to that cell site. The cell sites transmit system service boundaries in their overhead messages that are interpreted by mobile units. The mobile units use the location information supplied by the GPS receiver as opposed to signal strength to determine which system to originate on. Call termination can utilize the paging process as is currently utilized. A response from a mobile unit includes the location information, and the designated control channel instructs the mobile unit to tune to one of its channels. A call in progress utilizes the overhead message of the voice channel to communicate location information. Once a mobile unit that is call processing on a particular site crosses a cell boundary, it is instructed to perform a handoff to the cell that is to service the new location. It is understood that the GPS is used as an example of the preferred source of positional data; however, other sources similar to the GPS can be used without departing from the scope of the present invention. All that is required is that the source of positional data be able to generate precise and accurate locational data on a fixed or a rapidly moving object. It is also helpful, but not absolutely required, that the CMR be only passively involved in the determination of the positional data.

The handoff process is similar to the present handoff processes, except it will be controlled according to position of the mobile unit instead of signal strength. This position information is used to determine call rating and taxing for billing purposes and call routing to make sure that the proper services for that location are provided.

A "locate request" signal is not used, since the exact location of the mobile unit is known to the MTSO. However, as indicated in FIG. 8, a signal strength method can also be used in making call management decisions if suitable. Such a process would be used if the mobile unit moves into a prior art cellular system.

A call using the cellular system of the present invention is illustrated in FIG. 11. Initial communication between a mobile unit and the MTSO is established using the overhead communication network described above. The mobile unit scans marker channels and initially locks onto the cell site that has the strongest signal. This cell site may not be the most appropriate cell site for use by that mobile unit, but it serves as an entrey into the system. Once this initial communication is established, the mobile unit uses the GPS receiver 24 and GPS satellite 22 and to determine its exact longitude and latitude. This information is then relayed to the MTSO using the originating cell site. The MTSO uses this information in conjunction with a look-up table such as shown in FIG. 9 to establish communication between the mobile unit and the cell site most appropriate to that mobile unit. The mobile unit is then handed off to that cell site. A call initiated by that mobile unit is routed through the appropriate cell site.

As indicated in FIG. 11, business information associated with the call, can be recorded at the MTSO. As indicated in FIG. 10, the dotted lines represent data transmission that contains GPS information. It is also noted that since both a position controlled system and a signal strength system are included in the cellular system of the present invention, the MTSO can include a software system in the memory 30 shown in FIG. 8 to use the position controlled system, but to also test signal strength, and to use a signal strength controlled system if a signal still falls below a predetermined value when making call management decisions based on the position of the mobile unit. In this manner, the best of both systems can be obtained.

The system of the present invention can also be used to allow a mobile to place calls only on its home system at the decision of the mobile. The mobile locating features of the system could also be important in other contexts, such as emergencies or the like.

It is understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangements of parts described and shown.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4144411 *22 Sep 197613 Mar 1979Bell Telephone Laboratories, IncorporatedCellular radiotelephone system structured for flexible use of different cell sizes
US4161734 *17 Oct 197717 Jul 1979General Electric CompanyPosition surveillance using one active ranging satellite and time of arrival of a signal from an independent satellite
US4177466 *16 Nov 19774 Dec 1979Lo-Jack CorporationAuto theft detection system
US4229620 *9 Nov 197821 Oct 1980Bell Telephone Laboratories, IncorporatedMobile radiotelephone station two-way ranging system
US4232317 *1 Nov 19784 Nov 1980Freeny Jr Charles CQuantized hyperbolic and inverse hyperbolic object location system
US4233473 *31 Aug 197811 Nov 1980Frost Edward GComprehensive automatic mobile radio telephone system
US4700374 *21 Jun 198513 Oct 1987Alcatel N.V.Mobile telephone location system
US4788711 *25 Nov 198529 Nov 1988Cellular Communications CorporationApparatus and method for a cellular freeway emergency telephone service
US4799062 *27 Apr 198717 Jan 1989Axonn CorporationRadio position determination method and apparatus
US4812852 *20 Feb 198714 Mar 1989Scientific Development CorporationLocating system and method
US4818998 *31 Mar 19864 Apr 1989Lo-Jack CorporationMethod of and system and apparatus for locating and/or tracking stolen or missing vehicles and the like
US4888593 *15 Dec 198719 Dec 1989Signal Science, Inc.Time difference of arrival geolocation method, etc.
US4908629 *5 Dec 198813 Mar 1990Lo-Jack CorporationApparatus for locating and/or tracking stolen or missing vehicles and the like
US4914651 *20 Sep 19883 Apr 1990Cellular Data, Inc.In an advanced mobile phone service
US4939522 *15 May 19893 Jul 1990Bechtel Group, Inc.Method and system for monitoring vehicle location
US4972456 *10 Feb 198920 Nov 1990Gte Mobilnet IncorporatedRural radiotelephone system
US4977399 *9 Aug 198811 Dec 1990At&E CorporationMobile radio paging test system
US5043736 *27 Jul 199027 Aug 1991Cae-Link CorporationCellular position locating system
US5054110 *29 Dec 19891 Oct 1991Motorola, Inc.Multi-site dispatching system cell registration
US5056109 *7 Nov 19898 Oct 1991Qualcomm, Inc.Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5081667 *20 Mar 199014 Jan 1992Clifford Electronics, Inc.System for integrating a cellular telephone with a vehicle security system
US5081703 *27 Jun 199014 Jan 1992Pactel CorporationSatellite mobile communication system for rural service areas
US5086452 *9 Jun 19894 Feb 1992Kabushiki Kaisha ToshibaRadio telephone system and its control method
US5093925 *25 Apr 19903 Mar 1992Motorola, Inc.Three dimensional cellular communication system with coordinate offset and frequency reuse
US5155689 *17 Jan 199113 Oct 1992By-Word Technologies, Inc.Vehicle locating and communicating method and apparatus
US5170490 *28 Sep 19908 Dec 1992Motorola, Inc.Radio functions due to voice compression
US5187805 *2 Oct 198916 Feb 1993Motorola, Inc.Telemetry, tracking and control for satellite cellular communication systems
US5214789 *17 Nov 198925 May 1993Uniden America CorporationRadio channel allocation based on location of mobile users
US5218716 *5 Nov 19908 Jun 1993Motorola, Inc.Method for locating a communication unit within a multi mode communication system
US5222249 *8 Nov 199022 Jun 1993Motorola, Inc.Dynamic rf communication resource access by roving mobile units
US5223844 *17 Apr 199229 Jun 1993Auto-Trac, Inc.Vehicle tracking and security system
US5227802 *23 Dec 199113 Jul 1993Motorola, Inc.Satellite system cell management
US5260968 *23 Jun 19929 Nov 1993The Regents Of The University Of CaliforniaMethod and apparatus for multiplexing communications signals through blind adaptive spatial filtering
US5278892 *21 Jan 199311 Jan 1994At&T Bell LaboratoriesMobile telephone system call processing arrangement
US5299132 *28 Jul 199229 Mar 1994By-Word Technologies, Inc.Vehicle locating and communicating method and apparatus using cellular telephone network
US5309474 *27 Mar 19923 May 1994Qualcomm IncorporatedCommunication system
US5311197 *1 Feb 199310 May 1994Trimble Navigation LimitedEvent-activated reporting of vehicle location
US5315636 *28 Jun 199124 May 1994Network Access CorporationPersonal telecommunications system
US5317323 *5 Mar 199331 May 1994E-Systems, Inc.Passive high accuracy geolocation system and method
US5319374 *2 Feb 19937 Jun 1994Trimble Navigation LimitedPrecise universal time for vehicles
US5321514 *4 Sep 199214 Jun 1994Radio Telecom & Technology, Inc.Interactive television and data transmission system
US5327144 *7 May 19935 Jul 1994Associated Rt, Inc.Cellular telephone location system
US5334974 *6 Feb 19922 Aug 1994Simms James RPersonal security system
US5343393 *4 Jun 199130 Aug 1994Nippondenso Co., Ltd.Steering angle detecting apparatus for motor vehicles based on the phase difference between a steering angle detection signal and steering angle estimated signal
US5343512 *27 Mar 199230 Aug 1994Motorola, Inc.Call setup method for use with a network having mobile end users
US5361399 *2 Jun 19921 Nov 1994Pagemart, Inc.Adaptive communication system for transmitting between base stations and portable transceivers via different data rate communication links
US5365450 *17 Dec 199215 Nov 1994Stanford Telecommunications, Inc.Hybrid GPS/data line unit for rapid, precise, and robust position determination
US5365451 *4 Mar 199415 Nov 1994Motorola, Inc.Mobile unit tracking system
US5365516 *16 Aug 199115 Nov 1994Pinpoint Communications, Inc.Communication system and method for determining the location of a transponder unit
US5375140 *24 Nov 199220 Dec 1994Stanford Telecommunications, Inc.Wireless direct sequence spread spectrum digital cellular telephone system
US5382958 *14 Feb 199417 Jan 1995Motorola, Inc.Time transfer position location method and apparatus
US5390124 *1 Dec 199214 Feb 1995Caterpillar Inc.Method and apparatus for improving the accuracy of position estimates in a satellite based navigation system
US5390125 *18 Feb 199314 Feb 1995Caterpillar Inc.Vehicle position determination system and method
US5390339 *23 Oct 199114 Feb 1995Motorola Inc.In communication system
US5392287 *5 Mar 199221 Feb 1995Qualcomm IncorporatedApparatus and method for reducing power consumption in a mobile communications receiver
US5396540 *22 Apr 19947 Mar 1995Rockwell International CorporationRemote vehicle communications system and method
US5398190 *6 Jan 199414 Mar 1995Hm Holding CorporationVehicle locating and communicating method and apparatus
US5410728 *21 Apr 199325 Apr 1995Motorola, Inc.Satellite cellular telephone and data communication system
US5418537 *18 Nov 199223 May 1995Trimble Navigation, Ltd.Location of missing vehicles
US5430656 *8 Sep 19934 Jul 1995Dekel; ItzhakMobile communications system
US5452211 *10 Aug 199219 Sep 1995Caterpillar Inc.Method and system for determining vehicle position
US5546445 *23 Oct 199513 Aug 1996Dennison; EverettCellular telephone system that uses position of a mobile unit to make call management decisions
EP0199266A1 *15 Apr 198629 Oct 1986Siemens AktiengesellschaftMobile radio system
FR398773A * Title not available
GB292182A * Title not available
JPH02210923A * Title not available
WO1992002105A1 *25 Jul 199126 Jan 1992British TelecommLocation determination and handover in mobile radio systems
Non-Patent Citations
Reference
1"Billing Systems: they aren't just for billing anymore," Cellular Business, v9, n12, p. 24, Nov., 1992.
2"Real Time," Billing World, Jul. Aug. 1995, pp. 39-40.
3"The Psuedo-Synchronisation, A Costless Feature To Obtain The Gains Of A Synchronised Cellular Network," Nov., 1991, Nice, Valbonne, FR.
4 *AT&T 92 TNT 203 29, Oct. 7, 1992, pp. 17 39, Jun., 1995.
5AT&T 92 TNT 203-29, Oct. 7, 1992, pp. 17-39, Jun., 1995.
6 *Billing Systems: they aren t just for billing anymore, Cellular Business, v9, n12, p. 24, Nov., 1992.
7 *Real Time, Billing World, Jul. Aug. 1995, pp. 39 40.
8 *The Psuedo Synchronisation, A Costless Feature To Obtain The Gains Of A Synchronised Cellular Network, Nov., 1991, Nice, Valbonne, FR.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US62892979 Oct 199811 Sep 2001Microsoft CorporationMethod for reconstructing a video frame received from a video source over a communication channel
US632109215 Sep 199920 Nov 2001Signal Soft CorporationMultiple input data management for wireless location-based applications
US6385454 *13 Oct 19987 May 2002Microsoft CorporationApparatus and method for management of resources in cellular networks
US6393293 *21 Jan 200021 May 2002Motorola, Inc.Method for rectangular parameterization of a geographic area using a geolocation algorithm
US64009439 Jul 19994 Jun 2002Nortel Networks LimitedMethod and apparatus for using advanced positioning systems in cellular communication networks
US64381369 Oct 199820 Aug 2002Microsoft CorporationMethod for scheduling time slots in a communications network channel to support on-going video transmissions
US64457019 Oct 19983 Sep 2002Microsoft CorporationChannel access scheme for use in network communications
US649045529 Jan 19993 Dec 2002Samsung Electronics, Co., Ltd.Apparatus and method for detecting a mobile phone in idle state
US649333822 Jun 200010 Dec 2002Airbiquity Inc.Multichannel in-band signaling for data communications over digital wireless telecommunications networks
US65075879 Oct 199814 Jan 2003Microsoft CorporationMethod of specifying the amount of bandwidth to reserve for use in network communications
US65190049 Oct 199811 Feb 2003Microsoft CorporationMethod for transmitting video information over a communication channel
US6529823 *28 Jan 19994 Mar 2003International Business Machines CorporationMaintaining desired distribution of machines using time multiplexed global positioning system
US659110330 Jun 19998 Jul 2003International Business Machine Corp.Wireless telecommunications system and method of operation providing users′ carrier selection in overlapping hetergenous networks
US66183639 Oct 19989 Sep 2003Microsoft CorporationMethod for adapting video packet generation and transmission rates to available resources in a communications network
US668112125 Jul 200020 Jan 2004Airbiquity Inc.Circuitry for activating a modem in a cellular telephone
US669068121 Mar 200010 Feb 2004Airbiquity Inc.In-band signaling for data communications over digital wireless telecommunications network
US6714789 *18 Sep 200030 Mar 2004Sprint Spectrum, L.P.Method and system for inter-frequency handoff and capacity enhancement in a wireless telecommunications network
US67542669 Oct 199822 Jun 2004Microsoft CorporationMethod and apparatus for use in transmitting video information over a communication network
US700999411 Dec 20017 Mar 2006Microsoft CorporationChannel access scheme for use in network communications
US702046328 Sep 200128 Mar 2006The Directv Group, Inc.Methodology for mobile user terminals in broadband systems
US70759439 Dec 200511 Jul 2006Microsoft CorporationChannel access scheme for use in network communications
US709272226 Jul 200115 Aug 2006Sprint Spectrum L.P.Method and system for establishing mobile station active set based on mobile station location
US713368512 Aug 20057 Nov 2006Openwave Systems Inc.Monitoring boundary crossings in a wireless network
US715176826 Apr 200219 Dec 2006Airbiquity, Inc.In-band signaling for data communications over digital wireless telecommunications networks
US720630511 Mar 200217 Apr 2007Airbiquity, Inc.Software code for improved in-band signaling for data communications over digital wireless telecommunications networks
US72159651 Nov 20018 May 2007Airbiquity Inc.Facility and method for wireless transmission of location data in a voice channel of a digital wireless telecommunications network
US72216696 Mar 200222 May 2007Airbiquity, Inc.Cellular telephone having improved in-band signaling for data communications over digital wireless telecommunications networks
US726039930 Aug 200421 Aug 2007Sprint Spectrum L.P.Method and system for asymmetric handoff of wireless communication sessions
US731769615 Mar 20028 Jan 2008Airbiquity Inc.Method for in-band signaling of data over digital wireless telecommunications networks
US73497058 Oct 200225 Mar 2008Bryan HollandWireless remote location system and method
US73664923 May 200229 Apr 2008Verizon Corporate Services Group Inc.Method and system for mobile location detection using handoff information
US737658431 Jul 200120 May 2008Verizon Corporate Services Group Inc.Systems and methods for fulfilling orders using location-based abbreviated dialing
US737972910 Jun 200427 May 2008Bryan HollandLocator system
US750913414 Nov 200624 Mar 2009Airbiquity Inc.Remote method for wireless transmission of location data
US75229279 May 200721 Apr 2009Openwave Systems Inc.Interface for wireless location information
US779229730 Mar 19997 Sep 2010Piccionelli Greg ASystem and process for limiting distribution of information on a communication network based on geographic location
US788126331 Jul 20071 Feb 2011Sprint Spectrum L.P.Method for use of azimuth and bearing data to select a serving sector for a mobile station
US794435021 May 201017 May 2011Spectrum Tracking Systems, Inc.Method and system for providing tracking services to locate an asset
US80149427 Mar 20086 Sep 2011Airbiquity, Inc.Remote destination programming for vehicle navigation
US80366001 Apr 201011 Oct 2011Airbiquity, Inc.Using a bluetooth capable mobile phone to access a remote network
US804961710 Mar 20111 Nov 2011Spectrum Tracking Systems, Inc.Method and system for providing tracking services to locate an asset
US819520425 Jul 20075 Jun 2012Sprint Spectrum L.P.Method and apparatus for scanning sectors in order of distance from mobile station
US823893424 Mar 20087 Aug 2012Bryan HollandWireless remote location system and method
US825894224 Jan 20084 Sep 2012Cellular Tracking Technologies, LLCLightweight portable tracking device
US828524723 May 20089 Oct 2012Bryan HollandLocator system
US84782755 Aug 20102 Jul 2013Sprint Spectrum L.P.Conditional assignment of connection identifiers to help avoid communication errors
US85430835 Sep 201224 Sep 2013Bryan HollandLocator system
US86704259 Aug 201111 Mar 2014Sprint Spectrum L.P.Use of past duration of stay as trigger to scan for wireless coverage
USRE38267 *18 May 19987 Oct 2003Verizon Laboratories, Inc.Cellular network-based geographic coverage area reporting method and apparatus
USRE4437825 Sep 200616 Jul 2013Verizon Laboratories Inc.Cellular network-based location system
WO1999051038A2 *30 Mar 19997 Oct 1999Greg A PiccionelliCommunication network based on geographic location
WO2002073830A2 *13 Feb 200219 Sep 2002Hughes Electronics CorpMethod for establishing a connection to a broadband communication platform
Classifications
U.S. Classification455/456.3, 455/12.1, 455/440, 455/439, 342/357.46, 342/357.29
International ClassificationH04B7/185, H04W4/02
Cooperative ClassificationH04W4/02, H04B7/18552, H04B7/18541
European ClassificationH04B7/185M8B2B, H04B7/185M6B, H04W4/02
Legal Events
DateCodeEventDescription
8 Apr 2009ASAssignment
Owner name: SYGNET COMMUNICATIONS, INC., OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DENNISON, EVERETT;NASS, EDWIN L.;DUFFY, TIMOTHY J.;AND OTHERS;REEL/FRAME:022520/0350;SIGNING DATES FROM 19911221 TO 19911223
7 May 2007ASAssignment
Owner name: EMSAT ADVANCED GEO-LOCATION TECHNOLOGY, LLC, OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYCORD LIMITED PARTNERSHIP (A/K/A SYCORD LP);REEL/FRAME:019254/0455
Effective date: 20070507
31 Mar 2003ASAssignment
Owner name: SYCORD LIMITED PARTNERSHIP, NEVADA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SYGNET WIRELESS, INC. AND ITS WHOLLY OWNED SUBSIDIARY, SYGNET COMMUNICATIONS, INC.;DENNISON, EVERETT;DUFFY, TIMOTHY J.;AND OTHERS;REEL/FRAME:013887/0859;SIGNING DATES FROM 19980506 TO 19980605
Owner name: SYCORD LIMITED PARTNERSHIP P.O. BOX 10213ZEPHYR CO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SYGNET WIRELESS, INC. AND ITS WHOLLY OWNED SUBSIDIARY, SYGNET COMMUNICATIONS, INC. /AR;REEL/FRAME:013887/0859;SIGNING DATES FROM 19980506 TO 19980605