USRE33775E - Pulse controlled expansion valve for multiple evaporators and method of controlling same - Google Patents

Pulse controlled expansion valve for multiple evaporators and method of controlling same Download PDF

Info

Publication number
USRE33775E
USRE33775E US07/241,323 US24132388A USRE33775E US RE33775 E USRE33775 E US RE33775E US 24132388 A US24132388 A US 24132388A US RE33775 E USRE33775 E US RE33775E
Authority
US
United States
Prior art keywords
refrigerant
valve
iadd
iaddend
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/241,323
Inventor
Joseph L. Behr
David P. Hargraves
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emerson Electric Co
Original Assignee
Emerson Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Electric Co filed Critical Emerson Electric Co
Priority to US07/241,323 priority Critical patent/USRE33775E/en
Application granted granted Critical
Publication of USRE33775E publication Critical patent/USRE33775E/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0658Armature and valve member being one single element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This invention relates to apparatus for and a method of controlling a refrigeration system. More specifically, this invention is concerned with a refrigeration system having a plurality of evaporators which are supplied high pressure .[.refreigerant.]. .Iadd.refrigerant .Iaddend.from a single source. Each evaporator is independently controlled by an expansion valve, such as a solenoid operated valve, and a control system responsive to a parameter of the refrigeration system for controlling operation of the solenoid valve thereby to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant ep through the respective expansion valve.
  • an expansion valve such as a solenoid operated valve
  • this invention relates to a solenoid valve which is periodically energized and de-energized (i.e., opened and closed) during each period of operation of the valve and a control system responsive to a refrigeration system parameter (e.g., superheat) which varies the ratio of the energization time to the de-energization time of the solenoid valve during each period of operation of the valve so as to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the valve.
  • a refrigeration system parameter e.g., superheat
  • this system has a temperature sensor (e.g., a thermostat) within the refrigerant space served by a specified evaporator which senses the temperature within the refrigerated space and overrides the control system to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.when the temperature of the refrigerated space is below a specified level.
  • a temperature sensor e.g., a thermostat
  • a refrigeration system typically includes a compressor, a condenser coil, an expansion device, and an evaporator coil.
  • Refrigerant vapor is compressed to high pressure by the compressor and is directed into the condenser where the high pressure refreigerant vapor is condensed to a high pressure liquid.
  • Many refrigeration systems such as in multiple refrigerated cabinets in a supermarket or in a multiple evaporator air conditioning system, have a plurality of evaporators supplied with .[.refreigerant.]. .Iadd.refrigerant .Iaddend.from a common condenser.
  • An expansion device is provided between the condenser and each of the evaporators so that liquid .[.refreigerant.].
  • .Iadd.refrigerant .Iaddend.from the condenser may be adiabatically expanded before it enters the evaporator.
  • the expansion device is a so-called thermostatic expansion valve.
  • a thermostatic expansion valve has an expansion port therein and a valve member for regulating the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the expansion port.
  • a spring biases the valve member toward its closed position.
  • a diaphragm actuator is provided. One side of the diaphragm is exposed to suction gas pressure while the other side is connected via a capillary tube to a thermostatic bulb in heat transfer relation with the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.vapor (referred to as the suction gas) exhausted from the evaporator.
  • the bulb is charged with a suitable volatile fluid (e.g., a .[.refreigerant.]. .Iadd.refrigerant.Iaddend.) and thus exerts a pressure force on the valve member via the diaphragm actuator counteracting the force of the spring and the suction gas pressure.
  • a suitable volatile fluid e.g., a .[.refreigerant.]. .Iadd.refrigerant.Iaddend.
  • a suitable volatile fluid e.g., a .[.refreigerant.]. .Iadd.refrigerant.Iaddend.
  • the thermostatic bulb Upon sensing a decrease in suction gas temperature, the thermostatic bulb will decrease the pressure force exerted on the diaphragm actuator and thus will permit the spring to at least partially close the valve thus lowering the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.into the evaporator and, in turn, raising the temperature of the suction gas.
  • a thermostatic expansion valve is adjusted or set to maintain the suction gas at a predetermined superheat level or setting.
  • Superheat is a term of art which is defined as the temperature of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.vapor above the evaporated temperature of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.at the specified pressure of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend..
  • the thermostatic expansion valve is preset at the factory so as to maintain a predetermined superheat level and it is impossible or impractical to vary the superheat setting of typical thermostatic expansion valves during operation of the refrigeration system so as to control the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator in response to changes in the operating conditions of the refrigeration system thereby to maximize the operating efficiency of the refrigeration system.
  • This electrical heater/bi-metal actuator is often times referred to as a heat motor.
  • this electrically operated expansion valve could be regulated in response to system parameters (e.g., superheat) so as to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the valve.
  • apparatus of this invention is intended for use in a refrigeration system having a common condenser and a plurality of evaporators, each of the evaporators refrigerating a respective refrigerated space and having a respective expansion valve for controlling the flow of high pressure liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.supplied from the common condenser to its respective evaporator.
  • Each expansion valve is a solenoid valve having a valve body with a flow passage therein for the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.therethrough.
  • the valve body has a valve seat constituting a portion of this flow package and a valve member selectively movable between a closed position in which it is sealingly engageable with the valve seat so as to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.and an open position permitting the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend..
  • control means is provided for periodically opening and closing the solenoid valve thereby to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the solenoid valve.
  • the improvement of this invention comprises at least one means for sensing the temperature of the refrigerated space of one of the evaporator coils and for generating a signal in response to the above-said temperature.
  • Control means is provided for the one solenoid valve which is responsive to the above-mentioned signal so as to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to the above-said one evaporator when the temperature of the refrigerated space served by the above-said one evaporator is below a predetermined temperature level.
  • the method of this invention involves controlling a refrigeration system having a source of high pressure liquid refreigerant which is supplied to a plurality of evaporators in parallel communication with the source of pressurized liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend..
  • Each of the evaporators has a respective refrigerated space associated therewith and further has a solenoid operated expansion valve for controlling the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend. through each of the evaporators.
  • Each of these expansion valves is independently selectively operable between an open and a closed position upon energization and de-energization of the solenoid valve.
  • the method comprises monitoring a first parameter associated with each of the evaporators of the refrigeration system.
  • a first signal is generated in response to this first parameter.
  • This first signal of a respective evaporator is utilized to effect periodic energization and de-energization of the solenoid valve controlling this respective evaporator with the ratio of energization time to the length of the period of the solenoid valve being responsive to the signal so as to independently regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator.
  • the temperature of at least one refrigerated space served by a respective evaporator is monitored and a second signal is generated which is responsive to the temperature of this at least one refrigerated space.
  • this at least one refrigerated space decreasing below a predetermined temperature level and upon the second signal attaining a predetermined value, energization of the solenoid valve by the control system is overridden thereby to maintain the one solenoid valve closed and to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through this at least one evaporator until the temperature within the respective refrigerated space increases above a predetermined temperature level.
  • FIG. 1 is a diagrammatic view of a refrigeration system having a single .[.refreigerant.]. .Iadd.refrigerant .Iaddend.compressor and condenser supplying .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to a plurality of evaporators with each of the evaporators being independently controlled by an on/off solenoid valve controlled in accordance with the apparatus and method of the present invention;
  • FIG. 2 is an enlarged cross-sectional view of a solenoid control valve
  • FIG. 3 is a block diagram of the control system for controlling operation of one of the solenoid valves illustrated in FIG. 2;
  • FIG. 4 is a plot of superheat temperature of the refreigerant versus the ratio of energization time to de-energization time during each period of operation of one of the solenoid valve;
  • FIG. 5 is a plot of coil current energizing the solenoid actuator of the solenoid valve versus time
  • FIG. 6 is an electrical schematic of a control system of the present invention.
  • FIG. 6A is a block diagram illustrating the program followed by a control system which is an alternative to that of FIG. 6;
  • FIG. 7 is a plot of another mode of controlling zone temperature in which the on-off modulation of the control valve, as shown in FIG. 5 is utilized;
  • FIG. 8 is a plot of superheat set point versus zone temperature in which the cooling capacity of the evaporator is continuously modulated by raising of the superheat;
  • FIG. 9 is a diagrammatic view of a multiple evaporator heat pump system in accordance with this invention.
  • a refrigeration or air conditioning system is indicated in schematic form by reference character 1.
  • this refrigeration system is shown to be particularly adapted for supplying high pressure liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to a series of refrigerated or freezer cabinets such as may be found in a supermarket.
  • this refrigeration system is shown to include a hermetic compressor 3 having an inlet 5 and an outlet 7.
  • the outlet 7 of the compressor is connected to a condenser coil, as generally indicated at 9.
  • the outlet of condenser coil 9 supplies high pressure, liquid .[.refreigerant.].
  • the outlets of the evaporator coils are connected to a suction line 11 which returns low pressure vaporized .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to the inlet 5 of compressor 3.
  • an expansion device or valve as generally indicated at 15, is provided between each evaporator coil and the high pressure liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.line.
  • expansion valve 15 is a low-cost, direct operated solenoid actuated valve. It will be understood that when the solenoid valve 15 is energized, it is fully opened and when it is de-energized, all flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the valve is blocked.
  • Valve 15 includes a valve body 19 having a flow passage F extending therethrough with the flow passage having an inlet 21 and an outlet 23.
  • flared tubing ends are sealably secured (soldered) to valve body 19 so as to constitute the inlets and outlets 21 and 23, respectively. These flared tubing ends permit the valve to be readily incorporated in the refreigerant lines of refrigeration system 1, such as by soldering the tubing ends in place.
  • An expansion valve port 25 is provided in flow path F intermediate the inlet and outlet ends of the flow path and this expansion port 25 is constituted by an annular shoulder or valve seat 27 facing generally upwardly (as viewed in FIG. 2).
  • a perpendicular passage 29 is concentric within valve seat 27 and permits .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to flow upwardly to the valve seat from flow passage F.
  • An oblique passage 31 is provided downstream from expansion port 25 and permits the passage of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.from the expansion port to outlet 23.
  • a solenoid actuator is provided for valve 15.
  • This solenoid actuator includes a valve member, as generally indicated at 35, axially shiftable between a closed position (as shown in FIG. 2) in which the valve member is sealingly engageable with valve seat 27 thereby to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through flow passage F and an open position (not shown) in which the valve member is raised in axial direction clear or valve seat 27 thereby to permit the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through flow passage F.
  • the valve member 35 is axially shiftable through a stroke S, as shown in FIG.
  • this stroke is limited to be a short distance, for example 0.020 inches (0.5 mm.) thereby to limit valve member velocity upon actuation and to limit impact of forces as the valve opens and closes.
  • valve member 35 On the lower end of valve member 35, an elastomeric seal 39 is provided which, when valve member 35 is in its closed position, sealably engages valve seat 27 thereby to sealably close flow passage F.
  • seal 39 is clear of the valve seat and permits the flow .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through flow passage F to its respective evaporator E1, E2, etc.
  • Solenoid actuator 33 further comprises an axial tube 41 which has a solenoid core 43 disposed therein and fixedly held in place within tube 41.
  • This core is preferably made of a suitable ferromagnetic material.
  • the lower end of tube 41 is flared outwardly, as indicated at 44, and this flared end is sealably secured (e.g. welded) to valve body 39 thereby to seal the tube relative to the valve body and to prevent leakage of .[.refreigerant.]. .Iadd.refrigerant.Iaddend..
  • a conical coil compression spring 47 is interposed between movable valve member 35 and core 43 thereby to resiliently bias valve member 35 away from core 43 toward its closed position in engagement with valve seat 27.
  • spring 47 is disposed in a blind hole 49 in the upper end of the valve member and the upper end of the spring is received in a corresponding blind counterbore 51 provided in the bottom face of core 43. It will be understood that the diameter of hole 49 and of counterbore 51 in valve member 35 and in core 43 are somewhat larger than the maximum diameter of spring 47 thereby to permit compression of the spring without binding of the spring on the walls of the blind hole or counterbore.
  • compression coil spring 47 is a conical coil spring having its smallest diameter at its top in engagement with core 43 and thus constitutes a so-called increasing spring rate spring in which the spring constant of the spring increases with increased deflection of the spring.
  • a solenoid coil 53 (shown in phantom) surrounds tube 41. This solenoid coil is enclosed by a sheet metal cover 55. It will be understood that suitable electrical lead wires (not shown) for the coil extend from housing 55 thereby enabling the coil to be selectively energized and de-energized.
  • valve 15 operates on AC and, in some instances, it may be preferable that a shading band, as indicated at 56, be provided.
  • Valve 15 is substantially identical with the valve disclosed in the co-assigned U.S. patent application Ser. No. 354,136 to David P. Hargraves, however valves of other constructions may be employed.
  • means is provided responsive to one or more .[.refreigerant.]. .Iadd.refrigerant .Iaddend.system parameters for controlling operation of each of the on/off solenoid expansion valves 15 for regulating the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the refrigeration system 1 and for sensing the temperature within a refrigerated space cooled by a respective evaporator E1, E2 etc. so as to override the control of each respective valve 15 and to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to its respective evaporator upon its temperature of the refrigerated space falling below a predetermined temperature level.
  • control means 57 includes a power supply for periodically (repeatedly) energizing and de-energizing each valve 15 with the ratio of the energization (open) time of the valve relative to the de-energization (closed) time of the valve being responsive to the refrigeration parameter (e.g., superheat) being monitored thereby to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the refrigeration system so as to maintain the temperature of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.exiting its respective evaporator E1, E2 . . .
  • Control means 57 operates continuously comparing the refrigeration system parameter being monitored against a known value. Upon detecting an error between the monitored parameter and the reference or known value, the output voltage signal supplied to a respective solenoid valve 15 is correspondingly varied thereby to eliminate the error between the system reference and the parameter being monitored. While many system parameters, such as ambient air temperature or the temperature of the lubricant of the sump of the compressor 3, may be monitored, a preferred system parameter is the superheat temperature of the suction gas discharged from the evaporator in suction line 11. This superheat may be measured by temperature sensors T1 and T2 at the outlet and inlet of an evaporator coil E1, as shown in FIG. 1, thus measuring the temperature difference between the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.after it has passed through valve 15 and as it exits evaporator E1.
  • control means 57 includes an override parameter, such as another temperature sensor indicated at T3, which is located within the refrigerated space cooled or refrigerated by a respective evaporator.
  • temperature sensor T3 is shown to be proximate evaporator E1 so as to measure the temperature of the air surrounding the evaporator. It will be understood that in a multiple evaporator refrigerated display case application, the temperature sensor T3 may monitor (and thus serve as a thermostat) for the interior of the display case. In other applications, such as in room air conditioner or heat pump applications in which each room has a separate evaporator, the temperature sensor T3 may serve as a room thermostat controlling operation of the evaporator in that particular room.
  • the override parameter may be a signal from a timer which shuts off and turns on a respective evaporator at various prescribed times of the day or according to outside ambient temperature conditions.
  • temperature sensor T3 and the circuitry shown in FIG. 6 connected to sensor T3, serves as an override for the control function of means 57 when operating in response to the system parameter (e.g., superheat).
  • system parameter e.g., superheat
  • a signal will be generated by temperature sensor T3 (and by the circuitry connected thereto within control means 57) thereby to override the control and to de-energize its respective valve 15 so as to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through its respective evaporator coil.
  • temperature sensor T3 serves as a thermostat and shuts off the flow of refreigerant through its respective evaporator coil and yet permits .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to flow through liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.line 11 to others of the evaporator coils such as may be demanded by their respective control means 57.
  • FIG. 3 a block diagram of the principal functional aspects of one preferred control system 57 of the present invention is shown.
  • FIG. 6 the circuitry for carrying out this block diagram is presented.
  • the values for the components of the circuitry of FIG. 6 are disclosed in the following tables.
  • valve 15 is periodically energized and de-energized.
  • the term "periodically" is defined to mean the control means 57 operates continuously (at least while it is in operation), but that it operates in a series of continuous periods P of uniform or constant time, as shown in FIG. 5.
  • Each period P is of a length of time which is considerably shorter than the normal time response (or time constant) of the evaporator.
  • the parameter being controlled is superheat.
  • the time response of a typical evaporator is such that if the valve stayed fully open, about 20 seconds would be required for a significant drop in superheat to take place. Since the valve is typically open for less than 4 seconds, the effect is a relatively smooth control of superheat.
  • the thermal mass and other characteristics of the evaporator are such that the evaporator does not respond fast enough for the controlled parameter to follow each pulse of the valve.
  • control means 57 is an alternating current (A.C.) output triggering circuit which automatically initiates the output of the solenoid current at the start of each period and which selectively terminates or breaks the solenoid current output at a point during each period P in response to the refrigeration system parameter being monitored and the error signals generated upon comparing the desired system parameter to the selected reference.
  • A.C. alternating current
  • the control system may be a D.C. circuit.
  • control means 57 varies the ratio of energization time of solenoid valve 15 to the de-energization time of the valve during each period P in response to the above-noted error signal.
  • the discrete on/off solenoid 15 functions as an infinitely variable modulating .[.refreigerant.]. .Iadd.refrigerant .Iaddend.control valve.
  • the ratio of on time or energization time for solenoid operated valve 15 equals about 0.7 such that the desired superheat of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.is maintained.
  • the ratio of on (or energization) time of valve 15 in relation to the entire period is also about 0.7. If, for example, the period P is about 4 seconds, the on (or energization) time for solenoid valve 15 will amount to approximately 2.8 seconds and the off (or de-energization) time for the valve will amount to about 1.2 seconds.
  • control means 57 If the superheat sensed by control means 57 is above the pre-selected value for the superheat (e.g., 8°), control means 57 will increase the on time of the valve. If, on the other hand, the superheat sensed is too low, the control means correspondingly reduces the on time thereby to bring the superheat to the desired, predetermined level.
  • the pre-selected value for the superheat e.g. 8°
  • control system 57 integrates the on-off steps of solenoid valve 15 into an essentially steady state operating condition. For example, if the ratio of on time to the period equals 0.5, this would correspond to the valve being throttled to an intermediate position between its closed and full open position so as to permit the flow of about one-half of the flow rate of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.as when in its full open condition. Of course, if the ratio of on time to period P is zero, the valve is closed and the flow of all .[.refreigerant.].
  • an override parameter such as the temperature of a refrigerated space served by a respective one of the above-mentioned multiple evaporators E1, E2, etc. is monitored by a respective sensor T3 and an override signal is generated in response to the temperature of this refrigerated space.
  • this one refrigerated space decreasing below a first predetermined temperature level (i.e., when the temperature of a refrigerated display case is lowered to within its desired temperature range), and upon this override signal attaining a predetermined valve (referred to as a first signal), the energization of the solenoid valve 15 for this one evaporator E1 is overriden thereby to maintain this one solenoid valve closed and to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through this one evaporator until the temperature of the refrigerated space served by the evaporator increases above another predetermined temperature level.
  • a first predetermined temperature level i.e., when the temperature of a refrigerated display case is lowered to within its desired temperature range
  • this override signal attaining a predetermined valve (referred to as a first signal)
  • the energization of the solenoid valve 15 for this one evaporator E1 is overrid
  • control means 57 The circuitry for control means 57 is schematically depicted in FIG. 6. It will be understood that the circuitry depicted in FIG. 6 constitutes only one control circuit for operating the on/off solenoid valve 17 in accordance with this invention and that any number of suitable control circuits may be utilized.
  • the above-described control system varies the ratio of the valve open time to the total period P proportionally to the monitored refrigeration system parameter (e.g., temperature differential between evaporator inlet and outlet).
  • the monitored refrigeration system parameter e.g., temperature differential between evaporator inlet and outlet.
  • a sample and hold technique may be employed.
  • control parameter is sampled on an instantaneous basis and a finite step change in the ratio of on time to the period P is made on the basis of a predetermined program relationship between the instantaneous value of the controlled parameter and the step change in the on time/period ratio.
  • the size of the step change in the on time/period ratio is a function of the value of the controlled parameter.
  • control means 57 in this second type of controller is a programmed logic means, such as a microcomputer of the like, operating in accordance with a program whose flowchart is shown in FIG. 6A.
  • a first system parameter such as temperature difference (delta-T) or superheat, for example, is read (sampled) by the controlled 57.
  • a second system parameter such as room temperature is then sampled. If the second parameter is satisfied, i.e., is within the proper range, valve 15 is closed and the program loops back to the beginning. On the other hand, if the second parameter is not satisfied, controller 57 computes the error between the ideal first parameter and the prevailing first parameter.
  • the controller then pulses valve 15 open using the updated ratio of open time to total period. Thereafter it waits a predetermined period of time, such as four seconds, before it resumes execution of the program.
  • Valve 15 the detailed construction of which was heretofore described, is particularly well-suited for use as an on/off, continuously variable flow valve utilized in accordance with the control system and method of this invention because it has a long service life, even when repeatedly cycled to open and close in the manner heretofore described. Because of the special features of the valve in lessening opening and closing shock of the movable valve member 35 and because of the relatively large contact area of elastomeric valve member 39 on valve seat 27, the valve has a long service life and little or no maintenance is required.
  • valve 15 is a so-called direct acting solenoid valve.
  • the expansion device upstream from an evaporator E may comprise a large capacity pilot operated valve, such as is well-known in the art.
  • the apparatus and method of this invention may have wide application in a variety of multiple evaporator refrigeration systems including zoned room air conditioning/heat pump applications because selected evaporators may be blocked thus completely stopping the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.therethrough while others of the evaporators will continue to operate with .[.refreigerant.]. .Iadd.refrigerant .Iaddend.flowing therethrough.
  • zone parameter or temperature i.e., the temperature of the refrigerated space served by a particular evaporator coil
  • a first predetermined value e.g. 75° F.
  • a second predetermined value e.g., 78° F.
  • temperature sensor T3 will override control means 57 and maintain valve 15 in its closed condition. This condition is shown by the lower horizontal line in FIG. 7 marked "closed”.
  • a new output value from the override temperature sensor T3 is fed into the control system 57 which causes the control system to begin regulating control valve 15 by periodically opening and closing the control valve as heretofore described.
  • the control valve 15 is preset to maintain a superheat set point of, for example, 5° F.
  • the evaporator e.g., E1
  • the temperature of the zone will fall (as indicated by the dotted lines in FIG.
  • the control valve will continue to open and close in periodic fashion until the zone temperature has been reduced to the lower predetermined value (e.g., 75° F.).
  • the offset temperature between the lower temperature value (e.g., 75° F.) at which valve 15 closes and thus blocks or restricts the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator and the upper temperature level (e.g., 78° F.) at which the control valve begins to operate causes the temperature of the zone to be regulated between the desired temperature levels of 75° F. and 78° F. It will be understood by those skilled in the art that a similar control system could be utilized in a heat pump system for heating the zone.
  • control valve 15 together with the control system of the present invention as herein described may be utilized to modulate the cooling of a zone by proportionately raising the superheat setting of the expansion device (e.g., valve 15) by proportionately decreasing the ratio of energization time to the length of period P thus restricting the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator rather than by totally blocking the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.as heretofore described. More specifically, as shown in FIG.
  • the superheat setting of the expansion device e.g., valve 15
  • the superheat setting of the expansion device is adjusted or effectively set such that the superheat remains constant at about 5° F. In essence, this insures that substantially the entire length of the evaporator coil is effectively utilized and vaporized .[.refreigerant.]. .Iadd.refrigerant .Iaddend.exists only in the last increment of the expansion coil before the suction .[.outlet However,.]. .Iadd.outlet thereof.
  • control valve 15 is operated so as to have a progressively shorter open time during each period P and thus effectively proportionately increases the effective superheat setting of the valve until a lower predetermined temperature level is attained (e.g., 75° F.) at which time the superheat of the valve is raised to such a high degree (e.g., 30° F.) that the effective cooling length of the evaporator has been substantially reduced.
  • This method of progressively controlling superheat in certain applications, may be preferable to the method disclosed heretofore in regard to FIG.
  • control system 57 may require modification to carry out this method of control, such modifications of the schematic, as shown in FIG. 6, will be readily apparent to those skilled in the art and thus are not shown herein.
  • One method of the present invention of controlling an expansion valve for a multiple evaporator refrigeration system utilizes an on/off solenoid valve 15, such as heretofore described, and a control system 57, such as described above for each of the evaporators.
  • this method of this invention comprises monitoring a first parameter associated with each of the evaporators of the refrigeration system, such as the superheat of the suction gas being returned to the inlet of compressor 3 (i.e., the temperature differential between inlet and outlet of evaporator coil). This temperature differential is often considered to be an acceptable approximation of true superheat, particularly on refrigeration coils having a low pressure drop.
  • the control system is then utilized to generate a signal in response to this first parameter and this signal is utilized to effect repeated periodic energization and de-energization of the solenoid valve with the ratio of energization time to the length of the period of each energization cycle is responsive to the signal so as to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator.
  • the temperature of the refrigerated space served by this one evaporator is monitored, as by sensor T3, and a second signal is generated. Upon this second signal attaining a predetermined level (e.g., 75° F., as shown in FIG.
  • valve 15 for this refrigerated space is overridden and the valve remains de-energized thereby to restrict or block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator.
  • a second predetermined level e.g., 78° F. as shown in FIG. 7
  • valve 15 may be periodically energized and de-energized so as to modulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator.
  • FIG. 9 a multiple evaporator residential heat pump system utilizing the control apparatus and method of this invention is shown. More specifically, the multiple evaporator heat pump system shown in FIG. 9 is, in many respects, similar to the multiple evaporator refrigeration system shown in FIG. 1 and heretofore described in detail. Because of the similarity of construction and operation of the various parts of the multiple evaporator heat pump system shown in FIG. 9, corresponding parts between the two systems have been given corresponding reference characters with similar reference characters in FIG. 9 being indicated as “primed" reference numbers. Thus, a detailed description of these similar parts will not be provided and, instead, only differences between the refrigeration systems of FIGS. 1 and 9 will be discussed in detail.
  • a heat pump system includes a so-called four-way reversing valve, as indicated at 101, which may be selectively operated to switch the heat pump system between its heating mode and its cooling mode in a manner well known to those skilled in the art.
  • the condenser coil 9' is shown to be located out of doors while the multiple evaporators E1', E2'. . are located indoors, for example, each one being located in a respective room of a house or other building. It will be appreciated that when the heat pump system is operated in its hearing mode, the outdoor coil 9' serves as an evaporator which picks up heat from its surroundings (e.g., the outside air) and the indoor coils E1', etc.
  • this expansion device is a solenoid operated valve, as generally indicated at 103. It will be understood that the solenoid operated valve 103 can be generally similar in construction and operation to valve 15 heretofore described. Moreover, expansion valve 103 for the out of doors coil unit can be controlled by a control system generally similar to that described in this specification and as is shown in FIG. 6.
  • expansion device 103 Because expansion device 103 must have a metering orifice therein, this expansion device would create an excessive back pressure for the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.exiting the out of doors 9' when the heat pump system is operating in its cooling mode. Therefore, a bypass checkvalve 105 is provided so as to permit the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to bypass valve 103 when the heat pump system is operated in its cooling mode.
  • bypass checkvalves 107 are provided for each of the control valves 15' in line with each of the indoor coils E1', etc. so that when the system is operating in its heating mode and so that when the indoor coils are functioning as condensers, the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.may flow readily around the expansion valves 15' to the out of doors expansion device 103. It will be further appreciated by those skilled in the art that the control system shown in FIG. 6 may be modified so as to control operation of each of the indoor coils E1', etc. so as to maintain a desired temperature level within the room.

Abstract

A pulse controlled refrigeration expansion valve for multiple evaporators and method of controlling the valve is disclosed. The refrigeration system on which this invention is typically used includes a single source of pressurized refrigerant and a plurality of .[.evaportors.]. .Iadd.evaporators.Iaddend.. Each evaporator has an expansion valve associated therewith which is preferably an on/off (open/closed) direct controlled solenoid valve. The valve is periodically energized (opened) and de-energized (closed) in response to a parameter (e.g., superheat) of its respective evaporator such that the ratio of energization time/de-energization time during each period (e.g., 4 seconds) of operation of the valve is varied in response to the system parameter(s) and such that the on/off solenoid valve functions as a modulated refrigerant flow control expansion valve. A temperature sensor is provided which senses the temperature of the space being refrigerated by a respective evaporator (e.g., the interior of a freezer cabinet in a supermarket) so that upon the temperature of the refrigerated space controlled by the respective valve being within a predetermined temperature range, the temperature sensor will override the control for the solenoid valve thus closing the valve and stopping the flow of refrigerant through the respective evaporator while refrigerant continues to flow to other evaporators.

Description

This is a .Iadd.reissue of patent No. 4,685,309 which is .Iaddend.a continuation of copending application Ser. No. 643,250, filed on Aug. 22, 1984, now .[.U.S. Pat. No. 4,578,534.].ep .Iadd.abandoned .Iaddend.which is a continuation of application Ser. No. 438,360, filed Nov. 1, 1982, now abandoned.
BACKGROUND OF THE INVENTION
This invention relates to apparatus for and a method of controlling a refrigeration system. More specifically, this invention is concerned with a refrigeration system having a plurality of evaporators which are supplied high pressure .[.refreigerant.]. .Iadd.refrigerant .Iaddend.from a single source. Each evaporator is independently controlled by an expansion valve, such as a solenoid operated valve, and a control system responsive to a parameter of the refrigeration system for controlling operation of the solenoid valve thereby to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant ep through the respective expansion valve. Even more specifically, this invention relates to a solenoid valve which is periodically energized and de-energized (i.e., opened and closed) during each period of operation of the valve and a control system responsive to a refrigeration system parameter (e.g., superheat) which varies the ratio of the energization time to the de-energization time of the solenoid valve during each period of operation of the valve so as to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the valve. Still further, this system has a temperature sensor (e.g., a thermostat) within the refrigerant space served by a specified evaporator which senses the temperature within the refrigerated space and overrides the control system to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.when the temperature of the refrigerated space is below a specified level.
Typically, a refrigeration system includes a compressor, a condenser coil, an expansion device, and an evaporator coil. Refrigerant vapor is compressed to high pressure by the compressor and is directed into the condenser where the high pressure refreigerant vapor is condensed to a high pressure liquid. Many refrigeration systems such as in multiple refrigerated cabinets in a supermarket or in a multiple evaporator air conditioning system, have a plurality of evaporators supplied with .[.refreigerant.]. .Iadd.refrigerant .Iaddend.from a common condenser. An expansion device is provided between the condenser and each of the evaporators so that liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.from the condenser may be adiabatically expanded before it enters the evaporator. In the evaporator, the low pressure .[.refreigerant.]. .Iadd.refrigerant .Iaddend.absorbs heat from the surroundings and is at least in part transformed into a vapor which is returned via a suction line to the inlet of the compressor.
In many conventional refrigeration systems, the expansion device is a so-called thermostatic expansion valve. Typically, a thermostatic expansion valve has an expansion port therein and a valve member for regulating the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the expansion port. A spring biases the valve member toward its closed position. A diaphragm actuator is provided. One side of the diaphragm is exposed to suction gas pressure while the other side is connected via a capillary tube to a thermostatic bulb in heat transfer relation with the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.vapor (referred to as the suction gas) exhausted from the evaporator. The bulb is charged with a suitable volatile fluid (e.g., a .[.refreigerant.]. .Iadd.refrigerant.Iaddend.) and thus exerts a pressure force on the valve member via the diaphragm actuator counteracting the force of the spring and the suction gas pressure. Upon the thermostatic bulb's sensing an increase in temperature of the suction gas with respect to its' pressure, the net pressure force exerted on the diaphragm actuator is correspondingly increased thereby to further open the valve and to permit more .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to flow through the evaporator thus resulting in a lowering of the suction gas temperature. Upon sensing a decrease in suction gas temperature, the thermostatic bulb will decrease the pressure force exerted on the diaphragm actuator and thus will permit the spring to at least partially close the valve thus lowering the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.into the evaporator and, in turn, raising the temperature of the suction gas.
Generally, a thermostatic expansion valve is adjusted or set to maintain the suction gas at a predetermined superheat level or setting. Superheat is a term of art which is defined as the temperature of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.vapor above the evaporated temperature of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.at the specified pressure of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.. In many refrigeration systems, the thermostatic expansion valve is preset at the factory so as to maintain a predetermined superheat level and it is impossible or impractical to vary the superheat setting of typical thermostatic expansion valves during operation of the refrigeration system so as to control the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator in response to changes in the operating conditions of the refrigeration system thereby to maximize the operating efficiency of the refrigeration system.
In an effort to overcome the shortcomings of prior thermostatic expansion valves in which the superheat setting could not be varied during operation of the refrigeration system in response to changing operating conditions (e.g., changes in the refrigeration heat load or in the outside ambient air temperature), so-called electrically operated, modulating expansion valves were developed. Such electrically operated modulating expansion valves are disclosed in the coassigned U.S. Pat. No. 3,967,781. In this electrically operated expansion valve, a plurality of bi-metallic elements and heating elements are interleafed so that upon energization of the heating elements, the bi-metallic elements expand in axial direction thereby to open the valve. Upon de-energization of the heaters, the bi-metallic metals cool and contract in axial direction thus effecting closing of the valve. This electrical heater/bi-metal actuator is often times referred to as a heat motor. By controlling the heat generated by the heaters in the heat motor, this electrically operated expansion valve could be regulated in response to system parameters (e.g., superheat) so as to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the valve.
While these prior electrically operated expansion valves worked well for their intended purpose, they had certain drawbacks in that they did require the above-mentioned heat motor actuator which was expensive. Thus, there has been a longstanding need for a low-cost, electrically operated expansion valve which has a fast response time and which is operable to regulate .[.refreigerant.]. .Iadd.refrigerant .Iaddend.flow in proportion to the requirements of the refrigeration system.
As heretofore mentioned, in many refrigeration systems having multiple evaporator coils supplied with high pressure, liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.from a common compressor and condenser, it is advantageous to not only independently control or modulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend. through each of the evaporator coils in response to a parameter associated with each of the coils, but it is also desirable to completely block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through a selected evaporator coil in the event the refrigerated space (i.e., the interior of a refrigerated cabinet or the interior of a room) cooled or refrigerated by the respective evaporator coil reaches a predetermined temperature level. However, it is also desirable that the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.be permitted to flow to others of the plurality of evaporator coils supplied .[.refreigerant.]. .Iadd.refrigerant .Iaddend.by the common condenser. Heretofore, in addition to the expansion device, it was necessary to provide an independently operable solenoid valve to selectively block the flow of refreigerant to each evaporator coil. The requirement of an additional solenoid valve and a control for each solenoid valve added considerably to the complexity and cost of these systems.
SUMMARY OF THE INVENTION
Among the many objects and features of the present invention may be noted the provision of apparatus for and a method of controlling a refrigeration system expansion valve in response to a parameter of the refrigeration system;
The provision of such apparatus and method which utilizes a low-cost, directly operated solenoid valve which is repeatedly or periodically energized and de-energized in response to the refrigeration system parameter being monitored in such manner that the on/off cycles of the valve are integrated to result in a steady state, but variable regulation of the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the refrigeration system;
The provision of such apparatus and method which utilizes an open/closed, non-modulating electrically operated expansion valve functioning as a modulating proportional .[.refreigerant.]. .Iadd.refrigerant .Iaddend.flow control valve;
The provision of such apparatus and method which may be used in a refrigeration system having a plurality of evaporator coils so as to refrigerate respective refrigerated spaces, such as separate refrigerated display cases, and in which the temperature of each refrigerated space served by an evaporator is sensed and is controlled by a respective periodically energized expansion valve so that the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the respective evaporator coils may be selectively blocked upon the temperature in that evaporator coil's respective refrigerated space attaining a desired level while .[.refreigerant.]. .Iadd.refrigerant .Iaddend.continues to flow to the other evaporator coils;
The provision of such apparatus and method which permits the superheat of a respective evaporator to be continuously controlled such that effective length of the evaporator may be varied or modulated; and
The provision of a solenoid valve for use in a refrigeration system proportional flow control system, as above described, which is of low cost, which has a long service life, which has a fast response time, and which is reliable in operation.
Briefly stated, apparatus of this invention is intended for use in a refrigeration system having a common condenser and a plurality of evaporators, each of the evaporators refrigerating a respective refrigerated space and having a respective expansion valve for controlling the flow of high pressure liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.supplied from the common condenser to its respective evaporator. Each expansion valve is a solenoid valve having a valve body with a flow passage therein for the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.therethrough. The valve body has a valve seat constituting a portion of this flow package and a valve member selectively movable between a closed position in which it is sealingly engageable with the valve seat so as to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.and an open position permitting the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.. Further, control means is provided for periodically opening and closing the solenoid valve thereby to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the solenoid valve. Specifically, the improvement of this invention comprises at least one means for sensing the temperature of the refrigerated space of one of the evaporator coils and for generating a signal in response to the above-said temperature. Control means is provided for the one solenoid valve which is responsive to the above-mentioned signal so as to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to the above-said one evaporator when the temperature of the refrigerated space served by the above-said one evaporator is below a predetermined temperature level.
The method of this invention involves controlling a refrigeration system having a source of high pressure liquid refreigerant which is supplied to a plurality of evaporators in parallel communication with the source of pressurized liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.. Each of the evaporators has a respective refrigerated space associated therewith and further has a solenoid operated expansion valve for controlling the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend. through each of the evaporators. Each of these expansion valves is independently selectively operable between an open and a closed position upon energization and de-energization of the solenoid valve. Specifically, the method comprises monitoring a first parameter associated with each of the evaporators of the refrigeration system. A first signal is generated in response to this first parameter. This first signal of a respective evaporator is utilized to effect periodic energization and de-energization of the solenoid valve controlling this respective evaporator with the ratio of energization time to the length of the period of the solenoid valve being responsive to the signal so as to independently regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator. The temperature of at least one refrigerated space served by a respective evaporator is monitored and a second signal is generated which is responsive to the temperature of this at least one refrigerated space. Upon the temperature of this at least one refrigerated space decreasing below a predetermined temperature level and upon the second signal attaining a predetermined value, energization of the solenoid valve by the control system is overridden thereby to maintain the one solenoid valve closed and to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through this at least one evaporator until the temperature within the respective refrigerated space increases above a predetermined temperature level.
Other objects and features of this invention will be in part apparent and in part pointed out hereinafter.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagrammatic view of a refrigeration system having a single .[.refreigerant.]. .Iadd.refrigerant .Iaddend.compressor and condenser supplying .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to a plurality of evaporators with each of the evaporators being independently controlled by an on/off solenoid valve controlled in accordance with the apparatus and method of the present invention;
FIG. 2 is an enlarged cross-sectional view of a solenoid control valve;
FIG. 3 is a block diagram of the control system for controlling operation of one of the solenoid valves illustrated in FIG. 2;
FIG. 4 is a plot of superheat temperature of the refreigerant versus the ratio of energization time to de-energization time during each period of operation of one of the solenoid valve;
FIG. 5 is a plot of coil current energizing the solenoid actuator of the solenoid valve versus time;
FIG. 6 is an electrical schematic of a control system of the present invention;
FIG. 6A is a block diagram illustrating the program followed by a control system which is an alternative to that of FIG. 6;
FIG. 7 is a plot of another mode of controlling zone temperature in which the on-off modulation of the control valve, as shown in FIG. 5 is utilized;
FIG. 8 is a plot of superheat set point versus zone temperature in which the cooling capacity of the evaporator is continuously modulated by raising of the superheat; and
FIG. 9 is a diagrammatic view of a multiple evaporator heat pump system in accordance with this invention.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
DESCRIPTION OF PREFERRED EMBODIMENTS
Referring now to the drawings, and in particular to FIG. 1, a refrigeration or air conditioning system is indicated in schematic form by reference character 1. In particular, this refrigeration system is shown to be particularly adapted for supplying high pressure liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to a series of refrigerated or freezer cabinets such as may be found in a supermarket. Specifically, this refrigeration system is shown to include a hermetic compressor 3 having an inlet 5 and an outlet 7. The outlet 7 of the compressor is connected to a condenser coil, as generally indicated at 9. The outlet of condenser coil 9 supplies high pressure, liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.in parallel to a number of evaporator coils (also referred to as heat transfer means) as generally indicated at E1, E2, . . . The outlets of the evaporator coils are connected to a suction line 11 which returns low pressure vaporized .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to the inlet 5 of compressor 3. In addition, between each evaporator coil and the high pressure liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.line, an expansion device or valve, as generally indicated at 15, is provided.
Referring now to FIG. 2, a detailed description of one embodiment of an expansion valve 15 will be provided. .[.preferably.]. .Iadd.Preferably.Iaddend., expansion valve 15 is a low-cost, direct operated solenoid actuated valve. It will be understood that when the solenoid valve 15 is energized, it is fully opened and when it is de-energized, all flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the valve is blocked. Valve 15 includes a valve body 19 having a flow passage F extending therethrough with the flow passage having an inlet 21 and an outlet 23. As is conventional, flared tubing ends are sealably secured (soldered) to valve body 19 so as to constitute the inlets and outlets 21 and 23, respectively. These flared tubing ends permit the valve to be readily incorporated in the refreigerant lines of refrigeration system 1, such as by soldering the tubing ends in place. An expansion valve port 25 is provided in flow path F intermediate the inlet and outlet ends of the flow path and this expansion port 25 is constituted by an annular shoulder or valve seat 27 facing generally upwardly (as viewed in FIG. 2). A perpendicular passage 29 is concentric within valve seat 27 and permits .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to flow upwardly to the valve seat from flow passage F. An oblique passage 31 is provided downstream from expansion port 25 and permits the passage of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.from the expansion port to outlet 23.
As generally indicated at 33, a solenoid actuator is provided for valve 15. This solenoid actuator includes a valve member, as generally indicated at 35, axially shiftable between a closed position (as shown in FIG. 2) in which the valve member is sealingly engageable with valve seat 27 thereby to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through flow passage F and an open position (not shown) in which the valve member is raised in axial direction clear or valve seat 27 thereby to permit the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through flow passage F. The valve member 35 is axially shiftable through a stroke S, as shown in FIG. 2, as it is moved between its closed and open positions. Preferably, this stroke is limited to be a short distance, for example 0.020 inches (0.5 mm.) thereby to limit valve member velocity upon actuation and to limit impact of forces as the valve opens and closes.
On the lower end of valve member 35, an elastomeric seal 39 is provided which, when valve member 35 is in its closed position, sealably engages valve seat 27 thereby to sealably close flow passage F. Of course, when valve member 35 is in its open position, seal 39 is clear of the valve seat and permits the flow .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through flow passage F to its respective evaporator E1, E2, etc.
Solenoid actuator 33 further comprises an axial tube 41 which has a solenoid core 43 disposed therein and fixedly held in place within tube 41. This core is preferably made of a suitable ferromagnetic material. The lower end of tube 41 is flared outwardly, as indicated at 44, and this flared end is sealably secured (e.g. welded) to valve body 39 thereby to seal the tube relative to the valve body and to prevent leakage of .[.refreigerant.]. .Iadd.refrigerant.Iaddend..
A conical coil compression spring 47 is interposed between movable valve member 35 and core 43 thereby to resiliently bias valve member 35 away from core 43 toward its closed position in engagement with valve seat 27. As is shown, spring 47 is disposed in a blind hole 49 in the upper end of the valve member and the upper end of the spring is received in a corresponding blind counterbore 51 provided in the bottom face of core 43. It will be understood that the diameter of hole 49 and of counterbore 51 in valve member 35 and in core 43 are somewhat larger than the maximum diameter of spring 47 thereby to permit compression of the spring without binding of the spring on the walls of the blind hole or counterbore. Preferably, compression coil spring 47 is a conical coil spring having its smallest diameter at its top in engagement with core 43 and thus constitutes a so-called increasing spring rate spring in which the spring constant of the spring increases with increased deflection of the spring. Thus, the spring is compressed its maximum amount and exerts a maximum biasing force on valve member when valve member 35 is fully withdrawn into the bore of the solenoid. A solenoid coil 53 (shown in phantom) surrounds tube 41. This solenoid coil is enclosed by a sheet metal cover 55. It will be understood that suitable electrical lead wires (not shown) for the coil extend from housing 55 thereby enabling the coil to be selectively energized and de-energized. As will be hereinafter disclosed the system for controlling valve 15 operates on AC and, in some instances, it may be preferable that a shading band, as indicated at 56, be provided. Valve 15 is substantially identical with the valve disclosed in the co-assigned U.S. patent application Ser. No. 354,136 to David P. Hargraves, however valves of other constructions may be employed.
In accordance with this invention, as indicated generally at 57, means is provided responsive to one or more .[.refreigerant.]. .Iadd.refrigerant .Iaddend.system parameters for controlling operation of each of the on/off solenoid expansion valves 15 for regulating the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the refrigeration system 1 and for sensing the temperature within a refrigerated space cooled by a respective evaporator E1, E2 etc. so as to override the control of each respective valve 15 and to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to its respective evaporator upon its temperature of the refrigerated space falling below a predetermined temperature level.
More specifically, control means 57 includes a power supply for periodically (repeatedly) energizing and de-energizing each valve 15 with the ratio of the energization (open) time of the valve relative to the de-energization (closed) time of the valve being responsive to the refrigeration parameter (e.g., superheat) being monitored thereby to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the refrigeration system so as to maintain the temperature of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.exiting its respective evaporator E1, E2 . . . (or flowing through suction line 11) to be within a predetermined superheat range. Control means 57 operates continuously comparing the refrigeration system parameter being monitored against a known value. Upon detecting an error between the monitored parameter and the reference or known value, the output voltage signal supplied to a respective solenoid valve 15 is correspondingly varied thereby to eliminate the error between the system reference and the parameter being monitored. While many system parameters, such as ambient air temperature or the temperature of the lubricant of the sump of the compressor 3, may be monitored, a preferred system parameter is the superheat temperature of the suction gas discharged from the evaporator in suction line 11. This superheat may be measured by temperature sensors T1 and T2 at the outlet and inlet of an evaporator coil E1, as shown in FIG. 1, thus measuring the temperature difference between the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.after it has passed through valve 15 and as it exits evaporator E1.
Additionally, control means 57 includes an override parameter, such as another temperature sensor indicated at T3, which is located within the refrigerated space cooled or refrigerated by a respective evaporator. In FIG. 1, temperature sensor T3 is shown to be proximate evaporator E1 so as to measure the temperature of the air surrounding the evaporator. It will be understood that in a multiple evaporator refrigerated display case application, the temperature sensor T3 may monitor (and thus serve as a thermostat) for the interior of the display case. In other applications, such as in room air conditioner or heat pump applications in which each room has a separate evaporator, the temperature sensor T3 may serve as a room thermostat controlling operation of the evaporator in that particular room. Alternatively, the override parameter may be a signal from a timer which shuts off and turns on a respective evaporator at various prescribed times of the day or according to outside ambient temperature conditions.
More particularly, temperature sensor T3 and the circuitry shown in FIG. 6 connected to sensor T3, serves as an override for the control function of means 57 when operating in response to the system parameter (e.g., superheat). In operation, upon the refrigerated space whose temperature is being sensed by temperature sensor T3 attaining a desired temperature level, a signal will be generated by temperature sensor T3 (and by the circuitry connected thereto within control means 57) thereby to override the control and to de-energize its respective valve 15 so as to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through its respective evaporator coil. In this manner, temperature sensor T3 serves as a thermostat and shuts off the flow of refreigerant through its respective evaporator coil and yet permits .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to flow through liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.line 11 to others of the evaporator coils such as may be demanded by their respective control means 57.
Referring to FIG. 3, a block diagram of the principal functional aspects of one preferred control system 57 of the present invention is shown. In FIG. 6, the circuitry for carrying out this block diagram is presented. The values for the components of the circuitry of FIG. 6 are disclosed in the following tables.
______________________________________                                    
Resistors                                                                 
                         Resistance                                       
Component Number         (Ohms)                                           
______________________________________                                    
R1, R46                  4.02K                                            
R3                       4.22K                                            
R4                       2.21K                                            
R5, R27                  8.25K                                            
R6, R30, R13, 14         1.96K                                            
R7                       1.62K                                            
R9                       330K                                             
R10                      43                                               
R11, R66                 100K                                             
R12                      64.8K                                            
R15                      20K                                              
R17, R19, R57, R58       1.1K                                             
R18                      13.3                                             
R20, R59                 348K                                             
R21, R25, R61, R67, R74  10K                                              
R22, R36, R41, R42, R43  1K                                               
R55, R56, R60, R62       1K                                               
R23, R38, R40            2.49K                                            
R24                      1.5K                                             
R29                      24.9K                                            
R31, R32, R50            3.16K                                            
R34, R44                 6.19K                                            
R35, R48                 280K                                             
R37                      123K                                             
R47, R53, R73            49.9K                                            
R49                      9.09K                                            
R51                                                                       
R52                      6.8K                                             
R54                      16.4K                                            
R63                      11K                                              
R64, R65                 1.78K                                            
R68                      3.3K                                             
R71                      22K                                              
R69                      6.19K                                            
R70                      2K                                               
R72                      100                                              
R2, R8, R28, R76 (Trimpots)                                               
                         500                                              
R26, R33, R45, R16, R75 (Trimpots)                                        
                         1K                                               
R39 (Trimpot)            500K                                             
______________________________________                                    
Capacitors                                                                
                 Capacitance                                              
Component Number (micro-farads)                                           
______________________________________                                    
C1, C2           330                                                      
C3               100                                                      
C4, C5, C12      1                                                        
C6, C7, C9, C13  01                                                       
C11              33                                                       
C14              47                                                       
C8               10                                                       
______________________________________                                    
Miscellaneous Components                                                  
Component Number  Description and Designation                             
______________________________________                                    
D1, D2, D3, D7, D8, D9, D10                                               
                  Diode: 1N 4001                                          
D5, D6            Diode: 1N 4149                                          
D4                Diode: 1.M 336                                          
LD1               Led Red                                                 
Q1, Q2, Q3, Q5    Transistor 2N3906                                       
Q4                Transistor 2N6038                                       
Q6, Q7            Transistor 2N3904                                       
CR1               Triac: T2323                                            
U1, U2, U3        I.C. Quad Op.Amp CA324                                  
U4                I.C. Quad Comparator CA339                              
U5                I.C. Multiplexer CD4066BE                               
U6                I.C. pos; neg; volt reg                                 
                  NE554U                                                  
______________________________________                                    
From the above description and from the diagrams and schematics presented in FIGS. 3 and 6, one skilled in the art could construct and operate control means 57 and thus a detailed description of the construction and operation of the control system has been eliminated as being unnecessary.
As heretofore mentioned, valve 15 is periodically energized and de-energized. As used herein, the term "periodically" is defined to mean the control means 57 operates continuously (at least while it is in operation), but that it operates in a series of continuous periods P of uniform or constant time, as shown in FIG. 5. Each period P is of a length of time which is considerably shorter than the normal time response (or time constant) of the evaporator. For example, assume that the parameter being controlled is superheat. When the valve opens superheat begins to drop. The time response of a typical evaporator is such that if the valve stayed fully open, about 20 seconds would be required for a significant drop in superheat to take place. Since the valve is typically open for less than 4 seconds, the effect is a relatively smooth control of superheat. The thermal mass and other characteristics of the evaporator are such that the evaporator does not respond fast enough for the controlled parameter to follow each pulse of the valve.
As shown in FIG. 6, control means 57 is an alternating current (A.C.) output triggering circuit which automatically initiates the output of the solenoid current at the start of each period and which selectively terminates or breaks the solenoid current output at a point during each period P in response to the refrigeration system parameter being monitored and the error signals generated upon comparing the desired system parameter to the selected reference. However, those skilled in the art will recognize that with suitable modifications, the control system may be a D.C. circuit. Specifically, control means 57 varies the ratio of energization time of solenoid valve 15 to the de-energization time of the valve during each period P in response to the above-noted error signal. It will be appreciated that if the error signal is zero (or some other preselected value), the voltage output signal supplied to the solenoid valve is terminated at time zero during each period P and the solenoid valve is not energized at all. That, valve 17 remains closed and blocks the flow of all .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the refrigeration system. If the error signal is at or exceeds another preselected value, the voltage output signal remains on during the entire period P and thus the solenoid valve continuously remains open and permits a maximum flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through refrigeration system 1. It will be appreciated that by proportionally varying the energization time to the de-energization time during each period P between the upper and lower error signal limits, as above described, the discrete on/off solenoid 15 functions as an infinitely variable modulating .[.refreigerant.]. .Iadd.refrigerant .Iaddend.control valve.
In an application in which the superheat of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.and suction line 11 is used as the system parameter and in which the superheat is desired to be maintained at a predetermined level (e.g., 8° F.), it is seen in FIG. 4 that the ratio of on time or energization time for solenoid operated valve 15 equals about 0.7 such that the desired superheat of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.is maintained. In FIG. 5, it is shown that the ratio of on (or energization) time of valve 15 in relation to the entire period is also about 0.7. If, for example, the period P is about 4 seconds, the on (or energization) time for solenoid valve 15 will amount to approximately 2.8 seconds and the off (or de-energization) time for the valve will amount to about 1.2 seconds.
If the superheat sensed by control means 57 is above the pre-selected value for the superheat (e.g., 8°), control means 57 will increase the on time of the valve. If, on the other hand, the superheat sensed is too low, the control means correspondingly reduces the on time thereby to bring the superheat to the desired, predetermined level.
As noted above, the period P is relatively small in regard to the time constants or time response of refrigeration system 1. Thus, control system 57, in effect, integrates the on-off steps of solenoid valve 15 into an essentially steady state operating condition. For example, if the ratio of on time to the period equals 0.5, this would correspond to the valve being throttled to an intermediate position between its closed and full open position so as to permit the flow of about one-half of the flow rate of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.as when in its full open condition. Of course, if the ratio of on time to period P is zero, the valve is closed and the flow of all .[.refreigerant.]. .Iadd.refrigerant .Iaddend.therethrough is blocked, and if the ratio is 1, the valve stays .[.ope.]. .Iadd.open .Iaddend.for the entire period and thus the maximum flow rate of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.is free to flow through the valve.
Further in accordance with this method, an override parameter, such as the temperature of a refrigerated space served by a respective one of the above-mentioned multiple evaporators E1, E2, etc. is monitored by a respective sensor T3 and an override signal is generated in response to the temperature of this refrigerated space. Upon the temperature of this one refrigerated space decreasing below a first predetermined temperature level (i.e., when the temperature of a refrigerated display case is lowered to within its desired temperature range), and upon this override signal attaining a predetermined valve (referred to as a first signal), the energization of the solenoid valve 15 for this one evaporator E1 is overriden thereby to maintain this one solenoid valve closed and to block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through this one evaporator until the temperature of the refrigerated space served by the evaporator increases above another predetermined temperature level. A more detailed description of the operation of control 57 will be provided hereinafter.
The circuitry for control means 57 is schematically depicted in FIG. 6. It will be understood that the circuitry depicted in FIG. 6 constitutes only one control circuit for operating the on/off solenoid valve 17 in accordance with this invention and that any number of suitable control circuits may be utilized. The above-described control system varies the ratio of the valve open time to the total period P proportionally to the monitored refrigeration system parameter (e.g., temperature differential between evaporator inlet and outlet). In a second type of optional controller, a sample and hold technique may be employed. In this second controller, the control parameter is sampled on an instantaneous basis and a finite step change in the ratio of on time to the period P is made on the basis of a predetermined program relationship between the instantaneous value of the controlled parameter and the step change in the on time/period ratio. In other words, the size of the step change in the on time/period ratio is a function of the value of the controlled parameter.
More specifically, control means 57 in this second type of controller is a programmed logic means, such as a microcomputer of the like, operating in accordance with a program whose flowchart is shown in FIG. 6A. In this program, a first system parameter such as temperature difference (delta-T) or superheat, for example, is read (sampled) by the controlled 57. A second system parameter such as room temperature is then sampled. If the second parameter is satisfied, i.e., is within the proper range, valve 15 is closed and the program loops back to the beginning. On the other hand, if the second parameter is not satisfied, controller 57 computes the error between the ideal first parameter and the prevailing first parameter. It then adds or subtracts an increment to or from the ratio of the open time of the valve to the total period in accordance with a predetermined function. Such a function could be a straight line when plotted as a function of superheat error versus increment of change in on-time ratio, for example, although the precise function is not a feature of the present invention. The controller then pulses valve 15 open using the updated ratio of open time to total period. Thereafter it waits a predetermined period of time, such as four seconds, before it resumes execution of the program.
Valve 15, the detailed construction of which was heretofore described, is particularly well-suited for use as an on/off, continuously variable flow valve utilized in accordance with the control system and method of this invention because it has a long service life, even when repeatedly cycled to open and close in the manner heretofore described. Because of the special features of the valve in lessening opening and closing shock of the movable valve member 35 and because of the relatively large contact area of elastomeric valve member 39 on valve seat 27, the valve has a long service life and little or no maintenance is required.
As shown in FIG. 2, valve 15 is a so-called direct acting solenoid valve. However, it will be appreciated that the expansion device upstream from an evaporator E may comprise a large capacity pilot operated valve, such as is well-known in the art.
It will be understood that in some applications, it may be an advantage to have a valve which is open when the solenoid is de-energized, and closed when the solenoid is energized.
Those skilled in the art will recognize that the apparatus and method of this invention may have wide application in a variety of multiple evaporator refrigeration systems including zoned room air conditioning/heat pump applications because selected evaporators may be blocked thus completely stopping the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.therethrough while others of the evaporators will continue to operate with .[.refreigerant.]. .Iadd.refrigerant .Iaddend.flowing therethrough.
Referring now to FIG. 7, operation of the above-described refrigeration apparatus in accordance with the method of this invention will be described in greater detail. As shown by the solid lines in FIG. 7, when the zone parameter or temperature (i.e., the temperature of the refrigerated space served by a particular evaporator coil) is above a first predetermined value (e.g., 75° F.) but below a second predetermined value (e.g., 78° F.), temperature sensor T3 will override control means 57 and maintain valve 15 in its closed condition. This condition is shown by the lower horizontal line in FIG. 7 marked "closed". Upon the zone temperature equalling or exceeding the second predetermined value (e.g., the upper temperature limit of 78° F.), a new output value from the override temperature sensor T3 is fed into the control system 57 which causes the control system to begin regulating control valve 15 by periodically opening and closing the control valve as heretofore described. Normally, the control valve 15 is preset to maintain a superheat set point of, for example, 5° F. As the evaporator (e.g., E1) serving the zone being sensed continues to have .[.refreigerant.]. .Iadd.refrigerant .Iaddend.flow therethrough, the temperature of the zone will fall (as indicated by the dotted lines in FIG. 7) and the control valve will continue to open and close in periodic fashion until the zone temperature has been reduced to the lower predetermined value (e.g., 75° F.). Thus, the offset temperature between the lower temperature value (e.g., 75° F.) at which valve 15 closes and thus blocks or restricts the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator and the upper temperature level (e.g., 78° F.) at which the control valve begins to operate causes the temperature of the zone to be regulated between the desired temperature levels of 75° F. and 78° F. It will be understood by those skilled in the art that a similar control system could be utilized in a heat pump system for heating the zone.
Referring to FIG. 8, the control valve 15 together with the control system of the present invention as herein described may be utilized to modulate the cooling of a zone by proportionately raising the superheat setting of the expansion device (e.g., valve 15) by proportionately decreasing the ratio of energization time to the length of period P thus restricting the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator rather than by totally blocking the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.as heretofore described. More specifically, as shown in FIG. 8, when the zone temperature is at a second or higher predetermined level (e.g., 78° F.), the superheat setting of the expansion device (e.g., valve 15) is adjusted or effectively set such that the superheat remains constant at about 5° F. In essence, this insures that substantially the entire length of the evaporator coil is effectively utilized and vaporized .[.refreigerant.]. .Iadd.refrigerant .Iaddend.exists only in the last increment of the expansion coil before the suction .[.outlet However,.]. .Iadd.outlet thereof. However .Iaddend.as the zone temperature drops from the second or higher predetermined level toward a first or lower predetermined level (e.g., 75° F.), control valve 15 is operated so as to have a progressively shorter open time during each period P and thus effectively proportionately increases the effective superheat setting of the valve until a lower predetermined temperature level is attained (e.g., 75° F.) at which time the superheat of the valve is raised to such a high degree (e.g., 30° F.) that the effective cooling length of the evaporator has been substantially reduced. This method of progressively controlling superheat, in certain applications, may be preferable to the method disclosed heretofore in regard to FIG. 7 in that the evaporator coil will continue to cool the zone thereby to effectively maintain humidity control rather than the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.flow being totally blocked, as described in regard to FIG. 7. While control system 57 may require modification to carry out this method of control, such modifications of the schematic, as shown in FIG. 6, will be readily apparent to those skilled in the art and thus are not shown herein.
One method of the present invention of controlling an expansion valve for a multiple evaporator refrigeration system utilizes an on/off solenoid valve 15, such as heretofore described, and a control system 57, such as described above for each of the evaporators. Briefly, this method of this invention comprises monitoring a first parameter associated with each of the evaporators of the refrigeration system, such as the superheat of the suction gas being returned to the inlet of compressor 3 (i.e., the temperature differential between inlet and outlet of evaporator coil). This temperature differential is often considered to be an acceptable approximation of true superheat, particularly on refrigeration coils having a low pressure drop. The control system is then utilized to generate a signal in response to this first parameter and this signal is utilized to effect repeated periodic energization and de-energization of the solenoid valve with the ratio of energization time to the length of the period of each energization cycle is responsive to the signal so as to regulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator. The temperature of the refrigerated space served by this one evaporator is monitored, as by sensor T3, and a second signal is generated. Upon this second signal attaining a predetermined level (e.g., 75° F., as shown in FIG. 7), the periodic energization and de-energization of the valve 15 for this refrigerated space is overridden and the valve remains de-energized thereby to restrict or block the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator. Further, upon the temperature of the refrigerated space rising above a second predetermined level (e.g., 78° F. as shown in FIG. 7), the proportional portion of control means 57 is no longer overridden and valve 15 may be periodically energized and de-energized so as to modulate the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through the evaporator.
Referring now to FIG. 9, a multiple evaporator residential heat pump system utilizing the control apparatus and method of this invention is shown. More specifically, the multiple evaporator heat pump system shown in FIG. 9 is, in many respects, similar to the multiple evaporator refrigeration system shown in FIG. 1 and heretofore described in detail. Because of the similarity of construction and operation of the various parts of the multiple evaporator heat pump system shown in FIG. 9, corresponding parts between the two systems have been given corresponding reference characters with similar reference characters in FIG. 9 being indicated as "primed" reference numbers. Thus, a detailed description of these similar parts will not be provided and, instead, only differences between the refrigeration systems of FIGS. 1 and 9 will be discussed in detail.
As is conventional, a heat pump system includes a so-called four-way reversing valve, as indicated at 101, which may be selectively operated to switch the heat pump system between its heating mode and its cooling mode in a manner well known to those skilled in the art. Further, as indicated, the condenser coil 9' is shown to be located out of doors while the multiple evaporators E1', E2'. . are located indoors, for example, each one being located in a respective room of a house or other building. It will be appreciated that when the heat pump system is operated in its hearing mode, the outdoor coil 9' serves as an evaporator which picks up heat from its surroundings (e.g., the outside air) and the indoor coils E1', etc. serve as condensers which reject heat into the room. In order to operate the system in its heating mode, it is necessary to provide an expansion device upstream from the outdoor evaporator 9' so as to cause the adiabatic expansion of the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.as it flows through the outdoor evaporator. As shown in FIG. 9, this expansion device is a solenoid operated valve, as generally indicated at 103. It will be understood that the solenoid operated valve 103 can be generally similar in construction and operation to valve 15 heretofore described. Moreover, expansion valve 103 for the out of doors coil unit can be controlled by a control system generally similar to that described in this specification and as is shown in FIG. 6. Because expansion device 103 must have a metering orifice therein, this expansion device would create an excessive back pressure for the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.exiting the out of doors 9' when the heat pump system is operating in its cooling mode. Therefore, a bypass checkvalve 105 is provided so as to permit the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to bypass valve 103 when the heat pump system is operated in its cooling mode.
Likewise, bypass checkvalves 107 are provided for each of the control valves 15' in line with each of the indoor coils E1', etc. so that when the system is operating in its heating mode and so that when the indoor coils are functioning as condensers, the .[.refreigerant.]. .Iadd.refrigerant .Iaddend.may flow readily around the expansion valves 15' to the out of doors expansion device 103. It will be further appreciated by those skilled in the art that the control system shown in FIG. 6 may be modified so as to control operation of each of the indoor coils E1', etc. so as to maintain a desired temperature level within the room.
In view of the above, it will be seen that other objects of this invention are achieved and other advantageous results obtained.
As various changes could be made in the above constructions or methods without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims (2)

I claim:
1. In a refrigeration system having a plurality of heat exchange means, each of said heat exchange means serving a respective space, said system further having a compressor for supplying high pressure liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.to each of said heat exchange means, each of said heat exchange means having a length through which said .[.refreigerant.]. .Iadd.refrigerant .Iaddend.flows, wherein the improvement comprises: means associated with each of said heat exchange means for expanding said .[.refreigerant.]. .Iadd.refrigerant .Iaddend.passing therethrough, for selectively blocking the flow of .[.refreigerant.]. .Iadd.refrigerant .Iaddend.therethrough, and for effectively preventing .[.starting.]. .Iadd.starving .Iaddend.or flooding of said heat exchange means, said means comprising a solenoid valve for controlling the flow of high pressure liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.through said respective heat exchange means so that said liquid .[.refreigerant.]. .Iadd.refrigerant .Iaddend.is in heat transfer relation with substantially the entire length of said heat exchange means and so that only vaporized .[.refreigerant.]. .Iadd.refrigerant .Iaddend.exists only in the last increment of said heat exchange means thereby to maximize the heat transfer efficiency of said heat exchange means, and sample and hold means for controlling said solenoid valve, said control means having means for sampling a control parameter on an instanteous basis and means for changing the ratio of the open time to the closed time of said solenoid valve in a selected period of time in finite steps in accordance with a predetermined programmed relationship between the instantaneous value of said control parameter and said step. .Iadd.
2. In a refrigeration system having a plurality of heat exchange means, each of said heat exchange means serving a respective space, said system further having a supply of refrigerant therein, a compressor for supplying high pressure, liquid refrigerant to each of said exchange means, each of said heat exchange means having a length through which said refrigerant flows for absorbing heat from the surroundings and transforming said liquid refrigerant into a vapor, wherein the improvement comprises:
means associated with each of said heat exchange means for expanding said refrigerant passing therethrough, for selectively blocking the flow of refrigerant therethrough, and for effectively preventing starving or flooding of said heat exchange means, said means comprising a modulatable valve for controlling the flow of refrigerant through said respective heat exchange means so that said liquid refrigerant is in heat transfer relation with substantially the entire length of said heat exchange means and so that only vaporized refrigerant exists only in the last increment of said heat exchange means thereby to maximize the heat transfer efficiency of said heat exchange means, sample and hold means for controlling said valve, said control means having means for sampling a control parameter on an instantaneous basis and means for changing the flow of refrigerant through said valve in finite steps in accordance with a predetermined programmed relationship between the instantaneous value of said control parameter and said step; and means associated with at least one of said heat exchange means for sensing a parameter other than said control parameter and for generating a signal in response to the operation of said at least one heat exchange means, said control means being responsive to this last said signal for overriding said sample and hold means controlling said valve when said signal is outside a predetermined limit and for effecting closing of said valve thereby to block the flow of refrigerant therethrough..Iaddend.
US07/241,323 1984-08-22 1988-09-06 Pulse controlled expansion valve for multiple evaporators and method of controlling same Expired - Fee Related USRE33775E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/241,323 USRE33775E (en) 1984-08-22 1988-09-06 Pulse controlled expansion valve for multiple evaporators and method of controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64325084A 1984-08-22 1984-08-22
US07/241,323 USRE33775E (en) 1984-08-22 1988-09-06 Pulse controlled expansion valve for multiple evaporators and method of controlling same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US64325084A Continuation 1984-08-22 1984-08-22
US06/822,192 Reissue US4685309A (en) 1984-08-22 1986-01-24 Pulse controlled expansion valve for multiple evaporators and method of controlling same

Publications (1)

Publication Number Publication Date
USRE33775E true USRE33775E (en) 1991-12-24

Family

ID=26934195

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/241,323 Expired - Fee Related USRE33775E (en) 1984-08-22 1988-09-06 Pulse controlled expansion valve for multiple evaporators and method of controlling same

Country Status (1)

Country Link
US (1) USRE33775E (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023943A1 (en) * 1994-03-03 1995-09-08 General Electric Company Refrigerant flow rate control based on evaporator dryness
FR2717551A1 (en) * 1994-03-17 1995-09-22 Eaton Sa Monaco Solenoid valve with two paths for hydraulic and pneumatic control circuits
US5463876A (en) * 1994-04-04 1995-11-07 General Electric Company Control system for refrigerant metering solenoid valve
US5873518A (en) * 1997-03-17 1999-02-23 Emerson Electric Co. Water valve assembly having a temperature and pressure sensing device integrated therein
US20050198981A1 (en) * 2004-03-15 2005-09-15 Tekair Lp System and apparatus controlling a variable speed compressor system
US7395678B2 (en) 2004-04-02 2008-07-08 Parker-Hannifin Corp. Refrigerant receiving apparatus
US7481073B2 (en) 2004-03-15 2009-01-27 Parker-Hannilin Corporation System and apparatus for delivering expanded refrigerant to an air/gas dryer
US20090138129A1 (en) * 2006-03-08 2009-05-28 Takayuki Setoguchi Freezer Heat Exchanger Coolant Flow Divider Control Device
US20100242508A1 (en) * 2008-01-11 2010-09-30 Alexander Lifson Use of an adjustable expansion vavle to control dehumidification
US7878006B2 (en) 2004-04-27 2011-02-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US8160827B2 (en) 2007-11-02 2012-04-17 Emerson Climate Technologies, Inc. Compressor sensor module
US8393169B2 (en) 2007-09-19 2013-03-12 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
US8475136B2 (en) 2003-12-30 2013-07-02 Emerson Climate Technologies, Inc. Compressor protection and diagnostic system
US8590325B2 (en) 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US8974573B2 (en) 2004-08-11 2015-03-10 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9310094B2 (en) 2007-07-30 2016-04-12 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9480177B2 (en) 2012-07-27 2016-10-25 Emerson Climate Technologies, Inc. Compressor protection module
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US10488090B2 (en) 2013-03-15 2019-11-26 Emerson Climate Technologies, Inc. System for refrigerant charge verification

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534455A (en) * 1944-06-08 1950-12-19 Honeywell Regulator Co Refrigerating control apparatus
US2960840A (en) * 1956-02-27 1960-11-22 Fred J Hosken Method and apparatus for defrosting a refrigeration system
US3456455A (en) * 1967-09-22 1969-07-22 Itt Temperature controller for environmental chamber
US3577743A (en) * 1969-06-10 1971-05-04 Vilter Manufacturing Corp Control for refrigeration systems
DE2508434A1 (en) * 1975-02-27 1976-09-09 Edgar Prof Dipl Ing Dittmar Integrated circuit proportional integral differential controller - has multiple channels and gives wide range of gain settings
US4112703A (en) * 1976-12-27 1978-09-12 Borg-Warner Corporation Refrigeration control system
US4283921A (en) * 1980-04-25 1981-08-18 Electromedics, Inc. Control and alarm system for freezer case temperature
US4290274A (en) * 1979-07-16 1981-09-22 Essex Donald D Liquid spray device with adaptive duty cycle
US4420113A (en) * 1981-05-29 1983-12-13 Societe Lyonnaise Des Applications Catalytiques Method of and system for controlling the operation of a heater
US4548047A (en) * 1981-11-11 1985-10-22 Hitachi, Ltd. Expansion valve

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534455A (en) * 1944-06-08 1950-12-19 Honeywell Regulator Co Refrigerating control apparatus
US2960840A (en) * 1956-02-27 1960-11-22 Fred J Hosken Method and apparatus for defrosting a refrigeration system
US3456455A (en) * 1967-09-22 1969-07-22 Itt Temperature controller for environmental chamber
US3577743A (en) * 1969-06-10 1971-05-04 Vilter Manufacturing Corp Control for refrigeration systems
DE2508434A1 (en) * 1975-02-27 1976-09-09 Edgar Prof Dipl Ing Dittmar Integrated circuit proportional integral differential controller - has multiple channels and gives wide range of gain settings
US4112703A (en) * 1976-12-27 1978-09-12 Borg-Warner Corporation Refrigeration control system
US4290274A (en) * 1979-07-16 1981-09-22 Essex Donald D Liquid spray device with adaptive duty cycle
US4283921A (en) * 1980-04-25 1981-08-18 Electromedics, Inc. Control and alarm system for freezer case temperature
US4420113A (en) * 1981-05-29 1983-12-13 Societe Lyonnaise Des Applications Catalytiques Method of and system for controlling the operation of a heater
US4548047A (en) * 1981-11-11 1985-10-22 Hitachi, Ltd. Expansion valve

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Translation of Japanese Patent 57 204381. *
Translation of Japanese Patent 57-204381.

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023943A1 (en) * 1994-03-03 1995-09-08 General Electric Company Refrigerant flow rate control based on evaporator dryness
FR2717551A1 (en) * 1994-03-17 1995-09-22 Eaton Sa Monaco Solenoid valve with two paths for hydraulic and pneumatic control circuits
US5463876A (en) * 1994-04-04 1995-11-07 General Electric Company Control system for refrigerant metering solenoid valve
US5873518A (en) * 1997-03-17 1999-02-23 Emerson Electric Co. Water valve assembly having a temperature and pressure sensing device integrated therein
US8475136B2 (en) 2003-12-30 2013-07-02 Emerson Climate Technologies, Inc. Compressor protection and diagnostic system
US20050198981A1 (en) * 2004-03-15 2005-09-15 Tekair Lp System and apparatus controlling a variable speed compressor system
US7475556B2 (en) 2004-03-15 2009-01-13 Parker Hannifin Corporation System and apparatus controlling a variable speed compressor system
US7481073B2 (en) 2004-03-15 2009-01-27 Parker-Hannilin Corporation System and apparatus for delivering expanded refrigerant to an air/gas dryer
US7395678B2 (en) 2004-04-02 2008-07-08 Parker-Hannifin Corp. Refrigerant receiving apparatus
US9669498B2 (en) 2004-04-27 2017-06-06 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US8474278B2 (en) 2004-04-27 2013-07-02 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US7878006B2 (en) 2004-04-27 2011-02-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US7905098B2 (en) 2004-04-27 2011-03-15 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9121407B2 (en) 2004-04-27 2015-09-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US10335906B2 (en) 2004-04-27 2019-07-02 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9081394B2 (en) 2004-08-11 2015-07-14 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US10558229B2 (en) 2004-08-11 2020-02-11 Emerson Climate Technologies Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9304521B2 (en) 2004-08-11 2016-04-05 Emerson Climate Technologies, Inc. Air filter monitoring system
US9690307B2 (en) 2004-08-11 2017-06-27 Emerson Climate Technologies, Inc. Method and apparatus for monitoring refrigeration-cycle systems
US8974573B2 (en) 2004-08-11 2015-03-10 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9017461B2 (en) 2004-08-11 2015-04-28 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9023136B2 (en) 2004-08-11 2015-05-05 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9021819B2 (en) 2004-08-11 2015-05-05 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9046900B2 (en) 2004-08-11 2015-06-02 Emerson Climate Technologies, Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9086704B2 (en) 2004-08-11 2015-07-21 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US20090138129A1 (en) * 2006-03-08 2009-05-28 Takayuki Setoguchi Freezer Heat Exchanger Coolant Flow Divider Control Device
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US8590325B2 (en) 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US10352602B2 (en) 2007-07-30 2019-07-16 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9310094B2 (en) 2007-07-30 2016-04-12 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9651286B2 (en) 2007-09-19 2017-05-16 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
US8393169B2 (en) 2007-09-19 2013-03-12 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
US9194894B2 (en) 2007-11-02 2015-11-24 Emerson Climate Technologies, Inc. Compressor sensor module
US10458404B2 (en) 2007-11-02 2019-10-29 Emerson Climate Technologies, Inc. Compressor sensor module
US8160827B2 (en) 2007-11-02 2012-04-17 Emerson Climate Technologies, Inc. Compressor sensor module
US8335657B2 (en) 2007-11-02 2012-12-18 Emerson Climate Technologies, Inc. Compressor sensor module
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US20100242508A1 (en) * 2008-01-11 2010-09-30 Alexander Lifson Use of an adjustable expansion vavle to control dehumidification
US10234854B2 (en) 2011-02-28 2019-03-19 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US10884403B2 (en) 2011-02-28 2021-01-05 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US9703287B2 (en) 2011-02-28 2017-07-11 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US9590413B2 (en) 2012-01-11 2017-03-07 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9876346B2 (en) 2012-01-11 2018-01-23 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US10028399B2 (en) 2012-07-27 2018-07-17 Emerson Climate Technologies, Inc. Compressor protection module
US10485128B2 (en) 2012-07-27 2019-11-19 Emerson Climate Technologies, Inc. Compressor protection module
US9480177B2 (en) 2012-07-27 2016-10-25 Emerson Climate Technologies, Inc. Compressor protection module
US9762168B2 (en) 2012-09-25 2017-09-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US10274945B2 (en) 2013-03-15 2019-04-30 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US10488090B2 (en) 2013-03-15 2019-11-26 Emerson Climate Technologies, Inc. System for refrigerant charge verification
US10775084B2 (en) 2013-03-15 2020-09-15 Emerson Climate Technologies, Inc. System for refrigerant charge verification
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US10060636B2 (en) 2013-04-05 2018-08-28 Emerson Climate Technologies, Inc. Heat pump system with refrigerant charge diagnostics
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
US10443863B2 (en) 2013-04-05 2019-10-15 Emerson Climate Technologies, Inc. Method of monitoring charge condition of heat pump system

Similar Documents

Publication Publication Date Title
US4685309A (en) Pulse controlled expansion valve for multiple evaporators and method of controlling same
USRE33775E (en) Pulse controlled expansion valve for multiple evaporators and method of controlling same
US4459819A (en) Pulse controlled expansion valve and method
CA2063904C (en) Modulated temperature control for environmental chamber
US3914952A (en) Valve control means and refrigeration systems therefor
US4467613A (en) Apparatus for and method of automatically adjusting the superheat setting of a thermostatic expansion valve
US4589060A (en) Microcomputer system for controlling the capacity of a refrigeration system
US4928750A (en) VaV valve with PWM hot water coil
US3577743A (en) Control for refrigeration systems
US4698981A (en) Air conditioner having a temperature dependent control device
US4947655A (en) Refrigeration system
US5447037A (en) Economizer preferred cooling control
US5319943A (en) Frost/defrost control system for heat pump
US5228308A (en) Refrigeration system and refrigerant flow control apparatus therefor
US3977205A (en) Refrigerant mass flow control at low ambient temperatures
US3719321A (en) Air flow control device
US3727423A (en) Temperature responsive capacity control device
US7325411B2 (en) Compressor loading control
US5247989A (en) Modulated temperature control for environmental chamber
KR970047502A (en) Motor cooling of refrigeration system
CA2027057A1 (en) Shockless system and hot gas valve for refrigeration and air conditioning
US4270361A (en) Energy management controller for centrifugal water chiller
EP2132497B1 (en) Suction valve pulse width modulation control based on evaporator or condenser pressure
JP2006512553A (en) Air conditioner for managing refrigerant charge
US3791160A (en) Air conditioning system with temperature responsive controls

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees