USRE28398E - Marshall dann - Google Patents

Marshall dann Download PDF

Info

Publication number
USRE28398E
USRE28398E US46501574A USRE28398E US RE28398 E USRE28398 E US RE28398E US 46501574 A US46501574 A US 46501574A US RE28398 E USRE28398 E US RE28398E
Authority
US
United States
Prior art keywords
aluminosilicate
mixture
hydrocarbons
cation
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to US46501574 priority Critical patent/USRE28398E/en
Application granted granted Critical
Publication of USRE28398E publication Critical patent/USRE28398E/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • C01B33/2876Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures from a reacting mixture containing an amine or an organic cation, e.g. a quaternary onium cation-ammonium, phosphonium, stibonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil

Definitions

  • the catalyst preferably contains acidic cations and can also contain a component having a hydrogenation/dehydrogenation function.
  • the process of this invention is particularly useful for the dewaxing of hydrocarbon oils including removal of high freezing point paraffins from jet fuel to lower freezing point, as well as improving the octane rating of naphtha fractions.
  • This invention relates to novel dewaxing processes carried out in the presence of crystalline zeolitic material and, more particularly, to the removal of straight-chain parafiins and slightly branched-chain paraffins from hydrocarbon feedstocks by selectively converting these materials from a mixture of the same with the other components generally found in hydrocarbon feedstocks.
  • a zeolite molecular sieve is employed having catalytic activity within its internal pore structure and pore openings such that one component of a feed is capable of entering within the internal pore structure thereof and being converted to the substantial exclusion of another component which, because of its size, is incapable of entering within the pores of the zeolitic material.
  • Shape selective catalytic conversion is also known in the art and is disclosed and claimed in US. Pats. 3,140,- 322; 3,379,640 and 3,395,094.
  • zeolitic materials and particularly crystalline alurninosilicates have been successfully employed in various catalytic conversion processes, nevertheless, these prior art processes, in general, fell into one or two main categories.
  • a zeolite was employed which had a pore size sufficiently large to admit the vast majority of components normally found in a charge, i.e., these materials are referred to as large pore size molecular sieves and they are generally stated to have a pore size of from 6 to 13 angstroms and are represented by zeolites X, Y and L.
  • aluminosilicate was one which had a pore size of approximately 5 angstrom units and it was utilized to preferentially act upon normal parafiins to the substantial exclusion of other molecular species.
  • aluminosilicates which were available for hydrocarbon processing those which would admit only normal parafiins and those which would admit all components normally present in a hydrocarbon feed charge.
  • crystalline aluminosilicate materials heretofore employed in prior art processes fell into one of two general types. They either have pore sizes of about 5 angstrom units or have pore sizes from about 6 to about 15 angstrom units.
  • the 5 angstrom unit aluminosilicates were generally stated to be shape selective in that they allowed selective conversion of normal aliphatic compounds from a mixture of the same with isoaliphatic compounds and cyclic compounds.
  • the second type of aluminosilicate i.e., those having a pore size of 6 to 15 angstrom units were generally stated to be nonselective, i.e., substantially all of the molecules normally found in a hydrocarbon feed stream are able to enter within the internal pore structure of the zeolites and be converted.
  • a very convenient method of identifying a good shape selective catalyst was to show that it would selectively crack normal hexane from a mixture of the same with 2-methyl pentane since the former was able to enter its internal pore structure, whereas the latter isocompound was unable to do so.
  • catalysts of this invention will allow the entry into their internal pore structure of normal aliphatic compounds and slightly branched aliphatic compounds, particularly monomethylsubstituted compounds, yet substantially exclude all compounds containing at least a quaternary carbon atom or having a molecular dimension equal to or substantially greater than a quaternary carbon atom.
  • aromatic compounds having side chains similar to the normal aliphatic compounds and slightly branched aliphatic compounds above described could have said side chains enter the internal pore structure of the instant catalysts.
  • novel dewaxing processes of this invention are based upon the fact that, although it is art-recognized that in the vast majority of refinery operations it is desirous to preserve aromatics and to remove normal paraflins, nevertheless, such a generalization is not the final word in obtaining maximum yields of economically enhanced products. It has now been discovered that enhanced benefits can be obtained if a catalyst system could be designed which would not only selectively convert normal paraffins, but certain isoparaffins, and yet not affect desirable components in a given feedstock. This type of molecular processing or sieving was heretofore unknown. As has been stated, all the previous catalytic processing involving the use of zeolitic molecular sieves merely gave the operator two choices.
  • the crystalline zeolitic materials employed in the instant invention cannot simply be characterized by the recitation of a pore size or a range of pore sizes. It would appear that the uniform pore openings of this new type of zeolite are not circular in nature, as is usually the case in the heretofore employed zeolites, but rather, are elliptical in nature. Thus, the pore openings of the instant zeolitic materials have both a major and a minor axes, and it is for this reason that the unusual and novel molecular sieving effects are achieved. This elliptical shape can be referred to as a keyhole.
  • the minor axis of the elliptical pores in the zeolites apparently have an effective size of about 5.5 angstrom units.
  • the major axis appears to lie somewhere between 6 and about 9 angstrom units.
  • the unique keyhole molecular sieving action of these materials is presumably due to the presence of these elliptically shaped windows controlling access to the internal crystalline pore structure.
  • a test method has been devised in order to determine whether or not a zeolite possesses the unique molecular sieving properties necessary to carry out the novel conversion process of this invention.
  • a candidate zeolite free from any matrix or binder is initially converted to the so-called acid or hydrogen form.
  • This procedure involves exhaustive exchange with an ammonium chloride solution in order to replace any metallic cations originally present.
  • the sample is then sized to 20-30 mesh and calcined in air for 16 hours at 550 C.
  • One gram of the so-treated zeolite is then contacted with benzene at a pressure of twelve torr at a temperature of 25 C. for a time period of two hours.
  • Another gram sample is contacted with mesitylene at a pressure of 05 torr at a temperature of 25 C. for a period of six hours.
  • An operable zeolite is one whose acid form will absorb at least 3.0 weight percent benzene and less than 1.5 Weight percent mesitylene at the above recited conditions.
  • ZSM-S type materials are disclosed and claimed in copending application Ser. No. 865,472 filed Oct. 10, 1969 and ZSM-8 is disclosed and claimed in copending application Ser. No. 865,418, filed Oct. 10, 1969.
  • ZSM5 compositions has the characteristic X-ray diffraction pattern set forth in Table 1, hereinbelow.
  • ZSM5 compositions can also be identified in terms of mole ratios of oxides, as follows:
  • the zeolite has a formula, in terms of mole raios of oxides, as follows:
  • M is selected from the group consisting of a mixture of alkali metal cations, especaially sodium, and tetraalkylammonium cations, the alkyl groups of which preferably contain 2-5 carbon atoms.
  • W is aluminum Y is silicon and the silica/alumina mole ratio is at least 10 and ranges up to about 60.
  • Ion exchange of the sodium ion with cations reveals substantially the same pattern with some minor shifts in interplanar spacing and variation in relative intensity. Other minor variations can occur depending on the silicon to aluminum ratio of the particular sample, as well as if it has been subjected to thermal treatment.
  • Various cation exchanged forms of ZSM 5 have been prepared. X-ray powder diffraction patterns of several of these forms are set forth below. The ZSM-5 forms set forth below are all alunlinosilicates.
  • Zeolite ZSM5 can be suitably prepared by preparing a solution containing tetrapropyl ammonium hydroxide, sodium oxide, an oxide of aluminum or gallium, an oxide of silica or germanium, and water and having a composition, in terms of mole ratios of oxides, falling within the following ranges:
  • R is propyl
  • W is aluminum or gallium
  • Y is silicon or germanium maintaining the mixture until crystals of the zeolite are formed. Thereafter, the crystals are separated from the liquid and recovered.
  • Typical reaction conditions consist of heating the foregoing reaction mixture to a temperature of from about C. to 175 C. for a period of time of from about six hours to 60 days. A more preferred temperature range is from about to C. with the amount of time at a temperature in such range being from about 12 hours to 8 days.
  • the digestion of the gel particles is carried out until crystals form.
  • the solid product is separated from the reaction medium, as by cooling the whole to room temperature, filtering, and water washing.
  • the foregoing product is dried, e.g., at 230 F., for from about 8 to 24 hours.
  • milder conditions may be employed if desired, e.g., room temperature under vacuum.
  • ZSM-S is preferably formed as an aluminosilicate.
  • the composition can be prepared utilizing materials which supply the appropriate oxide. Such compositions include for an aluminosilicate, sodium aluminate, alumi na, sodium silicate, silica hydrosol, silica gel, silicic acid, sodium hydroxide and tetrapropylammonium hydroxide. It will be understood that each oxide component utilized in the reaction mixture for preparing a member of the ZSM5 family can be supplied by one or more initial reactants and they can be mixed together in any order.
  • sodium oxide can be supplied by an aqueous solution of sodium hydroxide, or by an aqueous solution of sodium silicate; tetrapropylammonium cation can be supplied by the bromide salt.
  • the reaction mixture can be prepared either batchwise or continuously. Crystal size and crystallization time of the ZSM-5 composition will vary with the nature of the reaction mixture employed. ZSM8 can also be identified, in terms of mole ratios of oxides, as follows:
  • the zeolite has a formula, in terms of mole ratios of oxides, as follows:
  • M2 0IAl203 SlOgiZHgO and M is selected from the group consisting of a mixture of alkali metal cations, especially sodium, and tetraethylammonium cations.
  • [ZSM-8 ] possesses a definite distinguishing crystalline structure having the following X-ray diffraction pattern:
  • Zeolite ZSM-8 can be suitably prepared by reacting a solution containing either tetraethylamrnonium hydrazide or tetraethylammonium bromide together with sodium oxide, aluminum oxide, and an oxide of silica and water.
  • SiO /Al O from about 10 to about 200 Na O/tetraethylammonium hydroxide-from about 0.05
  • Tetraethylammonium hydroxide/SiO from about 0.08
  • Typical reaction conditions consist of heating the foregoing reaction mixture to a temperature of from about 100 C. to 175 C. for a period of time of from about six hours to 60 days.
  • a more preferred temperature range is from about 150 to 175 C. with the amount of time at a temperature in such range being from about 12 hours to 8 days.
  • the digestion of the gel particles is carried out until crystals form.
  • the solid product is separated from the reaction medium, as by cooling the whole to room temperature, filtering, and water washing.
  • the foregoing product is dried, e.g., at 230 F., for from about 8 to 24 hours.
  • milder conditions may be employed if desired, e.g., room temperature under vacuum.
  • ZSM-S is prepared utilizing materials which supply the appropriate oxide.
  • Such compositions include sodium aiuminate, alumina, sodium silicate, silica hydrosol, silica gel, silicic acid, sodium hydroxide and tetraethylammonium hydroxide.
  • each oxide component utilized in the reaction mixture can be supplied by one or more initial reactants and they can be mixed together in any order.
  • sodium oxide can be supplied by an aqueous solution of sodium hydroxide, or by an aqueous solution of sodium silicate, tetraethylammonium cation can be supplied by the bromide salt.
  • the reaction mixture can be prepared either batchwise or continuously]
  • the zeolites used in the instant invention can have the original cations associated therewith replaced by a wide variety of other cations according to techniques well known in the art. Typical replacing cations would include hydrogen, ammonium and metal cations including mixtures of the same. Of the replacing metallic cations, particular preference is given to cations of metals such as rare earth metals, manganese, calcium, as well as metals of Group II of the Periodic Table, e.g., zinc, and Group VIII of the Periodic Table, e.g., nickel.
  • Typical ion exchange techniques would be to contact the particular zeolite with a salt of the desired replacing cation or cations.
  • a salt of the desired replacing cation or cations can be employed, particular preference is given to chlorides, nitrates and sulfates.
  • the zeolites are then preferably washed with water and dried at a temperature ranging from 150 F. to about 600 F. and thereafter calcined in air or other inert gas at temperatures ranging from about 500 F. to 1500 F. for periods of time ranging from 1 to 48 hours or more. It has been further found in accordance with the invention that catalysts of improved selectivity and having other beneficial properties in some hydrocarbon conversion processes such as catalytic cracking are obtained by subjecting the zeolite to treatment with steam at ele vated temperatures ranging from 800 F. to 1500 F. and preferably 1000 F. and 1400 F. The treatment may be accomplished in atmospheres of steam of an atmosphere consisting of steam and a gas which is substantially inert to the zeolites.
  • a similar treatment can be accomplished at lower temperatures and elevated pressures, e.g., 350-700 F. at 10 to about 200 atmospheres.
  • the zeolites can also be used in intimate combination with a hydrogenating component such as tungsten, vanadium, molybdenum, rhenium, nickel, cobalt, chromium, manganese, or a noble metal such as platinum or palladium where a hydrogenation/ dehydrogenation function is to be performed, i.e., shape selective hydrocracking.
  • a hydrogenating component such as tungsten, vanadium, molybdenum, rhenium, nickel, cobalt, chromium, manganese, or a noble metal such as platinum or palladium where a hydrogenation/ dehydrogenation function is to be performed, i.e., shape selective hydrocracking.
  • Such component can be exchanged into the composition, impregnated therein or physically intimately admixed therewith.
  • Such component can be impregnated in or onto zeolite such as, for example, by, in the case of platinum, treating the zeolite with a platinum metal-containing ion.
  • suitable platinum compounds include chloroplatinic acid, platinous chloride and various compounds containing the platinum ammine complex.
  • the compounds of the useful platinum or other metals can be divided into compounds in which the metal is present in the cation of the compound and compounds in which it is present in the anion of the compound. Both types of compounds which contain the metal in the ionic state can be used.
  • a solution in which platinum metals are in the form of a cation or cationic complex, e.g., Pt(NH ).;Cl is particularly useful.
  • the zeolites Prior to use, the zeolites should be dehydrated at least partially. This can be done by heating to a temperature in the range of 200 to 600 C. in an inert atmosphere, such as air, nitrogen, etc. and at atmospheric or subatmospheric pressures for between 1 and 48 hours. Dehydration can also be performed at lower temperatures merely by using a vacuum, but a longer time is required to obtain a sufficient amount of dehydration.
  • an inert atmosphere such as air, nitrogen, etc.
  • the novel process of this invention is concerned with dewaxing of hydrocarbon feedstocks.
  • dewaxing as used in the specification and claims is used in its broadest sense and is intended to mean the removal of those hydrocarbons which readily solidify (waxes) from petroleum stocks.
  • hydrocarbon feeds which can be treated include lubricating oil stocks as well as those which have a freeze point or pour point problem, i.e., petroleum stocks boiling above about 350 F.
  • the dewaxing can be carried out at either cracking or hydrocracking conditions.
  • Typical cracking conditions include a liquid hourly space velocity between about 0.5 and 200, a temperature between about 550 F. and 1100 F., a pressure between about subatmosphcric and several hundred atmospheres.
  • operating conditions include temperatures between 650 F. and 1000 F., a pressure between 100 and 3000 p.s.i.g. but preferably between 200 and 700 p.s.i.g.
  • the liquid hourly space velocity is generally between 0.1 and 10, preferably between 0.5 and 4 and the hydrogen to hydrocarbon mole ratio is generally between 1 and 20 preferably between 4 and 12.
  • EXAMPLE 1 This example will illustrate a typical preparation of zeolite ZSM-S. 22.9 grams S103 was partially dissolved in 100 ml. 2.18 N tetrapropylammonium hydroxide by heating to a temperature of about 100 C. There was then added a mixture of 3.19 grams NaAlO (comp: 42.0 wt. percent A1 30.9% Na O, 27.1% H O) dissolved in 53.8 ml. H O. The resultant mixture had the following composition: 0.382 mole SiO 0.0131 mole A1 0 0.0159 mole Na O, 0.118 mole [(CH CH CH N] O, 6.30 moles H O. The mixture was placed in a Pyrex-lined autoclave and heated at 150 C.
  • EXAMPLE 2 A sample of a zeolite identified as ZSM-S prepared in a manner analogous to that set forth in Example 1 was calcined at 1000 F. in air for 16 hours then evaluated for its ability to crack an Amal Gas Oil.
  • the Amal Gas Oil employed was a 650850 F. boiling range waxy Amal Gas Oil containing 25.2 weight percent normal parafiins ranging from C s to C s.
  • the Amal Gas Oil was contacted with the ZSM-S at 107 WHSV, 0.56 Cat/Oil ratio and 900 F. Analysis indicated that the waxy normal paraflin content of the Amal Gas Oil had been reduced from 25.2 weight percent to 4.1 weight percent, i.e. over 90% of the normal paralfins present in the charge were cracked to lower boiling products.
  • Example 3 The procedure of Example 2 was repeated with the exception that a commercially available zeolite, i.e., zeolite A, which had been base exchanged with a lanthanum salt was used in place of the ZSM5. Even when more drastic operating conditions were employed, i.e., the space velocity was reduced to 6 WHSV and the Cat/Oil ratio raised to 1, the normal paratfin content could only be reduced to 16.5 weight percent.
  • zeolite A which had been base exchanged with a lanthanum salt was used in place of the ZSM5.
  • EXAMPLE 4 This example will illustrate the improved results which can be obtained by the hydrocarbon processing of the instant invention due to the fact that the catalyst employed are able to not only convert normal paraflins, but also slightly branched-chain paraflinswhich are also detrimental to product value.
  • Example 2 The same waxy Amal Gas Oil used in Example 2 was subjected to conventional extraction techniques utiliz- 10 ing a 5 A. zeolite. This extraction was continued until substantially all the normal parafiins from the Amal Gas Oil were removed. This is not a catalytic process, but merely a conventional extraction process.
  • the Amal Gas Oil had a pour point of F. and after removal of all the normal parafiins, its pour point was lowered to 40 F.
  • a ZSM-5 zeolite was prepared in accordance to the general technique set forth in Example 1; it was then contacted with a saturated solution of ammonium chloride in order to replace the original cations associated therewith and thereafter washed with water, dried and calcined in air at about 1000 F. in order to convert it to the hydrogen form, i.e. HZSM5.
  • EXAMPLE 6 In order to demonstrate the difference in the type of shape selectivity obtained utilizing the catalyst of this invention as opposed to the shape selective materials of the prior art, the same waxy Amal Gas Oil employed in Example 2 was subjected to shape selective cracking with a calcined sample of ZSM-5 prepared with a crystalline aluminosilicate identified as calcium A, i.e., Linde 5A. A comparison of the products obtained from cracking the same material are shown in Table 6.
  • This catalyst was labeled A2.
  • Portion B was treated with anhydrous ammonia (100 cc. It is immediately obvious that the coke yield obtained per minute) at room temperature to reconstitute the NH; by the novel process of this invention is dramatically sites.
  • This catalyst was labeled B1. Three grams of Catalower than that obtained with a classic shape selective lyst Bl was exchanged with a 0.5 N solution of zinc and materials of the prior art. In addition the gasoline make, ammonium chloride as above. The finished catalyst coni.e., the C C is considerably higher than that with the taincd 1.2 weight percent zinc and 0.3 weight percent Calcium A-type materials. Additionally, the classic shape sodium and was labeled B2.
  • n-Parallins 8 8 8 8 10 8 3 6 Isoparaflins plus naphthenes 7 6 4 3 3 5 5 n-Olefins 10 0 11 11 0 10 a a lso-oloiins plus cyclo-olclins. 31 25 19 14 12 20 5 l2 Monocycllo aromatics 0 8 6 0 5 6 2 4 Polycyclic aromatics t! 0 9 l0 7 9 2 6 Total 71 05 57 52 16 5s 20 30 The following examples will indicate that it is also 45 possible to obtain improved results utilizing hydrogenation/dehydrogenation components in association with the ZSM5 type catalyst.
  • EXAMPLE 7 A ISM-5 type catalyst was prepared following the general procedure of Example 1. The reaction composition and characteristics of the finished product are shown in Table 7.
  • EXAMPLE 9 This example will illustrate the manufacture of lube oil by shape selective hydrodewaxing.
  • the lube oil charge stock employed had the following properties:
  • novel catalytic processing of this invention can be employed in those areas where it is desirable to hydrodewax charge stocks in order to obtain products of enhanced value.
  • One such area would be in the preparation of automatic transmission fluids.
  • the above process can replace the conventional solvent dewaxing presently employed.
  • a particular charge stock can be subjected to conventional solvent dewaxing in order to reduce the pour point to some intermediate level and then this product subjected to shape selective hydrodewaxing in order to further lower the pour point.
  • the novel processing techniques of this invention give greater flexibility to the refiner in the manufacture of commercially significant products.
  • EXAMPLE 10 This example will illustrate the shape selective hydrodewaxing of lube oil stocks and will again illustrate that hydrocracking of long chain molecules can be achieved.
  • the charge stock employed was a mid-continent vacuum tower overhead fraction having the specifications shown in Table 10.
  • This charge stock was contacted with a Zn/H-ZSM-S catalyst prepared in accordance with the techniques set forth in Example 7 (B2).
  • the operating conditions were generally mild hydrocracking conditions, i.e., 500 p.s.i., 700 F., 4 LHSV and a hydrogen to hydrocarbon moi ratio of 30. The results obtained are shown in the following table.
  • EXAMPLE 1 1 This example will illustrate the preparation of a low freezing point high B.t.u. jet fuel prepared by the novel process of this invention.
  • Arnal-Nafoora kerosene had the following properties:
  • Heating value B.t.u./lb. 18,710
  • the hydrodewaxed product can be subjected to a mild hydrogenation treatment.
  • 20 grams of the hydrodewaxed product, ml. of cyclohexane, 11 grams of a commercial catalyst comprising reduced nickel or Kieselguhr (Harshaw Ni 0107) were charged to a 300 ml. stirring autoclave and 500 p.s.i.g. hydrogen was added.
  • the above mixture was heated at 587-600 F. about 2 hours at which time the final pressure was about 1200-1300 p.s.i.g.
  • the above procedure resulted in a 93 wt. percent recovery of a hydrogenated product which had the properties shown in Table 12.
  • the novel process of this invention provides a method of producing jet fuels having a low freeze point and a high B.t.u. content.
  • a dewaxing process for the selective cracking of straight-chain hydrocarbons and slightly branched-chain hydrocarbons from a mixture of the same with com pounds of dilferent molecular shapes which comprises contacting said mixture with a crystalline aluminosilicate having an X-ray diffraction pattern as set forth in Table 1 and having pore openings which are of a generally elliptical shape wherein the major axis of said ellipse has an effective size under conversion conditions of between about 6 and 9A. units and the minor axis about 5 A. so that said straight-chain and slightly branchedchain hydrocarbons are capable of entering into the internal pore structure of the aluminosilicate and being converted, said aluminosilicate having a composition, in terms of oxide mole ratios, as follows:
  • M is a cation
  • 11 is the valence of said cation
  • z is from 0 to 40.
  • a process for dewaxing petroleum charge stocks having a boiling point above 350 F. which comprises contacting said charge under cracking conditions with a crystalline aluminosilicate having an X-ray diffraction pattern set forth in Table 1 so as to selectively crack straight-chain hydrocarbons and branched-chain hydrocarbons free from quaternary carbon atoms in their structure, said aluminosilicate having a composition, in terms of oxide mole ratios, as follows:
  • a dewaxing process for the selective cracking of straight-chain hydrocarbons and branched-chain hydrocarbons which are free from quaternary carbon atoms in their structure from a mixture of the same with cyclic compounds, and branched-chain hydrocarbons containing quaternary carbon atoms which comprises contacting said mixture with a crystalline aluminosilicate having an X-ray diffraction pattern set forth in Table 1, and a composition, in terms of oxide mole ratios, as follows:
  • M2/ OIAI203IS-IOO SiOzIZHgO wherein M is a cation, 11 is the valence of said cation and z is from 0 to 40.
  • a dewaxing process for the selective conversion of straight-chain hydrocarbons and branched-chain hydrocarbons free from quaternary carbon atoms from a mixture of the same with compounds of differing molecular shape which comprises contacting the same with zeolite ZSM-S under cracking conditions such that the straightchain hydrocarbons and slightly branched hydrocarbons are able to enter into the pores of the ZSM-S and be cracked, said zeolite having an X-ray dillraction pattern as set forth in Table 1 and a composition, in terms of oxide mole ratios, as follows:
  • a dewaxing process for the selective conversion of straight-chain hydrocarbons and branched-chain hydrocarbon free from quaternary carbon atoms from a mixture of the same with compounds of differing molecular shape which comprises contacting the same with zeolite ZSM-8 under conversion conditions such that the straightchain hydrocarbons and slightly branched hydrocarbons are able to enter into the pores of the ZSM-8 and be cracked, said zeolite having an X-ray difiraction pattern as set forth in Table 4 and a composition, in terms of oxide mole ratios, as follows:

Abstract

1. A DEWAXING PROCESS FOR THE SELECTIVE CRACKING OF STRAIGHT-CHAIN HYDROCARBONS AND SLIGHTLY BRANCHED-CHAIN HYDROCARBONS FROM A MIXTURE OF THE SAME WITH COMPOUNDS OF DIFFERENT MOLECULAR SHAPES WHICH COMPRISES CONTACTING SAID MIXTURE WITH A CRYSTALLINE ALUMINOSILICATE HAVING AN X-RAY DIFFRACTION PATTERN AS SET FORTH IN TABLE 1 AND HAVING PORE OPENINGS WHICH ARE OF A GENERALLY ELLIPTICAL SHAPE WHEREIN THE MAJOR AXIS OF SAID ELLIPSE HAS AN EFFECTIVE SIZE UNDER CONVERSION CONDITIONS OF BETWEEN ABOUT 6 AND 9A. UNITS AND THE MINOR AXIS ABOUT 5 A. SO THAT SAID STRAIGHT-CHAIN AND SLIGHTLY BRANCHEDCHAIN HYDROCARBONS ARE CAPABLE OF ENTERING INTO THE INTERNAL PORE STRUCTURE OF THE ALUMINOSILICATE AND BEING CONVERTED, SAID ALUMINOSILICATE HAVING A COMPOSITION, IN TERMS OF OXIDE MOLE RATIOS, AS FOLLOWS:

0.9$0.2 M2/NO:AL2O3:5-100 SIO2:ZH2O

WHEREIN M IS A CATION, N IS THE VALENCE OF SAID CATION AND Z IS FROM 0 TO 40.

Description

United States Patent Re. 28,398 Reissued Apr. 22, 1975 Matter enclosed in heavy brackets If] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE Straight-chain hydrocarbons and slightly branchedchain hydrocarbons are selectively converted utilizing novel crystalline zeolites having unique molecular sieving properties. The catalyst preferably contains acidic cations and can also contain a component having a hydrogenation/dehydrogenation function. The process of this invention is particularly useful for the dewaxing of hydrocarbon oils including removal of high freezing point paraffins from jet fuel to lower freezing point, as well as improving the octane rating of naphtha fractions.
RELATED APPLICATIONS This application is related to application Ser. No. 865,- 472, filed Oct. 10, 1969, and application Ser. No. 865,- 418, filed Oct. 10, 1969, which are directed to ZSM-S and ZSM8 type aluminosilicates respectively.
BACKGROUND OF THE INVENTION (1) Field of the invention This invention relates to novel dewaxing processes carried out in the presence of crystalline zeolitic material and, more particularly, to the removal of straight-chain parafiins and slightly branched-chain paraffins from hydrocarbon feedstocks by selectively converting these materials from a mixture of the same with the other components generally found in hydrocarbon feedstocks.
(2) Description of the prior art Hydrocarbon conversion processes utilizing crystalline zeolites and, in particular, aluminosilicate catalysts have been the subject of extensive investigation during recent years as is obvious from both the patent and scientific literature. Crystalline aluminosilicates have been found to be particularly effective for a wide variety of hydrocarbon conversion processes and have been described and claimed in many patents including US. Pats. 3,140,249; 3,140,252; 3,140,251; 3,140,253; and 3,271,418. Aside from serving as general catalysts in hydrocarbon conversion processes, it is also known that the molecular sieve properties of zeolites can be utilized to preferentially convert one molecular species from a mixture of the same with other species.
In a process of this type a zeolite molecular sieve is employed having catalytic activity within its internal pore structure and pore openings such that one component of a feed is capable of entering within the internal pore structure thereof and being converted to the substantial exclusion of another component which, because of its size, is incapable of entering within the pores of the zeolitic material. Shape selective catalytic conversion is also known in the art and is disclosed and claimed in US. Pats. 3,140,- 322; 3,379,640 and 3,395,094.
Although a wide variety of zeolitic materials and particularly crystalline alurninosilicates have been successfully employed in various catalytic conversion processes, nevertheless, these prior art processes, in general, fell into one or two main categories. In one type of conversion process a zeolite was employed which had a pore size sufficiently large to admit the vast majority of components normally found in a charge, i.e., these materials are referred to as large pore size molecular sieves and they are generally stated to have a pore size of from 6 to 13 angstroms and are represented by zeolites X, Y and L. The other type of aluminosilicate was one which had a pore size of approximately 5 angstrom units and it was utilized to preferentially act upon normal parafiins to the substantial exclusion of other molecular species. Thus, by way of considerable over-simplification up until the present invention, there were only two types of aluminosilicates which were available for hydrocarbon processing those which would admit only normal parafiins and those which would admit all components normally present in a hydrocarbon feed charge.
DESCRIPTION OF THE INVENTION It has now been discovered that very eifective catalytic operations can be carried out by utilizing a class of zeolitic molecular sieves which possess unique sieving properties in that they allow entry and egress to their internal pore structure of not only normal paraflins but also of slightly branched parafiins, and yet have the ability to exclude heavily branched isoparaflins. Thus, it is now possible to carry out hydrocarbon conversion processes which are not only selective towards normal parafiins, but also are selective towards slightly branched paraflins and, in particular, monomethyl-substituted par-afiins. It has now been discovered that when zeolitic materials exhibiting these properties are employed in those dewaxing operations where it has been heretofore desirous only to selectively remove normal parafiins that many increased and unexpected benefits will occur in that the resulting products have enhanced economic value.
As has heretofore been stated, all the crystalline aluminosilicate materials heretofore employed in prior art processes fell into one of two general types. They either have pore sizes of about 5 angstrom units or have pore sizes from about 6 to about 15 angstrom units. The 5 angstrom unit aluminosilicates were generally stated to be shape selective in that they allowed selective conversion of normal aliphatic compounds from a mixture of the same with isoaliphatic compounds and cyclic compounds. The second type of aluminosilicate, i.e., those having a pore size of 6 to 15 angstrom units were generally stated to be nonselective, i.e., substantially all of the molecules normally found in a hydrocarbon feed stream are able to enter within the internal pore structure of the zeolites and be converted. Thus, heretofore a very convenient method of identifying a good shape selective catalyst was to show that it would selectively crack normal hexane from a mixture of the same with 2-methyl pentane since the former was able to enter its internal pore structure, whereas the latter isocompound was unable to do so.
The novel dewaxing process of this invention is predicated upon using zeolitic materials which can generally be stated to be intermediate between the two types of aluminosilicates heretofore employed. Thus, catalysts of this invention will allow the entry into their internal pore structure of normal aliphatic compounds and slightly branched aliphatic compounds, particularly monomethylsubstituted compounds, yet substantially exclude all compounds containing at least a quaternary carbon atom or having a molecular dimension equal to or substantially greater than a quaternary carbon atom. Additionally, aromatic compounds having side chains similar to the normal aliphatic compounds and slightly branched aliphatic compounds above described could have said side chains enter the internal pore structure of the instant catalysts. Thus, if one were to measure the selectivity of the zeolitic materials employed in the processes of this invention by the heretofore mentioned prior art tests, i.e., the ability to selectively crack hexane from a mixture of the same with isohexane, these catalysts would have to be stated as being non-shape selective. It should be immediately apparent, however, that the term selectivity has a far greater significance than merely the ability to preferentially distinguish between normal paraflins and isoparafiins. Selectivity on shape is theoretically possible at any shape or size although, quite obviously, such selectivity might not result in an advantageous catalyst for any and all hydrocarbon conversion processes.
The novel dewaxing processes of this invention are based upon the fact that, although it is art-recognized that in the vast majority of refinery operations it is desirous to preserve aromatics and to remove normal paraflins, nevertheless, such a generalization is not the final word in obtaining maximum yields of economically enhanced products. It has now been discovered that enhanced benefits can be obtained if a catalyst system could be designed which would not only selectively convert normal paraffins, but certain isoparaffins, and yet not affect desirable components in a given feedstock. This type of molecular processing or sieving was heretofore unknown. As has been stated, all the previous catalytic processing involving the use of zeolitic molecular sieves merely gave the operator two choices. He could either use a molecular sieve which was a catalyst of generalized competence, i.e., it would act upon substantially all of the molecules normally found in a hydrocarbon feed or he could use a catalyst which had a pore size of about 5 angstrom units thereby allowing selective conversion of normal aliphatic compounds only.
While not wishing to be bound by any theory of operation, nevertheless, it appears that the crystalline zeolitic materials employed in the instant invention cannot simply be characterized by the recitation of a pore size or a range of pore sizes. It would appear that the uniform pore openings of this new type of zeolite are not circular in nature, as is usually the case in the heretofore employed zeolites, but rather, are elliptical in nature. Thus, the pore openings of the instant zeolitic materials have both a major and a minor axes, and it is for this reason that the unusual and novel molecular sieving effects are achieved. This elliptical shape can be referred to as a keyhole. It would appear that the minor axis of the elliptical pores in the zeolites apparently have an effective size of about 5.5 angstrom units. The major axis appears to lie somewhere between 6 and about 9 angstrom units. The unique keyhole molecular sieving action of these materials is presumably due to the presence of these elliptically shaped windows controlling access to the internal crystalline pore structure.
A test method has been devised in order to determine whether or not a zeolite possesses the unique molecular sieving properties necessary to carry out the novel conversion process of this invention. In said test method a candidate zeolite free from any matrix or binder is initially converted to the so-called acid or hydrogen form. This procedure involves exhaustive exchange with an ammonium chloride solution in order to replace any metallic cations originally present. The sample is then sized to 20-30 mesh and calcined in air for 16 hours at 550 C. One gram of the so-treated zeolite is then contacted with benzene at a pressure of twelve torr at a temperature of 25 C. for a time period of two hours. Another gram sample is contacted with mesitylene at a pressure of 05 torr at a temperature of 25 C. for a period of six hours. An operable zeolite is one whose acid form will absorb at least 3.0 weight percent benzene and less than 1.5 Weight percent mesitylene at the above recited conditions.
Examples of zeolitic materials which are operable in the process of this invention are ZSM-S type and ZSM-8 type zeolites. ZSM-S type materials are disclosed and claimed in copending application Ser. No. 865,472 filed Oct. 10, 1969 and ZSM-8 is disclosed and claimed in copending application Ser. No. 865,418, filed Oct. 10, 1969.
The family of ZSM5 compositions has the characteristic X-ray diffraction pattern set forth in Table 1, hereinbelow. ZSM5 compositions can also be identified in terms of mole ratios of oxides, as follows:
wherein M is a cation, n is the valence of said cation, W is selected from the group consisting of aluminum and gallium, Y is selected from the group consisting of silicon and germanium, and z is from 0 to 40. In a preferred synthesized form, the zeolite has a formula, in terms of mole raios of oxides, as follows:
and M is selected from the group consisting of a mixture of alkali metal cations, especaially sodium, and tetraalkylammonium cations, the alkyl groups of which preferably contain 2-5 carbon atoms.
In a preferred embodiment of ZSM-5, W is aluminum Y is silicon and the silica/alumina mole ratio is at least 10 and ranges up to about 60.
Members of the family of ZSM5 zeolites possess a definite distinguishing crystalline structure whose X-ray diffraction pattern shows the following significant lines:
TABLE 1 Interplanar spacing d(A): Relative intensity 11.110.2 S 10.0102 S 7.410.15 W 7.110.15 W 6310.1 W 6.0410 1 W 59710.1 W 5 5610.1 W 5 0110.1 W 4.601008 W 42510.08 W 3.851007 VS 3.711005 S 3.641005 M 3.041003 W These values as well as all other X-ray data were determined by standard techniques. The radiation was the K-alpha doublet of copper, and a scintillation counter spectrometer with a strip chart pen recorder was used. The peak heights, I, and the positions as a function of 2 times theta, where theta is the Bragg angle, were read from the spectrometer chart. From these, the relative intensities, I/I where I is the intensity of positions as a function of 2 times theta, where theta is the Bragg angle, were read from the spectrometer chart. From these, the relative intensities, 100 I/I where I is the intensity of the strongest line or peak, and d (obs), the interplanar spacing in A, corresponding to the recorded lines, were calculated. In Table 1 the relative intensities are given in terms of the symbols S:strong, M=medium, MS=medium strong, MW=medium weak and VS=very strong. It should be understood that this X-ray diffraction pattern is characteristic of all the species of ZSM-5 compositions. Ion exchange of the sodium ion with cations reveals substantially the same pattern with some minor shifts in interplanar spacing and variation in relative intensity. Other minor variations can occur depending on the silicon to aluminum ratio of the particular sample, as well as if it has been subjected to thermal treatment. Various cation exchanged forms of ZSM 5 have been prepared. X-ray powder diffraction patterns of several of these forms are set forth below. The ZSM-5 forms set forth below are all alunlinosilicates.
TABLE 2.X-RAY DIFFRACTION ZSM-5 Powder in Cation Exchanged Forms (1 Spacings Deserved As made H01 NaCl CaCh ReCla AgNO 7. 46 7. 11 6. 6.37 5. 99 5.70 5. 57 5. 37 5. 14 5. 12 5. 01 5.01 4. 74 4. 62 4. til 4. 4. 46 4. 46 4. 4. 37 4. 36 4. 4. 27 4. 26 4. 4.09 4. 09 4. 4.01 4. 00 4. 3. 3. 3. 85 3. 3 3. 82 3. 82 3. 82 3. 3. 3. 75 3. 75 3. 76 3. 3.7 3.72 3.72 3.72 3. 3.6 3. 65 3. 65 3. 65 3. 65 3. 65 3. 60 3. 60 3. 6|) 3. 61 3. [10 3.48 3. 49 3. 49 3. 48 3. 49 3. 49 3.44 3. 45 3. 45 3. 44 3. 45 3. 45 3.34 3. 35 3. 36 3. 35 3. 35 3. 35 3.31 3. 31 3. 32 3. 31 3. 32 3. 32 3.25 3. 25 3. 26 3. 25 3.25 3 26 3.17 3.17 3.18 3.13 3. 14 3.14 3.14 3. 15 3.14 3.05 3.05 3.05 3. 04 3. O6 3. 05 2.98 2. 98 2. 99 2. 98 99 2 99 .97 2. 2. 95 2 E15 2.87 2. 87 2 S7 WWW woman-2 Zeolite ZSM5 can be suitably prepared by preparing a solution containing tetrapropyl ammonium hydroxide, sodium oxide, an oxide of aluminum or gallium, an oxide of silica or germanium, and water and having a composition, in terms of mole ratios of oxides, falling within the following ranges:
wherein R is propyl, W is aluminum or gallium and Y is silicon or germanium maintaining the mixture until crystals of the zeolite are formed. Thereafter, the crystals are separated from the liquid and recovered. Typical reaction conditions consist of heating the foregoing reaction mixture to a temperature of from about C. to 175 C. for a period of time of from about six hours to 60 days. A more preferred temperature range is from about to C. with the amount of time at a temperature in such range being from about 12 hours to 8 days.
The digestion of the gel particles is carried out until crystals form. The solid product is separated from the reaction medium, as by cooling the whole to room temperature, filtering, and water washing.
The foregoing product is dried, e.g., at 230 F., for from about 8 to 24 hours. Of course, milder conditions may be employed if desired, e.g., room temperature under vacuum.
ZSM-S is preferably formed as an aluminosilicate. The composition can be prepared utilizing materials which supply the appropriate oxide. Such compositions include for an aluminosilicate, sodium aluminate, alumi na, sodium silicate, silica hydrosol, silica gel, silicic acid, sodium hydroxide and tetrapropylammonium hydroxide. It will be understood that each oxide component utilized in the reaction mixture for preparing a member of the ZSM5 family can be supplied by one or more initial reactants and they can be mixed together in any order. For example, sodium oxide can be supplied by an aqueous solution of sodium hydroxide, or by an aqueous solution of sodium silicate; tetrapropylammonium cation can be supplied by the bromide salt. The reaction mixture can be prepared either batchwise or continuously. Crystal size and crystallization time of the ZSM-5 composition will vary with the nature of the reaction mixture employed. ZSM8 can also be identified, in terms of mole ratios of oxides, as follows:
0.9i0.2 M OzAl o 5-100 SiO :zH O
wherein M is at least one cation, n is the valence thereof and z is from 0 to 40. In a preferred synthesized form, the zeolite has a formula, in terms of mole ratios of oxides, as follows:
M2 0IAl203: SlOgiZHgO and M is selected from the group consisting of a mixture of alkali metal cations, especially sodium, and tetraethylammonium cations.
[ZSM-8 possesses a definite distinguishing crystalline structure having the following X-ray diffraction pattern:
TABLE 4 I/In 1111. 1/19 rlA. I/In (IA. I/I
4.35 7 3.04 10 2.32 l 4.25...." 18 2.119. 0 2.28 1 4.07 20 2.07- 4 2.23 1 4.00 10 2.04. 3 2.20 1 3.85 100 2.80- 2 2.17 1 3.82 57 2.78. 1 2.1 1 3.75 2.5 2.73. 4 2.11.. 1 3.71 30 2.08. 1 2.08- 1 3.04 26 2.61. 3 2.06.. 1 3.50. 2 2.57 1 2.01- B 3.47 0 2.55- 1 1.00. 6 3.43 0 2.51. 1 1.05 2 3.3L] 5 2.49. 0 1.91. 2 3.3 1 18 2.45. 1 1.87- 3 3.31 8 2.47- 2 1.84. 1 324...-.- 4 2.39- 3 1.82 2 3.13 3 2.35 1
Zeolite ZSM-8 can be suitably prepared by reacting a solution containing either tetraethylamrnonium hydrazide or tetraethylammonium bromide together with sodium oxide, aluminum oxide, and an oxide of silica and water.
The relative operable proportions of the various ingredients have not been fully determined and it is to be immediately understood that not any and all proportions of reactants will operate to produce the desired zeolite. In fact, completely different zeolites can be prepared utilizing the same starting materials depending upon their relative concentration and reaction conditions as is set forth in United States 3,308,069. In general, however, it has been found that when tetraethylammoniurn hydroxide is employed, ZSM-S can be prepared from said hydroxide, sodium oxide, aluminum oxide. silica and water by reacting said materials in such proportions that the forming solution has a composition in terms of mole ratios of oxides falling within the following range.
SiO /Al O from about 10 to about 200 Na O/tetraethylammonium hydroxide-from about 0.05
Tetraethylammonium hydroxide/SiO from about 0.08
H O/tetraethylammonium hydroxidefrom about 80 to about 200 Thereafter, the crystals are separated from the liquid and recovered. Typical reaction conditions consist of heating the foregoing reaction mixture to a temperature of from about 100 C. to 175 C. for a period of time of from about six hours to 60 days. A more preferred temperature range is from about 150 to 175 C. with the amount of time at a temperature in such range being from about 12 hours to 8 days.
The digestion of the gel particles is carried out until crystals form. The solid product is separated from the reaction medium, as by cooling the whole to room temperature, filtering, and water washing.
The foregoing product is dried, e.g., at 230 F., for from about 8 to 24 hours. Of course, milder conditions may be employed if desired, e.g., room temperature under vacuum.
ZSM-S is prepared utilizing materials which supply the appropriate oxide. Such compositions include sodium aiuminate, alumina, sodium silicate, silica hydrosol, silica gel, silicic acid, sodium hydroxide and tetraethylammonium hydroxide. It will be understood that each oxide component utilized in the reaction mixture can be supplied by one or more initial reactants and they can be mixed together in any order. For example, sodium oxide can be supplied by an aqueous solution of sodium hydroxide, or by an aqueous solution of sodium silicate, tetraethylammonium cation can be supplied by the bromide salt. The reaction mixture can be prepared either batchwise or continuously] The zeolites used in the instant invention can have the original cations associated therewith replaced by a wide variety of other cations according to techniques well known in the art. Typical replacing cations would include hydrogen, ammonium and metal cations including mixtures of the same. Of the replacing metallic cations, particular preference is given to cations of metals such as rare earth metals, manganese, calcium, as well as metals of Group II of the Periodic Table, e.g., zinc, and Group VIII of the Periodic Table, e.g., nickel.
Typical ion exchange techniques would be to contact the particular zeolite with a salt of the desired replacing cation or cations. Although a wide variety of salts can be employed, particular preference is given to chlorides, nitrates and sulfates.
Representative ion exchange techniques are disclosed in a wide variety of patents including United States 3,140,249; United States 3,140,251; and United States 3,140,253.
Following contact with the salt solution of the desired replacing cation, the zeolites are then preferably washed with water and dried at a temperature ranging from 150 F. to about 600 F. and thereafter calcined in air or other inert gas at temperatures ranging from about 500 F. to 1500 F. for periods of time ranging from 1 to 48 hours or more. It has been further found in accordance with the invention that catalysts of improved selectivity and having other beneficial properties in some hydrocarbon conversion processes such as catalytic cracking are obtained by subjecting the zeolite to treatment with steam at ele vated temperatures ranging from 800 F. to 1500 F. and preferably 1000 F. and 1400 F. The treatment may be accomplished in atmospheres of steam of an atmosphere consisting of steam and a gas which is substantially inert to the zeolites.
A similar treatment can be accomplished at lower temperatures and elevated pressures, e.g., 350-700 F. at 10 to about 200 atmospheres. The zeolites can also be used in intimate combination with a hydrogenating component such as tungsten, vanadium, molybdenum, rhenium, nickel, cobalt, chromium, manganese, or a noble metal such as platinum or palladium where a hydrogenation/ dehydrogenation function is to be performed, i.e., shape selective hydrocracking. Such component can be exchanged into the composition, impregnated therein or physically intimately admixed therewith. Such component can be impregnated in or onto zeolite such as, for example, by, in the case of platinum, treating the zeolite with a platinum metal-containing ion. Thus, suitable platinum compounds include chloroplatinic acid, platinous chloride and various compounds containing the platinum ammine complex.
The compounds of the useful platinum or other metals can be divided into compounds in which the metal is present in the cation of the compound and compounds in which it is present in the anion of the compound. Both types of compounds which contain the metal in the ionic state can be used. A solution in which platinum metals are in the form of a cation or cationic complex, e.g., Pt(NH ).;Cl is particularly useful.
Prior to use, the zeolites should be dehydrated at least partially. This can be done by heating to a temperature in the range of 200 to 600 C. in an inert atmosphere, such as air, nitrogen, etc. and at atmospheric or subatmospheric pressures for between 1 and 48 hours. Dehydration can also be performed at lower temperatures merely by using a vacuum, but a longer time is required to obtain a sufficient amount of dehydration.
As has heretofore been pointed out, the novel process of this invention is concerned with dewaxing of hydrocarbon feedstocks. The term dewaxing as used in the specification and claims is used in its broadest sense and is intended to mean the removal of those hydrocarbons which readily solidify (waxes) from petroleum stocks. As will be further illustrated in the specific examples, hydrocarbon feeds which can be treated include lubricating oil stocks as well as those which have a freeze point or pour point problem, i.e., petroleum stocks boiling above about 350 F. The dewaxing can be carried out at either cracking or hydrocracking conditions.
Typical cracking conditions include a liquid hourly space velocity between about 0.5 and 200, a temperature between about 550 F. and 1100 F., a pressure between about subatmosphcric and several hundred atmospheres.
When hydrocracking operations are carried out, operating conditions include temperatures between 650 F. and 1000 F., a pressure between 100 and 3000 p.s.i.g. but preferably between 200 and 700 p.s.i.g. The liquid hourly space velocity is generally between 0.1 and 10, preferably between 0.5 and 4 and the hydrogen to hydrocarbon mole ratio is generally between 1 and 20 preferably between 4 and 12.
The following examples will illustrate the best mode now contemplated for carrying out this invention.
EXAMPLE 1 This example will illustrate a typical preparation of zeolite ZSM-S. 22.9 grams S103 was partially dissolved in 100 ml. 2.18 N tetrapropylammonium hydroxide by heating to a temperature of about 100 C. There was then added a mixture of 3.19 grams NaAlO (comp: 42.0 wt. percent A1 30.9% Na O, 27.1% H O) dissolved in 53.8 ml. H O. The resultant mixture had the following composition: 0.382 mole SiO 0.0131 mole A1 0 0.0159 mole Na O, 0.118 mole [(CH CH CH N] O, 6.30 moles H O. The mixture was placed in a Pyrex-lined autoclave and heated at 150 C. for six days. The resultant solid product was cooled to room temperature, removed, filtered, washed with 1 liter H 0 and dried at 230 F. A portion of this product was subjected to X-ray analysis and identified as ZSM-S. A portion of the product was calcined at 1000 F. in air for 16 hours and the following analyses were obtained:
EXAMPLE 2 A sample of a zeolite identified as ZSM-S prepared in a manner analogous to that set forth in Example 1 was calcined at 1000 F. in air for 16 hours then evaluated for its ability to crack an Amal Gas Oil. The Amal Gas Oil employed was a 650850 F. boiling range waxy Amal Gas Oil containing 25.2 weight percent normal parafiins ranging from C s to C s.
The Amal Gas Oil was contacted with the ZSM-S at 107 WHSV, 0.56 Cat/Oil ratio and 900 F. Analysis indicated that the waxy normal paraflin content of the Amal Gas Oil had been reduced from 25.2 weight percent to 4.1 weight percent, i.e. over 90% of the normal paralfins present in the charge were cracked to lower boiling products.
EXAMPLE 3 The procedure of Example 2 was repeated with the exception that a commercially available zeolite, i.e., zeolite A, which had been base exchanged with a lanthanum salt was used in place of the ZSM5. Even When more drastic operating conditions were employed, i.e., the space velocity was reduced to 6 WHSV and the Cat/Oil ratio raised to 1, the normal paratfin content could only be reduced to 16.5 weight percent.
Thus, a comparison of the results of Examples 2 and 3 shows that the novel process of this invention permits a greater reduction in high molecular weight waxy normal paraflins to a degree which had previously not been possible due to the fact that these long-chained molecules have a tendency to clog the pores of the heretofore available shape selective molecular sieves, thereby presenting problems in dilfusivity which leads to less than favorable results.
EXAMPLE 4 This example will illustrate the improved results which can be obtained by the hydrocarbon processing of the instant invention due to the fact that the catalyst employed are able to not only convert normal paraflins, but also slightly branched-chain paraflinswhich are also detrimental to product value.
The same waxy Amal Gas Oil used in Example 2 was subjected to conventional extraction techniques utiliz- 10 ing a 5 A. zeolite. This extraction was continued until substantially all the normal parafiins from the Amal Gas Oil were removed. This is not a catalytic process, but merely a conventional extraction process. The Amal Gas Oil had a pour point of F. and after removal of all the normal parafiins, its pour point was lowered to 40 F.
Another portion of the same waxy Amal Gas Oil was subjected to shape selective cracking with a ISM-5 catalyst prepared in the manner analogous to that set forth in Example 1. The process was carried out at a temperature of 900 F. for 10 minutes at a space velocity of 107 WHSV and a Cat/Oil ratio of 0.56. This resulted in recovery of a 650+ fraction having a pour point of 5 F. with 3.6 weight percent of the normal paratfins still remaining.
Thus, it can be seen that although the lowering of pour point is dependent on the removal of normal paratfins, such is not the complete answer in pour point lowering. The novel process of this invention permits the drastic lowering of pour point even though all the normal paraflins have not been removed. While not wishing to be bound by any theory of operation, nevertheless, it appears that the novel catalyst of this invention also converts slightly branched paraffins which also have a detrimental etfect on pour point.
EXAMPLE 5 A ZSM-5 zeolite was prepared in accordance to the general technique set forth in Example 1; it was then contacted with a saturated solution of ammonium chloride in order to replace the original cations associated therewith and thereafter washed with water, dried and calcined in air at about 1000 F. in order to convert it to the hydrogen form, i.e. HZSM5.
A similar treatment With an ammonium salt was carried out on a natural crystalline aluminosilicate identified as erionite and then these two materials were evaluated for their ability to selectively crack normal hexane from a mixture of normal hexane, 2,3-dimethylbutane, and benzene at a 15:1 Hg/HC ratio, a pressure of 200 p.s.i. and a temperature of 700 F. These materials were evaluated for an onstream time of 15 minutes and three hours. The
results were as follows:
Conversion, wt. percent;
Catalysts 15 minutes 3 hours H-erinnite. 93.8 33. 7 H-ZSM-5 97. 9 97. 8
The above table clearly and dramatically illustrates the truly remarkable and surprising results obtained utilizing the catalyst of the instant invention. Thus, at 15 minutes the conversion between the hydrogen erionite and HZSM5 was substantially the same. This is not too surprising since both these materials are very active cracking catalysts. However, the results obtained after three hours are totally unexpected in that the HZSM-5 material did not age, i.e., lose activity, as is generally the case with all other zeolites. As can be seen, the conversion with erionite dropped to 33.7% thereby showing a definite aging whereas the conversion with H-ZSM-S was substantially unchanged after three hours thereby illustrating the fact that the catalyst does not age.
EXAMPLE 6 In order to demonstrate the difference in the type of shape selectivity obtained utilizing the catalyst of this invention as opposed to the shape selective materials of the prior art, the same waxy Amal Gas Oil employed in Example 2 was subjected to shape selective cracking with a calcined sample of ZSM-5 prepared with a crystalline aluminosilicate identified as calcium A, i.e., Linde 5A. A comparison of the products obtained from cracking the same material are shown in Table 6.
1 l 1 2 TABLE 6 The above material was then calcined at about 100 F. for 16 hours and divided into two portions. Portion A was afias (lalcisunvkt, exchanged with 100 ml. of a 0.5 N aqueous solution of pigrcqnt p ammonium chloride at room temperature for one hour to nv rsmn conversion MA 5 form the ammonium salt. This was labeled Catalyst A1. c1 0,3 1, 2 Three grams of Catalyst Al was exchanged with 35 ml. of 8;: g g E a 0.5 N 2.9/1 zinc/N11 chloride soluton at 109 F. for c. 27:5 30: 5 3I0 four hours. The material was then washed with water and g 1 -3 f dried in air to yield a catalyst having a zinc content of 0.9 Coke 1.0 1 ,0 -1t 0 weight percent and a sodium content of 0.2 weight percent.
This catalyst was labeled A2.
Portion B was treated with anhydrous ammonia (100 cc. It is immediately obvious that the coke yield obtained per minute) at room temperature to reconstitute the NH; by the novel process of this invention is dramatically sites. This catalyst was labeled B1. Three grams of Catalower than that obtained with a classic shape selective lyst Bl was exchanged with a 0.5 N solution of zinc and materials of the prior art. In addition the gasoline make, ammonium chloride as above. The finished catalyst coni.e., the C C is considerably higher than that with the taincd 1.2 weight percent zinc and 0.3 weight percent Calcium A-type materials. Additionally, the classic shape sodium and was labeled B2. selective catalyst of the prior art always yields products EXAMPLE 8 Wl'llCh are rich in C hydrocarbons and conversely poorer in C C hydrocarbons. As can be seen, such is not the Catalyst B2 supra, was then evaluated for pour point case utilizing the ZSM5 type catalysts, thereby indicatreduction of shale oil by hydroprocessing techniques. The ing that not only normal paraflins, but slightly branchedcharge stock was a full range dehydrated shale oil havmg chain parafiins are also converted. The enhanced results a pour point of about +80 F. A typical composition is are believed demonstrated by the above table. shown in Table 8.
TABLE 8 Fraction, percent 11 d b t. 3 t: N C0 gu l Dawn 12 14 21 26 a3 21 51 36 8 compounds 5 4 4 5 5 5 7 6 0 compounds. 12 17 18 17 16 16 22 19 Total 20 as 43 4s 54 42 so 61 Hydrocarbons, wt. percent:
n-Parallins 8 8 8 8 10 8 3 6 Isoparaflins plus naphthenes 7 6 4 3 3 5 5 n-Olefins 10 0 11 11 0 10 a a lso-oloiins plus cyclo-olclins. 31 25 19 14 12 20 5 l2 Monocycllo aromatics 0 8 6 0 5 6 2 4 Polycyclic aromatics t! 0 9 l0 7 9 2 6 Total 71 05 57 52 16 5s 20 30 The following examples will indicate that it is also 45 possible to obtain improved results utilizing hydrogenation/dehydrogenation components in association with the ZSM5 type catalyst.
EXAMPLE 7 A ISM-5 type catalyst was prepared following the general procedure of Example 1. The reaction composition and characteristics of the finished product are shown in Table 7.
H O, wt. percent The above shale oil was contacted with Catalyst B2 at 500 p.s.i.g., 4 LHSV, 800 F., and 2,000 s.c.f.s./bbl. hydrogen circulation. The results obtained showed a 97 weight percent recovery having a pour point of 15 F. An analysis of the liquid product having a l5 F. pour point showed that there was olefin saturation and a shift to lower boiling products resulting in increased naphtha and light fuel oil content with a corresponding decrease in the greater than C range products, as shown by the following table.
C5 plus liquid Charge product Cpl-naphtha 10. 0 15. 4
Light. fuel oil 16. 9 18. 2
High products- 73.1 66. 4
EXAMPLE 9 This example will illustrate the manufacture of lube oil by shape selective hydrodewaxing.
The lube oil charge stock employed had the following properties:
Gravity, API 31.9 Pour point, F. Sulfur, wt. percent 0.17 Hydrogen, wt. percent 13.23 K.V. 100 F., cs. 19.27 K.V. 210 F., cs. 3.93 Viscosity index 108.4
13 Vacuum assay, F.:
IBP 669 696 707 30% 737 50% 766 70% 795 90% 834 95% 847 The above charge stock was subjected to hydrodewaxing with a zinc/H-ZSM-S catalyst prepared in the manner set forth in Example 7 (B2), the experimental results as well as the various operating conditions are set forth in Table 9.
TABLE 9 Temperature, F. 700 700 650 650 LHSV 4 16 16 24 Pressure, p.s.i.g 500 500 500 11/110 mole ratio 38 38 38 Conv. wt. percent 33 30. 5 25. 0 Hydrodewexud lube:
Yield, Wt. percent 67 69. 5 75.0
Pour point, F 40 +25 K.V. at, 100 F 31. 18 29.55 22. 18
K.V. at 210 F i. 85 4.75 4.15
Viscosity index 76. 9 81. (1 95. 7
From the above table, it can be seen that the instant catalyst resulted in a substantial lowering of a pour point from an original value of +85 to as low as 40 F.
The above results suggest that the novel catalytic processing of this invention can be employed in those areas where it is desirable to hydrodewax charge stocks in order to obtain products of enhanced value. One such area would be in the preparation of automatic transmission fluids. The above process can replace the conventional solvent dewaxing presently employed. As another alternative, it is visualized that a particular charge stock can be subjected to conventional solvent dewaxing in order to reduce the pour point to some intermediate level and then this product subjected to shape selective hydrodewaxing in order to further lower the pour point. As can be seen, the novel processing techniques of this invention give greater flexibility to the refiner in the manufacture of commercially significant products.
EXAMPLE 10 This example will illustrate the shape selective hydrodewaxing of lube oil stocks and will again illustrate that hydrocracking of long chain molecules can be achieved.
The charge stock employed was a mid-continent vacuum tower overhead fraction having the specifications shown in Table 10.
TABLE 10 Gravity, API 32.2 Gravity, specific 0.8644 Vacuum assay, F.:
IBP 550 5% 596 10% 630 646 50% 662 70% 684 90% 728 95% 756 Pour point, F. (D-97) +50 Flash point, F 345 Viscosity:
SUS, 100 F. 57.7 SUS, 130 F. 45.8 SUS, 210 F. 34.5 Kinematic, 100 F 10.56 Kinematic, 210 F. 2.50 Viscosity index 56 Aniline No., F 182.2
This charge stock was contacted with a Zn/H-ZSM-S catalyst prepared in accordance with the techniques set forth in Example 7 (B2). The operating conditions were generally mild hydrocracking conditions, i.e., 500 p.s.i., 700 F., 4 LHSV and a hydrogen to hydrocarbon moi ratio of 30. The results obtained are shown in the following table.
Run time (hrs.) 2 Conversion, wt. percent 33.5 Yields, wt. percent:
Cpl-C2 1.4 C I 5.4 C 10.1 C +cracked product 16.6 Unconverted 66.5 Pour point, F. of unconverted product As can be seen from the above data, the novel process of this invention resulted in a substantial lowering of the pour point of the product, i.e., from +50 to 85 or a 4.5 F. lowering per percent conversion. Yield was 70 weight percent of the 600 F. plus liquid product. This example clearly indicates the improved results which are obtainable by the novel processing techniques of this invention.
EXAMPLE 1 1 This example will illustrate the preparation of a low freezing point high B.t.u. jet fuel prepared by the novel process of this invention.
A 350-500 F. Arnal-Nafoora kerosene had the following properties:
Gravity, API 48.1 Freeze point, F -27 Aromatics (FIA) vol. percent 9.1 Aniline No., F 156.9
Heating value, B.t.u./lb. 18,710
TABLE 11 Gravity, API Freeze Point. F Aromatics (FIA) vol.
percent Aniline N0., F- Heating value, B.t.
The results shown in the above table illustrate the fact that the novel process of this invention is capable of significantly lowering the freeze point of an Amal kerosene. It is noted, however, that the heating value and aromatic content of the product fall outside the specification for JP-7 jet fuel.
In order to raise the heating value and lower the aromatic content, the hydrodewaxed product can be subjected to a mild hydrogenation treatment. In this connection 20 grams of the hydrodewaxed product, ml. of cyclohexane, 11 grams of a commercial catalyst comprising reduced nickel or Kieselguhr (Harshaw Ni 0107) were charged to a 300 ml. stirring autoclave and 500 p.s.i.g. hydrogen was added. The above mixture was heated at 587-600 F. about 2 hours at which time the final pressure was about 1200-1300 p.s.i.g. The above procedure resulted in a 93 wt. percent recovery of a hydrogenated product which had the properties shown in Table 12.
15 TABLE 12 Gravity, APA 47.5 Freeze point, F. 81 Aromatics (FIA) vol. percent 4.0 Aniline No., F 179.0 Heating value, B.t.u./lb 18,835
From the above, it can be seen that the novel process of this invention provides a method of producing jet fuels having a low freeze point and a high B.t.u. content.
What is claimed is:
1. A dewaxing process for the selective cracking of straight-chain hydrocarbons and slightly branched-chain hydrocarbons from a mixture of the same with com pounds of dilferent molecular shapes which comprises contacting said mixture with a crystalline aluminosilicate having an X-ray diffraction pattern as set forth in Table 1 and having pore openings which are of a generally elliptical shape wherein the major axis of said ellipse has an effective size under conversion conditions of between about 6 and 9A. units and the minor axis about 5 A. so that said straight-chain and slightly branchedchain hydrocarbons are capable of entering into the internal pore structure of the aluminosilicate and being converted, said aluminosilicate having a composition, in terms of oxide mole ratios, as follows:
0.91-0.22 M O :A1g03 5-100 SiO,:zH
wherein M is a cation, 11 is the valence of said cation and z is from 0 to 40.
2. The process of claim 1 wherein said slightly branched hydrocarbon does not possess a quaternary carbon atom.
3. The process of claim 1 wherein said aluminosilicate has a hydrogenation/debydrogenation function.
4. A process for dewaxing petroleum charge stocks having a boiling point above 350 F. which comprises contacting said charge under cracking conditions with a crystalline aluminosilicate having an X-ray diffraction pattern set forth in Table 1 so as to selectively crack straight-chain hydrocarbons and branched-chain hydrocarbons free from quaternary carbon atoms in their structure, said aluminosilicate having a composition, in terms of oxide mole ratios, as follows:
0910.2 M O:Al O :5100 SlO ZZH O wherein M is a cation, 11 is the valence of said cation, and z is from 0 to 40.
5. A dewaxing process for the selective cracking of straight-chain hydrocarbons and branched-chain hydrocarbons which are free from quaternary carbon atoms in their structure from a mixture of the same with cyclic compounds, and branched-chain hydrocarbons containing quaternary carbon atoms which comprises contacting said mixture with a crystalline aluminosilicate having an X-ray diffraction pattern set forth in Table 1, and a composition, in terms of oxide mole ratios, as follows:
M2/ OIAI203IS-IOO SiOzIZHgO wherein M is a cation, 11 is the valence of said cation and z is from 0 to 40.
6. A dewaxing process for the selective conversion of straight-chain hydrocarbons and branched-chain hydrocarbons free from quaternary carbon atoms from a mixture of the same with compounds of differing molecular shape which comprises contacting the same with zeolite ZSM-S under cracking conditions such that the straightchain hydrocarbons and slightly branched hydrocarbons are able to enter into the pores of the ZSM-S and be cracked, said zeolite having an X-ray dillraction pattern as set forth in Table 1 and a composition, in terms of oxide mole ratios, as follows:
O-9iD-2 M2/ O:Al203:5100 SiOziZHgO wherein M is a cation, n is the valence of said cation, and z is from 0 to 40.
[7. A dewaxing process for the selective conversion of straight-chain hydrocarbons and branched-chain hydrocarbon free from quaternary carbon atoms from a mixture of the same with compounds of differing molecular shape which comprises contacting the same with zeolite ZSM-8 under conversion conditions such that the straightchain hydrocarbons and slightly branched hydrocarbons are able to enter into the pores of the ZSM-8 and be cracked, said zeolite having an X-ray difiraction pattern as set forth in Table 4 and a composition, in terms of oxide mole ratios, as follows:
0910.2 M2/ O:A1g03:5100 SlO IZH O wherein M is a cation, n is the valance of said cation, and z is from 0 to 40.]
8. The process of claim 5 wherein the dewaxing is carried out in the presence of added hydrogen and the aluminosilicate has a hydrogen/dehydrogenation component associated therewith.
9. The process of claim 6 wherein the dewaxing is carried out in the presence of added hydrogen and the aluminosilicate has a hydrogenation/dehydrogenation component associated therewith.
[10. The process of claim 7 wherein the dewaxing is carried out in the presence of added hydrogen and the zeolite has a hydrogenation/dehydrogenation component associated therewith] 11. The process of claim 4 wherein the dewaxing is carried out in the presence of added hydrogen and the aluminosilicate has a hydrogenation/dehydrogenation component associated therewith.
12. The process of claim I wherein said mixture is crude oil.
13. The process of claim I wherein said mixture is full range dehydrated shale oil.
14. The process of claim I wherein said mixture is a lube oil stock.
15. The process of claim I wherein said crystalline aluminosilicate is ZSM-S type zeolite.
16. The process of claim 5 wherein said crystalline aluminosilicate is ZSM-5 zeolite.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 3,438,887 4/1969 Morris et a]. 208-87 3,385,781 5/1968 Harnner et al 20859 3,575,846 4/1971 Harnner et al 208Il1 3,492,218 1/ 1970 Collier et al. 208-27 3,516,925 6/1970 Lawrance et a1 208-111 3,539,498 11/1970 Morris et a1. 208-111 FOREIGN PATENTS 1,167,869 10/1969 Great Britain 208-27 DELBERTE E. GANTZ, Primary Examiner G. E. SCHMITKONS, Assistant Examiner U.S. Cl. X.R.
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. Re. 28,398
DATED April 22, 1975 N i Y h s 1 J. L k1 'NVENTOW and ee iliae aeeweed It is certified that error appears rn the ab0ve-identifted patent and that said Letters Patent are hereby corrected as shown below:
Column 12, line 1 "100" should be --1000-- Column 5, line 2 Last word "deserved" should be --observed-- Signed and Scaled this fourreenth D ay of October 1975 [SEAL] I Arrest:
RUTH C. MASON C. MARSHALL DANN Arrestmg ()fj'r'rer (ummrsnurwr u] Pure/us and Trademark-x

Claims (2)

  1. 0.9$0.2 M2/NO:AL2O3:5-100 SIO2:ZH2O
  2. 1. A DEWAXING PROCESS FOR THE SELECTIVE CRACKING OF STRAIGHT-CHAIN HYDROCARBONS AND SLIGHTLY BRANCHED-CHAIN HYDROCARBONS FROM A MIXTURE OF THE SAME WITH COMPOUNDS OF DIFFERENT MOLECULAR SHAPES WHICH COMPRISES CONTACTING SAID MIXTURE WITH A CRYSTALLINE ALUMINOSILICATE HAVING AN X-RAY DIFFRACTION PATTERN AS SET FORTH IN TABLE 1 AND HAVING PORE OPENINGS WHICH ARE OF A GENERALLY ELLIPTICAL SHAPE WHEREIN THE MAJOR AXIS OF SAID ELLIPSE HAS AN EFFECTIVE SIZE UNDER CONVERSION CONDITIONS OF BETWEEN ABOUT 6 AND 9A. UNITS AND THE MINOR AXIS ABOUT 5 A. SO THAT SAID STRAIGHT-CHAIN AND SLIGHTLY BRANCHEDCHAIN HYDROCARBONS ARE CAPABLE OF ENTERING INTO THE INTERNAL PORE STRUCTURE OF THE ALUMINOSILICATE AND BEING CONVERTED, SAID ALUMINOSILICATE HAVING A COMPOSITION, IN TERMS OF OXIDE MOLE RATIOS, AS FOLLOWS:
US46501574 1969-10-10 1974-04-29 Marshall dann Expired USRE28398E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US46501574 USRE28398E (en) 1969-10-10 1974-04-29 Marshall dann

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86547069A 1969-10-10 1969-10-10
US46501574 USRE28398E (en) 1969-10-10 1974-04-29 Marshall dann

Publications (1)

Publication Number Publication Date
USRE28398E true USRE28398E (en) 1975-04-22

Family

ID=27041175

Family Applications (1)

Application Number Title Priority Date Filing Date
US46501574 Expired USRE28398E (en) 1969-10-10 1974-04-29 Marshall dann

Country Status (1)

Country Link
US (1) USRE28398E (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2398106A1 (en) * 1977-07-20 1979-02-16 Mobil Oil PROCESS FOR MANUFACTURING VISCOUS OILS FROM FRACTIONS OF CRUDE OIL
EP0011926A1 (en) * 1978-12-04 1980-06-11 Mobil Oil Corporation Production of high V.I. lubricating oil stock
US4213847A (en) 1979-05-16 1980-07-22 Mobil Oil Corporation Catalytic dewaxing of lubes in reactor fractionator
US4229282A (en) 1979-04-27 1980-10-21 Mobil Oil Corporation Catalytic dewaxing of hydrocarbon oils
US4251348A (en) 1979-12-26 1981-02-17 Chevron Research Company Petroleum distillate upgrading process
EP0024948A2 (en) * 1979-09-04 1981-03-11 Mobil Oil Corporation A process for converting a high boiling hydrocarbon and catalyst for use in this process
US4259174A (en) 1979-03-19 1981-03-31 Mobil Oil Corporation Catalytic dewaxing of hydrocarbon oils
US4263126A (en) 1979-10-22 1981-04-21 Mobil Oil Corporation Preparation and use of reactive dispersions
EP0030784A1 (en) * 1979-12-14 1981-06-24 Mobil Oil Corporation A catalytic hydrocarbon-conversion process and a catalyst composition
US4372839A (en) 1981-01-13 1983-02-08 Mobil Oil Corporation Production of high viscosity index lubricating oil stock
EP0079778A1 (en) * 1981-11-13 1983-05-25 Standard Oil Company Catalytic dewaxing-hydrotreating process
US4401555A (en) 1980-04-28 1983-08-30 Chevron Research Company Hydrocarbon conversion with low-sodium crystalline silicates
US4428862A (en) 1980-07-28 1984-01-31 Union Oil Company Of California Catalyst for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4428819A (en) 1982-07-22 1984-01-31 Mobil Oil Corporation Hydroisomerization of catalytically dewaxed lubricating oils
US4436614A (en) 1982-10-08 1984-03-13 Chevron Research Company Process for dewaxing and desulfurizing oils
US4441991A (en) 1981-04-21 1984-04-10 Mobil Oil Corporation Catalytic dewaxing of oils containing ammonia over highly siliceous porous crystalline materials of the zeolite ZSM-5 type
US4518703A (en) 1979-02-16 1985-05-21 Union Oil Company Of California Crystalline silica catalysts
US4572779A (en) 1983-02-10 1986-02-25 Toray Industries, Inc. Process for the dewaxing of hydrocarbon fractions
US4574043A (en) 1984-11-19 1986-03-04 Mobil Oil Corporation Catalytic process for manufacture of low pour lubricating oils
US4575416A (en) 1984-07-16 1986-03-11 Mobil Oil Corporation Hydrodewaxing with mixed zeolite catalysts
US4588560A (en) 1984-06-29 1986-05-13 Mobil Oil Corporation Hydroprocessing reactor for catalytically dewaxing liquid petroleum feedstocks
US4599162A (en) 1984-12-21 1986-07-08 Mobil Oil Corporation Cascade hydrodewaxing process
US4601993A (en) 1984-05-25 1986-07-22 Mobil Oil Corporation Catalyst composition dewaxing of lubricating oils
US4648957A (en) 1984-12-24 1987-03-10 Mobil Oil Corporation Lube hydrodewaxing method and apparatus with light product removal and enhanced lube yields
US4664775A (en) 1982-07-31 1987-05-12 Toa Nenryo Kogyo Kabushiki Kaisha Method for manufacturing low pour point petroleum product with zeolite TSZ
US4683052A (en) 1985-06-11 1987-07-28 Mobil Oil Corporation Method for non-oxidative hydrogen reactivation of zeolite dewaxing catalysts
US4686029A (en) 1985-12-06 1987-08-11 Union Carbide Corporation Dewaxing catalysts and processes employing titanoaluminosilicate molecular sieves
US4695365A (en) 1986-07-31 1987-09-22 Union Oil Company Of California Hydrocarbon refining process
US4696732A (en) 1984-10-29 1987-09-29 Mobil Oil Corporation Simultaneous hydrotreating and dewaxing of petroleum feedstocks
US4737263A (en) 1985-06-11 1988-04-12 Mobil Oil Corporation Process and apparatus for catalytic dewaxing of paraffinic stocks and the simultaneous removal of cracked products
US4740292A (en) 1985-09-12 1988-04-26 Mobil Oil Corporation Catalytic cracking with a mixture of faujasite-type zeolite and zeolite beta
US4749467A (en) 1985-04-18 1988-06-07 Mobil Oil Corporation Lube dewaxing method for extension of cycle length
US4790927A (en) 1981-05-26 1988-12-13 Union Oil Company Of California Process for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4804647A (en) 1985-12-06 1989-02-14 Uop Dewaxing catalysts and processes employing titanoaluminosilicate molecular sieves
US4808296A (en) 1985-10-18 1989-02-28 Mobil Oil Corporation Process for dewaxing hydrocarbon feedstock
US4869806A (en) 1987-12-09 1989-09-26 Mobil Oil Corp. Production of high viscosity index lubricating oil stock
US4877762A (en) 1981-05-26 1989-10-31 Union Oil Company Of California Catalyst for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4877581A (en) 1988-09-01 1989-10-31 Mobil Oil Corporation Catalyst for dewaxing hydrocarbon feedstock
US4880760A (en) 1984-12-18 1989-11-14 Uop Dewaxing catalysts employing non-zeolitic molecular sieves
US4913797A (en) 1985-11-21 1990-04-03 Mobil Oil Corporation Catalyst hydrotreating and dewaxing process
US4952303A (en) 1985-07-10 1990-08-28 Mobil Oil Corp. Process for preparing a very high quality lube base stock oil
US4960504A (en) * 1984-12-18 1990-10-02 Uop Dewaxing catalysts and processes employing silicoaluminophosphate molecular sieves
US4981574A (en) * 1989-03-14 1991-01-01 Mobil Oil Corporation Dewaxing process
US4994168A (en) * 1988-10-21 1991-02-19 Mobil Oil Corporation Lube oil product stripping
US5015361A (en) * 1989-01-23 1991-05-14 Mobil Oil Corp. Catalytic dewaxing process employing surface acidity deactivated zeolite catalysts
US5019665A (en) * 1990-04-18 1991-05-28 Mobil Oil Corp. Shape-selective process for concentrating diamondoid-containing hydrocarbon solvents
US5078751A (en) * 1990-04-04 1992-01-07 Mobil Oil Corporation Process for upgrading olefinic gasoline by etherification wherein asymmetrical dialkyl ethers are produced
US5139647A (en) * 1989-08-14 1992-08-18 Chevron Research And Technology Company Process for preparing low pour middle distillates and lube oil using a catalyst containing a silicoaluminophosphate molecular sieve
US5227552A (en) * 1992-04-27 1993-07-13 Mobil Oil Corporation Process for hydrogenating alkenes in the presence of alkanes and a heterogeneous catalyst
US5583276A (en) * 1993-10-18 1996-12-10 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
US5614079A (en) * 1993-02-25 1997-03-25 Mobil Oil Corporation Catalytic dewaxing over silica bound molecular sieve
US5780703A (en) * 1994-05-02 1998-07-14 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
US6068757A (en) 1995-11-03 2000-05-30 Coastal Eagle Point Oil Company Hydrodewaxing process
US8298403B2 (en) 2008-12-16 2012-10-30 Exxonmobil Research And Engineering Company Dewaxing catalysts and processes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385781A (en) * 1965-04-01 1968-05-28 Exxon Research Engineering Co Hydrocracking process
US3438887A (en) * 1967-07-11 1969-04-15 Texaco Inc Production of lubricating oils
GB1167869A (en) * 1966-12-05 1969-10-22 British Petroleum Co Improvements relating to the production of Micro-Crystalline Waxes
US3492218A (en) * 1966-12-05 1970-01-27 British Petroleum Co Production of micro-crystalline waxes
US3516925A (en) * 1964-03-10 1970-06-23 British Petroleum Co Catalytic conversion of hydrocarbons
US3539498A (en) * 1966-06-20 1970-11-10 Texaco Inc Catalytic dewaxing with the use of a crystalline alumino zeolite of the mordenite type in the presence of hydrogen
US3575846A (en) * 1967-09-14 1971-04-20 Exxon Research Engineering Co Catalysts for the selective conversion of straight-chain hydrocarbons

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516925A (en) * 1964-03-10 1970-06-23 British Petroleum Co Catalytic conversion of hydrocarbons
US3385781A (en) * 1965-04-01 1968-05-28 Exxon Research Engineering Co Hydrocracking process
US3539498A (en) * 1966-06-20 1970-11-10 Texaco Inc Catalytic dewaxing with the use of a crystalline alumino zeolite of the mordenite type in the presence of hydrogen
GB1167869A (en) * 1966-12-05 1969-10-22 British Petroleum Co Improvements relating to the production of Micro-Crystalline Waxes
US3492218A (en) * 1966-12-05 1970-01-27 British Petroleum Co Production of micro-crystalline waxes
US3438887A (en) * 1967-07-11 1969-04-15 Texaco Inc Production of lubricating oils
US3575846A (en) * 1967-09-14 1971-04-20 Exxon Research Engineering Co Catalysts for the selective conversion of straight-chain hydrocarbons

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2398106A1 (en) * 1977-07-20 1979-02-16 Mobil Oil PROCESS FOR MANUFACTURING VISCOUS OILS FROM FRACTIONS OF CRUDE OIL
EP0011926A1 (en) * 1978-12-04 1980-06-11 Mobil Oil Corporation Production of high V.I. lubricating oil stock
US4518703A (en) 1979-02-16 1985-05-21 Union Oil Company Of California Crystalline silica catalysts
US4259174A (en) 1979-03-19 1981-03-31 Mobil Oil Corporation Catalytic dewaxing of hydrocarbon oils
US4229282A (en) 1979-04-27 1980-10-21 Mobil Oil Corporation Catalytic dewaxing of hydrocarbon oils
US4213847A (en) 1979-05-16 1980-07-22 Mobil Oil Corporation Catalytic dewaxing of lubes in reactor fractionator
EP0024948A3 (en) * 1979-09-04 1981-03-18 Mobil Oil Corporation A process for converting a high boiling hydrocarbon and catalyst for use in this process
EP0024948A2 (en) * 1979-09-04 1981-03-11 Mobil Oil Corporation A process for converting a high boiling hydrocarbon and catalyst for use in this process
US4263126A (en) 1979-10-22 1981-04-21 Mobil Oil Corporation Preparation and use of reactive dispersions
EP0030784A1 (en) * 1979-12-14 1981-06-24 Mobil Oil Corporation A catalytic hydrocarbon-conversion process and a catalyst composition
US4251348A (en) 1979-12-26 1981-02-17 Chevron Research Company Petroleum distillate upgrading process
US4401555A (en) 1980-04-28 1983-08-30 Chevron Research Company Hydrocarbon conversion with low-sodium crystalline silicates
US4428862A (en) 1980-07-28 1984-01-31 Union Oil Company Of California Catalyst for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4372839A (en) 1981-01-13 1983-02-08 Mobil Oil Corporation Production of high viscosity index lubricating oil stock
US4441991A (en) 1981-04-21 1984-04-10 Mobil Oil Corporation Catalytic dewaxing of oils containing ammonia over highly siliceous porous crystalline materials of the zeolite ZSM-5 type
US4877762A (en) 1981-05-26 1989-10-31 Union Oil Company Of California Catalyst for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4790927A (en) 1981-05-26 1988-12-13 Union Oil Company Of California Process for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
EP0079778A1 (en) * 1981-11-13 1983-05-25 Standard Oil Company Catalytic dewaxing-hydrotreating process
US4428819A (en) 1982-07-22 1984-01-31 Mobil Oil Corporation Hydroisomerization of catalytically dewaxed lubricating oils
US4664775A (en) 1982-07-31 1987-05-12 Toa Nenryo Kogyo Kabushiki Kaisha Method for manufacturing low pour point petroleum product with zeolite TSZ
US4436614A (en) 1982-10-08 1984-03-13 Chevron Research Company Process for dewaxing and desulfurizing oils
US4572779A (en) 1983-02-10 1986-02-25 Toray Industries, Inc. Process for the dewaxing of hydrocarbon fractions
US4601993A (en) 1984-05-25 1986-07-22 Mobil Oil Corporation Catalyst composition dewaxing of lubricating oils
US4588560A (en) 1984-06-29 1986-05-13 Mobil Oil Corporation Hydroprocessing reactor for catalytically dewaxing liquid petroleum feedstocks
US4575416A (en) 1984-07-16 1986-03-11 Mobil Oil Corporation Hydrodewaxing with mixed zeolite catalysts
US4696732A (en) 1984-10-29 1987-09-29 Mobil Oil Corporation Simultaneous hydrotreating and dewaxing of petroleum feedstocks
US4574043A (en) 1984-11-19 1986-03-04 Mobil Oil Corporation Catalytic process for manufacture of low pour lubricating oils
US4960504A (en) * 1984-12-18 1990-10-02 Uop Dewaxing catalysts and processes employing silicoaluminophosphate molecular sieves
US4906351A (en) 1984-12-18 1990-03-06 Uop Dewaxing catalysts and processes employing non-zeolitic molecular sieves
US4880760A (en) 1984-12-18 1989-11-14 Uop Dewaxing catalysts employing non-zeolitic molecular sieves
US4599162A (en) 1984-12-21 1986-07-08 Mobil Oil Corporation Cascade hydrodewaxing process
US4648957A (en) 1984-12-24 1987-03-10 Mobil Oil Corporation Lube hydrodewaxing method and apparatus with light product removal and enhanced lube yields
US4749467A (en) 1985-04-18 1988-06-07 Mobil Oil Corporation Lube dewaxing method for extension of cycle length
US4683052A (en) 1985-06-11 1987-07-28 Mobil Oil Corporation Method for non-oxidative hydrogen reactivation of zeolite dewaxing catalysts
US4737263A (en) 1985-06-11 1988-04-12 Mobil Oil Corporation Process and apparatus for catalytic dewaxing of paraffinic stocks and the simultaneous removal of cracked products
US4952303A (en) 1985-07-10 1990-08-28 Mobil Oil Corp. Process for preparing a very high quality lube base stock oil
US4740292A (en) 1985-09-12 1988-04-26 Mobil Oil Corporation Catalytic cracking with a mixture of faujasite-type zeolite and zeolite beta
US4808296A (en) 1985-10-18 1989-02-28 Mobil Oil Corporation Process for dewaxing hydrocarbon feedstock
US4913797A (en) 1985-11-21 1990-04-03 Mobil Oil Corporation Catalyst hydrotreating and dewaxing process
US4804647A (en) 1985-12-06 1989-02-14 Uop Dewaxing catalysts and processes employing titanoaluminosilicate molecular sieves
US4686029A (en) 1985-12-06 1987-08-11 Union Carbide Corporation Dewaxing catalysts and processes employing titanoaluminosilicate molecular sieves
US4695365A (en) 1986-07-31 1987-09-22 Union Oil Company Of California Hydrocarbon refining process
US4869806A (en) 1987-12-09 1989-09-26 Mobil Oil Corp. Production of high viscosity index lubricating oil stock
US4877581A (en) 1988-09-01 1989-10-31 Mobil Oil Corporation Catalyst for dewaxing hydrocarbon feedstock
US4994168A (en) * 1988-10-21 1991-02-19 Mobil Oil Corporation Lube oil product stripping
US5015361A (en) * 1989-01-23 1991-05-14 Mobil Oil Corp. Catalytic dewaxing process employing surface acidity deactivated zeolite catalysts
US4981574A (en) * 1989-03-14 1991-01-01 Mobil Oil Corporation Dewaxing process
US5139647A (en) * 1989-08-14 1992-08-18 Chevron Research And Technology Company Process for preparing low pour middle distillates and lube oil using a catalyst containing a silicoaluminophosphate molecular sieve
US5078751A (en) * 1990-04-04 1992-01-07 Mobil Oil Corporation Process for upgrading olefinic gasoline by etherification wherein asymmetrical dialkyl ethers are produced
US5019665A (en) * 1990-04-18 1991-05-28 Mobil Oil Corp. Shape-selective process for concentrating diamondoid-containing hydrocarbon solvents
US5227552A (en) * 1992-04-27 1993-07-13 Mobil Oil Corporation Process for hydrogenating alkenes in the presence of alkanes and a heterogeneous catalyst
US5614079A (en) * 1993-02-25 1997-03-25 Mobil Oil Corporation Catalytic dewaxing over silica bound molecular sieve
US5583276A (en) * 1993-10-18 1996-12-10 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
US5780703A (en) * 1994-05-02 1998-07-14 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
US6068757A (en) 1995-11-03 2000-05-30 Coastal Eagle Point Oil Company Hydrodewaxing process
US8298403B2 (en) 2008-12-16 2012-10-30 Exxonmobil Research And Engineering Company Dewaxing catalysts and processes

Similar Documents

Publication Publication Date Title
USRE28398E (en) Marshall dann
US3700585A (en) Dewaxing of oils by shape selective cracking and hydrocracking over zeolites zsm-5 and zsm-8
US3729409A (en) Hydrocarbon conversion
US3758402A (en) Catalytic hydrocracking of hydrocarbons
US3755138A (en) Lube oils by solvent dewaxing and hydrodewaxing with a zsm-5 catalyst
US3767568A (en) Hydrocarbon conversion
US3972983A (en) Crystalline zeolite ZSM-20 and method of preparing same
US3759821A (en) Catalytic process for upgrading cracked gasolines
US4021331A (en) Organic compound conversion by zeolite ZSM-20 catalysts
US5013422A (en) Catalytic hydrocracking process
US5160033A (en) Octane gasoline catalyst and process using same in a hydrocracking process
US3926782A (en) Hydrocarbon conversion
US4486296A (en) Process for hydrocracking and dewaxing hydrocarbon oils
US4419220A (en) Catalytic dewaxing process
US5208197A (en) Octane gasoline catalyst
US4128504A (en) Stabilized zinc-containing zeolites
US5207892A (en) Hydrocarbon conversion process employing a modified form of zeolite Y
EP0430337A1 (en) Process for upgrading a sulphur containing feedstock
EP0198720B1 (en) Zeolitic reforming catalyst and method of producing the same
EP0164939A2 (en) Preparation of zeolite beta
US4757041A (en) Catalysts for cracking and dewaxing hydrocarbon oils
US3197398A (en) Hydrogenation process and catalyst comprising a crystalline zeolite containing a group viii metal
US3326797A (en) Hydrocarbon conversion process and catalyst comprising a crystalline alumino-silicate leached with sodium hydroxide
US3331768A (en) Process for upgrading naphtha
US3852189A (en) Shape-selective conversion in the liquid phase