USRE28385E - Method of treating semiconductor devices - Google Patents

Method of treating semiconductor devices Download PDF

Info

Publication number
USRE28385E
USRE28385E US31177472A USRE28385E US RE28385 E USRE28385 E US RE28385E US 31177472 A US31177472 A US 31177472A US RE28385 E USRE28385 E US RE28385E
Authority
US
United States
Prior art keywords
layer
metal
semiconductor
halide
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to US31177472 priority Critical patent/USRE28385E/en
Application granted granted Critical
Publication of USRE28385E publication Critical patent/USRE28385E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31683Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of metallic layers, e.g. Al deposited on the body, e.g. formation of multi-layer insulating structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • ABSTRACT OF THE DISCLOSURE The stability and minority carrier lifetime of a device comprising a semiconductor body covered by an insulating layer is improved by subjecting the insulating layer to an atmosphere including hydrogen chloride, while heating the device, so that a gradient is established for out-diffusion of certain deleterious metals from the device.
  • This invention relates to a method for treating semiconductor devices so as to improve one or more performance parameters thereof.
  • an insulating layer comprising, e.g., silicon dioxide as a protective covering on the semiconductor surface.
  • a thin silicon dioxide layer is employed as a dielectric to provide capacitive coupling between a selected portion of the semiconductor surface and an overlying metal (gate) control electrode.
  • the insulating layer be free of contaminants which produce instabilities in device behavior.
  • alkali metals such as sodium, potassium and calcium which find their way into the silicon dioxide layer causes development of a residual charge or polarization which tends to produce severe instability in the operating characteristics of metal-oxide-semiconductor devices.
  • alkali metals when present in a silicon dioxide layer overlying a bipolar semiconductor device, cause the formation of thin surface inversion" layers which increase the device leakage characteristics and adversely affect other operating parameters.
  • Heavy metal impurities such as gold, copper and iron act as trapping or recombination sites which seriously degrade minority carrier lifetime in the semiconductor material. This degradation of lifetime results in reduced gain and increased forward current dissipation in the device affected.
  • Prior art techniques for overcoming these contamination problems are directed to (i) methods for preventing the contaminants from initially entering the semiconductor device, and (ii) methods for removing the contaminants as close as possible to the termination of the device manufacturing process.
  • the former, or clean handling, methods require careful cleaning of all materials and equipment, and manufacturing and assembly operation to be carried out in a dust-free laminar flow atmosphere. These methods are effective, but cumbersome to employ and expensive because of the requirements for constant vigilance, contamination measurements and personnel indoctrination.
  • a recently developed process e.g., involves heat treatment with a phosphorus pentoxide glass disposed on the semiconductor surface, as described in U.S. Pat. No. 3,334,281.
  • Such a treating process results in the formation of a highly doped N type surface region which usually must be subsequently removed by etching. This is a relatively cumbersome process and is not suitable for the manufacture of devices having fine-line geometries.
  • An object of the present invention is to provide a process for improving the performance characteristics of semiconductor devices by removing certain deleterious metals therefrom.
  • the invention is applicable to a manufacturing process in which a layer of insulating material is formed on at least a part of an operating semiconductor region of an active semiconductor element.
  • the invention relates to an improvement in which the insulating layer is exposed to an atmosphere comprising a hydro-gen halide.
  • the semiconductor device is heated in the presence of the halide at a temperature suflicient to convert a deleterious metal in the device to the metal halide.
  • the temperature is sufficient to volatilize the halide at the exposed surface of the insulating layer, so as to establish a gradient for outditfusion of the deleterious metal from the semiconductor device toward the exposed insulating layer surface.
  • the apparatus shown in the drawing comprises a generally cylindrical resistance furnace tube 1 provided with an inlet port 2 and an outlet port 3.
  • a removable end cap 4 permits insertion and removal of the wafer boat assembly 5.
  • the furnace tube 1 may be heated by means of a resistance coil 6, the turns of which are heated by means of a source of electrical voltage (not shown).
  • the boat assembly 5 has a quartz surface layer 7. Disposed on the quartz layer 7 are a number of semiconductor wafers 8 which may, e.g., comprise silicon.
  • Gas flow into the inlet port 2 is controlled by means of a nitrogen carrier gas source 9 and a control valve 10.
  • the carrier gas from the source 9 passes through the control valve 10 and bubbles through a liquid solution 11 disposed in a suitable flask 12.
  • the liquid 11 preferably comprises an azeotropic or constant-boiling aqueous solution of hydrogen chloride, which is maintained at a temperature on the order of C.
  • the azeotropic concentration is approximately 20.24% hydrogen chloride by weight.
  • the outlet port is coupled to an aqueous suspension 13 of lime which is disposed in a suitable flask 14.
  • the lime acts a a trap to remove any hydrogen chloride from the gas stream.
  • the furnace tube 1 is heated to an oxidizing temperature in the range of 800 to 1300 C. The particular temperature employed will be determined primarily by the total thickness of the silicon dioxide layer desired. Oxidation of each wafer 8 is commenced by opening the valve 10 so that the gas mixture containing hydrogen chloride and water vapor enters the inlet port 2 and passes over the exposed surface of each wafer 8.
  • the water vapor in the gas stream rapidly reacts with the silicon surface of each wafer 8 to thermally form the silicon dioxide layer thereon. Initially, some slight etching of the silicon surface by the hydrogen chloride gas may occur, but etching will stop as soon as a thin initial silicon dioxide layer has been formed to protect the underlying silcon material.
  • etching may be completely precluded by initially forming a thin silicon dioxide layer by passing oxygen or water vapor into the inlet port 2 by means of a path independent of the liquid 11.
  • the nitrogen carrier gas 9 may then be bubbled through the liquid 11 to provide the desired hydrogen chloride/water vapor mixture at a time when each wafer 8 is protected by a thin initial silicon dioxide layer.
  • the oxidation process may be carried out in the manner shown in the drawing until the desired thickness of the silicon dioxide layer 15 has been grown.
  • the treatment may be continued, after the desired thickness of silicon dioxide has been attained, by passing the hydrogen chloride/water vapor mixture over the silicon dioxide layer thereafter. Since the rate of growth of the oxide layer 15 decreases as the thickness of the oxide increases, this additional treatment will have only a small effect an oxide layer thickness.
  • a silicon wafer was divided into two :ortions, both of which were lightly etched in a 10% sodium hydroxide solution and rinsed in hot distilled water. One portion was exposed to water vapor in the normal manner to grow a thermal silicon dioxide layer to 1 thickness of approximately 0.12 microns at a temperaure on the order of 1000 C. The other portion was exiosed to the water vapor/hydrogen chloride atmosphere lescribed above to grow a silicon dioxide layer of the :ame thickness at the same temperature. The wafer porions were annealed in a hydrogen atmosphere at elevated :emperatures in the conventional manner.
  • the substantial improvement realized by the hydrogen hloride treatment process according to the preferred emodiment of the invention is believed to be due to reacion of the hydrogen chloride with deleterious metals such is sodium, potassium, calcium (which causes residual harge or polarization) and gold, copper and iron (which educes minority carrier lifetime).
  • the hydrogen chloride eacts with these, and possibly other, metals at the exiosed surface of the silicon dioxide layer to convert hem into the corresponding metal chlorides.
  • the resulting metal chlorides being relatively volatile at the processing temperature, leave the silicon dioxide surface. This process establishes a gradient for out-diffusion of the metallic contaminants from the semiconductor wafer through the silicon dioxide layer, and from the exposed surface of the silicon dioxide layer into the surrounding atmosphere.
  • This out-diifusion reaction i.e. conversion of the metal contaminants to the corresponding metal chlorides and volatilization of the chlorides at the exposed surface of the silicon dioxide layer, may be carried out at temperatures in the range of 600 to 1200 C.
  • insulating or dielectric material disposed on the semiconductor wafer surface
  • other insulating materials which may be treated in accordance with the invention are Si N ,Al O SiO, Ta O Nb O HfO ZrO and combinations thereof.
  • the process described herein by removing impurity centers from the insulating layer, improves the radiation resistance of the resultant device.
  • germanium, gallium arsenide, gallium phosphide and other Ill-V or II-VI semiconductor materials may be protected by an insulating layer and treated with a hydrogen halide in the manner described herein to improve the operating characteristics of the resultant device.
  • the insulating layer may be pyrolytically deposited from the vapor phase. In such cases it is usually desirable to densify the pyrolytically deposited material by heat treatment. Where such a pyrolytic deposition process is employed, it is preferable to employ the hydrogen halide heat treatment process described herein after the insulating layer has been deposited but before it has been densified. The reason for this procedure is that the densified layer is less permeable to out-diffusion of the metallic contaminants to be removed, so that improved processing is obtained if the contaminants are removed by diffusion through the relatively permeable undensified insulating layer.
  • silicon nitride may be pyrolytically deposited on a silicon substrate by vapor phase reaction of silane (SiH and ammonia (NH l at a temperature on the order of 500 to 700 C.
  • the hydrogen chloride heat treatment described above may be carried out (in this case preferably in an atmosphere free of water vapor) at a temperature of 600 [60] to 800 C.
  • the silicon nitride layer may be densified by heat treatment at a temperature on the order of 900 C.
  • a silicon wafer is subjected to a mixture of stream and hydrogen chloride to simultaneously oxidize and remove deleterious metal ingredients from the semiconductor wafer, the ratio of steam flow rate to hydrogen chloride flow rate is determined by the composition of the constant boiling or azeotropic hydrogen chloride aqueous solution.
  • a process for manufacturing a semiconductor device comprising the steps of:
  • gaseous halogen substance selected from the group consisting of hydrogen chloride, hydrogen bromide, and hydrogen iodide to neutralize the electrical eflects of mobile ions in the silicon dioxide layer.
  • gaseous halogen substance selected from the group consisting of hydrogen chloride, hydrogen bromide, and hydrogen iodide to neutralize the electrical eflects of mobile ions in the silicon dioxide layer.

Abstract

1. IN A PROCESS FOR MANUFACTURING A SEMICONDUCTOR DEVICE, COMPRISING THE STEPS OF: PROVIDING A SUBSTRATE OF A SEMICONDUCTOR MATERIAL AND FORMING A LAYER OF INSULATING MATERIAL ON A GIVEN SURFACE OF SAID SUBSTRATE, SAID DEVICE INCLUDING (IOCLUDING) AT LEAST ONE DELETERIOUS METAL INGREDIENT, THE IMPROVEMENT COMPRISING: SIMULATNEOUSLY WITH THE FORMING OF AT LEAST A PORTION OF THE INSULATING MATERIAL LAYER EXPOSING SAID LAYER TO AN ATMOSPHERE COMPRISING A HYDROGEN HALIDE; AND HEATING SAID SUBSTRATE TO A TEMPERATURE SUFFICIENT TO CONVERT (CONNECT) SAID METAL TO THE METAL HALIDE AND TO VOLATILIZE THE HALIDE AT THE EXPOSED SURFACE OF SAID INSULATING LAYER, THEREBY ESTABLISHING A GRADIENT FOR OUTDIFFUSION OF SAID METAL FROM SAID DEVICE TOWARD SAID EXPOSED SURFACE.

Description

April s, 1915 A. MAYER Re. 28,385
HETHOD OF TREATING SEMICONDUCTOR DEVICES Original Filed March 20, 1968 IIVYENTOR AT TORNEY United States Patent Re. 28,385 Reissued Apr. 8, 1975 28,385 METHOD OF TREATING SEMICONDUCTOR DEVICES Alfred Mayer, Plainfield, N..I., assignor to RCA Corporation Original No. 3,556,879, dated Jan. 19, 1971, Ser. No. 714,577, Mar. 20, 1968. Application for reissue Dec. 4, 1972, Ser. No. 311,774
Int. Cl. I-ltlll 7/36 U.S. Cl. 117-201 8 Claims Matter enclosed in heavy brackets appears in the original patent hut forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE The stability and minority carrier lifetime of a device comprising a semiconductor body covered by an insulating layer is improved by subjecting the insulating layer to an atmosphere including hydrogen chloride, while heating the device, so that a gradient is established for out-diffusion of certain deleterious metals from the device.
BACKGROUND OF THE INVENTION This invention relates to a method for treating semiconductor devices so as to improve one or more performance parameters thereof.
In the manufacture of semiconductor devices, it is common to employ an insulating layer comprising, e.g., silicon dioxide as a protective covering on the semiconductor surface. In the fabrication of metal-oxide-semiconductor field effect devices, a thin silicon dioxide layer is employed as a dielectric to provide capacitive coupling between a selected portion of the semiconductor surface and an overlying metal (gate) control electrode.
In such applications, it is important that the insulating layer be free of contaminants which produce instabilities in device behavior.
In particular, alkali metals such as sodium, potassium and calcium which find their way into the silicon dioxide layer causes development of a residual charge or polarization which tends to produce severe instability in the operating characteristics of metal-oxide-semiconductor devices. These alkali metals, when present in a silicon dioxide layer overlying a bipolar semiconductor device, cause the formation of thin surface inversion" layers which increase the device leakage characteristics and adversely affect other operating parameters.
Heavy metal impurities, such as gold, copper and iron act as trapping or recombination sites which seriously degrade minority carrier lifetime in the semiconductor material. This degradation of lifetime results in reduced gain and increased forward current dissipation in the device affected.
Prior art techniques for overcoming these contamination problems are directed to (i) methods for preventing the contaminants from initially entering the semiconductor device, and (ii) methods for removing the contaminants as close as possible to the termination of the device manufacturing process.
The former, or clean handling, methods require careful cleaning of all materials and equipment, and manufacturing and assembly operation to be carried out in a dust-free laminar flow atmosphere. These methods are effective, but cumbersome to employ and expensive because of the requirements for constant vigilance, contamination measurements and personnel indoctrination.
The latter methods involve various gettering and/or out-diffusion processes. A recently developed process, e.g., involves heat treatment with a phosphorus pentoxide glass disposed on the semiconductor surface, as described in U.S. Pat. No. 3,334,281. Such a treating process, however, results in the formation of a highly doped N type surface region which usually must be subsequently removed by etching. This is a relatively cumbersome process and is not suitable for the manufacture of devices having fine-line geometries.
Other impurity removal processes heretofore known involve heat treatment in the presence of nickel or nickel alloys. These processes are believed to improve minority carrier lifetime by reducing the number of recombination centers in the semiconductor material.
An object of the present invention is to provide a process for improving the performance characteristics of semiconductor devices by removing certain deleterious metals therefrom.
SUMMARY OF THE INVENTION The invention is applicable to a manufacturing process in which a layer of insulating material is formed on at least a part of an operating semiconductor region of an active semiconductor element. The invention relates to an improvement in which the insulating layer is exposed to an atmosphere comprising a hydro-gen halide. The semiconductor device is heated in the presence of the halide at a temperature suflicient to convert a deleterious metal in the device to the metal halide. The temperature is sufficient to volatilize the halide at the exposed surface of the insulating layer, so as to establish a gradient for outditfusion of the deleterious metal from the semiconductor device toward the exposed insulating layer surface.
IN THE DRAWING The drawing shows apparatus useful in practicing a preferred embodiment of the process described herein.
DETAILED DESCRIPTION The apparatus shown in the drawing comprises a generally cylindrical resistance furnace tube 1 provided with an inlet port 2 and an outlet port 3. A removable end cap 4 permits insertion and removal of the wafer boat assembly 5.
The furnace tube 1 may be heated by means of a resistance coil 6, the turns of which are heated by means of a source of electrical voltage (not shown). The boat assembly 5 has a quartz surface layer 7. Disposed on the quartz layer 7 are a number of semiconductor wafers 8 which may, e.g., comprise silicon.
Gas flow into the inlet port 2 is controlled by means of a nitrogen carrier gas source 9 and a control valve 10. The carrier gas from the source 9 passes through the control valve 10 and bubbles through a liquid solution 11 disposed in a suitable flask 12.
The liquid 11 preferably comprises an azeotropic or constant-boiling aqueous solution of hydrogen chloride, which is maintained at a temperature on the order of C. For this substance, the azeotropic concentration is approximately 20.24% hydrogen chloride by weight. The resultant hydrogen chloride/water vapor/nitrogen mixture enters the furnace tube 1 through the inlet port 2. The flow rate of this mixture is controlled by adjustment of the valve 10.
In order to protect the operator from any hydrogen chloride gas which may leave the outlet port 3, the outlet port is coupled to an aqueous suspension 13 of lime which is disposed in a suitable flask 14. The lime acts a a trap to remove any hydrogen chloride from the gas stream.
It is desirable to form a silicon dioxide layer 15 on each of the semiconductor wafers 8 simultaneously with the hydrogen chloride treatment. To accomplish this, the furnace tube 1 is heated to an oxidizing temperature in the range of 800 to 1300 C. The particular temperature employed will be determined primarily by the total thickness of the silicon dioxide layer desired. Oxidation of each wafer 8 is commenced by opening the valve 10 so that the gas mixture containing hydrogen chloride and water vapor enters the inlet port 2 and passes over the exposed surface of each wafer 8.
The water vapor in the gas stream rapidly reacts with the silicon surface of each wafer 8 to thermally form the silicon dioxide layer thereon. Initially, some slight etching of the silicon surface by the hydrogen chloride gas may occur, but etching will stop as soon as a thin initial silicon dioxide layer has been formed to protect the underlying silcon material.
If desired, the possibility of etching may be completely precluded by initially forming a thin silicon dioxide layer by passing oxygen or water vapor into the inlet port 2 by means of a path independent of the liquid 11. The nitrogen carrier gas 9 may then be bubbled through the liquid 11 to provide the desired hydrogen chloride/water vapor mixture at a time when each wafer 8 is protected by a thin initial silicon dioxide layer.
The oxidation process may be carried out in the manner shown in the drawing until the desired thickness of the silicon dioxide layer 15 has been grown. The treatment may be continued, after the desired thickness of silicon dioxide has been attained, by passing the hydrogen chloride/water vapor mixture over the silicon dioxide layer thereafter. Since the rate of growth of the oxide layer 15 decreases as the thickness of the oxide increases, this additional treatment will have only a small effect an oxide layer thickness.
It has been found that by applying hydrogen chloride in the manner described to a silicon dioxide layer during and/or after growth of the layer, the stability and minority :arrier lifetime of the resultant device is substantially improved.
For example, a silicon wafer was divided into two :ortions, both of which were lightly etched in a 10% sodium hydroxide solution and rinsed in hot distilled water. One portion was exposed to water vapor in the normal manner to grow a thermal silicon dioxide layer to 1 thickness of approximately 0.12 microns at a temperaure on the order of 1000 C. The other portion was exiosed to the water vapor/hydrogen chloride atmosphere lescribed above to grow a silicon dioxide layer of the :ame thickness at the same temperature. The wafer porions were annealed in a hydrogen atmosphere at elevated :emperatures in the conventional manner. An aluminum ayer was subsequently evaporated onto each silicon dixide layer and capacitance-voltage measurements were nade before and after exposure of each sample to a 10 'olt bias (between the aluminum layer and the semi- :onductor layer) at 300 C. for about one minute.
Each sample was then allowed to cool and the resultant hift in the capacitance-voltage characteristic was measired. The sample which was oxidized in the normal nanner showed a shift of greater than 22.5 volt, while he sample treated with hydrogen chloride according to the irocess described above showed a shift of less than 0.2 olt.
Other samples subjected to normal oxidation and oxidaion in the presence of hydrogen chloride according to the Il'OCfiSS described above, showed a minority carrier lifeime improvement (as measured by the storage time techiique) of a factor of 3 to 7 for the hydrogen chloride reated samples.
The substantial improvement realized by the hydrogen hloride treatment process according to the preferred emodiment of the invention is believed to be due to reacion of the hydrogen chloride with deleterious metals such is sodium, potassium, calcium (which causes residual harge or polarization) and gold, copper and iron (which educes minority carrier lifetime). The hydrogen chloride eacts with these, and possibly other, metals at the exiosed surface of the silicon dioxide layer to convert hem into the corresponding metal chlorides.
The resulting metal chlorides, being relatively volatile at the processing temperature, leave the silicon dioxide surface. This process establishes a gradient for out-diffusion of the metallic contaminants from the semiconductor wafer through the silicon dioxide layer, and from the exposed surface of the silicon dioxide layer into the surrounding atmosphere.
This out-diifusion reaction, i.e. conversion of the metal contaminants to the corresponding metal chlorides and volatilization of the chlorides at the exposed surface of the silicon dioxide layer, may be carried out at temperatures in the range of 600 to 1200 C.
Since the other halides of the metal contaminants are also volatile, other hydrogen halides may be used instead of hydrogen chloride. In the case where silicon dioxide is employed as the insulating material, hydrogen bromide and hydrogen iodide may be substituted for the hydrogen chloride. Hydrogen fluoride cannot be used in this case since it etches silicon dioxide.
In addition to utilizing silicon dioxide as the insulating or dielectric material disposed on the semiconductor wafer surface, other insulating materials which may be treated in accordance with the invention are Si N ,Al O SiO, Ta O Nb O HfO ZrO and combinations thereof.
The process described herein, by removing impurity centers from the insulating layer, improves the radiation resistance of the resultant device.
In addition to silicon, other semiconductor materials such as germanium, gallium arsenide, gallium phosphide and other Ill-V or II-VI semiconductor materials may be protected by an insulating layer and treated with a hydrogen halide in the manner described herein to improve the operating characteristics of the resultant device.
Rather than thermally growing the silicon dioxide or other insulating layer, the insulating layer may be pyrolytically deposited from the vapor phase. In such cases it is usually desirable to densify the pyrolytically deposited material by heat treatment. Where such a pyrolytic deposition process is employed, it is preferable to employ the hydrogen halide heat treatment process described herein after the insulating layer has been deposited but before it has been densified. The reason for this procedure is that the densified layer is less permeable to out-diffusion of the metallic contaminants to be removed, so that improved processing is obtained if the contaminants are removed by diffusion through the relatively permeable undensified insulating layer.
For example, silicon nitride may be pyrolytically deposited on a silicon substrate by vapor phase reaction of silane (SiH and ammonia (NH l at a temperature on the order of 500 to 700 C. The hydrogen chloride heat treatment described above may be carried out (in this case preferably in an atmosphere free of water vapor) at a temperature of 600 [60] to 800 C. After the hydrogen chloride treatment is completed, or during hydrogen chloride treatment, the silicon nitride layer may be densified by heat treatment at a temperature on the order of 900 C.
Where, according to the preferred embodiment of the invention, a silicon wafer is subjected to a mixture of stream and hydrogen chloride to simultaneously oxidize and remove deleterious metal ingredients from the semiconductor wafer, the ratio of steam flow rate to hydrogen chloride flow rate is determined by the composition of the constant boiling or azeotropic hydrogen chloride aqueous solution.
What is claimed is:
1. In a process for manufacturing a semiconductor device, comprising the steps of:
providing a substrate of a semiconductor material and forming a layer of insulating material on a given surface of said substrate, said device including [iocluding] at least one deleterious metal ingredient,
the improvement comprising:
simultaneously with the forming of at least a portion of the insulating material layer exposing said layer to an atmosphere comprising a hydrogen halide; and heating said substrate to a temperature sufi'icient to convert [connect] said metal to the metal halide and to volatilize the halide at the exposed surface of said insulating layer, thereby establishing a gradient for outdiffusion of said metal from said device toward said exposed surface.
2. The improvement according to claim 1, wherein said layer comprises silicon dioxide and said atmosphere comprises hydrogen chloride, hydrogen bromide or hydrogen iodide.
3. The improvement according to claim 1, wherein said temperature is in the range of 600 to 1200 C.
4. The improvement according to claim 2, wherein said layer is formed by thermal oxidation of said semiconductor material.
5. The improvement according to claim 2, wherein at least a part of said oxidation is carried out by passing an atmosphere comprising steam and hydrogen chloride over said given surface.
6. A process for manufacturing a semiconductor device comprising the steps of:
providing a substrate of a semiconductor material;
pyrolytically depositing a non-densified layer of an insulating material on a surface of said substrate said device including at least one deleterious metal ingredient; exposing said layer to an atmosphere comprising a by drogen halide and heating said substrate to a temperature sufficient to convert said metal to the metal halide and to volatilize the halide at the exposed surface of said insulating layer, thereby establishing a gradient for out-ditfusion of said metal from said device toward said exposed surface; and then densifying said layer by heat treatment at a specific temperature.
7. In a method of thermally growing a silicon dioxide layer on the surface of a silicon material comprising the step of:
heating the silicon material to a temperature of between about 600 C. and 1200 C. in the presence of an oxidizing atmosphere; the improvement comprising the step of:
introducing into the oxidizing atmosphere at gaseous halogen substance selected from the group consisting of hydrogen chloride, hydrogen bromide, and hydrogen iodide to neutralize the electrical eflects of mobile ions in the silicon dioxide layer. 8. A method as defined in claim 7 in which the gaseous halogen substance is hydrogen chloride.
References Cited The following references, cited by the Examiner, are
of record in the patented file of this patent or the original CHARLES E. VAN HORN, Primary Examiner B. J. LEWRIS, Assistant Examiner US. Cl. X.R.

Claims (1)

1. IN A PROCESS FOR MANUFACTURING A SEMICONDUCTOR DEVICE, COMPRISING THE STEPS OF: PROVIDING A SUBSTRATE OF A SEMICONDUCTOR MATERIAL AND FORMING A LAYER OF INSULATING MATERIAL ON A GIVEN SURFACE OF SAID SUBSTRATE, SAID DEVICE INCLUDING (IOCLUDING) AT LEAST ONE DELETERIOUS METAL INGREDIENT, THE IMPROVEMENT COMPRISING: SIMULATNEOUSLY WITH THE FORMING OF AT LEAST A PORTION OF THE INSULATING MATERIAL LAYER EXPOSING SAID LAYER TO AN ATMOSPHERE COMPRISING A HYDROGEN HALIDE; AND HEATING SAID SUBSTRATE TO A TEMPERATURE SUFFICIENT TO CONVERT (CONNECT) SAID METAL TO THE METAL HALIDE AND TO VOLATILIZE THE HALIDE AT THE EXPOSED SURFACE OF SAID INSULATING LAYER, THEREBY ESTABLISHING A GRADIENT FOR OUTDIFFUSION OF SAID METAL FROM SAID DEVICE TOWARD SAID EXPOSED SURFACE.
US31177472 1968-03-20 1972-12-04 Method of treating semiconductor devices Expired USRE28385E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US31177472 USRE28385E (en) 1968-03-20 1972-12-04 Method of treating semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71457768A 1968-03-20 1968-03-20
US31177472 USRE28385E (en) 1968-03-20 1972-12-04 Method of treating semiconductor devices

Publications (1)

Publication Number Publication Date
USRE28385E true USRE28385E (en) 1975-04-08

Family

ID=26978059

Family Applications (1)

Application Number Title Priority Date Filing Date
US31177472 Expired USRE28385E (en) 1968-03-20 1972-12-04 Method of treating semiconductor devices

Country Status (1)

Country Link
US (1) USRE28385E (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457958A (en) 1980-05-02 1984-07-03 Rockwell International Corporation Method of strengthening silicon nitride ceramics
US5529937A (en) * 1993-07-27 1996-06-25 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating thin film transistor
US5843225A (en) * 1993-02-03 1998-12-01 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor and process for fabricating semiconductor device
US6140165A (en) 1993-03-12 2000-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US6168980B1 (en) * 1992-08-27 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6180439B1 (en) 1996-01-26 2001-01-30 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US6225152B1 (en) 1996-01-20 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6232621B1 (en) 1993-02-15 2001-05-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6316789B1 (en) 1994-09-30 2001-11-13 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and method for producing the same
US6316810B1 (en) 1996-01-19 2001-11-13 Semiconductor Energy Laboratory Co., Ltd. Display switch with double layered gate insulation and resinous interlayer dielectric
US6319761B1 (en) 1993-06-22 2001-11-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US6376860B1 (en) 1993-06-12 2002-04-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6465287B1 (en) 1996-01-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device using a metal catalyst and high temperature crystallization
US6475840B1 (en) 1993-06-12 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6478263B1 (en) 1997-01-17 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6501094B1 (en) 1997-06-11 2002-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a bottom gate type thin film transistor
US6504174B1 (en) 1996-01-19 2003-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US6528820B1 (en) 1996-01-19 2003-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US6610142B1 (en) 1993-02-03 2003-08-26 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor and process for fabricating semiconductor device
US6713330B1 (en) 1993-06-22 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US6744069B1 (en) 1996-01-19 2004-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6875628B1 (en) 1993-05-26 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method of the same
US6997985B1 (en) 1993-02-15 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor, semiconductor device, and method for fabricating the same
US7056381B1 (en) 1996-01-26 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
US20060249730A1 (en) * 1996-01-19 2006-11-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US7135741B1 (en) 1996-03-17 2006-11-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953486A (en) * 1959-06-01 1960-09-20 Bell Telephone Labor Inc Junction formation by thermal oxidation of semiconductive material
US3007820A (en) * 1958-07-28 1961-11-07 Motorola Inc Decontamination process
US3085033A (en) * 1960-03-08 1963-04-09 Bell Telephone Labor Inc Fabrication of semiconductor devices
US3162557A (en) * 1961-12-13 1964-12-22 Ibm Selective removal of impurities from semiconductor bodies
US3183128A (en) * 1962-06-11 1965-05-11 Fairchild Camera Instr Co Method of making field-effect transistors
US3243323A (en) * 1962-06-11 1966-03-29 Motorola Inc Gas etching
US3373051A (en) * 1964-04-27 1968-03-12 Westinghouse Electric Corp Use of halogens and hydrogen halides in insulating oxide and nitride deposits
US3518134A (en) * 1967-08-14 1970-06-30 Stanford Research Inst Gaseous etching of molybdenum
US3562033A (en) * 1967-02-13 1971-02-09 Asea Ab Method of doping silicon with group iii substance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3007820A (en) * 1958-07-28 1961-11-07 Motorola Inc Decontamination process
US2953486A (en) * 1959-06-01 1960-09-20 Bell Telephone Labor Inc Junction formation by thermal oxidation of semiconductive material
US3085033A (en) * 1960-03-08 1963-04-09 Bell Telephone Labor Inc Fabrication of semiconductor devices
US3162557A (en) * 1961-12-13 1964-12-22 Ibm Selective removal of impurities from semiconductor bodies
US3183128A (en) * 1962-06-11 1965-05-11 Fairchild Camera Instr Co Method of making field-effect transistors
US3243323A (en) * 1962-06-11 1966-03-29 Motorola Inc Gas etching
US3373051A (en) * 1964-04-27 1968-03-12 Westinghouse Electric Corp Use of halogens and hydrogen halides in insulating oxide and nitride deposits
US3562033A (en) * 1967-02-13 1971-02-09 Asea Ab Method of doping silicon with group iii substance
US3518134A (en) * 1967-08-14 1970-06-30 Stanford Research Inst Gaseous etching of molybdenum

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457958A (en) 1980-05-02 1984-07-03 Rockwell International Corporation Method of strengthening silicon nitride ceramics
US7329906B2 (en) 1992-08-27 2008-02-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7416907B2 (en) 1992-08-27 2008-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6168980B1 (en) * 1992-08-27 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US20050110091A1 (en) * 1992-08-27 2005-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US20050003568A1 (en) * 1992-08-27 2005-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5843225A (en) * 1993-02-03 1998-12-01 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor and process for fabricating semiconductor device
US6610142B1 (en) 1993-02-03 2003-08-26 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor and process for fabricating semiconductor device
US20010045559A1 (en) * 1993-02-15 2001-11-29 Shunpei Yamazaki Semiconductor device and method of fabricating the same
US6232621B1 (en) 1993-02-15 2001-05-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6413842B2 (en) 1993-02-15 2002-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6997985B1 (en) 1993-02-15 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor, semiconductor device, and method for fabricating the same
US7952097B2 (en) 1993-02-15 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7391051B2 (en) 1993-03-12 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US6140165A (en) 1993-03-12 2000-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US6413805B1 (en) 1993-03-12 2002-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US7943930B2 (en) 1993-03-12 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US6987283B2 (en) 1993-03-12 2006-01-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device structure
US6875628B1 (en) 1993-05-26 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method of the same
US6376860B1 (en) 1993-06-12 2002-04-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6475840B1 (en) 1993-06-12 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6713330B1 (en) 1993-06-22 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US6319761B1 (en) 1993-06-22 2001-11-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US6924213B2 (en) 1993-07-27 2005-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US5529937A (en) * 1993-07-27 1996-06-25 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating thin film transistor
US7056775B2 (en) 1993-07-27 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US20030022467A1 (en) * 1993-07-27 2003-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device for fabricating the same
US6455401B1 (en) 1993-07-27 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Methodology for producing thin film semiconductor devices by crystallizing an amorphous film with crystallization promoting material, patterning the crystallized film, and then increasing the crystallinity with an irradiation
US20050245053A1 (en) * 1993-07-27 2005-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US6316789B1 (en) 1994-09-30 2001-11-13 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and method for producing the same
US6316810B1 (en) 1996-01-19 2001-11-13 Semiconductor Energy Laboratory Co., Ltd. Display switch with double layered gate insulation and resinous interlayer dielectric
US7173282B2 (en) 1996-01-19 2007-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a crystalline semiconductor film
US6504174B1 (en) 1996-01-19 2003-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US7679087B2 (en) 1996-01-19 2010-03-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor active region of TFTs having radial crystal grains through the whole area of the region
US7427780B2 (en) 1996-01-19 2008-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US7456056B2 (en) 1996-01-19 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US7709837B2 (en) 1996-01-19 2010-05-04 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and its manufacturing method
US6744069B1 (en) 1996-01-19 2004-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6528358B1 (en) 1996-01-19 2003-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US20030098458A1 (en) * 1996-01-19 2003-05-29 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and its manufacturing method
US20060249730A1 (en) * 1996-01-19 2006-11-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6528820B1 (en) 1996-01-19 2003-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US7078727B2 (en) 1996-01-19 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6225152B1 (en) 1996-01-20 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6541315B2 (en) 1996-01-20 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US7141491B2 (en) 1996-01-26 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US20060236920A1 (en) * 1996-01-26 2006-10-26 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
US6180439B1 (en) 1996-01-26 2001-01-30 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US7056381B1 (en) 1996-01-26 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
US20060099780A1 (en) * 1996-01-26 2006-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US7037811B1 (en) 1996-01-26 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US7422630B2 (en) 1996-01-26 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
US6465287B1 (en) 1996-01-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device using a metal catalyst and high temperature crystallization
US7135741B1 (en) 1996-03-17 2006-11-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6478263B1 (en) 1997-01-17 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US20070138468A1 (en) * 1997-06-11 2007-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing it
US7675060B2 (en) 1997-06-11 2010-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing it
US6501094B1 (en) 1997-06-11 2002-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a bottom gate type thin film transistor
US6791111B2 (en) 1997-06-11 2004-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20050012096A1 (en) * 1997-06-11 2005-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing it
US7192817B2 (en) 1997-06-11 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
USRE28385E (en) Method of treating semiconductor devices
US3556879A (en) Method of treating semiconductor devices
US2802760A (en) Oxidation of semiconductive surfaces for controlled diffusion
KR940007587B1 (en) Manufacturing method of semiconductor device
US3696276A (en) Insulated gate field-effect device and method of fabrication
JPH05218009A (en) Formation method of interlayer insulating film of semiconductor device
US4097314A (en) Method of making a sapphire gate transistor
US3281915A (en) Method of fabricating a semiconductor device
US3798081A (en) Method for diffusing as into silicon from a solid phase
US3766637A (en) Method of making mos transistors
US3447958A (en) Surface treatment for semiconductor devices
US3507716A (en) Method of manufacturing semiconductor device
US3850687A (en) Method of densifying silicate glasses
US3541676A (en) Method of forming field-effect transistors utilizing doped insulators as activator source
Shiono et al. Kinetics of Changes in N f and D it at the Si‐SiO2 Interface under Long‐Term Positive as well as Negative Bias‐Temperature Aging
US3666546A (en) Ion-free insulating layers
US3681155A (en) Aluminum diffusions
US3133840A (en) Stabilization of junction devices with phosphorous tribromide
US3477887A (en) Gaseous diffusion method
JPS6227727B2 (en)
US3668095A (en) Method of manufacturing a metallic oxide film on a substrate
US3585089A (en) Method of making fast switching semiconductive devices with silicon nitride passivation
US3718503A (en) Method of forming a diffusion mask barrier on a silicon substrate
US3634133A (en) Method of producing a high-frequency silicon transistor
US3537889A (en) Low temperature formation of oxide layers on silicon elements of semiconductor devices