Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE35169 E
Publication typeGrant
Application numberUS 08/056,519
Publication date5 Mar 1996
Filing date30 Apr 1993
Priority date24 Jan 1989
Fee statusPaid
Also published asUS5011405, WO1990008512A1
Publication number056519, 08056519, US RE35169 E, US RE35169E, US-E-RE35169, USRE35169 E, USRE35169E
InventorsMarc S. Lemchen, Craig A. Andreiko
Original AssigneeOrmco Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for determining orthodontic bracket placement
US RE35169 E
Abstract
A method for determining orthodontic bracket placement on a malocclused tooth to correct the malocclusion includes the steps of generating digital information which defines the shape and location of the malocclused tooth in the patient's jaw, from which digital information a mathematical model of the tooth and jaw is generated. The correct placement position of a bracket is then calculated from the digitized information. A standard bracket is thereafter modified, if desired, individually for the patient, in view of the patient's physical deviations from the statistical averages. The shape of a bracket positioning jig is calculated and formed. Another step is forming an archwire for the brackets. The method may be used on one or more teeth in the same dental arch, as well as for both dental arches with respect to malocclusion therebetween.
Images(1)
Previous page
Next page
Claims(41)
.[.I.]. .Iadd.We .Iaddend.claim:
1. A method .[.for determining.]. .Iadd.of forming an .Iaddend.orthodontic bracket .Iadd.for .Iaddend.placement on a malocclused tooth in a patient's jaw to correct the malocclusion comprising the steps of:
.[.generating digital information defining.]. .Iadd.scanning .Iaddend.the shape and location of the malocclused tooth with respect to the patient's jaw .Iadd.and generating as a result thereof digital information defining physical characteristics of the individual patient; .Iaddend.
generating.Iadd., with the aid of a computer, .Iaddend.a mathematical model of the malocclused tooth as positioned in the jaw from the .[.digitized.]. .Iadd.digital .Iaddend.information;
calculating.Iadd., with the aid of the computer, with respect to the mathematical model and from the digital information, .Iaddend.the finish position in the jaw to which the malocclused tooth is to be moved .[.from the digitized information.]. .Iadd.that is based on the physical characteristics of the individual patient.Iaddend.; .[.and.].
calculating.Iadd., with the aid of the computer from the digital information, .Iaddend.the placement position of an orthodontic bracket on the malocclused tooth required in order to move the malocclused tooth to its finish position by a preselected orthodontic treatment.Iadd.; and
forming, with the aid of a computer, an orthodontic bracket that is based on physical characteristics of the patient, for placement on the malocclused tooth at the calculated placement position, so as to move the tooth to its calculated finish position, the forming step being in accordance with the results of the calculating steps. .Iaddend.
2. The method of claim 1, and including the step of selecting the orthodontic bracket to be utilized before calculating its placement position.
3. The method of claim 2, .[.and including.]. .Iadd.wherein the forming step includes .Iaddend.the step of modifying the selected orthodontic bracket after calculating the placement position to improve its performance in moving the malocclused tooth to its finish position.
4. The method of claim 2, .[.and including.]. wherein:
the step of .Iadd.forming the bracket includes .Iaddend.modifying the selected bracket before calculating its placement position.Iadd.; and
wherein the method further comprises the step of calculating the placement position based on the modified form of the bracket. .Iaddend.
5. The method of claim 1 and including the step of selecting the orthodontic bracket to be utilized after calculating its placement position.
6. The method of claim 5, .[.and including.]. .Iadd.wherein: .Iaddend.
the .Iadd.forming .Iaddend.step .[.of.]. .Iadd.includes the step of .Iaddend.modifying the selected orthodontic bracket after calculating the placement position.Iadd., based on the calculated placement position and digital information, .Iaddend.to improve its performance in moving the malocclused tooth to the finish position.
7. The method of any of claims 1, 2, .[.5,.]. 3, 4, .Iadd.5 .Iaddend. or 6 and including the step of calculating the shape of a bracket positioning jig for the malocclused tooth .Iadd.that is based on physical characteristics of the individual patient and that is .Iaddend.required in order to place the respective tooth bracket in the previously calculated placement position.
8. The method of claim 7, including the step of forming a bracket positioning jig to conform to the bracket positioning jig shape previously calculated .Iadd.and to physical characteristics of the individual patient.Iaddend..
9. The method of claim 8, and including the step of preforming at least one archwire for attachment to the selected bracket into such configuration with respect to said bracket as is to be utilized to cause the malocclused tooth to move toward its finish position when the bracket is fixed to the tooth in the placement position and the archwire attached thereto.
10. A method .[.for determining.]. .Iadd.of placing .Iaddend.orthodontic .[.bracket placement.]. .Iadd.brackets .Iaddend.on a dental arch to correct a malocclusion comprising the steps of:
.[.generating digital information defining.]. .Iadd.scanning .Iaddend.the shape and location of the teeth with respect to the arch .Iadd.and generating as a result thereof digital information defining physical characteristics of the individual patient; .Iaddend.
generating.Iadd., with the aid of a computer, .Iaddend.a mathematical model of the teeth as positioned in the arch from the .[.digitized.]. .Iadd.digital .Iaddend.information;
calculating.[.the.]. .Iadd., with the aid of a computer and from the digital information, .Iaddend.finish .[.position.]. .Iadd.positions .Iaddend.in the arch .[.of the teeth from the digitized information.]. .Iadd.to which teeth are to be moved and which are based on the physical characteristics of the individual patient; .Iaddend.and
calculating.Iadd., with the aid of a computer, .Iaddend.the placement .[.position.]. .Iadd.positions .Iaddend.of orthodontic brackets on selected teeth in the arch required in order to move malocclused teeth to their finish positions by a preselected orthodontic treatment.Iadd.; and
placing brackets on the malocclused teeth at the calculated placement positions. .Iaddend.
11. The method of claim 10, and including the step of selecting at least one of the orthodontic brackets to be utilized before calculating its placement position.
12. The method of claim 11, and including the step of modifying at least one of the selected orthodontic brackets after calculating its placement position to improve its performance in moving a malocclused tooth to its finish position.
13. The method of claim 11, and including the step of modifying at least one of the selected brackets before calculating its placement position.
14. The method of claim 10 and including the step of selecting at least one of the orthodontic brackets to be utilized after calculating its placement position.
15. The method of claim 14, and including the step of modifying at least one of the selected orthodontic brackets after calculating the placement position to improve its performance in moving the malocclused tooth to the finish position.
16. The method of any of the claims 10, 11, .[.14,.]. 12, .Iadd.13, .Iaddend.14, or 15, and including the step of calculating the shape of a bracket positioning jig for use in placing the brackets in their previously calculated placement positions.
17. The method of claim 16, including the step of forming a bracket positioning jig to conform to the bracket positioning jig shape previously calculated .Iadd.and to physical characteristics of the individual patient. .Iaddend.
18. The method of claim 17, and including the step of preforming at least one archwire for attachment to the brackets into such configuration with respect to said brackets as is to be utilized to cause the teeth to move toward their finish positions when the brackets are fixed to the teeth in their placement positions and the archwire attached thereto.
19. A method for use in the orthodontic treatment to correct the malocclusion between teeth in a patient's dental arches comprising the steps of:
.[.generating digital information defining.]. .Iadd.scanning .Iaddend.the shape and location of the teeth in each dental arch with respect to the other dental arch.Iadd.and generating as a result thereof digital information defining physical characteristics of the individual patient.Iaddend.; generating.Iadd., with the aid of a computer, .Iaddend.a mathematical model of the dental arches as positioned in the patient's head from the .[.digitized.]. .Iadd.digital .Iaddend.information;
calculating.[.the.]. .Iadd., with the aid of a computer and from the digital information, .Iaddend.finish .[.position.]. .Iadd.positions .Iaddend.in the dental arches .[.which is required.]. .Iadd.to which teeth are to be moved .Iaddend.to correct the malocclusion .[.from the digitized information.]. .Iadd.and which are based on the physical characteristics of the individual patient.Iaddend.; .[.and.].
calculating.Iadd., with the aid of a computer from the digital information, .Iaddend. the placement position of an orthodontic appliance on a least one of the arches required in order to correct the malocclusion by a preselected orthodontic treatment.Iadd.; and
forming, with the aid of a computer, an orthodontic appliance that is based on the physical characteristics of the patent for placement on at least one of the arches to correct the malocclusion by the preselected orthodontic treatment, the forming step being based on the digital information and calculated finish position.Iaddend.. .Iadd.
20. A method of placing an orthodontic bracket on the teeth of a patient comprising the steps of:
scanning shapes of the individual teeth of the patient and generating as a result thereof digital information defining physical characteristics of the individual patient;
generating, with the aid of a computer, a mathematical model of the teeth of the patient from the digital information;
calculating, from the digital information and with the aid of a computer, finish positions to which the teeth of the patient are to be moved and that are based on the physical characteristics of the individual patient;
calculating, with the aid of a computer and from the mathematical model, placement positions of orthodontic brackets on the teeth required in order to move the teeth to the calculated finish positions; and
placing brackets on the teeth at the calculated placement positions. .Iaddend. .Iadd.
21. The method of claim 20 further comprising the step of:
forming, with the aid of a computer, orthodontic brackets for placement at the calculated placement positions in order to move the teeth to the calculated finish positions, the forming step being with respect to the mathematical model and in accordance with the results of the tooth finish position and bracket placement position calculating steps. .Iaddend. .Iadd.22. A method of facilitating orthodontic bracket placement on the teeth of a patient comprising the steps of:
scanning shapes of the individual teeth of the patient and generating as a result thereof digital information defining physical characteristics of the individual patient;
generating, with the aid of a computer, a mathematical model of the teeth of the patient from the digital information;
calculating, with the aid of a computer from the digital information, finish positions to which the teeth of the patient are to be moved and which are based on the physical characteristics of the individual patient;
determining, with the aid of a computer and from the mathematical model, placement positions on the teeth of orthodontic brackets to move the teeth to the calculated finish positions;
calculating, with the aid of a computer and from the mathematical model and determined placement positions, the shape of a bracket positioning jig for each bracket that is based on physical characteristics of the individual patient to place the bracket at the determined placement position; and
forming, from and in accordance with each jig shape calculation, a tooth positioning jig, that is based on physical characteristics of the individual patient and shaped, to locate the bracket at the placement position therefor which will result in required force vectors for treatment when the bracket is attached to the tooth at the placement position therefor to move the teeth to the calculated finish positions.
.Iaddend. .Iadd.23. The method of claim 10 or claim 20 or claim 22 further comprising the step of:
manufacturing, with the aid of a computer, orthodontic brackets for placement at the placement positions in order to move the teeth to the
calculated finish positions. .Iaddend. .Iadd.24. A method of forming and placing orthodontic brackets, each with an archwire slot therein, on dental surfaces of teeth of a patient, the method comprising the steps of:
scanning shapes of the individual teeth of the patient and generating as a result thereof digital information defining physical characteristics of the individual patient;
generating, with the aid of a computer, a mathematical model of the teth of the patient from the digital information;
calculating, with the aid of a computer from the digital information, finish positions to which the teeth of the patient are to be moved and which are based on physical characteristics of the individual patient;
determining, with the aid of a computer and from the mathematical model, placement positions of orthodontic brackets on the teeth required in order to orient the slots thereof with respect to the dental surface of the respective tooth, to move the teeth to the calculated finish positions;
forming brackets that are based on physical characteristics of the individual patient that are defined by the digital information for placement at the determined placement positions to move the teeth to the calculated finish positions; and
placing the formed brackets on the teeth at the determined placement
positions. .Iaddend. .Iadd.25. The method of claim 20 or claim 22 or claim 24 wherein:
the scanning step includes the step of generating digital information defining physical characteristics of the shapes of the jaw structure of the patient associated with the upper and lower arches; and
the mathematical model generating step includes the step of replicating upper and lower dental arches of the patient and associated jaw structure. .Iaddend. .Iadd.26. The method of claim 20 or claim 22 or claim 24 further comprising the step of:
forming an archwire so as to cause the teeth to move to the calculated finish positions when an archwire is installed on the brackets and the brackets are located on the teeth at the placement positions. .Iaddend.
.Iadd.27. The method of claim 24 wherein:
the placement position determining step and the bracket forming step are such as to orient the archwire slots of the brackets in six degrees of freedom with respect to the teeth to incorporate the force vectors required to move the teeth to the calculated finish positions. .Iaddend.
.Iadd.28. A method of forming orthodontic brackets for placement on the teeth of a patient, the method comprising the steps of:
generating, from shapes of the individual teeth of the patient, digital information defining physical characteristics of the individual patient;
generating, with the aid of a computer, a mathematical model of the teeth of the patient from the digital information;
calculating, with the aid of a computer and from the digital information, finish positions to which the teeth of the patient are to be moved and which are based on the physical characteristics of the individual patient;
with respect to the mathematical model, determining placement positions of orthodontic brackets for placement on the individual teeth required in order to move the teeth to the calculated finish positions; and
forming, orthodontic brackets conforming to the physical characteristics of the individual patient for placement at the determined placement positions in order to move the teeth to the calculated finish positions, the forming step being in accordance with the results of the tooth finish position calculating step and the bracket placement position determining step.
.Iaddend. .Iadd.29. The method of claim 21 or claim 28 wherein:
each of the formed brackets has an archwire slot therein; and
the placement position determining step and the bracket forming step are such as to orient the archwire slot of each of the brackets with respect to the respective teeth to incorporate the force vectors required to move the teeth to the calculated finish positions. .Iaddend. .Iadd.30. The method of claim 29 wherein:
the placement position determining step and the bracket forming step are such as to orient the archwire slots of the brackets in six degrees of freedom with respect to the teeth to incorporate the force vectors required to move the teeth to the calculated finish positions. .Iaddend.
.Iadd.31. The method of claim 21 or claim 24 or claim 28 wherein:
the bracket forming step includes the step of providing, to an orthodontic practitioner for correction of malocclusion of the patient therewith, the formed brackets customized in accordance with the digital information to conform to the physical characteristics of the patient; and
the placement position determining step and thebracket forming step are such as to position the formed brackets at the placement positions on the teeth to incorporate force vectors required to move the teeth to the
calculated finish positions. .Iaddend. .Iadd.32. The method of claim 21 or claim 24 or claim 28 further comprising the steps of:
forming an archwire with respect to the mathematical model; and
the bracket forming step including the step of forming the bracket into a configuration conforming to physical characteristics of the patient and such as to cause the teeth to move to the calculated finish positions when the archwire is installed on the formed brackets and the formed brackets are placed on the teeth at the determined placement positions. .Iaddend.
.Iadd.33. A method for use in the orthodontic treatment to correct malocclusion between teeth in the dental arches of a patient comprising the steps of:
generating, from shapes of the individual teeth of the patient, digital information defining physical characteristics of the individual patient;
generating, with the aid of a computer, a mathematical model of the teeth of the patient from the digital information;
calculating, with software programs and from the digital information, finish positions of the dental arches, that are based on the physical characteristics of the individual patient, to correct the malocclusion;
determining, with the aid of a computer, from the digital information and the calculated finish positions of the arches, the placement position of an orthodontic appliance to correct the malocclusion; and
forming, with the aid of a computer, an orthodontic appliance for placement at the determined placement position in order to move the teeth to the calculated finish positions, the forming step being in accordance with the results of the tooth finish position calculating step and the appliance placement position determining step. .Iaddend. .Iadd.34. The method of claim 33 wherein:
the finish position calculating step includes the step of calculating positions of the individual teeth of the patient in the dental arches in the calculated finish positions thereof and providing from the calculations a mathematical model of the calculated positions; and
the placement position determining step includes the step of determining placement position from the calculated finish positions and the
mathematical model. .Iaddend. .Iadd.35. The method of claim 34 wherein:
the finish position calculating step includes the step of calculating finish positions of individual teeth of the patient relative to adjacent
teeth. .Iaddend. .Iadd.36. The method of claim 34 wherein:
the finish position calculating step includes the step of calculating positions of individual teeth of the patient relative to opposing teeth.
.Iaddend. .Iadd.37. A method for use in the orthodontic treatment of a patient to correct malocclusion of a patient's teeth on a dental arch of the patient comprising the steps of:
generating, from shapes of the individual teeth of the patient, digital information defining physical characteristics of the individual patient;
generating, with the aid of a computer, a mathematical model of the dental arch of the patient from the digital information;
calculating, with software programs and from the digital information, a finish position of the dental arch, which is based on the physical characteristics of the individual patient, and which is required to correct the malocclusion;
determining, with the aid of a computer, from the digital information and the calculated finish position, the placement position of an orthodontic appliance required in order to correct the malocclusion; and
forming, with the aid of a computer, an orthodontic appliance conforming to the physical characteristics of the individual patient, for placement at the determined placement position in order to move the teeth to the calculated finish positions, the forming step being in accordance with the results of the tooth finish position calculating step and the appliance
placement position determining step. .Iaddend. .Iadd.38. The method of claim 34 or claim 37 wherein:
the digital information generating step includes the step of scanning shapes of supporting bony foundations of the individual teeth of the patient and generating as a result thereof the digital information defining physical characteristics of the individual patient; and
the finish position calculating step includes the step of calculating the finish positions relative to supporting bony foundations of the teeth from
the digital information. .Iaddend. .Iadd.39. The method of claim 37 wherein:
the finish position calculating step includes the step of calculating, with the aid of a computer, positions of the individual teeth of the patient in the dental arch in the calculated finish position thereof and providing from the calculations a mathematical model of the calculated finish positions of the arch and teeth therein; and
the placement position determining step includes the step of determining, with the aid of a computer, the placement position of the appliance from the calculated finish position and the mathematical model. .Iaddend.
.Iadd.0. The method of claim 39 further wherein:
the finish position calculating step includes the step of calculating finish positions of individual teeth of the patient relative to adjacent
teeth. .Iaddend. .Iadd.41. The method of claim 39 further wherein:
the finish position calculating step includes the step of calculating positions of individual teeth of the patient relative to opposing teeth.
.Iaddend. .Iadd.42. The method of claim 39 further wherein:
the finish position calculating step includes the step of calculating the finish position of the dental arch relative to supporting body foundations
of the teeth thereof. .Iaddend. .Iadd.43. The method of claim 33 or claim 37 wherein:
the digital information generating step includes the step of scanning the shapes of the patient's jaw and generating as a result thereof the digital information defining the physical characteristics of the individual patient;
the method further comprises the step of generating, with the aid of a computer from the digital information, a mathematical model of the individual teeth of the patient and of the patient's jaw; and
the finish position calculating step includes the step of calculating the finish position from the mathematical model of the patient's jaw.
.Iaddend. .Iadd.44. The method of claim 33 or claim 37 wherein:
the orthodontic appliance includes a plurality of orthodontic brackets, each for the connection at a placement position of a different tooth; and,
the method further comprising the step of forming an archwire so as to cause the teeth to move to the calculated finish positions when the archwire is installed on the brackets and the brackets are located on the
teeth at the determined placement position. .Iaddend. .Iadd.45. The method of claim 28 or claim 33 or claim 37 wherein:
the digital information generating step includes the step of generating digital information defining physical characteristics of the shapes of the jaw structure of the patient associated with the upper and lower arches; and
the mathematical model generating step includes the step of replicating upper and lower dental arches of the patient and associated jaw structure. .Iaddend.
Description
BACKGROUND OF THE INVENTION

Early in the history of orthodontics, doctors constructed their own appliances to treat patients. As the specialty grew, the orthodontic supply company became economically feasible. At first, all orthodontic brackets (braces), whether produced by the doctor or supply company, were designed simply as handles to which the force-producing agents, (most often archwires), were attached. Both the magnitudes and directions of orthodontic forces were controlled by placing appropriate bends in the archwires. See, for example, FIGS. 1 and 3 of U.S. Pat. No. 3,447,128.

The next major evolutionary step in appliance design was the "straight wire" concept. See, for example, FIGS. 2 and 4-19 of U.S. Pat. No. 3,477,128. Force magnitudes were still determined by wire and not the brackets. However, force vector directions were tranferred from the wire to the brackets. Bracket slots were cut so that the desired forces were applied to each tooth in the arch by simply attaching (fully ligating) a straight length of wire with rectangular cross-section into the bracket slots. Furthermore, different bracket base thicknesses were employed to control labial-lingual dental positioning. See, for example, U.S. Pat. No. 3,660,900. These developments reduced considerably the amount of wire bending, and therefore, the doctor's chairtime required to treat a case. While such systems are generally considered to represent the state-of-the-art today, there remains a major disadvantage in the treatment mechanics of these products.

In the current "straight wire" systems, of which there are several, all bracket force vectors for specific tooth types (e.g., upper cuspids, upper central incisors, lower first molars, etc.) are manufactured to population averages. Thus, there is no individual adaptability in any given straight wire system. The patient's specific pretreatment malocclusion (condition requiring treatment), dental surface morphology, and facial type are completely disregarded. So, for that matter, are individualized treatment goals. It is well known, however, that these factors influence the selection of ideal mechanical parameters for every case. An orthodontic appliance placement method featuring parameters which are individualized is therefore a significant advance in the art over the present practice. The method of the present invention is utilized to provide for such appliance placement.

SUMMARY OF THE INVENTION

A method for determining orthodontic bracket placement on a malocclused tooth to correct the malocclusion includes the steps of generating digital information which defines the shape and location of the malocclused tooth in the patient's jaw, from which a mathematical model of the tooth and jaw is generated. The desired position of the tooth after treatment ("finish position") is determined.

In accordance with the particular method of orthodontic treatment which has been selected to be used on the patient by the practitioner, the correct position in which to place a bracket on the tooth to move the tooth to the finish position is then calculated from the mathematical model and finish position. The correct bracket position is defined as that position which yields zero force in all directions, if, and only if, the subject tooth is in its ideal position with the archwire installed. Thus, when brackets are placed and fixed in the patient's mouth, an archwire is placed on the bracket slots, and the archwire is fully ligated, the resultant individual force vectors will automatically move the teeth to the finish position.

The particular orthodontic bracket to be used in the present method may be selected either before or after calculating its placement position on the tooth. In either event, in the preferred embodiment of the method, the standard bracket is thereafter modified, if desired, so as to provide for tooth movement to the finish position which has been determined individually for the patient, in view of the patient's physical deviations from the dental and skeletal statistical averages for an ideal finish position.

Precise fixation of the brackets at the prescribed location in the patient's mouth is necessary for the proper corrective forces to be achieved. A further step in the preferred embodiment of the invention is to calculate the shape of a positioning device, such as a bracket positioning jig, for the orthodontic appliance to provide for the positioning of the bracket on the tooth in precisely the calculated placement position, and forming a positioning jig to conform to the shape of the jig so calculated. When the positioning jig with the bracket attached is placed over the patient's tooth, the bracket is automatically located at the precise position which will result in the required force vectors for treatment when attached to the tooth.

The forces to effect treatment are produced by the archwires. The archwires, when installed, act as springs which have been deflected by an amount proportional to the deviation of the tooth from its ideal location. An archwire, preformed in accordance with the requirements to move the affected tooth to its finish position when attached to the bracket, produces appropriate force magnitudes at various stages of treatment to move the tooth to its ideal position. An additional step in the preferred embodiment is the step of forming an archwire with respect to the mathematical model and the bracket into the configuration to cause to tooth to move to the calculated finish position when installed in the bracket on the tooth.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

While normally the orthodontic treatment to be undertaken subject to the present invention will contemplate realignment of the patient's teeth in one or both arches, or even one arch with respect to the other, the method, for purposes of clarity and brevity of description, will be described with respect to the repositioning of a single malocclused tooth. The first step of the method of the present invention is the generation of accurate digital information defining the shape and location of the malocclused tooth with respect to the patient's jaw. This information may be generated in a number of ways, such as electromechanically, by laser scanning, sonic ranging, digital video scanning or magnetically. Various devices which may be so utilized are described in Rekow, Computer Aided Design And Manufacturer In Dentistry: A Review Of The State Of The Art, 58 The Journal of Prosthetic Dentistry 512 (1987). Sonic ranging devices of this type are described, for example, in U.S. Pat. No. 3,821,469.

The second step of the preferred embodiment is the generation of a mathematical model, utilizing the digitized information. The use of digitized information to generate mathematical models is well known in the Computer-Aided Design ("CAD") art, and need not be described at the present time in view of the state of the art. It should be noted that each of the three systems described in the Rekow article previously referred to uses CAD.

The mathematical model may be as detailed as the particular circumstances require, dependent only upon the quantity of digitized information genrated in the prior step. Thus, in many applications of the preferred embodiment, a complete "model", as that term is used in the dental art to refer to a full replication of the upper and lower dental arches and associated jaw structure, will be mathematically generated. A physical embodiment of such a model is shown, for example, in FIG. 1 of U.S. Pat. No. 2,467,432.

The next step in the present method is the calculation of the "finish" position of the malocclused tooth or teeth, with respect to their positions in the mathematical model. Movement to the finish position typically may involve "tipping", that is, movement toward or away from adjacent teeth, "torquing", that is, angulating toward or away from the center of the mouth, and "rotation", that is, rotary movement of the tooth about its longitudinal axis, intrusional-extrusional or bodily movement.

There are a number of methods of treatment commonly used by the orthodontist. Each method takes different factors into account with varying degrees of emphasis. As utilized in the present invention, the orthodontist provides a description of the desired results, which is prescribed for reaching the finish position of each individual tooth relative to adjacent teeth, opposing teeth, supporting bony foundations and soft tissue, and the entire cranial-facial complex. Utilizing standard statistical tooth position data, the repositioning of the teeth is calculated to provide a mathematical model of the finish position. In the prior art, a similar step was accomplished manually in order to account for individual tooth morphology by physically removing duplicated teeth from a model and repositioning them in a new model in the finish position. See, for example, FIG. 3 in the above referenced U.S. Pat. No. 2,467,432. However, this procedure did not take into account the individual finish position desired related to the cranial-facial base.

In the present method, this repositioning is done mathematically by appropriate software programs which may be derived by conventional means for the particular method of treatment elected by the orthodontist. An "ideal" finish position is not based upon statistical averages and takes into account the variation and physical characteristics of the individual patient. Therefore, it is preferable that, the program be utilized to provide a customized finish position for the particular patient, so as to make the finish position ideal for the patient, rather than attempting to have the patient duplicate the statistically average finish position.

After the finish position for the teeth in question has been calculated, the placement position of the orthodontic appliance, a bracket, for example, is calculated. In the presently preferred embodiment, a straight wire technique is utilized. The bracket manufacturers provide positioning information recommendations as to their brackets in the ideal position. This information is utilized together with the mathematical model of the finish position to calculate the bracket placement position on the teeth, which is conventional practice.

While it is possible to position the brackets on the teeth in a variety of methods, in the preferred embodiment of the present invention, the step of calculating the shape of a bracket positioning jig from the mathematical model in order to insure that the bracket is accurately placed is undertaken. A large variety of positioning jigs are known in the art, and such devices extend from rather simple direct application devices, such as is shown in U.S. Pat. No. 3,686,762 to complex devices such as are shown in U.S. Pat. Nos. 4,160,322; 4,183,141 and 4,360,341, which conform in shape to and overlay the tooth itself. In its broadest sense, the term "bracket positioning jig" as used herein includes devices utilized in the "indirect" method of bracket application, such as is described in U.S. Pat. No. 4,160,322, to position simultaneously a plurality of brackets on the patients teeth. Thus, after the particular form of jig has been selected, the shape of the jig required to place the bracket or brackets in the previously calculated placement position or positions is calculated. Thereafter, in the preferred embodiment, the next step of the present invention is to form the positioning jig calculated in the previous step.

Inasmuch as the mathematical model of the arch has been calculated in the preferred embodiment, another step in the practice of the present invention which may be utilized is the preforming of an archwire for attachment to the bracket to conform to the orthodontic treatment to be undertaken. The particular details as to shape, size, and the like of the archwire are matters of choice of the orthodontist, depending upon the particular treatment and brackets involved, and normally one the subject of specification in the prescription, if that step is to be undertaken in the practice of the present invention.

Orthodontic brackets are manufactured to population averages. One method of creating individualized brackets is to cut custom bracket slots for each patient. The cost of that procedure is usually prohibitive. The computerized design method, according to the present invention, utilizes modification of the angulation of the bracket/tooth interface on an individualized basis in order to cause the bracket to produce a desired force vector on the tooth. Specific force vectors are prescribed, and an entire system of brackets/adhesive placement, pre-formed archwires, and peripheral appliances (head gear, elastics, etc.) is selected, if so desired.

In some instances in the practice of the present invention, a particular bracket may be selected and, for the particular case, modified in certain respects before calculating its placement position. In such an instance, the placement position is calculated for modified form of the bracket. In other instances, a selected bracket may, after calculation of its placement position, be determined to require modification in order to be placed in the required placement position. In such an instance, the present invention contemplates the modification of the bracket after calculation of the placement position to prevent its placement in accordance therewith.

In the method of the preferred embodiment, standard brackets are modified as appropriate to produce the required treatment force vectors by use of a structural adhesive system. The modification of standard brackets by use of a structural adhesive system is known in the art. The structural adhesive is initially a moldable putty which easily takes on the contout of the dental surface to which the appliance will be fixed, and which provides the interface between that surface and the bracket base. A premachined archwire slot in the bracket face can thus be oriented with six axes of freedom with respect to the dental surface so as to incorporate precisely the required force vectors. In practicing one embodiment of the present one that, the bracket is correctly positioned on a laboratory model of the tooth, and the adhesive is hardened to a rigid state by a irradiation with ultraviolet light, followed by oven post-cure. The adhesive is than an inseparable, integral part of the bracket, now customized for that patient's individual tooth.

While the use of a moldable putty to interface between the bracket and the tooth is satisfactory, the present method may be utilized in conjunction with computer-aided design and computer-aided manufacturer (CAD/CAM), as described in the Rekow article referred to above, to provide a machined or cast base conforming to the tooth morphology and containing an appropriately positioned bracket receiving recess or fitting, so as to permit the base to be fixed to either the bracket or the tooth. The other of the two is then fixed to the base, thereby simplifying the attachment of the bracket to the tooth and its customized ideal position for the individual patient. By this method, standard brackets are readily adapted to customized use, so as to simplify the inventory retirements of the practitioner. Additionally, such customized brackets may be provided to the practitioner by a dental laboratory, where the digitized information is utilized in the process of providing the practitioner with the required dental appliances for the correction of the malocclusion.

As will be apparent, the practice of the present invention may be restricted to a single tooth, may be utilized with some or all of the teeth in a given dental arch, or utilized with teeth in both of the arches of the patient. Therefore, while the description of the practice of the invention has been stated, in certain instances, with respect to a single tooth for purposes of brevity and clarity, the practice of the invention is not so limited.

Furthermore, the present invention may also be utilized with respect to orthodontic diagnoses involving the requirement of movement of one arch, in its entirety, with respect to the other, as where the patient exhibits a lateral offset. In such an instance, a mathematical model is calculated for both arches in their relative positions with respect to one another. The preferred embodiment takes into account the relative resistance to movement of various teeth or groups of teeth. Bracket positions are customized to account for these forces. Indications are provided for the inter-dental arch force mechanics in order to correct or maintain the position of each individual arch over its respective jaw structure as well as relative to the opposing arch and jaw.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3477128 *22 Sep 196711 Nov 1969Andrews Lawrence FMethod and apparatus for improved orthodontic bracket and arch wire technique
US3660900 *10 Nov 19699 May 1972Lawrence F AndrewsMethod and apparatus for improved orthodontic bracket and arch wire technique
US3738005 *22 Mar 197212 Jun 1973Cohen MMethod and apparatus for applying orthodontic brackets and the like
US3906634 *19 Dec 197423 Sep 1975Aspel Thomas EMethod of marking archwire with tooth width measurements
US3949478 *27 Dec 197413 Apr 1976Firma Scheu-Dental, Inhaber Rudolf Scheu Herstellung Und Vertrieb Von DentalbedarfProcess and apparatus for fitting orthodontic brackets to teeth
US4014096 *25 Mar 197529 Mar 1977Dellinger Eugene LMethod and apparatus for orthodontic treatment
US4160322 *29 Dec 197610 Jul 1979Frazier Paul DMethod of constructing an orthodontic appliance
US4324546 *14 Jul 198013 Apr 1982Paul HeitlingerMethod for the manufacture of dentures and device for carrying out the method
US4415330 *31 Aug 198115 Nov 1983Sybron CorporationOrthodontic bracket assembly
US4611288 *14 Apr 19839 Sep 1986Francois DuretApparatus for taking odontological or medical impressions
US4663720 *21 Nov 19845 May 1987Francois DuretMethod of and apparatus for making a prosthesis, especially a dental prosthesis
US4742464 *3 Sep 19863 May 1988Francois DuretMethod of making a prosthesis, especially a dental prosthesis
US4837732 *5 Jun 19876 Jun 1989Marco BrandestiniMethod and apparatus for the three-dimensional registration and display of prepared teeth
US4850864 *30 Mar 198725 Jul 1989Diamond Michael KBracket placing instrument
Non-Patent Citations
Reference
1Leinfelder, K. F. et al., "A new method for generating ceramic restorations; a CAD-CAM system", Journal American Dental Association, vol. 118, Jun. 1989, pp. 703-707.
2 *Leinfelder, K. F. et al., A new method for generating ceramic restorations; a CAD CAM system , Journal American Dental Association, vol. 118, Jun. 1989, pp. 703 707.
3Rekow, D., "Computer-aided design and manufacturing in dentistry; A review of the state of the art", Journal of Prosthetic Dentistry, vol. 58, Oct. 1987, pp. 513-516.
4 *Rekow, D., Computer aided design and manufacturing in dentistry; A review of the state of the art , Journal of Prosthetic Dentistry, vol. 58, Oct. 1987, pp. 513 516.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US625091830 Nov 199926 Jun 2001Orametrix, Inc.Method and apparatus for simulating tooth movement for an orthodontic patient
US631899528 Apr 200020 Nov 2001Drametrix, Inc.Method and apparatus for bonding a bracket to a tooth
US63223593 Nov 200027 Nov 20013M Innovative Properties CompanyMethod for use in dental articulation
US63501198 May 200026 Feb 20023M Innovative Properties CompanySelection of orthodontic appliances
US635012030 Nov 199926 Feb 2002Orametrix, Inc.Method and apparatus for designing an orthodontic apparatus to provide tooth movement
US643187030 Nov 199913 Aug 2002Ora Metrix, Inc.Method and apparatus for generating a desired three-dimensional digital model of an orthodontic structure
US647151230 Nov 199929 Oct 2002Ora Metrix, Inc.Method and apparatus for determining and monitoring orthodontic treatment
US651299428 Apr 200028 Jan 2003Orametrix, Inc.Method and apparatus for producing a three-dimensional digital model of an orthodontic patient
US654051230 Nov 19991 Apr 2003Orametrix, Inc.Method and apparatus for treating an orthodontic patient
US658782830 Nov 19991 Jul 2003Ora Metrix, Inc.Method and apparatus for automated generation of a patient treatment plan
US673986912 Jun 200025 May 2004Cadent Ltd.Virtual orthodontic treatment
US677661413 Feb 200217 Aug 2004Lingualcare, Inc.Modular system for customized orthodontic appliances
US690533717 Sep 200214 Jun 2005Orametrix, Inc.Tooth templates for bracket positioning and other uses
US69287336 Nov 200216 Aug 2005Lingualcare, Inc.Method and system for customizing an orthodontic archwire
US69718731 May 20026 Dec 2005Orametrix, Inc.Virtual bracket library and uses thereof in orthodontic treatment planning
US703332713 Sep 200225 Apr 20063M Innovative Properties CompanyMethod of determining the long axis of an object
US70635328 Mar 199920 Jun 2006Align Technology, Inc.Subdividing a digital dentition model
US711059412 Mar 200219 Sep 2006Align Technology, Inc.Manipulating a digital dentition model to form models of individual dentition components
US712376715 Oct 200217 Oct 2006Align Technology, Inc.Manipulating a digital dentition model to form models of individual dentition components
US712524812 Sep 200324 Oct 2006Align Technology, Inc.Attachment devices and methods for a dental appliance
US713487420 Nov 200314 Nov 2006Align Technology, Inc.Computer automated development of an orthodontic treatment plan and appliance
US714231230 Dec 200328 Nov 2006D4D Technologies, LlcLaser digitizer system for dental applications
US715537322 Feb 200226 Dec 20063M Innovative Properties CompanySelection of orthodontic brackets
US718415019 Mar 200427 Feb 2007D4D Technologies, LlcLaser digitizer system for dental applications
US72281912 May 20035 Jun 2007Geodigm CorporationMethod and apparatus for constructing crowns, bridges and implants for dental use
US724597720 Jul 200017 Jul 2007Align Technology, Inc.Systems and methods for mass customization
US724702115 Mar 200424 Jul 2007Align Technology, Inc.Subdividing a digital dentition model
US72733687 Feb 200525 Sep 2007Cadent LtdVirtual orthodontic treatment
US72759302 Jan 20042 Oct 2007Cadent LtdVirtual orthodontic treatment
US732059230 Aug 200422 Jan 2008Align Technology, Inc.Defining tooth-moving appliances computationally
US733178327 Feb 200419 Feb 2008Align Technology, Inc.System and method for positioning teeth
US734266817 Sep 200411 Mar 2008D4D Technologies, LlcHigh speed multiple line three-dimensional digitalization
US73476906 Nov 200125 Mar 2008Russell A JordanMethods for use in dental articulation
US73557215 May 20048 Apr 2008D4D Technologies, LlcOptical coherence tomography imaging
US737328621 Jun 200113 May 2008Align Technology, Inc.Efficient data representation of teeth model
US738319824 Jul 20003 Jun 2008Align Technology, Inc.Delivery information systems and methods
US74284817 Feb 200323 Sep 2008Align Technology, Inc.Efficient data representation of teeth model
US743381023 Sep 20037 Oct 2008Align Technology, Inc.Efficient data representation of teeth model
US746394225 Apr 20059 Dec 2008Geodigm CorporationDental prosthesis manufacturing process, dental prosthesis pattern & dental prosthesis made thereby
US747430721 Dec 20006 Jan 2009Align Technology, Inc.Clinician review of an orthodontic treatment plan and appliance
US7578673 *17 Jun 200425 Aug 2009Align Technology, Inc.System and methods for combination treatments of dental patients
US757867413 Mar 200625 Aug 2009Align Technology, Inc.Methods for correcting tooth movements midcourse in treatment
US7585172 *9 Oct 20038 Sep 2009Orametrix, Inc.Orthodontic treatment planning with user-specified simulation of tooth movement
US76135272 Feb 20073 Nov 20093M Innovative Properties CompanyOrthodontic prescription form, templates, and toolbar for digital orthodontics
US766128117 May 200716 Feb 20103M Innovative Properties CompanyMethod and device for shaping an orthodontic archwire
US770249211 Mar 200420 Apr 2010Geodigm CorporationSystem and method for generating an electronic model for a dental impression having a common coordinate system
US771602429 Apr 200311 May 2010Geodigm CorporationMethod and apparatus for electronically generating a color dental occlusion map within electronic model images
US77177082 May 200318 May 2010Orametrix, Inc.Method and system for integrated orthodontic treatment planning using unified workstation
US773554218 Dec 200715 Jun 2010Geodigm CorporationSupport structure for a printed model in multi-component dental appliances
US775192518 Oct 20066 Jul 20103M Innovative Properties CompanySystem to manufacture custom orthodontic appliances, program product, and related methods
US781966220 Jul 200526 Oct 2010Geodigm CorporationMulti-component dental appliances and a method for constructing the same
US782434619 Sep 20052 Nov 2010Geodigm CorporationDetermining condyle displacement utilizing electronic models of dental impressions having a common coordinate system
US782664631 Jul 20032 Nov 2010Align Technology, Inc.Systems and methods for removing gingiva from computer tooth models
US785045122 Jul 200414 Dec 20103M Innovative Properties CompanyModular system for customized orthodontic appliances
US78669789 Aug 200711 Jan 2011Cadent Ltd.Virtual orthodontic treatment
US787483731 Oct 200725 Jan 2011Align Technology, Inc.Defining tooth-moving appliances computationally
US787716031 Oct 200825 Jan 2011Geodigm CorporationDental prosthesis manufacturing process, dental prosthesis pattern and dental prosthesis made thereby
US790572531 Oct 200715 Mar 2011Align Technology, Inc.Clinician review of an orthodontic treatment plan and appliance
US79463347 Nov 200724 May 2011Geodigm CorporationSprue formers
US799313320 Oct 20069 Aug 20113M Innovative Properties CompanyDigital orthodontic treatment planning
US804784631 Oct 20071 Nov 2011Align Technology, Inc.Preventing interference between tooth models
US805722618 Sep 200615 Nov 20113M Innovative Properties CompanyCustomized orthodontic bracket system
US807048522 Apr 20096 Dec 2011Dentsply International, Inc.Notched pontic and system for fabricating dental appliance for use therewith
US807048630 Apr 20046 Dec 2011Lester KupermanMethod and apparatus for indirect bonding of orthodontic appliances to teeth
US807048731 Oct 20076 Dec 2011Align Technology, Inc.System and method for positioning teeth
US80753068 Jun 200713 Dec 2011Align Technology, Inc.System and method for detecting deviations during the course of an orthodontic treatment to gradually reposition teeth
US810508024 Aug 200631 Jan 2012Align Technology, Inc.Computer automated development of an orthodontic treatment plan and appliance
US812351926 Jul 200528 Feb 2012Dentsply International Inc.Method and system for personalized orthodontic treatment
US820046211 Jan 200812 Jun 2012Geodigm CorporationDental appliances
US82357171 Nov 20117 Aug 2012Lester KupermanMethod and apparatus for indirect bonding of orthodontic appliances to teeth
US828054230 Nov 20102 Oct 2012Geodigm CorporationDental prosthesis manufacturing process, dental prosthesis pattern and dental prosthesis made thereby
US83266473 Aug 20094 Dec 2012Align Technology, Inc.Method and system for distributing patient referrals
US83486658 Dec 20108 Jan 2013Align Technology, Inc.Activatable dental appliance
US840168618 Dec 200819 Mar 2013Align Technology, Inc.Reduced registration bonding template
US84174932 Mar 20109 Apr 2013GeoDigmScanning dental models
US843967230 Dec 200814 May 2013Align Technology, Inc.Method and system for optimizing dental aligner geometry
US84697068 Dec 201025 Jun 2013Align Technology, Inc.Activatable dental appliance
US849647431 Oct 200730 Jul 2013Align Technology, Inc.Computer automated development of an orthodontic treatment plan and appliance
US85623388 Jun 200722 Oct 2013Align Technology, Inc.Treatment progress tracking and recalibration
US859122512 Dec 200826 Nov 2013Align Technology, Inc.Tooth movement measurement by automatic impression matching
US86065988 Nov 201210 Dec 2013Align Technology, Inc.Method and system for distributing patient referrals
US86365099 Jan 200828 Jan 2014Align Technology, Inc.Methods and systems for treating teeth
US863651010 Nov 201128 Jan 2014Align Technology, Inc.System and method for detecting deviations during the course of an orthodontic treatment to gradually reposition teeth
US864141410 Oct 20114 Feb 2014Align Technology, Inc.Automatic placement of precision cuts
US865185911 Nov 201018 Feb 2014Align Technology, Inc.System for determining final position of teeth
US87086978 Dec 200929 Apr 2014Align Technology, Inc.Tactile objects for orthodontics, systems and methods
USRE4281516 Aug 200711 Oct 20113M Innovative Properties CompanyMethod and system for customizing an orthodontic archwire
USRE444655 Apr 201227 Aug 2013Geodigm CorporationMethod and apparatus for electronically generating a color dental occlusion map within electronic model images
USRE44668 *7 Oct 201124 Dec 20133M Innovative Properties CompanyMethod and system for customizing an orthodontic archwire
EP1941842A211 Feb 20039 Jul 2008T.O.P. Service für Lingualtechnik GmbHModular system for customized orthodontic appliances
EP2266492A229 Dec 200029 Dec 2010Ormco CorporationMethod and apparatus for forming a custom orthodontic appliance
WO2003068099A211 Feb 200321 Aug 2003Lingualcare IncModular system for customized orthodontic appliances
WO2006054221A111 Nov 200526 May 2006Illinois Tool WorksIndexing valve
Classifications
U.S. Classification433/24, 433/229
International ClassificationA61C7/00, A61C7/14, A61C7/12, A61C13/00
Cooperative ClassificationA61C7/146, A61C13/0003, A61C7/002, A61C7/12
European ClassificationA61C7/12, A61C7/14P, A61C13/00C
Legal Events
DateCodeEventDescription
25 Apr 2006ASAssignment
Owner name: ORMCO CORPORATION, CALIFORNIA
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE FIRST BOSTON (N/K/A CREDIT SUISSE, CAYMAN ISLANDS BRANCH);REEL/FRAME:017519/0456
Effective date: 20060323
27 Sep 2002FPAYFee payment
Year of fee payment: 12
13 Jun 2002ASAssignment
Owner name: CREDIT SUISSE FIRST BOSTON, NEW YORK
Free format text: SECURITY AGREEMENT;ASSIGNOR:ORMCO CORPORATION;REEL/FRAME:012958/0243
Owner name: ORMCO CORPORATION, CALIFORNIA
Free format text: SECURITY INTEREST;ASSIGNOR:ABN MARO BANK N.V.;REEL/FRAME:012946/0993
Effective date: 20020606
Owner name: CREDIT SUISSE FIRST BOSTON ELEVEN MADISON AVENUE N
Owner name: CREDIT SUISSE FIRST BOSTON ELEVEN MADISON AVENUENE
Free format text: SECURITY AGREEMENT;ASSIGNOR:ORMCO CORPORATION /AR;REEL/FRAME:012958/0243
Owner name: ORMCO CORPORATION C/O SYBRON DENTAL SPECIALTIES, I
Free format text: SECURITY INTEREST;ASSIGNOR:ABN MARO BANK N.V. /AR;REEL/FRAME:012946/0993
22 Dec 2000ASAssignment
Owner name: ABN AMRO BANK N.V., ILLINOIS
Free format text: SECURITY INTEREST;ASSIGNOR:ORMCO CORPORATION;REEL/FRAME:011400/0232
Effective date: 20001211
Owner name: ABN AMRO BANK N.V. 135 S. LASALLE ST. CHICAGO ILLI
19 Oct 1998FPAYFee payment
Year of fee payment: 8
5 Sep 1995ASAssignment
Owner name: ORMCO CORPORATION, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANDREIKO, CRAIG A.;REEL/FRAME:007627/0643
Effective date: 19950710