Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS8096961 B2
Publication typeGrant
Application numberUS 12/163,408
Publication date17 Jan 2012
Filing date27 Jun 2008
Priority date30 Oct 2003
Fee statusPaid
Also published asCA2486240A1, CA2486240C, CA2729742A1, CA2729742C, CA2729743A1, CA2729743C, EP1529570A2, EP1529570A3, EP1529570A9, US7396336, US8113057, US8485993, US8966981, US20050149151, US20080287791, US20080287838, US20120116268, US20140163431, US20150130374
Publication number12163408, 163408, US 8096961 B2, US 8096961B2, US-B2-8096961, US8096961 B2, US8096961B2
InventorsJames H. Orszulak, James W. McPherson
Original AssigneeCovidien Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Switched resonant ultrasonic power amplifier system
US 8096961 B2
Abstract
A switched resonant power amplifier system for ultrasonic transducers is disclosed. The system includes an amplifier that receives and processes a driver output signal for generating a drive signal that is provided to an ultrasonic device for controlling output of the ultrasonic device. An output control circuit receives and processes a signal related to a feedback signal generated by the ultrasonic device and a divider reference signal, and generates a compensated clock signal that is adjusted for at least one of phase and frequency differences between the received feedback signal and the divider reference signal. A compensated drive circuit receives and processes the compensated clock signal for generating the divider reference signal, and for generating the driver output signal.
Images(3)
Previous page
Next page
Claims(17)
1. A system for controlling an output of an ultrasonic device, the system comprising:
a switched resonant power amplifier adapted to generate a drive signal that is provided to an ultrasonic device to control the output of the ultrasonic device in response to a drive output signal;
an output control circuit including a phase locked loop (PLL) receiving first and second input signals, wherein the PLL processes the first and second input signals to generate a compensated clock signal that is adjusted for at least one of phase and frequency differences between the received first and second input signals; and
a compensated drive circuit configured to generate a counter output signal based on the compensated clock signal, the compensated drive circuit including:
flip-flop circuitry adapted to split the counter output signal into first and second complementary square waves together forming a driver input signal, wherein a sample of at least one of the first and second complementary square waves is the second input signal; and
a driver adapted to amplify the driver input signal and generate the driver output signal.
2. The system according to claim 1, wherein the output control circuit further comprises a wave shaping circuit including:
a zero crossing detector configured to receive and process a feedback signal related to the output of the ultrasonic device and generated by the ultrasonic device, the zero crossing detector generating a corresponding square wave signal; and
a comparator configured to compare the square wave signal to a reference signal to generate a reset signal having a substantially identical frequency to the feedback signal.
3. The system according to claim 2, wherein the output control circuit further comprises a compensating circuit including:
a reference timer configured to receive and process the reset signal to generate a compensated reference signal having substantially the same frequency as the reset signal substantially 180° out-of-phase with respect to the reset signal, wherein frequency and amplitude characteristics of the compensated reference signal are determined at least by the reset signal.
4. The system according to claim 3, wherein the first input signal is the compensated reference signal and the second input signal is a divider reference signal.
5. The system according to claim 1, wherein the compensated drive circuit further includes divider circuitry adapted to step down frequency of the compensated clock signal to a selectable frequency to generate the counter output signal.
6. The system according to claim 2, wherein the feedback signal is indicative of the output of the ultrasonic device, and the output of the ultrasonic device is controlled in real time.
7. The system according to claim 2, wherein the switched resonant power amplifier includes a transformer having primary and secondary windings, wherein the drive signal is coupled to the secondary winding of the transformer.
8. The system according to claim 1, wherein the switched resonant power amplifier includes at least one tuning circuit having a tuning period selected to correspond to a particular resonant frequency of the driver output signal.
9. The system according to claim 1, wherein the switched resonant power amplifier includes first and second switching elements that receive the driver output signal, and the first and second complementary signals of the driver output signal are coupled to the first and second switching elements, respectively.
10. The system according to claim 1, wherein the driver includes a phase delay circuit adapted to selectively adjust at least one of the phase relationship between the first and second complementary signals of the driver output signal and pulse width of pulses of at least one of the first and second complementary signals of the driver output signal.
11. A method for controlling an output of an ultrasonic device, the method comprising:
generating a drive signal to control the output of an ultrasonic device in response to a drive output signal;
providing first and second input signals to an output control circuit including a phase locked loop (PLL), wherein the PLL processes the first and second input signals and generate a compensated clock signal that is adjusted for at least one of phase and frequency differences between the received first and second input signals; and
generating a counter output signal based on the compensated clock signal;
splitting the counter output signal into first and second complementary square waves together forming a driver input signal at flip-flop circuitry, wherein a sample of at least one of the first and second complementary square waves is the second input signal; and
amplifying the driver input signal to generate the driver output signal.
12. The method according to claim 11, further comprising the steps of:
receiving and processing a feedback signal related to the output of the ultrasonic device and generated by the ultrasonic device to generate a corresponding square wave signal; and
comparing the square wave signal to a reference signal and generating a reset signal having a substantially identical frequency to the feedback signal.
13. The method according to claim 12, further comprising the step of:
receiving and processing the reset signal to generate a compensated reference signal having substantially the same frequency as the reset signal substantially 180° out-of-phase with respect to the reset signal, wherein frequency and amplitude characteristics of the compensated reference signal are determined by at least the reset signal.
14. The method according to claim 13, wherein the first input signal is the compensated reference signal and the second input signal is a divider reference signal.
15. The method according to claim 11, wherein the step of generating a counter output signal further includes the step of stepping down the frequency of the compensated clock signal to a selectable frequency to generate the counter output signal.
16. The method according to claim 12, wherein the feedback signal is indicative of the output of the ultrasonic device, and the output of the ultrasonic device is controlled in real time.
17. The method according to claim 11, further comprising the step of:
selectively adjusting at least one of the phase relationship between the first and second complementary signals of the driver output signal and pulse width of pulses of at least one of the first and second complementary signals of the driver output signal.
Description
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation application of U.S. application Ser. No. 10/974,332 filed on Oct. 27, 2004 now U.S. Pat. No. 7,396,336, which claims the benefit of priority to U.S. Provisional Application Ser. No. 60/538,202 filed on Jan. 22, 2004, U.S. Provisional Application Ser. No. 60/527,812 filed on Dec. 8, 2003, and U.S. Provisional Application Ser. No. 60/515,826 filed on Oct. 30, 2003, the entire contents of which is incorporated by reference herein.

BACKGROUND OF THE INVENTION

1. Technical Field

The present disclosure relates to devices for amplifying an input signal and providing an output signal to a surgical instrument. More particularly, the present disclosure relates to a switched resonant ultrasonic power amplifier system for surgical instruments.

2. Background of Related Art

Conventional power amplifier circuits for supplying drive signals to ultrasonic transducers are susceptible to drift and droop in power delivery and variations in frequency when the ultrasonic transducer is exposed to changing loading conditions. Additionally, conventional power amplifier circuits require a relatively large footprint, are not lightweight, have efficiency problems, are generally complex circuits, and require heat sinking to dissipate heat generated during operation. Due to their relatively large size and radiated heat, placement of conventional power amplifier circuits may be problematic in a medical treatment facility. Therefore, a need exists for a power amplifier circuit to supply a drive signal to an ultrasonic transducer and which overcomes the problems of conventional power amplifiers.

SUMMARY

A switched resonant ultrasonic power amplifier system that has improved operating efficiency is provided. The switched resonant ultrasonic power amplifier system of the present disclosure has reduced heat generating characteristics and a smaller footprint than conventional power amplifiers. Furthermore, the switched resonant ultrasonic power amplifier system includes compensation circuitry for changing tissue loads during system operation, structure for frequency, phase, and gain stabilization and structure for ultrasonic power loss compensation.

The present disclosure relates to a switched resonant ultrasonic power amplifier system including a switched resonant power amplifier. The power amplifier system further includes a wave shaping circuit, a frequency generating and compensating circuit, and a compensated drive circuit. The switched resonant power amplifier generates a transducer driver signal for driving an ultrasonic transducer. The wave shaping circuit includes a zero crossing detector and a comparator. A feedback signal from the ultrasonic transducer is generally sinusoidal and is applied to an input of the zero crossing detector where it is transformed into a square wave. The square wave output of the zero crossing detector is capacitively coupled to the input of the comparator to form a reset signal.

The frequency generating and compensating circuit includes a reference timer and a phase-locked loop. The reset signal is applied to an input of the reference timer to generate a compensated reference signal having a substantially identical frequency that is further applied to an input of the phase-locked loop. The phase-locked loop outputs a compensated clock signal at a particular frequency that is controllable by the compensated reference signal applied to the input of the phase-locked loop. The compensated clock signal is generally at a different frequency than the desired output signal to be applied to the ultrasonic transducer.

The phase locked loop compares the compensated reference signal to a divider reference signal for generating a frequency error signal and/or a phase error signal. The phase locked loop provides frequency compensation by adjusting the compensated clock signal according to a value of the frequency error signal. In addition, it may include a phase delay circuit for adjusting the phase relationship between the compensated reference signal and the divider reference signal according to a value of the phase error signal. Generally, the phase locked loop receives digital input signals from the drive circuit and the wave shaping circuit. Alternatively, the phase locked loop may be configured and adapted for mixed-mode signal processing where the inputs are a combination of analog and digital signals. By advantageously adjusting the compensated clock signal for frequency and/or phase, the ultrasonic power amplifier system compensates the gain of the ultrasonic amplifier system.

The compensated clock signal is applied to an input of the compensated drive circuit. The compensated drive circuit includes a divider, a flip-flop, and a driver. A selected step-down ratio is applied to the compensated clock signal in the divider that results in a counter output signal delivered by the divider to the flip-flop, which has a lower frequency than the compensated clock signal. The counter output signal has a frequency that is approximately double the selected operating frequency for the ultrasonic transducer. A further reduction in frequency occurs as the counter output signal is applied to the flip-flop. The flip-flop generates two complementary square waves that are substantially 180° out-of-phase with respect to each other. Each of the square waves has a frequency that is at the selected operating frequency for the power amplifier and approximately one-half of the frequency of the counter output signal. These complementary square waves are applied to inputs of the driver for amplification and transmission to the inputs of the switched resonant power amplifier as driver output signals.

In another preferred embodiment, the driver includes a phase delay circuit that cooperates with the driver and provides phase compensation for the switched resonant power amplifier input signals. By controlling the phase relationship between the input signals, the driver is now phase correlated and random phase relationships are significantly minimized.

The switched resonant power amplifier includes a pair of insulated gate bi-polar transistors that receive the driver output signals. The insulated gate bi-polar transistors are biased such that when one is conducting the other one is not conducting, since one driver output signal has a value that corresponds to a “high” value, while the complementary driver output signal has a value that corresponds to a “low” value. When the driver signals change states (e.g., high to low and low to high), the respective insulated gate bi-polar transistors change from a conducting state to a non-conducting state, thereby providing an output to a primary side of an output transformer. On a secondary side of the output transformer is a pair of DC blocking output capacitors further coupled to an input of an ultrasonic device. The waveforms on the primary side of the output transformer are coupled across to a secondary side of the output transformer, where the waveforms combine to form the transducer driver signal. The ultrasonic device includes an ultrasonic transducer and a feedback transducer that are operatively coupled to the secondary side of the output transformer. The ultrasonic transducer receives the transducer drive signal from the output transformer and drives the transducer element to deliver the ultrasonic energy. The feedback transducer generates the feedback signal that is coupled to the wave shaping circuit.

In addition, the ultrasonic power amplifier system includes an output control circuit. The output control circuit includes the frequency generating and compensating circuit and the drive circuit. It cooperates with the wave shaping circuit for real time monitoring and control. The reset signal, that is representative of the feedback signal, is received by the frequency generating and compensating circuit for generating a compensated clock circuit. The divider reference signal is compared to the compensated reference signal in real time to control the compensated clock signal for frequency, phase, and/or gain. Additionally, the drive circuit includes a phase delay drive disposed in the driver for additional phase compensation between switched resonant power amplifier input signals. By providing real time monitoring and control of the drive signal to the ultrasonic device, the ultrasonic power amplifier system is capable of automatically monitoring and controlling the output of the ultrasonic device.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the presently disclosed switched resonant ultrasonic power amplifier system are described herein with reference to the drawings, wherein:

FIG. 1 is block diagram of a switched resonant ultrasonic power amplifier system in accordance with an embodiment of the present disclosure; and

FIG. 2 is a schematic diagram of an embodiment of a switched resonant power amplifier of FIG. 1 in accordance with the present disclosure.

DETAILED DESCRIPTION

Embodiments of the presently disclosed switched resonant ultrasonic power amplifier system will now be described in detail with reference to the drawings, in which like reference numerals and characters designate identical or corresponding elements in each of the drawings.

As mentioned above, conventional power amplifier circuits, which supply drive signals to ultrasonic transducers, are typically susceptible to so-called “drift” and “droop” in power delivery and variations in frequency when the ultrasonic transducer is exposed to changing loading conditions. Moreover, conventional power amplifier circuits are typically very complex (e.g., complex circuitry), require a relatively large footprint and are quite burdensome, suffer from efficiency problems, and require a heat sink (or other cooling means) to dissipate heat generated during operation. As a result, placement of conventional power amplifier circuits may be problematic in a medical treatment facility.

Referring to FIG. 1, an exemplary embodiment of the presently disclosed switched resonant ultrasonic power amplifier system 10 is illustrated. Switched resonant ultrasonic power amplifier system 10 is enclosed by box 12 in FIG. 1 and includes a switched resonant power amplifier 100, a wave shaping circuit 125 having a zero crossing detector 130 and a comparator 140, and a frequency generating and compensating circuit 157 having a reference timer 150 and a phase locked loop (“PLL”) 160. The switched resonant ultrasonic power amplifier system 10 further includes a compensated drive circuit 193 having a divider 170, a flip-flop 180, and a driver 190. An ultrasonic device 200 includes an ultrasonic transducer 114 and a feedback transducer 118 (as shown in FIG. 2) for receiving a transducer driver signal 116 that is an output of the switched resonant power amplifier 100. Preferably, driver signal 116 is applied to ultrasonic transducer 114. A feedback signal 120 is generated by the feedback transducer 118 and is communicated to zero crossing detector 130. Feedback signal 120 is proportional to driver signal 116 with substantially similar phase and frequency values and generally lower voltage values.

As shown in FIG. 2, switched resonant power amplifier 100 includes a plurality of switching elements 102A, 102B; a corresponding number of resonant tuning components or elements including a tuning capacitor 104A, 104B and a tuning inductor 106A, 106B; and an output transformer 108. Tuning capacitors 104A, 104B and tuning inductors 106A, 106B form first and second tuning circuits 109A, 109B respectively. Output transformer 108 is operatively coupled to an input of ultrasonic transducer 114. A variety of devices may be used for switching elements 102A, 102B, including relays, metal oxide semiconductor field effect transistors (“MOSFET”), and insulated gate bipolar transistors (“IGBT”).

In operation, driver 190 provides at least one driver output signal 195 that is coupled to the input of at least one switching element 102. Driver output signal 195 includes a corresponding number of input signals 195A, 195B to the number of switching elements 102A, 102B of switched resonant power amplifier 100. Each switching element 102A, 102B is capable of producing an amplified output of the respective input signals 195A, 195B. A supply voltage VDC is supplied through tuning inductors 106A, 106B to switching elements 102A, 102B where tuning inductors 106A, 106B are connected in a series relationship to a supply lead of each switching element 102A, 102B. Tuning capacitors 104A, 104B are connected in a parallel relationship to an output lead of each switching element 102A, 102B.

The amplified output of each switching element 102A, 102B is coupled to the corresponding tuning circuit 109A, 109B. Tuning capacitors 104A, 104B and tuning inductors 106A, 106B are selected to correspond to a particular resonant frequency of input signals 195A, 195B. For example, if the selected transducer driver signal 116 has a frequency of 23 KHz, i.e., a period of 43.5 μs, then the tuned period for each switching element 102A, 102B is 21.75 μs. The tuned period for tuning circuits 109A, 109B is defined by the formula T=π(LC)1/2, where L is the value of tuning inductors 106A, 106B, C is the value of tuning capacitors 104A, 104B, and T is the tuned period.

Output transformer 108, in cooperation with output capacitors 110 couples the amplified output of switching elements 102A, 102B, or driver signal 116, to ultrasonic transducer 114. Output capacitors 110 are connected in a series arrangement with the secondary coil of output transformer 108. Using output capacitors 110 in a series arrangement substantially blocks any residual direct current (“DC”) and passes substantially all the alternating current (“AC”) on the secondary side of output transformer 108. Preferably, output transformer 108 has a ratio of approximately 1:1 while output capacitors 110 have a value of approximately 10 μf.

In a preferred embodiment, a pair of IGBTs, used as switching elements 102A, 102B, is disposed in switched resonant power amplifier 100. Driver 190 provides the pair of input signals 195A, 195B that are coupled to the gates of switching elements 102A, 102B. Input signals 195A, 195B are square waves that are approximately 180° out of phase with respect to each other. Supply voltage VDC is applied to the drains, or collectors, of switching elements 102A, 102B through series connected tuning inductors 106A, 106B. Tuning capacitors 104A, 104B are additionally connected in parallel to the drains, or collectors, thereby defining first and second tuning circuits 109A, 109B. Switching elements 102A, 102B further include sources, or emitters, that are connected to a chassis common. As each input signal 195A, 195B changes in value, a corresponding inverse change in the output of switching elements 102A, 102B occurs.

Each switching element 102A, 102B only conducts when each corresponding input signal 195A, 195B rises above a threshold value. Using a pair of switching elements 102A, 102B permits a first switching element 102A to conduct (e.g., a first input signal 195A is above the threshold value) while a second switching element 102B does not conduct (e.g., a second input signal 195B is at or below the threshold value), since the corresponding first and second input signals 195A, 195B are approximately 180° out of phase with respect to each other. After a period of time, corresponding to the period of first input signal 195A, has elapsed, first input signal 195A is now at or below the threshold value while second input signal 195B is above the threshold value. At this point, first switching element 102A stops conducting while second switching element 102B begins conducting, thereby providing a switching capability of switched resonant power amplifier 100.

Further still, each tuning circuit 109A, 109B is operatively coupled to the primary side of output transformer 108 and connected in a series relationship to the other tuning circuit 109B, 109A respectively. Selecting the values of L and C, for tuning inductors 106A, 106B and tuning capacitors 104A, 104B, respectively, determines the resonant frequency of first and second tuning circuits 109A, 109B, respectively.

In an exemplary embodiment, the resonant frequency of each tuning circuit 109A, 109B is tuned near to the operating frequency of each input signal 195A, 195B. When first switching element 102A is conducting, it generates a first output that is operatively coupled through first tuning circuit 109A. The output of first switching element 102A and its associated first tuning circuit 109A is operatively coupled to the primary side of output transformer 108 and is preferably an AC half sine wave.

Operation of second switching element 102B and tuning circuit 109B is substantially similar to the operation of first switching element 102A and first tuning circuit 109A as described above. Second switching element 102B does not conduct when first switching element 102A conducts, since input signal 195B is approximately 180° out of phase with respect to input signal 195A. Therefore, the output of switching element 102B is essentially an AC half sine waveform that is complementary to the output of switching element 102A and provides a substantially smooth combined sinusoidal output wave at the secondary side of output transformer 108. The output wave has a frequency that is substantially equal to the input frequency of input signals 195A, 195B.

Output transformer 108 is preferably configured for a 1:1 primary to secondary ratio where the output waveform is substantially equivalent in magnitude to the input waveform. Output capacitors 110 are connected to the secondary side of output transformer 108 and generally block any DC component of the output waveform that may be present on the secondary side of output transformer 108. In addition, output capacitors 110 conduct substantially the entire AC component of the output waveform, thereby contributing to the smooth sinusoidal AC output waveform. The downstream side of output capacitors 110 is connected to the ultrasonic transducer 114, which could be magnetostrictive, piezoelectric, or transducer structures as is known in the art.

Ultrasonic device 200 includes feedback transducer 118 for providing feedback signal 120 to wave shaping circuit 125. Output transformer 108 is electrically coupled to ultrasonic device 200 such that electrical power is delivered to ultrasonic transducer 114 as transducer driver signal 116 and converted to ultrasonic power. Furthermore, switched resonant power amplifier 100 generates transducer driver signal 116 with the desired signal characteristics (e.g., wave shape, amplitude, and/or frequency) and communicates it to an input of ultrasonic device 200. In a preferred embodiment, transducer driver signal 116 is a substantially smooth sinusoidal AC waveform with the desired signal characteristics for driving ultrasonic transducer 114.

Feedback transducer 118 is also disposed on the secondary side of output transformer 108 and generates feedback signal 120 that is electrically coupled to zero crossing detector 130. In a preferred embodiment, feedback signal 120 is a sample of transducer driver signal 116 having a waveform with substantially the same frequency and wave shape. Since feedback signal 120 and transducer driver signal 116 are coupled within the ultrasonic device 200, characteristics of feedback signal 120 are related to characteristics of transducer driver signal 116 and reflect changes in the characteristics of the transducer(s) (e.g., ultrasonic transducer 114 and/or feedback transducer 118) of the ultrasonic device 200. For example, if the frequency of transducer driver signal 116 increases with a corresponding decrease in its period, feedback signal 120 has a corresponding increase it its frequency and substantially matches the frequency change of transducer driver signal 116. Changes in other characteristics of transducer driver signal 116 result in corresponding changes to the respective characteristics of feedback signal 120.

Zero crossing detector 130, in cooperation with associated circuitry, modifies feedback signal 120 and provides an output that is substantially a square wave 135. In a preferred embodiment, zero crossing detector 130 includes a comparison circuit, such as an LM393 integrated circuit, having biasing circuitry and a diode coupled to the output of the comparison circuit. Preferably, feedback signal 120 is coupled to the input of the comparison circuit for providing a more stable output square wave 135. As a component of wave shaping circuit 125, zero crossing detector 130 receives an analog input signal (e.g., feedback signal 120) and produces a digital output signal (e.g., square wave 135).

By applying feedback signal 120 to an appropriate input lead of the comparison circuit, zero crossing detector 130 generates square wave 135 having a waveform representative of feedback signal 120. As feedback signal 120 transitions above a predetermined (zero) voltage reference point, thereby becoming more positive, the comparison circuit conducts and provides a positive portion of square wave 135. The output will be of substantially constant amplitude as long as feedback signal 120 is more positive than the zero reference point. When feedback signal 120 is at the zero reference point, there is no difference in voltage on the input leads of the comparison circuit, thereby causing the comparison circuit to stop conducting, and provide a zero output. As a result, the output of the comparison circuit rapidly changes from a constant positive value to zero, thereby providing a substantially instantaneous transition of the output signal.

Once feedback signal 120 transitions below the zero reference point, thereby becoming more negative, the comparison circuit again conducts and provides a negative portion of square wave 135. Zero crossing detector 130 is biased and configured to provide a rapid change from the constant positive amplitude to the constant negative amplitude forming the leading and trailing edges of square wave 135, such that the edges are substantially vertical. Feedback signal 120 and square wave 135 have substantially identical frequencies, even if their respective amplitudes are different.

Square wave 135 is coupled to comparator 140, where square wave 135 is preferably capacitively coupled to comparator 140. Comparator 140 includes a comparison circuit and is preferably coupled to a capacitor coupling circuit that generally blocks any DC component of square wave 135 from being transmitted from zero crossing detector 130 and transmits substantially the entire AC component of square wave 135 to comparator 140. In a preferred embodiment, comparator 140 includes an IC comparator, such as an LM393 along with associated biasing and feedback circuitry.

As the amplitude of square wave 135 goes positive past the zero voltage reference point, it biases comparator 140 such that the output of comparison circuit goes negative, thereby causing the output of comparator 140, a reset signal 145, to become more negative. A portion of reset signal 145 is coupled through the feedback circuitry to another input of the comparison circuit, thereby providing feedback to the comparison circuit to produce a more stable output (e.g., reset signal 145). Preferably, reset signal 145 has a substantially identical frequency to square wave 135 with a waveform that is substantially 180° out-of-phase with respect to square wave 135.

Reset signal 145 is communicated to an input of reference timer 150 for controlling a timing function of reference timer 150. As reset signal 145 drops below a predetermined reset threshold value, it causes reference timer 150 to reset. When reference timer 150 resets, it generates a compensated reference signal 155 having a substantially identical frequency to reset signal 145, square wave 135, and feedback signal 120. Compensated reference signal 155 does not have the same phase characteristics as reset signal 145, but is essentially 180° out-of-phase with respect to reset signal 145 and feedback signal 120. Consequently, compensated reference signal 155 is substantially in phase with square wave 135.

In an exemplary embodiment, reference timer 150 includes an IC timer, such as a 555 precision timer, having associated biasing and feedback circuitry. Reference timer 150 in cooperation with the biasing circuitry is configured for operation as an astable multivibrator that produces a square wave output. Frequency and amplitude characteristics of the square wave are determined by the biasing circuit and the signal applied to a reset input of reference timer 150. According to an exemplary embodiment of the present disclosure, reset signal 145 is applied to a reset input of reference timer 150 to produce compensated reference signal 155. Combining the biasing configuration for the reference timer 150 in cooperation with reset signal 145 yields compensated reference signal 155 that has substantially the same frequency as feedback signal 120.

In a preferred embodiment, the 555 precision timer and the associated biasing circuitry of reference timer 150 are configured to generate compensated reference signal 155 that has a frequency lower than the selected operating frequency of switched resonant ultrasonic power amplifier system 10. More specifically, the 555 precision timer and its associated biasing circuitry are configured so that when the frequency of reset signal 145 is below the frequency of compensated reference signal 155, the biasing circuitry determines (e.g., controls) the frequency value of compensated reference signal 155 for providing compensation. In the situation where reset signal 145 has a higher frequency value than compensated reference signal 155, reset signal 145 acts as a trigger for the 555 precision timer causing a corresponding increase in the frequency of compensated reference signal 155.

An input of PLL 160 is coupled to an output of reference timer 150 for communicating compensated reference signal 155. PLL 160 receives compensated reference signal 155 and compares it to a divider reference signal 177. When reference signal 155 and divider reference signal 177 have substantially identical frequencies, PLL 160 produces a compensated clock signal 165 having a set frequency that corresponds to the frequency of the reference signal 155 and divider reference signal 177. In the situation where compensated reference signal 155 has a higher frequency than divider reference signal 177, PLL 160 lowers the frequency of compensated clock signal 165 as described below. Conversely, when compensated reference signal 155 has a lower frequency than divider reference signal 177, PLL 160 raises the frequency of compensated clock signal 165 as described below.

Advantageously, PLL 160 includes an IC PLL, such as a 4046 PLL IC chip, and associated biasing circuitry. In a preferred embodiment using PLL 160, compensated reference signal 155 is coupled to a signal input of the PLL 160 while divider reference signal 177 is applied to a reference input of PLL 160. Compensated clock signal 165 is generated by a voltage-controlled oscillator internal to PLL 160 chip and tuned to an output frequency. Internally, the frequencies of compensated reference signal 155 and divider reference signal 177 are compared to produce a frequency error signal at a phase comparator output of PLL 160.

This frequency error signal is applied to the voltage controlled oscillator input for adjusting the output frequency of the voltage controlled oscillator. If compensated reference signal 155 has a greater frequency than divider reference signal 177, the frequency error signal applied to the voltage controlled oscillator causes a decrease in the output frequency of compensated clock signal 165. In the situation where compensated reference signal 155 has a lower frequency than divider reference signal 177, the frequency error signal applied to the voltage controlled oscillator results in an increase of the output frequency of compensated clock signal 165.

While the above embodiment provides frequency compensation for compensated clock signal 165, it may also be desirable to provide phase compensation for clock signal 165. Frequency generating and compensating circuit 157 receives reset signal 145, which is representative of the output of ultrasonic device 200. As in the previous embodiment, reset signal 145 controls the generation of compensated reference signal 155 that has substantially the same phase and frequency as feedback signal 120. PLL 160 receives compensated reference signal 155 and compares it to divider reference signal 177, which is representative of compensated clock signal 165, thereby producing a phase error signal. When the phase difference between compensated reference signal 155 and divider reference signal 177 is at a minimum value (e.g., substantially in-phase), the phase error signal will have a low or first value. In situations where the phase difference between the signals is at a maximum value (e.g., substantially out-of-phase), the phase error signal will have a high or second value. If the phase difference between compensated reference signal 155 and divider reference signal 177 is between the maximum and minimum values, the phase error signal will have a value between the first and second values that is representative of the phase difference between the signals.

The phase error signal cooperates with associated circuitry in PLL 160 to adjust the timing of compensated clock signal 165 and thereby its phase relationship to compensated reference signal 155. More particularly, a delay circuit 162, such as that discussed in detail below, is included in PLL 160 to control the timing of compensated clock signal 165 for adjusting the phase timing of compensated clock signal 165 in accordance with the phase error signal. When the phase error signal indicates that compensated reference signal 155 does not have the desired phase relationship to divider reference signal 177, the delay circuit 162 of PLL 160 adjusts the phase timing of compensated clock signal 165 to change the phase relationship between them and preferably synchronize them. Changes to the timing of compensated clock signal 165 are reflected in divider reference signal 177 that is operatively coupled to PLL 160. In preferred embodiments, compensated reference signal 155 and compensated clock signal 165 are substantially in-phase with one another, thereby generating a phase error signal having a minimum value.

The PLL 160 may be configured and adapted to process signals that are analog, digital or a combination thereof. In this configuration, inputs to PLL 160 may be analog signals, digital signals, or a combination of analog and digital signals (e.g., mixed-mode). In the previous embodiment, the inputs were digital signals (e.g., compensated reference signal 155 and divider reference signal 177) that were processed by PLL 160. In the mixed-mode configuration, PLL 160 receives an analog input signal (e.g., feedback signal 120 directly from ultrasonic device 200) and compares it to an analog or digital reference signal, such as divider reference signal 177, as in the previous embodiment, for generating the frequency error signal and/or the phase error signal and adjusting the compensated clock signal accordingly.

In exemplary embodiments of the present disclosure, frequency generating and compensating circuit 157 includes frequency and phase compensation as discussed hereinabove. The frequency and phase compensation may be provided substantially simultaneously. By advantageously providing frequency and/or phase compensation, ultrasonic power amplifier system 10 provides gain compensation for reset signal 145 since the desired frequency and/or phase of compensated clock signal 165 is maintained during operation of ultrasonic power amplifier system 10. Furthermore, power compensation is provided, such as when adjustment and compensation of frequency, gain and/or phase (preferably frequency, gain and phase) is optimized. In addition, compensation for changing tissue loads is advantageously provided, since tissue loading changes the “tune”, i.e., the natural frequency of the transducer system (e.g., ultrasonic transducer 114 and/or feedback transducer 118), which is being adjusted and compensated for by the switched resonant ultrasonic power amplifier system 10.

By way of example only, assume that the desired frequency is 23 KHz and compensated clock signal 165 has a frequency of 1 MHz that is sampled and output from flip-flop 180 as divider reference signal 177. When divider reference signal 177 and compensated reference signal 155 have substantially matching frequencies, the frequency error signal is essentially zero. Therefore, the voltage controlled oscillator continues to generate compensated clock signal 165 at a frequency of 1 MHz. If compensated reference signal 155 has a frequency greater than the 23 KHz of divider reference signal 177, then the frequency error signal causes the voltage-controlled oscillator to decrease the frequency of compensated clock signal 165 below 1 MHz. This decreases the frequency of divider reference signal 177 to match the frequency of compensated reference signal 155′ thereby returning switched resonant ultrasonic power amplifier system 10 to a state of equilibrium at the desired frequency. By using PLL 160 to correct changes in frequency as in the above-given example, switched resonant ultrasonic power amplifier system 10 automatically adjusts in real time for frequency variations due to changing load conditions, power supply variations, or other frequency shifting conditions. In a similar manner, PLL 160 automatically adjusts and compensates for phase differences between compensated clock signal 165 and divider reference signal 177.

The output of PLL 160, e.g., compensated clock signal 165, is coupled to an input of compensated drive circuit 193, and preferably, to an input of divider 170 where the frequency of compensated clock signal 165 is stepped-down by divider 170 to a desired counter output signal 175. Divider 170 is configurable, using a plurality of input to output ratios, to step-down compensated clock signal 165 to one of a multitude of different output frequencies. Therefore, switched resonant ultrasonic power amplifier system 10 is adaptable for a number of different applications, devices or systems using different desired frequencies.

In an exemplary embodiment, divider 170 is a 4059 programmable divide-by-n counter chip having associated biasing circuitry. A clock input receives compensated clock signal 165 for processing by divider 170. Biasing circuitry for divider 170 establishes the step-down ratio for divider 170 and reduces the frequency of compensated clock signal 165 to a desired frequency for counter output signal 175.

Advantageously, the associated biasing circuitry is operatively coupled for programming the step-down ratio where the biasing circuitry is controllable by software and/or hardware switches. Hardware switches allow the operator to manually change the step-down ratio of divider 170 and adjust for different frequency outputs of switched resonant power amplifier system 10. Using software switches to control the biasing circuitry allows remote operation of the step-down ratio and further permits automatic control of the biasing circuitry by associated circuitry coupled to switched resonant power amplifier system 10, thereby improving the flexibility and adaptability of switched resonant power amplifier system 10.

Coupled to the output of divider 170 is flip-flop 180 for splitting counter output signal 175 into complementary square waves (e.g., each square wave is substantially 180° out-of-phase with respect to the other square wave) where each square wave has a frequency that is substantially one-half of the frequency of counter output signal 175. A portion or sample of one of the output square waves is diverted to a comparator input of PLL 160 as divider reference signal 177, which is discussed above. Preferably, flip-flop 180 is a quadruple D-type flip-flop with clear, such as a 74HC175 integrated circuit with associated biasing circuitry.

Flip-flop 180 is biased such that when counter output signal 175 is applied to a clock input of flip-flop 180, the flip-flop 180 outputs Q and ^Q, which are substantially 180° out-of-phase with respect to each other. Additionally, the output ^Q is coupled to a data input of flip-flop 180 for biasing flip-flop 180. By using ^Q as the input to the data input, the outputs Q and ^Q are toggled by counter output signal 175 such that each of the outputs Q and ^Q are substantially 180° out-of-phase with respect to each other and substantially one-half of the input frequency of counter output signal 175. Preferably, the output Q is sampled as divider reference signal 177 for supplying a frequency comparison signal to PLL 160 as discussed above.

A driver input signal 185 is the output of flip-flop 180 and is further coupled to an input of driver 190. Driver 190 amplifies driver input signal 185 to supply driver output signal 195 to switched resonant power amplifier 100. Preferably, driver 190 is selected for amplifying driver input signal 185 to match the desired input characteristics for switched resonant power amplifier 100.

In a preferred embodiment, driver 190 includes a CMOS MOSFET driver such as the MIC4424 along with associated biasing circuitry. Driver 190 has electronic characteristics that are preferred for use with the switching elements 102A, 102B (e.g., IGBTs) of switched resonant power amplifier 100. Driver input signal 185 includes the outputs Q and ^Q that are coupled to inputs A and B, respectively, of the driver 190 as shown in FIG. 2. Driver 190, in cooperation with its biasing circuitry, amplifies the components (Q and ^Q) of driver input signal 185 and communicates the amplified signals to outputs A and B as driver signals. The amplified signals substantially maintain their frequency and phase characteristics during the amplification process. Outputs A and B are combined to form driver output signal 195 and are coupled to the inputs of switched resonant power amplifier 100 as input signals 195A, 195B.

Additional frequency stability is provided by combining wave shaping circuit 125 with frequency generating and compensating circuit 157 to provide a desired frequency and/or phase compensated input signal to driver 190. By advantageously matching driver 190 to switched resonant power amplifier 100, proper coupling between driver input signal 185 and switched resonant power amplifier input signals 195A, 195B is obtained thereby effecting the desired amplification by switched resonant power amplifier 100.

In another preferred embodiment, driver 190 includes one or more components and/or circuits to form a phase delay circuit 192 as are known in the art. One such circuit includes two 555 timers (not shown) connected in series and associated biasing components. Alternatively, the 555 timers may be replaced by a 556 timer, which includes two 555 timers. Another example of a delay circuit includes two 74121 integrated circuits and associated biasing components. Preferably, the biasing circuitry in phase delay circuit 192 includes components that are adjustable by the system and/or the operator for adjusting the phase relationship between switched resonant power amplifier input signals 195A, 195B and/or the pulse widths of the input signals 195A, 195B. Advantageously, the above-mentioned delay circuits are capable of producing an output signal that is time delayed with respect to the input signal. In addition, each of the above-mention circuits is capable of producing an output signal that has a width that is less than, greater than, or equal to the input signal's width.

Phase delay circuit 192 advantageously cooperates with driver 190 for controlling the phase relationship between switched resonant power amplifier input signals 195A, 195B and for controlling their respective pulse widths. In the previous embodiment, switched resonant power amplifier input signals 195A, 195B were substantially 180° out-of-phase with respect to each other. However, by adding phase delay circuit 192 to driver 190, the timing and the pulse widths of each of the switched resonant power amplifier input signals 195A, 195B is controllable. In preferred embodiments, the phase relationship between switched resonant power amplifier input signals 195A and 195B is variable between about 0° to a value about 360°, while the pulse widths of the input signals 195A and 195B are substantially equal to one another. By adjusting the phase relationship and the pulse widths, ultrasonic power amplifier system 10 regulates an output from ultrasonic device 200 having the desired characteristics for a particular procedure.

When the phase relationship between switched resonant power amplifier input signals 195A and 195B is modified, drive signal 116 is pulsed and the ultrasonic power amplifier system 10, in turn, produces a pulsed output from ultrasonic device 200 rather than a substantially continuous output, where the time delay between the output pulses is proportional to the phase relationship. The duration of pulses output by ultrasonic device 200 is adjustable by changing the pulse widths of input signals 195A, 195B. Numerous advantageous combinations of pulse width and phase relationship may be used in ultrasonic power amplifier system 10 depending on the particular procedure.

Additionally, driver 190 in cooperation with phase delay drive 192 provides phase correlation between switched resonant power amplifier input signals 195A, 195B. Since the desired phase relationship is established and maintained between the input signals 195A and 195B by phase delay circuit 192, random or undesirable phase relationships between the input signals is significantly minimized.

Changes in the loading characteristics of transducer driver signal 116 caused by changes in the loading of ultrasonic device 200 are fed back to zero crossing detector 130 as changes in feedback signal 120. By way of example only, if ultrasonic device 200 is rapidly unloaded, its operating frequency rises and is reflected as a frequency rise in feedback signal 120. This increase in the operating frequency of ultrasonic device 200 is communicated to feedback transducer 118 with a corresponding frequency increase in feedback signal 120. As discussed in detail hereinabove, as feedback signal 120 increases in frequency, zero crossing detector 130 generates square wave 135 having a corresponding increase in frequency. The increased frequency of square wave 135 is capacitively coupled to comparator 140 for generating reset signal 145 that reflects the frequency increase in feedback signal 120. In cooperation with reference timer 150, the increased frequency of reset signal 145 raises the frequency of compensated reference signal 155 that is communicated to PLL 160.

An increased frequency input to PLL 160, as evidenced by the increased frequency of compensated reference signal 155, causes PLL 160 to raise compensated clock signal 165. A higher frequency of compensated clock signal 165 is transferred to an input of divider 170 thereby causing a corresponding increase in the frequency of counter output signal 175 that is communicated to flip-flop 180. Output from flip-flop 180 is supplied as driver input signal 185 and as driver reference signal 177, both signals having increased frequency. The resulting increase in the frequency of driver input signal 185 is applied to driver 190 and raises the frequency of driver output signal 195. By raising the frequency of driver output signal 195, switched resonant power amplifier 100 produces a higher frequency transducer driver signal 116 in response. Preferably, the higher frequency of transducer driver signal 116 is substantially identical to the frequency of frequency feedback signal 120, thereby returning power amplifier 10 to a steady-state equilibrium condition where transducer driver signal 116 and feedback signal 120 are at the substantially identical frequency.

By actively monitoring the output of ultrasonic device 200 through feedback signal 120 and adjusting driver signal 116 in response thereto, ultrasonic power amplifier system 10 automatically adjusts the output of ultrasonic device 200 in response to changes in operating parameters in real time. More specifically, ultrasonic power amplifier system 10 includes an output control circuit 197 that includes frequency generating and compensating circuit 157 and drive circuit 193. Output control circuit 197 receives reset signal 145 and generates switched resonant power amplifier input signals 195A, 195B having the desired frequency, phase, and/or gain compensation as discussed in detail above.

By advantageously selecting and using solid-state and/or semi-conductor components, switched resonant power amplifier system 10 can be made to have a smaller footprint, or size, than a conventional power amplifier circuit for a comparable output. In addition, switched resonant power amplifier system 10 produces less heat and is more efficient than prior art systems due to the use of solid-state and/or semi-conductor components in the system.

Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, it is to be understood that the disclosure is not limited to those precise embodiments, and that various other changes and modifications may be affected therein by one skilled in the art without departing from the scope or spirit of the disclosure. All such changes and modifications are intended to be included within the scope of the disclosure.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US178770911 Jun 19286 Jan 1931Charles Wappler FrederickHigh-frequency surgical cutting device
US181390218 Jan 192814 Jul 1931Liebel Flarsheim CoElectrosurgical apparatus
US184196816 Aug 192419 Jan 1932William J CameronRadio-surgical apparatus
US186311831 Oct 192714 Jun 1932Liebel Flarsheim CoSurgeon's instrument
US194586727 Apr 19326 Feb 1934Technical Equipment CompanyHigh frequency oscillatory apparatus for electrotherapeutic and sterilization purposes
US282705621 Jun 195518 Mar 1958John H DrewElectrode discharge control for surgical apparatus
US284961116 May 195526 Aug 1958Honeywell Regulator CoElectrical oscillator circuit
US3001132 *31 Jul 195819 Sep 1961Marconi Wireless Telegraph CoFrequency measuring and responsive circuit arrangements
US305847019 Apr 195716 Oct 1962Siemens Reiniger Werke AgApparatus for electrical highfrequency surgery
US308949619 Aug 195914 May 1963Code IncControl system for surgical apparatus
US315436516 Jul 196227 Oct 1964Kent Mfg CoHolder for conductor tape
US316316512 Sep 196029 Dec 1964Humio IslkawaUterotube-closing instrument
US325205223 Aug 196317 May 1966Jacuzzi Bros IncLeakage detection and control circuit
US339135121 Nov 19662 Jul 1968Bell Telephone Labor IncCircuits using a transistor operated into second breakdown region
US341348029 Nov 196326 Nov 1968Texas Instruments IncElectro-optical transistor switching device
US343656327 Dec 19651 Apr 1969Bell Telephone Labor IncPulse driver with linear current rise
US34392535 Apr 196715 Apr 1969R I Phelon IncAlternator rectifier and voltage regulator
US343968012 Apr 196522 Apr 1969Univ NorthwesternSurgical instrument for cataract removal
US346187410 Aug 196619 Aug 1969Martinez MiguelElectric cautery
US347177030 Mar 19667 Oct 1969IbmPulsed current generating circuits
US347874430 Dec 196418 Nov 1969Leiter HarrySurgical apparatus
US348611531 Mar 196623 Dec 1969Anderson Donald JMeans for measuring the power in an electrical circuit
US34955843 Jun 196517 Feb 1970Gen ElectricLead failure detection circuit for a cardiac monitor
US351335317 Aug 196719 May 1970Lansch John LVoltage monitoring circuit
US351468921 Aug 196826 May 1970United Aircraft CorpThree-phase ac-operated dc power supply
US351594329 Sep 19672 Jun 1970English Electric Co LtdElectrical fault detector
US35517865 Dec 196729 Dec 1970Omark Industries IncCircuit for adjustably increasing or decreasing the charge on a capacitor
US356262316 Jul 19689 Feb 1971Hughes Aircraft CoCircuit for reducing stray capacity effects in transformer windings
US357164427 Jan 196923 Mar 1971Heurtey SaHigh frequency oscillator for inductive heating
US358936325 Jul 196729 Jun 1971Cavitron CorpMaterial removal apparatus and method employing high frequency vibrations
US35952214 Mar 196927 Jul 1971Matburn Holdings LtdEndoscopic having illumination supply unit
US36011268 Jan 196924 Aug 1971Electro Medical Systems IncHigh frequency electrosurgical apparatus
US361105310 Oct 19695 Oct 1971Farmer Electric Products Co InIntrinsically safe circuit
US36414221 Oct 19708 Feb 1972Mccaughey Dennis GWide band boost regulator power supply
US364200815 Oct 196915 Feb 1972Medical Plastics IncGround electrode and test circuit
US366215117 Nov 19699 May 1972Codman & ShurtleffCautery
US36756554 Feb 197011 Jul 1972Electro Medical Systems IncMethod and apparatus for high frequency electric surgery
US368392325 Sep 197015 Aug 1972Valleylab IncElectrosurgery safety circuit
US36936139 Dec 197026 Sep 1972Cavitron CorpSurgical handpiece and flow control system for use therewith
US369780823 Nov 197010 Oct 1972Safety Co TheSystem for monitoring chassis potential and ground continuity
US369996730 Apr 197124 Oct 1972Valleylab IncElectrosurgical generator
US372089618 May 197113 Mar 1973Siemens AgHandle for high frequency electrodes
US374391831 Jan 19723 Jul 1973Philips CorpDc-ac converter
US37664349 Aug 197116 Oct 1973Sherman SSafety power distribution system
US376848210 Oct 197230 Oct 1973R ShawSurgical cutting instrument having electrically heated cutting edge
US380176622 Jan 19732 Apr 1974Valleylab IncSwitching means for an electro-surgical device including particular contact means and particular printed-circuit mounting means
US380180026 Dec 19722 Apr 1974Valleylab IncIsolating switching circuit for an electrosurgical generator
US381285824 Oct 197228 May 1974Sybron CorpDental electrosurgical unit
US381501520 Feb 19734 Jun 1974Gen ElectricTransformer-diode isolated circuits for high voltage power supplies
US38262637 Aug 197230 Jul 1974R ShawElectrically heated surgical cutting instrument
US384860030 Jan 197321 Jun 1988 Title not available
US387004712 Nov 197311 Mar 1975Dentsply Res & DevElectrosurgical device
US38759452 Nov 19738 Apr 1975Demetron CorpElectrosurgery instrument
US388556921 Nov 197227 May 1975Birtcher CorpElectrosurgical unit
US389778727 Dec 19735 Aug 1975Olympus Optical CoPower source device for an electric surgical knife
US389778814 Jan 19745 Aug 1975Valleylab IncTransformer coupled power transmitting and isolated switching circuit
US389855414 Nov 19735 Aug 1975Danfoss AsMeasured-value transducer with a compensating bridge circuit
US390537318 Apr 197416 Sep 1975Dentsply Res & DevElectrosurgical device
US39135833 Jun 197421 Oct 1975Sybron CorpControl circuit for electrosurgical units
US392306315 Jul 19742 Dec 1975Sybron CorpPulse control circuit for electrosurgical units
US393315723 Oct 197320 Jan 1976Aktiebolaget Stille-WernerTest and control device for electrosurgical apparatus
US394673824 Oct 197430 Mar 1976Newton David WLeakage current cancelling circuit for use with electrosurgical instrument
US395274818 Jul 197427 Apr 1976Minnesota Mining And Manufacturing CompanyElectrosurgical system providing a fulguration current
US39630301 Nov 197415 Jun 1976Valleylab, Inc.Signal generating device and method for producing coagulation electrosurgical current
US39644879 Dec 197422 Jun 1976The Birtcher CorporationUncomplicated load-adapting electrosurgical cutting generator
US397136512 Feb 197327 Jul 1976Beckman Instruments, Inc.Bioelectrical impedance measuring system
US397839321 Apr 197531 Aug 1976Burroughs CorporationHigh efficiency switching regulator
US398008510 Jun 197514 Sep 1976Olympus Optical Co., Ltd.High frequency apparatus for heat treatment of biological tissue
US400571430 Jul 19751 Feb 1977Richard Wolf GmbhBipolar coagulation forceps
US40244672 Jun 197517 May 1977Sybron CorporationMethod for controlling power during electrosurgery
US40419524 Mar 197616 Aug 1977Valleylab, Inc.Electrosurgical forceps
US40518556 Feb 19764 Oct 1977Ipco Hospital Supply Corporation, Whaledent International DivisionElectrosurgical unit
US407471924 Jun 197621 Feb 1978Kurt SemmMethod of and device for causing blood coagulation
US409298614 Jun 19766 Jun 1978Ipco Hospital Supply Corporation (Whaledent International Division)Constant output electrosurgical unit
US40943209 Sep 197613 Jun 1978Valleylab, Inc.Electrosurgical safety circuit and method of using same
US40977731 Nov 197627 Jun 1978Lindmark Magnus C WSwitched mode power supply
US410234116 Dec 197625 Jul 1978Olympus Optical Co., Ltd.Electric knife device
US411462329 Jul 197619 Sep 1978Karl Storz Endoscopy-America, Inc.Cutting and coagulation apparatus for surgery
US412159014 Mar 197724 Oct 1978Dentsply Research And Development CorporationSystem for monitoring integrity of a patient return circuit
US412367314 Mar 197731 Oct 1978Dentsply Research And Development CorporationControl circuit for an electrical device
US412613721 Jan 197721 Nov 1978Minnesota Mining And Manufacturing CompanyElectrosurgical unit
US4153880 *19 Dec 19748 May 1979Siemens AktiengesellschaftMethod and apparatus for generating a high frequency rotating magnetic field
US417170013 Oct 197723 Oct 1979Erbe Elektromedizin Gmbh & Co. KgHigh-frequency surgical apparatus
US418892712 Jan 197819 Feb 1980Valleylab, Inc.Multiple source electrosurgical generator
US41911889 Sep 19784 Mar 1980Macan Engineering & Manufacturing Company, Inc.Variable crest factor high frequency generator apparatus
US419673416 Feb 19788 Apr 1980Valleylab, Inc.Combined electrosurgery/cautery system and method
US420010417 Nov 197729 Apr 1980Valleylab, Inc.Contact area measurement apparatus for use in electrosurgery
US420010526 May 197829 Apr 1980Dentsply Research & Development Corp.Electrosurgical safety circuit
US420901830 May 197824 Jun 1980Karl FastenmeierTissue coagulation apparatus and method
US42313724 Nov 19744 Nov 1980Valleylab, Inc.Safety monitoring circuit for electrosurgical unit
US423267616 Nov 197811 Nov 1980Corning Glass WorksSurgical cutting instrument
US423788723 Jan 19759 Dec 1980Valleylab, Inc.Electrosurgical device
US428137316 May 197828 Jul 1981Societe SatelecHigh frequency voltage generator
US428755717 Dec 19791 Sep 1981General Electric CompanyInverter with improved regulation
US429641328 Sep 197920 Oct 1981General Electric CompanyResistance-bridge to frequency converter with automatic offset correction
US430307317 Jan 19801 Dec 1981Medical Plastics, Inc.Electrosurgery safety monitor
US431115423 Mar 197919 Jan 1982Rca CorporationNonsymmetrical bulb applicator for hyperthermic treatment of the body
US431455912 Dec 19799 Feb 1982Corning Glass WorksNonstick conductive coating
US432192616 Apr 197930 Mar 1982Roge Ralph RInsertion detecting probe and electrolysis system
US433453928 Apr 198015 Jun 1982Cimarron Instruments, Inc.Electrosurgical generator control apparatus
US43433089 Jun 198010 Aug 1982Gross Robert DSurgical ground detector
US43723153 Jul 19808 Feb 1983Hair Free CentersImpedance sensing epilator
US437626327 Jan 19818 Mar 1983Braun AktiengesellschaftBattery charging circuit
US437880110 Dec 19805 Apr 1983Medical Research Associates Ltd. #2Electrosurgical generator
US43845822 Jun 198024 May 1983Drg (Uk) Ltd.Patient plate for diathermy apparatus, and diathermy apparatus fitted with it
US43973143 Aug 19819 Aug 1983Clini-Therm CorporationMethod and apparatus for controlling and optimizing the heating pattern for a hyperthermia system
US441126624 Sep 198025 Oct 1983Cosman Eric RThermocouple radio frequency lesion electrode
US441627626 Oct 198122 Nov 1983Valleylab, Inc.Adaptive, return electrode monitoring system
US44162773 Nov 198122 Nov 1983Valleylab, Inc.Return electrode monitoring system for use during electrosurgical activation
US44296946 Jul 19817 Feb 1984C. R. Bard, Inc.Electrosurgical generator
US443609120 Mar 198113 Mar 1984Surgical Design CorporationSurgical cutting instrument with release mechanism
US44374649 Nov 198120 Mar 1984C.R. Bard, Inc.Electrosurgical generator safety apparatus
US44387663 Sep 198127 Mar 1984C. R. Bard, Inc.Electrosurgical generator
US446375913 Jan 19827 Aug 1984Garito Jon CUniversal finger/foot switch adaptor for tube-type electrosurgical instrument
US447266130 Sep 198218 Sep 1984Culver Clifford THigh voltage, low power transformer for efficiently firing a gas discharge luminous display
US447417913 May 19822 Oct 1984F. L. Fischer Gmbh & Co.Method and apparatus for the high frequency coagulation of protein for surgical purposes
US449223117 Sep 19828 Jan 1985Auth David CNon-sticking electrocautery system and forceps
US449283223 Dec 19828 Jan 1985Neomed, IncorporatedHand-controllable switching device for electrosurgical instruments
US44945412 Nov 198122 Jan 1985Medical Plastics, Inc.Electrosurgery safety monitor
US451461930 Sep 198230 Apr 1985The B. F. Goodrich CompanyIndirect current monitoring via voltage and impedance monitoring
US452081828 Feb 19834 Jun 1985Codman & Shurtleff, Inc.High dielectric output circuit for electrosurgical power source
US45594964 Jun 198417 Dec 1985General Electric CompanyLCD Hook-on digital ammeter
US45599432 Nov 198324 Dec 1985C. R. Bard, Inc.Electrosurgical generator
US45652004 May 198221 Jan 1986Cosman Eric RUniversal lesion and recording electrode system
US456645416 Jun 198128 Jan 1986Thomas L. MehlSelected frequency hair removal device and method
US456934529 Feb 198411 Feb 1986Aspen Laboratories, Inc.High output electrosurgical unit
US458205721 Nov 198315 Apr 1986Regents Of The University Of WashingtonFast pulse thermal cautery probe
US458612030 Dec 198329 Apr 1986At&T Bell LaboratoriesCurrent limit shutdown circuit with time delay
US459093418 May 198327 May 1986Jerry L. MalisBipolar cutter/coagulator
US459524821 Apr 198317 Jun 1986Brown James CTerminal block
US460897720 Dec 19822 Sep 1986Brown Russell ASystem using computed tomography as for selective body treatment
US461533029 Aug 19847 Oct 1986Olympus Optical Co., Ltd.Noise suppressor for electronic endoscope
US463021810 Sep 198516 Dec 1986Cooper Industries, Inc.Current measuring apparatus
US463210911 Dec 198430 Dec 1986Valleylab, Inc.Circuitry for processing requests made from the sterile field of a surgical procedure to change the output power level of an electrosurgical generator
US46449554 Mar 198524 Feb 1987Rdm International, Inc.Circuit apparatus and method for electrothermal treatment of cancer eye
US465126428 Dec 198417 Mar 1987Trion, Inc.Power supply with arcing control and automatic overload protection
US465128011 Dec 198517 Mar 1987Chang Sien SElectrosurgical control system using tissue conductivity
US465701514 Feb 198514 Apr 1987Werner IrnichControl device for a high frequency surgical apparatus
US465881515 Jan 198621 Apr 1987Erbe Elektromedizin GmbhHigh-frequency electrosurgical unit with timed safety shut down interlock
US465881913 Sep 198321 Apr 1987Valleylab, Inc.Electrosurgical generator
US465882022 Feb 198521 Apr 1987Valleylab, Inc.Electrosurgical generator with improved circuitry for generating RF drive pulse trains
US466238323 Sep 19835 May 1987Kureha Kagaku Kogyo Kabushiki KaishaEndotract antenna device for hyperthermia
US469170325 Apr 19868 Sep 1987Board Of Regents, University Of WashingtonThermal cautery system
US472787410 Sep 19841 Mar 1988C. R. Bard, Inc.Electrosurgical generator with high-frequency pulse width modulated feedback power control
US473520430 Oct 19865 Apr 1988Cordis CorporationSystem for controlling an implanted neural stimulator
US473975926 Feb 198526 Apr 1988Concept, Inc.Microprocessor controlled electrosurgical generator
US47413347 May 19863 May 1988Werner IrnichMonitoring arrangement for a high frequency surgery device
US475475710 Nov 19865 Jul 1988Peter FeuchtMethod and apparatus for monitoring the surface contact of a neutral electrode of a HF-surgical apparatus
US476799912 Nov 198630 Aug 1988Megapulse, Inc.Method of and apparatus for radio-frequency generation in resonator tank circuits excited by sequential pulses of alternately opposite polarity
US47689699 Jun 19876 Sep 1988C. R. Bard, Inc.Electrical connector
US478863422 Jun 198729 Nov 1988Massachusetts Institute Of TechnologyResonant forward converter
US480562115 Jun 198721 Feb 1989Siemens AktiengesellschaftApparatus for measuring impedance of body tissue
US48189546 Feb 19874 Apr 1989Karl Storz Endoscopy-America, Inc.High-frequency generator with automatic power-control for high-frequency surgery
US482792726 Dec 19849 May 1989Valleylab, Inc.Apparatus for changing the output power level of an electrosurgical generator while remaining in the sterile field of a surgical procedure
US484833516 Feb 198818 Jul 1989Aspen Laboratories, Inc.Return electrode contact monitor
US486074515 Jul 198729 Aug 1989Erbe Elektromedizin GmbhHigh frequency electrosurgical apparatus for thermal coagulation of biologic tissues
US486288919 Jan 19895 Sep 1989Siemens AktiengesellschaftMonitoring circuit for an RF surgical apparatus
US488719922 Sep 198712 Dec 1989Astec International LimitedStart circuit for generation of pulse width modulated switching pulses for switch mode power supplies
US48906105 Jun 19892 Jan 1990Kirwan Sr Lawrence TBipolar forceps
US49036966 Oct 198827 Feb 1990Everest Medical CorporationElectrosurgical generator
US490758929 Apr 198813 Mar 1990Cosman Eric RAutomatic over-temperature control apparatus for a therapeutic heating device
US492221018 Jul 19891 May 1990Erbe Elektromedizin GmbhFeedback-coupled high-frequency power oscillator
US493104730 Sep 19875 Jun 1990Cavitron, Inc.Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US49317175 Sep 19895 Jun 1990Motorola Inc.Load response control and method
US49387616 Mar 19893 Jul 1990Mdt CorporationBipolar electrosurgical forceps
US494231317 Aug 198817 Jul 1990Asea Brown Boveri AktiengesellschaftMethod for detecting a current flowing over the human body between a forward and a return conductor and a circuit configuration for carrying out the method
US49596066 Jan 198925 Sep 1990Uniphase CorporationCurrent mode switching regulator with programmed offtime
US496104724 Oct 19892 Oct 1990Smiths Industries Public Limited CompanyElectrical power control apparatus and methods
US496143517 Oct 19889 Oct 1990Kureha Kagaku Kogyo Kabushiki KaishiHigh-frequency capacitive heating electrode device
US49665974 Nov 198830 Oct 1990Cosman Eric RThermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
US49698857 Feb 199013 Nov 1990Erbe Elektromedizin GmbhHigh frequency surgery device for cutting and/or coagulating biologic tissue
US499271924 Jul 198912 Feb 1991Hughes Aircraft CompanyStable high voltage pulse power supply
US499343025 Aug 198919 Feb 1991Omron Tateisi Electronics Co.Electrode device for high frequency thermotherapy apparatus
US499587717 Feb 198926 Feb 1991Richard Wolf GmbhDevice with a rotationally-driven surgical instrument
US50152273 Apr 199014 May 1991Valleylab Inc.Apparatus for providing enhanced tissue fragmentation and/or hemostasis
US502466820 Jan 198718 Jun 1991Rocky Mountain Research, Inc.Retrograde perfusion system, components and method
US504497725 Nov 19883 Sep 1991Societe D'exploitation Des Procedes Marechal (Sepm) S.A.Electrical connector having pressure contacts
US506795311 May 199026 Nov 1991Siemens AktiengesellschaftCircuit for controlling an electro-therapy device
US50758395 Apr 199024 Dec 1991General Electric CompanyInductor shunt, output voltage regulation system for a power supply
US508725721 Mar 199011 Feb 1992Erbe Elektromedizin GmbhApparatus for monitoring the application of neutral electrodes on a patient undergoing high frequency electro-surgery
US509984023 Jan 198931 Mar 1992Goble Nigel MDiathermy unit
US51038043 Jul 199014 Apr 1992Boston Scientific CorporationExpandable tip hemostatic probes and the like
US510838923 May 199028 Apr 1992Ioan CosmescuAutomatic smoke evacuator activator system for a surgical laser apparatus and method therefor
US51083915 May 198928 Apr 1992Karl Storz Endoscopy-America, Inc.High-frequency generator for tissue cutting and for coagulating in high-frequency surgery
US51131165 Oct 198912 May 1992Firma J. EberspacherCircuit arrangement for accurately and effectively driving an ultrasonic transducer
US511928411 Oct 19912 Jun 1992General Electric CompanyEfficient power supply post regulation
US512213727 Apr 199016 Jun 1992Boston Scientific CorporationTemperature controlled rf coagulation
US513371123 Mar 199028 Jul 1992Delma Elektro- Und Medizinische Apparatebau Gesellschaft MbhElectric surgical high-frequency instrument
US515110231 May 199029 Sep 1992Kyocera CorporationBlood vessel coagulation/stanching device
US515276216 Nov 19906 Oct 1992Birtcher Medical Systems, Inc.Current leakage control for electrosurgical generator
US515760320 Nov 198920 Oct 1992Storz Instrument CompanyControl system for ophthalmic surgical instruments
US516033430 Apr 19913 Nov 1992Utah Medical Products, Inc.Electrosurgical generator and suction apparatus
US516189329 Aug 199110 Nov 1992Respiratory Support Products, Inc.Temperature measurement
US516765831 Jan 19911 Dec 1992Mdt CorporationMethod and apparatus for electrosurgical measurement
US516765913 May 19911 Dec 1992Aloka Co., Ltd.Blood coagulating apparatus
US51905176 Jun 19912 Mar 1993Valleylab Inc.Electrosurgical and ultrasonic surgical system
US519600823 Aug 199023 Mar 1993Siemens AktiengesellschaftMethod and circuit for monitoring electrode surfaces at the body tissue of a patient in an hf surgery device
US519600911 Sep 199123 Mar 1993Kirwan Jr Lawrence TNon-sticking electrosurgical device having nickel tips
US520190027 Feb 199213 Apr 1993Medical Scientific, Inc.Bipolar surgical clip
US52076911 Nov 19914 May 1993Medical Scientific, Inc.Electrosurgical clip applicator
US521633827 Nov 19911 Jun 1993Firma J. EberspacherCircuit arrangement for accurately and effectively driving an ultrasonic transducer
US523062310 Dec 199127 Jul 1993Radionics, Inc.Operating pointer with interactive computergraphics
US52335158 Jun 19903 Aug 1993Cosman Eric RReal-time graphic display of heat lesioning parameters in a clinical lesion generator system
US523442716 Oct 199010 Aug 1993Aloka, Co., Ltd.Electrosurgical unit
US524912127 Oct 198928 Sep 1993American Cyanamid CompanyRemote control console for surgical control system
US52495855 Nov 19905 Oct 1993Bsd Medical CorporationUrethral inserted applicator for prostate hyperthermia
US525411717 Mar 199219 Oct 1993Alton Dean MedicalMulti-functional endoscopic probe apparatus
US526799410 Feb 19927 Dec 1993Conmed CorporationElectrosurgical probe
US526799715 Jan 19927 Dec 1993Erbe Elektromedizin GmbhHigh-frequency electrosurgery apparatus with limitation of effective value of current flowing through a surgical instrument
US528121316 Apr 199225 Jan 1994Implemed, Inc.Catheter for ice mapping and ablation
US528284026 Mar 19921 Feb 1994Medtronic, Inc.Multiple frequency impedance measurement system
US52902833 Jan 19911 Mar 1994Kabushiki Kaisha ToshibaPower supply apparatus for electrosurgical unit including electrosurgical-current waveform data storage
US529585723 Dec 199222 Mar 1994Toly Elde VElectrical connector with improved wire termination system
US530006821 Apr 19925 Apr 1994St. Jude Medical, Inc.Electrosurgical apparatus
US530007019 Jun 19925 Apr 1994Conmed CorporationElectrosurgical trocar assembly with bi-polar electrode
US530491711 May 199319 Apr 1994Burr-Brown CorporationCompact low noise low power dual mode battery charging circuit
US53185634 Jun 19927 Jun 1994Valley Forge Scientific CorporationBipolar RF generator
US53237785 Nov 199128 Jun 1994Brigham & Women's HospitalMethod and apparatus for magnetic resonance imaging and heating tissues
US53242831 Jun 199228 Jun 1994Richard Wolf GmbhMedical instrument having a switch for controlling an external device
US53305186 Mar 199219 Jul 1994Urologix, Inc.Method for treating interstitial tissue associated with microwave thermal therapy
US53341839 Apr 19922 Aug 1994Valleylab, Inc.Endoscopic electrosurgical apparatus
US533419313 Nov 19922 Aug 1994American Cardiac Ablation Co., Inc.Fluid cooled ablation catheter
US534180730 Jun 199230 Aug 1994American Cardiac Ablation Co., Inc.Ablation catheter positioning system
US53423562 Dec 199230 Aug 1994Ellman Alan GElectrical coupling unit for electrosurgery
US534235713 Nov 199230 Aug 1994American Cardiac Ablation Co., Inc.Fluid cooled electrosurgical cauterization system
US53424093 Jun 199130 Aug 1994Medtronic, Inc.Position-responsive neuro stimulator
US534640630 Apr 199313 Sep 1994Hubbell IncorporatedElectrical cable and connector assembly with safety pilot line disconnect, especially for electric vehicle
US53464917 Nov 199113 Sep 1994Sony CorporationFeed device for bipolar electrodes for capsulotomy
US53485541 Dec 199220 Sep 1994Cardiac Pathways CorporationCatheter for RF ablation with cooled electrode
US537064519 Apr 19936 Dec 1994Valleylab Inc.Electrosurgical processor and method of use
US537067230 Oct 19926 Dec 1994The Johns Hopkins UniversityComputer-controlled neurological stimulation system
US53706752 Feb 19936 Dec 1994Vidamed, Inc.Medical probe device and method
US537259627 Jul 199313 Dec 1994Valleylab Inc.Apparatus for leakage control and method for its use
US538387413 Nov 199224 Jan 1995Ep Technologies, Inc.Systems for identifying catheters and monitoring their use
US538387622 Mar 199424 Jan 1995American Cardiac Ablation Co., Inc.Fluid cooled electrosurgical probe for cutting and cauterizing tissue
US53839175 Jul 199124 Jan 1995Jawahar M. DesaiDevice and method for multi-phase radio-frequency ablation
US538514830 Jul 199331 Jan 1995The Regents Of The University Of CaliforniaCardiac imaging and ablation catheter
US54002678 Dec 199221 Mar 1995Hemostatix CorporationLocal in-device memory feature for electrically powered medical equipment
US540331129 Mar 19934 Apr 1995Boston Scientific CorporationElectro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US540331222 Jul 19934 Apr 1995Ethicon, Inc.Electrosurgical hemostatic device
US540900014 Sep 199325 Apr 1995Cardiac Pathways CorporationEndocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
US54094854 Jun 199325 Apr 1995Kabushiki Kaisha ToshibaPower supply apparatus for electrosurgical unit including electrosurgical-current waveform data storage
US541357322 May 19929 May 1995Onesys OyDevice for surgical procedures
US54142382 Oct 19929 May 1995Martin Marietta CorporationResonant power supply for an arcjet thruster
US541771925 Aug 199323 May 1995Medtronic, Inc.Method of using a spinal cord stimulation lead
US542256727 Dec 19936 Jun 1995Valleylab Inc.High frequency power measurement
US542292621 Jan 19946 Jun 1995Photoelectron CorporationX-ray source with shaped radiation pattern
US542380829 Nov 199313 Jun 1995Ep Technologies, Inc.Systems and methods for radiofrequency ablation with phase sensitive power detection
US542380930 Aug 199313 Jun 1995Valleylab Inc.Electrosurgical control for a trocar
US542381025 Feb 199313 Jun 1995G2 Design LimitedCauterising apparatus
US542381116 Mar 199413 Jun 1995Cardiac Pathways CorporationMethod for RF ablation using cooled electrode
US54257049 Jun 199220 Jun 1995Olympus Optical Co., Ltd.Apparatus for generating ultrasonic oscillation
US542959623 May 19944 Jul 1995Symbiosis CorporationEndoscopic electrosurgical suction-irrigation instrument
US543043424 Feb 19934 Jul 1995Lederer; GaborPortable surgical early warning device
US543245927 Jan 199311 Jul 1995Conmed CorporationLeakage capacitance compensating current sensor for current supplied to medical device loads with unconnected reference conductor
US54337392 Nov 199318 Jul 1995Sluijter; Menno E.Method and apparatus for heating an intervertebral disc for relief of back pain
US54365661 Jun 199325 Jul 1995Conmed CorporationLeakage capacitance compensating current sensor for current supplied to medical device loads
US543830211 Jul 19941 Aug 1995Gyrus Medical LimitedElectrosurgical radiofrequency generator having regulated voltage across switching device
US544346316 Aug 199322 Aug 1995Vesta Medical, Inc.Coagulating forceps
US54456356 Jul 199429 Aug 1995Hemostatic Surgery CorporationRegulated-current power supply and methods for resistively-heated surgical instruments
US545122425 Feb 199319 Sep 1995G2 Design LimitedApparatus for radio frequency bipolar electrosurgery
US545272526 Feb 199326 Sep 1995Fisher & Paykel LimitedCable termination status detection
US545480919 Apr 19943 Oct 1995Angioplasty Systems, Inc.Electrosurgical catheter and method for resolving atherosclerotic plaque by radio frequency sparking
US54585978 Nov 199317 Oct 1995Zomed InternationalDevice for treating cancer and non-malignant tumors and methods
US546252121 Dec 199331 Oct 1995Angeion CorporationFluid cooled and perfused tip for a catheter
US547244111 Mar 19945 Dec 1995Zomed InternationalDevice for treating cancer and non-malignant tumors and methods
US547244317 Mar 19945 Dec 1995Hemostatic Surgery CorporationElectrosurgical apparatus employing constant voltage and methods of use
US54744649 Sep 199212 Dec 1995Rutland Gilts LimitedElectrical adaptor
US548039914 Mar 19942 Jan 1996Smiths Industries Public Limited CompanyElectrosurgery monitor and apparatus
US548395215 Feb 199416 Jan 1996United States Surgical CorporationHandle for surgical instruments
US54963127 Oct 19935 Mar 1996Valleylab Inc.Impedance and temperature generator control
US549631320 Sep 19945 Mar 1996Conmed CorporationSystem for detecting penetration of medical instruments
US54963149 Oct 19925 Mar 1996Hemostatic Surgery CorporationIrrigation and shroud arrangement for electrically powered endoscopic probes
US55000128 Jul 199419 Mar 1996Angeion CorporationAblation catheter system
US550061613 Jan 199519 Mar 1996Ixys CorporationOvervoltage clamp and desaturation detection circuit
US551199325 Aug 199430 Apr 1996Yazaki CorporationConnector shield wire connection structure
US55141293 Dec 19937 May 1996Valleylab Inc.Automatic bipolar control for an electrosurgical generator
US55206843 Aug 199428 May 1996Imran; Mir A.Transurethral radio frequency apparatus for ablation of the prostate gland and method
US553177412 Oct 19942 Jul 1996Alfred E. Mann Foundation For Scientific ResearchMultichannel implantable cochlear stimulator having programmable bipolar, monopolar or multipolar electrode configurations
US553401830 Nov 19949 Jul 1996Medtronic, Inc.Automatic lead recognition for implantable medical device
US553626712 Aug 199416 Jul 1996Zomed InternationalMultiple electrode ablation apparatus
US554067724 Oct 199430 Jul 1996Rare Earth Medical, Inc.Endoscopic systems for photoreactive suturing of biological materials
US554068110 Jan 199430 Jul 1996Medtronic CardiorhythmMethod and system for radiofrequency ablation of tissue
US554068213 Jan 199530 Jul 1996Smiths Industries Public Limited CompanyElectrosurgery apparatus
US554068312 Jul 199430 Jul 1996Olympus Optical Co., Ltd.High frequency cauterizing apparatus
US554068428 Jul 199430 Jul 1996Hassler, Jr.; William L.Method and apparatus for electrosurgically treating tissue
US554137628 Mar 199430 Jul 1996Valleylab IncSwitch and connector
US55451617 Oct 199413 Aug 1996Cardiac Pathways CorporationCatheter for RF ablation having cooled electrode with electrically insulated sleeve
US555639628 Mar 199517 Sep 1996Endovascular, Inc.Method for tubal electroligation
US555867123 Sep 199424 Sep 1996Yates; David C.Impedance feedback monitor for electrosurgical instrument
US55627206 Oct 19948 Oct 1996Vesta Medical, Inc.Bipolar/monopolar endometrial ablation device and method
US556924216 Feb 199529 Oct 1996Lax; Ronald G.Method and apparatus for controlled contraction of soft tissue
US55711479 Sep 19945 Nov 1996Sluijter; Menno E.Thermal denervation of an intervertebral disc for relief of back pain
US557353310 Apr 199212 Nov 1996Medtronic CardiorhythmMethod and system for radiofrequency ablation of cardiac tissue
US558483030 Mar 199417 Dec 1996Medtronic CardiorhythmMethod and system for radiofrequency ablation of cardiac tissue
US558843210 Jul 199531 Dec 1996Boston Scientific CorporationCatheters for imaging, sensing electrical potentials, and ablating tissue
US559646613 Jan 199521 Jan 1997Ixys CorporationIntelligent, isolated half-bridge power module
US55993446 Jun 19954 Feb 1997Valleylab Inc.Control apparatus for electrosurgical generator power output
US559934524 Aug 19944 Feb 1997Zomed International, Inc.RF treatment apparatus
US559934827 Jan 19944 Feb 1997Conmed CorporationElectrosurgical trocar assembly
US56051504 Nov 199425 Feb 1997Physio-Control CorporationElectrical interface for a portable electronic physiological instrument having separable components
US560956010 Apr 199511 Mar 1997Olympus Optical Co., Ltd.Medical operation device control system for controlling a operation devices accessed respectively by ID codes
US561396621 Dec 199425 Mar 1997Valleylab IncSystem and method for accessory rate control
US56204817 Jun 199515 Apr 1997Desai; Jawahar M.Device for multi-phase radio-frequency ablation
US562657528 Apr 19956 May 1997Conmed CorporationPower level control apparatus for electrosurgical generators
US56287456 Jun 199513 May 1997Bek; Robin B.Exit spark control for an electrosurgical generator
US562877110 Apr 199613 May 1997Olympus Optical Co., Ltd.Electromagnetic-wave thermatological device
US564333012 Feb 19961 Jul 1997Medtronic, Inc.Multichannel apparatus for epidural spinal cord stimulation
US564786928 Jun 199515 Jul 1997Gyrus Medical LimitedElectrosurgical apparatus
US564787110 Mar 199515 Jul 1997Microsurge, Inc.Electrosurgery with cooled electrodes
US565178022 Dec 199429 Jul 1997Ep Technologies, Inc.Systems for identifying catheters and monitoring their use
US565832211 Oct 199519 Aug 1997Regeneration TechnologyBio-active frequency generator and method
US566056714 Nov 199526 Aug 1997Nellcor Puritan Bennett IncorporatedMedical sensor connector with removable encoding device
US566495319 Sep 19969 Sep 1997Minnesota Mining And Manufacturing Co.Elastomeric locking taper connector with randomly placeable intermeshing member
US567421716 Nov 19937 Oct 1997Wahlstrom; Dale A.Heart synchronized extractor for an implanted object
US567856822 Jul 199421 Oct 1997Olympus Optical Co., Ltd.System control apparatus, medical system control apparatus and image-plane display method of medical system control apparatus
US568130726 Oct 199428 Oct 1997Mcmahan; William H.Fiber-optic plug and receptacle providing automatic appliance recognition
US56858407 Jun 199511 Nov 1997Danek Medical, Inc.Method and apparatus for minimally invasive tissue removal
US56882671 May 199518 Nov 1997Ep Technologies, Inc.Systems and methods for sensing multiple temperature conditions during tissue ablation
US56930427 Jun 19952 Dec 1997Ethicon Endo-Surgery, Inc.Identification device for surgical instrument
US56930785 Oct 19942 Dec 1997Jawahar M. DesaiDevice and method for multi-phase radio-frequency ablation
US56943043 Feb 19952 Dec 1997Ericsson Raynet CorporationHigh efficiency resonant switching converters
US569549422 Dec 19949 Dec 1997Valleylab IncRem output stage topology
US569644113 May 19949 Dec 1997Distribution Control Systems, Inc.Linear alternating current interface for electronic meters
US56979259 Jun 199516 Dec 1997Engineering & Research Associates, Inc.Apparatus and method for thermal ablation
US569792716 Mar 199416 Dec 1997Cardiac Pathways CorporationCatheter for RF ablation with cooled electrode and apparatus for use therewith
US570238628 Jun 199630 Dec 1997Ep Technologies, Inc.Non-linear control systems and methods for heating and ablating body tissue
US57024294 Apr 199630 Dec 1997Medtronic, Inc.Neural stimulation techniques with feedback
US570736924 Apr 199513 Jan 1998Ethicon Endo-Surgery, Inc.Temperature feedback monitor for hemostatic surgical instrument
US571277216 Aug 199527 Jan 1998Ericsson RaynetController for high efficiency resonant switching converters
US571389610 May 19953 Feb 1998Medical Scientific, Inc.Impedance feedback electrosurgical system
US57182463 Jan 199617 Feb 1998Preferential, Inc.Preferential induction of electrically mediated cell death from applied pulses
US572074229 May 199624 Feb 1998Zacharias; JaimeController and actuating system for surgical instrument
US57207446 Jun 199524 Feb 1998Valleylab IncControl system for neurosurgery
US57229757 Jun 19953 Mar 1998E.P. Technologies Inc.Systems for radiofrequency ablation with phase sensitive power detection and control
US572944831 Oct 199617 Mar 1998Hewlett-Packard CompanyLow cost highly manufacturable DC-to-DC power converter
US573328119 Mar 199631 Mar 1998American Ablation Co., Inc.Ultrasound and impedance feedback system for use with electrosurgical instruments
US57358461 May 19957 Apr 1998Ep Technologies, Inc.Systems and methods for ablating body tissue using predicted maximum tissue temperature
US57386835 Oct 199414 Apr 1998Osypka; PeterMapping and ablation catheter
US57439006 Jun 199528 Apr 1998Sun Star Technology, Inc.Hot tip catheter and method for using the same
US574390312 Aug 199628 Apr 1998Ep Technologies, Inc.Cardiac ablation systems and methods using tissue temperature monitoring and control
US57498691 Jun 199512 May 1998Karl Storz Gmbh & Co.High-frequency surgical generator for cutting tissue
US57498719 Aug 199412 May 1998Refractec Inc.Method and apparatus for modifications of visual acuity by thermal means
US57557153 Jun 199626 May 1998Ep Technologies, Inc.Tissue heating and ablation systems and methods using time-variable set point temperature curves for monitoring and control
US57661535 Dec 199616 Jun 1998Arthrocare CorporationMethods and apparatus for surgical cutting
US576616522 Sep 199516 Jun 1998Gentelia; John S.Return path monitoring system
US576984724 Apr 199623 Jun 1998Ep Technologies, Inc.Systems and methods for controlling tissue ablation using multiple temperature sensing elements
US577265926 Sep 199530 Jun 1998Valleylab Inc.Electrosurgical generator power control circuit and method
US578868822 Dec 19944 Aug 1998Bauer Laboratories, Inc.Surgeon's command and control
US579213822 Feb 199611 Aug 1998Apollo Camera, LlcCordless bipolar electrocautery unit with automatic power control
US579790210 May 199625 Aug 1998Minnesota Mining And Manufacturing CompanyBiomedical electrode providing early detection of accidental detachment
US58072536 Oct 199715 Sep 1998General Electrical CompanyPatient electrical isolation system
US581080415 Mar 199622 Sep 1998Rita Medical SystemsMultiple antenna ablation apparatus and method with cooling element
US58140928 May 199729 Sep 1998Medtronic Inc.Neural stimulation techniques with feedback
US581709120 May 19976 Oct 1998Medical Scientific, Inc.Electrosurgical device having a visible indicator
US58170934 Nov 19966 Oct 1998Ethicon Endo-Surgery, Inc.Impedance feedback monitor with query electrode for electrosurgical instrument
US582056815 Oct 199613 Oct 1998Cardiac Pathways CorporationApparatus and method for aiding in the positioning of a catheter
US582727119 Sep 199527 Oct 1998ValleylabEnergy delivery system for vessel sealing
US583021221 Oct 19963 Nov 1998Ndm, Inc.Electrosurgical generator and electrode
US583690913 Sep 199617 Nov 1998Cosmescu; IoanAutomatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor
US583694323 Aug 199617 Nov 1998Team Medical, L.L.C.Electrosurgical generator
US583699019 Sep 199717 Nov 1998Medtronic, Inc.Method and apparatus for determining electrode/tissue contact
US584301918 Jul 19961 Dec 1998Arthrocare CorporationShaped electrodes and methods for electrosurgical cutting and ablation
US58430756 Feb 19971 Dec 1998Engineering & Research Associates, Inc.Probe for thermal ablation
US58462361 Jul 19968 Dec 1998Karl Storz Gmbh & Co.High frequency-surgical generator for adjusted cutting and coagulation
US584901030 Oct 199515 Dec 1998Helmut WurzerElectrosurgical apparatus and method for its operation
US585340927 Jan 199729 Dec 1998E.P. Technologies, Inc.Systems and apparatus for sensing temperature in body tissue
US586083229 Jan 199719 Jan 1999Ut Automotive Dearborn, Inc.Method for connecting flat flexible cable and a connector
US586578823 May 19962 Feb 1999Vidamed, Inc.Self-contained power sypply and monitoring station for RF tissue ablation
US58687376 May 19979 Feb 1999Engineering Research & Associates, Inc.Apparatus and method for determining ablation
US58687398 Nov 19959 Feb 1999Karl Storz Gmbh & Co.System for cutting biological tissue
US586874024 Mar 19959 Feb 1999Board Of Regents-Univ Of NebraskaMethod for volumetric tissue ablation
US587148111 Apr 199716 Feb 1999Vidamed, Inc.Tissue ablation apparatus and method
US589114218 Jun 19976 Apr 1999Eggers & Associates, Inc.Electrosurgical forceps
US58975524 Sep 199727 Apr 1999Ep Technologies, Inc.Electrode and associated systems using thermally insulated temperature sensing elements
US590661418 Feb 199725 May 1999Ep Technologies, Inc.Tissue heating and ablation systems and methods using predicted temperature for monitoring and control
US590844419 Jun 19971 Jun 1999Healing Machines, Inc.Complex frequency pulsed electromagnetic generator and method of use
US59138825 Jun 199822 Jun 1999Medtronic Inc.Neural stimulation techniques with feedback
US592198230 Apr 199713 Jul 1999Lesh; Michael D.Systems and methods for ablating body tissue
US592507010 Mar 199720 Jul 1999Medtronic, Inc.Techniques for adjusting the locus of excitation of electrically excitable tissue
US593183621 Jul 19973 Aug 1999Olympus Optical Co., Ltd.Electrosurgery apparatus and medical apparatus combined with the same
US59386907 Jun 199617 Aug 1999Advanced Neuromodulation Systems, Inc.Pain management system and method
US594455323 May 199731 Aug 1999Yazaki CorporationFlat cable connection structure
US594800730 Apr 19977 Sep 1999Medtronic, Inc.Dual channel implantation neurostimulation techniques
US595154515 Jul 199714 Sep 1999Gebrueder Berchtold Gmbh & Co.High-frequency surgical instrument and method of operating the same
US595154624 Nov 199514 Sep 1999Lorentzen; TorbenElectrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal
US59546862 Feb 199821 Sep 1999Garito; Jon CDual-frequency electrosurgical instrument
US595471725 Sep 199721 Sep 1999Radiotherapeutics CorporationMethod and system for heating solid tissue
US595471923 Mar 199821 Sep 1999Irvine Biomedical, Inc.System for operating a RF ablation generator
US59579619 Jan 199828 Sep 1999Medtronic, Inc.Multiple sensor, temperature controlled R-F ablation system
US59592537 Jan 199828 Sep 1999Yazaki CorporationWire connection structure
US596134426 Aug 19975 Oct 1999Yazaki CorporationCam-actuated terminal connector
US596474628 Aug 199712 Oct 1999Bausch & Lomb Surgical, Inc.Microsurgical system having isolated handpiece detection apparatus
US597198023 Jul 199726 Oct 1999Heart Rhythm Technologies, Inc.System for controlling the energy delivered to a patient for ablation
US597198117 Oct 199726 Oct 1999Gebrueder Berchtold GmbhHigh frequency surgical apparatus and method of its operation
US597612813 Jun 19972 Nov 1999Gebrueder Berchtold Gmbh & Co.Electrosurgical high frequency generator
US598314127 Jun 19969 Nov 1999Radionics, Inc.Method and apparatus for altering neural tissue function
US600753229 Aug 199728 Dec 19993M Innovative Properties CompanyMethod and apparatus for detecting loss of contact of biomedical electrodes with patient skin
US601049930 May 19964 Jan 2000Nuvotek Ltd.Electrosurgical cutting and coagulation apparatus
US601307415 Dec 199711 Jan 2000Engineering & Research Associates, Inc.Apparatus and method for thermal ablation
US601458126 Mar 199811 Jan 2000Ep Technologies, Inc.Interface for performing a diagnostic or therapeutic procedure on heart tissue with an electrode structure
US601733830 Jun 199525 Jan 2000Angeion CorporationFluid cooled and perfused tip for a catheter
US60223467 Jun 19958 Feb 2000Ep Technologies, Inc.Tissue heating and ablation systems and methods using self-heated electrodes
US602234719 Nov 19978 Feb 2000Karl Storz Gmbh & Co.High-frequency surgical generator for adjusted cutting and coagulation
US60333999 Apr 19977 Mar 2000Valleylab, Inc.Electrosurgical generator with adaptive power control
US603973129 Oct 199821 Mar 2000Engineering & Research Associates, Inc.Apparatus and method for determining the extent of ablation
US603973212 Apr 199621 Mar 2000Olympus Optical Co., Ltd.Electric operation apparatus
US60412607 Jun 199521 Mar 2000Vesta Medical, Inc.Method and apparatus for endometrial ablation
US60442836 May 199828 Mar 2000Nellcor Puritan Bennett IncorporatedMedical sensor with modulated encoding scheme
US605391030 Oct 199625 Apr 2000Megadyne Medical Products, Inc.Capacitive reusable electrosurgical return electrode
US60539121 Oct 199725 Apr 2000Ep Techonologies, Inc.Systems and methods for sensing sub-surface temperatures in body tissue during ablation with actively cooled electrodes
US605545828 Aug 199725 Apr 2000Bausch & Lomb Surgical, Inc.Modes/surgical functions
US605674527 Oct 19972 May 2000Ep Technologies, Inc.Systems and methods for obtaining desired lesion characteristics while ablating body tissue
US605674627 Mar 19982 May 2000Gyrus Medical LimitedElectrosurgical instrument
US60597813 Aug 19939 May 2000Yamanashi; William S.Electroconvergent cautery system
US606307515 Jun 199816 May 2000Olympus Optical Co., Ltd.Electrosurgical apparatus and separation detecting method capable of stably monitoring separation state of return electrode
US606307812 Mar 199716 May 2000Medtronic, Inc.Method and apparatus for tissue ablation
US60661373 Dec 199723 May 2000Megadyne Medical Products, Inc.Electric field concentrated electrosurgical electrode
US606862710 Dec 199730 May 2000Valleylab, Inc.Smart recognition apparatus and method
US607408930 Jan 199813 Jun 2000Omega Engineering, Inc.Thermoelectric product and method
US60743866 Aug 199713 Jun 2000Gyrus Medical LimitedElectrosurgical instrument and an electrosurgical electrode assembly
US607438814 Jul 199813 Jun 2000Gebrueder Berchtold Gmbh & Co., KgElectrically operated medical apparatus
US60801499 Jan 199827 Jun 2000Radiotherapeutics, CorporationMethod and apparatus for monitoring solid tissue heating
US608861431 Mar 199711 Jul 2000Boston Scientific CorporationTissue characterization to identify an ablation site
US609318618 Dec 199725 Jul 2000Gyrus Medical LimitedElectrosurgical generator and system
US61024973 Nov 199815 Aug 2000Sherwood Services AgUniversal cart
US610290715 Aug 199715 Aug 2000Somnus Medical Technologies, Inc.Apparatus and device for use therein and method for ablation of tissue
US61135911 Oct 19975 Sep 2000Ep Technologies, Inc.Systems and methods for sensing sub-surface temperatures in body tissue
US61135921 Dec 19985 Sep 2000Engineering & Research Associates, Inc.Apparatus and method for controlling ablation depth
US61135931 Feb 19995 Sep 2000Tu; Lily ChenAblation apparatus having temperature and force sensing capabilities
US611359610 Oct 19975 Sep 2000Enable Medical CorporationCombination monopolar-bipolar electrosurgical instrument system, instrument and cable
US61237018 Oct 199826 Sep 2000Perfect Surgical Techniques, Inc.Methods and systems for organ resection
US612370210 Sep 199826 Sep 2000Scimed Life Systems, Inc.Systems and methods for controlling power in an electrosurgical probe
US613242917 Feb 199917 Oct 2000Baker; James A.Radiofrequency medical instrument and methods for luminal welding
US614299210 Apr 19987 Nov 2000Arthrocare CorporationPower supply for limiting power in electrosurgery
US61559756 Nov 19985 Dec 2000Urich; AlexPhacoemulsification apparatus with personal computer
US616218411 Dec 199619 Dec 2000Ep Technologies, Inc.Systems and methods for sensing temperature within the body
US616221721 Apr 199919 Dec 2000Oratec Interventions, Inc.Method and apparatus for controlling a temperature-controlled probe
US616516915 Apr 199926 Dec 2000Ep Technologies, Inc.Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays
US617130423 Feb 19999 Jan 20013M Innovative Properties CompanyMethod and apparatus for controlling contact of biomedical electrodes with patient skin
US618346810 Sep 19986 Feb 2001Scimed Life Systems, Inc.Systems and methods for controlling power in an electrosurgical probe
US618614726 Jul 199913 Feb 2001Nuvotek LimitedMethod for electrosurgical tissue cutting and coagulation
US618821111 May 199913 Feb 2001Texas Instruments IncorporatedCurrent-efficient low-drop-out voltage regulator with improved load regulation and frequency response
US619371310 Dec 199827 Feb 2001Sulzer Osypka GmbhMethod for the operation of a high frequency ablation apparatus and apparatus for the high frequency tissue ablation
US61970231 Apr 19986 Mar 2001Axel MuntermannApparatus and process for catheter ablation
US620354123 Apr 199920 Mar 2001Sherwood Services AgAutomatic activation of electrosurgical generator bipolar output
US62104037 Oct 19933 Apr 2001Sherwood Services AgAutomatic control for energy from an electrosurgical generator
US621670412 Aug 199817 Apr 2001Surx, Inc.Noninvasive devices, methods, and systems for shrinking of tissues
US62223561 Apr 199924 Apr 2001Siemens AktiengesellschaftCurrent mode switching regulator configured such that a measuring resistor is not needed to measure the current at an inductor
US622807825 Nov 19978 May 2001Arthrocare CorporationMethods for electrosurgical dermatological treatment
US622808011 Dec 19988 May 2001Sherwood Services AgElectrosurgical generator with adaptive power control
US622808130 Jun 19998 May 2001Gyrus Medical LimitedElectrosurgery system and method
US62315696 Oct 199815 May 2001Somnus Medical Technologies, Inc.Dual processor architecture for electro generator
US623255623 Feb 200015 May 2001Delphi Technologies, Inc.Flat wire to round wire connection system
US623502010 Apr 199822 May 2001Arthrocare CorporationPower supply and methods for fluid delivery in electrosurgery
US623502220 Dec 199622 May 2001Cardiac Pathways, IncRF generator and pump apparatus and system and method for cooled ablation
US62376047 Sep 199929 May 2001Scimed Life Systems, Inc.Systems and methods for preventing automatic identification of re-used single use devices
US623838716 Nov 199829 May 2001Team Medical, L.L.C.Electrosurgical generator
US623838810 Sep 199929 May 2001Alan G. EllmanLow-voltage electrosurgical apparatus
US624172321 Apr 19995 Jun 2001Team Medical LlcElectrosurgical system
US624172511 Jun 19965 Jun 2001Sherwood Services AgHigh frequency thermal ablation of cancerous tumors and functional targets with image data assistance
US62436547 Oct 19985 Jun 2001Telemonitor, Inc.Transducer assembly with smart connector
US624506115 Dec 199912 Jun 2001Ep Technologies, Inc.Tissue heating and ablation systems and methods using self-heated electrodes
US624506317 Feb 199812 Jun 2001Huettinger Medizintechnik Gmbh & Co. KgApparatus for decreasing or eliminating current leakages in electro medical equipment
US624506510 Sep 199812 Jun 2001Scimed Life Systems, Inc.Systems and methods for controlling power in an electrosurgical probe
US624691219 Jul 199912 Jun 2001Sherwood Services AgModulated high frequency tissue modification
US625110621 May 199826 Jun 2001Sherwood Services AgElectrosurgical generator power control circuit and method
US625442218 Oct 20003 Jul 2001Phoenix Contact Gmbh & Co.Electronic terminal for use on circuit boards
US625808511 May 199910 Jul 2001Sherwood Services AgElectrosurgical return electrode monitor
US626128516 Sep 199617 Jul 2001Storz Endoskop GmbhHigh-frequency surgical device and operation monitoring device for a high-frequency surgical device
US626128616 Oct 199817 Jul 2001Gyrus Medical LimitedElectrosurgical generator and system
US62677605 May 199831 Jul 2001Scimed Life Systems, Inc.Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and forming an incision in tissue with minimal blood loss
US62738864 May 199914 Aug 2001Curon Medical, Inc.Integrated tissue heating and cooling apparatus
US627578614 Apr 199814 Aug 2001Storz Endoskop GmbhDevice for monitoring a neutral electrode during HF surgery
US62939416 Oct 199825 Sep 2001Somnus Medical Technologies, Inc.Method and apparatus for impedance measurement in a multi-channel electro-surgical generator
US62939422 May 199625 Sep 2001Gyrus Medical LimitedElectrosurgical generator method
US62939434 Mar 199825 Sep 2001Ep Technologies, Inc.Tissue heating and ablation systems and methods which predict maximum tissue temperature
US629663621 Jul 19992 Oct 2001Arthrocare CorporationPower supply and methods for limiting power in electrosurgery
US63061312 Sep 199923 Oct 2001Olympus Optical Co., Ltd.Electric medical apparatus
US630613416 Oct 199823 Oct 2001Gyrus Medical LimitedElectrosurgical generator and system
US63093866 Oct 199830 Oct 2001Somnus Medical Technologies, Inc.Linear power control with PSK regulation
US63225581 Oct 199927 Nov 2001Engineering & Research Associates, Inc.Apparatus and method for predicting ablation depth
US632579924 Apr 19984 Dec 2001Gyrus Medical LimitedElectrosurgical instrument
US633799814 Jul 19998 Jan 2002Robert S. BehlApparatus and method for treating tumors near the surface of an organ
US633865720 Oct 200015 Jan 2002Ethicon Endo-SurgeryHand piece connector
US635026212 Apr 200026 Feb 2002Oratec Interventions, Inc.Method and apparatus for applying thermal energy to tissue asymetrically
US63582454 May 199919 Mar 2002Curon Medical, Inc.Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US636487716 Oct 19982 Apr 2002Gyrus Medical LimitedElectrosurgical generator and system
US637196317 Nov 199816 Apr 2002Scimed Life Systems, Inc.Device for controlled endoscopic penetration of injection needle
US63831837 Apr 19997 May 2002Olympus Optical Co., Ltd.High frequency treatment apparatus
US639102417 Jun 199921 May 2002Cardiac Pacemakers, Inc.RF ablation apparatus and method having electrode/tissue contact assessment scheme and electrocardiogram filtering
US639877930 Sep 19994 Jun 2002Sherwood Services AgVessel sealing system
US63987816 Mar 20004 Jun 2002Gyrus Medical LimitedElectrosurgery system
US64027418 Oct 199911 Jun 2002Sherwood Services AgCurrent and status monitor
US64027428 Feb 200011 Jun 2002United States Surgical CorporationController for thermal treatment of tissue
US640274317 Mar 200011 Jun 2002Sherwood Services AgSmart recognition apparatus and method
US640274815 Sep 199911 Jun 2002Sherwood Services AgElectrosurgical device having a dielectrical seal
US64097226 Jul 199925 Jun 2002Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US64132561 Aug 20002 Jul 2002Csaba TruckaiVoltage threshold ablation method and apparatus
US641650926 Mar 19989 Jul 2002Gyrus Medical LimitedElectrosurgical generator and system
US642289626 Feb 200123 Jul 2002Yazaki CorporationFlat circuit member connector
US642305721 Jan 200023 Jul 2002The Arizona Board Of Regents On Behalf Of The University Of ArizonaMethod and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures
US64268863 Aug 200130 Jul 2002Switch Power, Inc.Overcurrent protection for a linear post-regulator used in a voltage converter system
US642853722 May 19986 Aug 2002Scimed Life Systems, Inc.Electrophysiological treatment methods and apparatus employing high voltage pulse to render tissue temporarily unresponsive
US643609624 Nov 199920 Aug 2002Olympus Optical Co., Ltd.Electrosurgical apparatus with stable coagulation
US64401573 Nov 200027 Aug 2002Respiratory Support Products Inc.Air warming system for providing a controlled temperature of air to an air blanket
US645101518 Nov 199817 Sep 2002Sherwood Services AgMethod and system for menu-driven two-dimensional display lesion generator
US645459426 Jan 200124 Sep 2002Yazaki CorporationTerminal structure of flat circuit body
US645812119 Mar 19961 Oct 2002Diapulse Corporation Of AmericaApparatus for athermapeutic medical treatments
US645812218 Jun 19981 Oct 2002Telea Electronic Engineering SrlRadiofrequency electrosurgical generator with current control
US646468918 May 200015 Oct 2002Curon Medical, Inc.Graphical user interface for monitoring and controlling use of medical devices
US646469624 Feb 200015 Oct 2002Olympus Optical Co., Ltd.Electrical surgical operating apparatus
US646827019 Sep 200022 Oct 2002Arthocare CorporationSystem and method for electrosurgical treatment of intervertebral discs
US64682739 Feb 200022 Oct 2002The Board Of Regents Of The University Of NebraskaMethods for volumetric tissue ablation
US648220127 Jul 200019 Nov 2002Arthrocare CorporationSystems and methods for tissue resection, ablation and aspiration
US648867810 Jan 20013 Dec 2002Cardiac Pacemakers, Inc.RF ablation apparatus and method using unipolar and bipolar techniques
US649488026 Jul 200017 Dec 2002Scimed Life Systems, Inc.Systems and methods for controlling power in an electrosurgical probe
US64976599 Apr 199924 Dec 2002Spacelabs Medical, Inc.System for identifying a cable transmitting a signal from a sensor to an electronic instrument
US649846623 May 200024 Dec 2002Linear Technology Corp.Cancellation of slope compensation effect on current limit
US650618921 Aug 200014 Jan 2003Sherwood Services AgCool-tip electrode thermosurgery system
US65088156 May 199921 Jan 2003NovaceptRadio-frequency generator for powering an ablation device
US651147614 Nov 200128 Jan 2003Olympus Optical Co., Ltd.Electrosurgical apparatus with stable coagulation
US651147830 Jun 200028 Jan 2003Scimed Life Systems, Inc.Medical probe with reduced number of temperature sensor wires
US651753815 Oct 199911 Feb 2003Harold JacobTemperature-controlled snare
US652293122 Jan 200118 Feb 2003Thermatrx, Inc.Therapeutic prostatic thermotherapy
US65243084 Sep 199825 Feb 2003Celon Ag Medical InstrumentsElectrode arrangement for electrothermal treatment of human or animal bodies
US653727230 Nov 200125 Mar 2003Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US654426031 Dec 19998 Apr 2003Oratec Interventions, Inc.Method for treating tissue in arthroscopic environment using precooling and apparatus for same
US65462707 Jul 20008 Apr 2003Biosense, Inc.Multi-electrode catheter, system and method
US654778618 May 200015 Apr 2003Gyrus MedicalElectrosurgery system and instrument
US655755920 Feb 19986 May 2003Arthrocare CorporationElectrosurgical systems and methods with temperature control
US655837625 Jun 20016 May 2003Gregory D. BishopMethod of use of an ultrasonic clamp and coagulation apparatus with tissue support surface
US65583779 Jan 20016 May 2003Kyu-Ho LeeEmbolic material detachment detection system and method and assembly for embolic treatments
US656047015 Nov 20006 May 2003Datex-Ohmeda, Inc.Electrical lockout photoplethysmographic measurement system
US656203712 Feb 199813 May 2003Boris E. PatonBonding of soft biological tissues by passing high frequency electric current therethrough
US656555914 May 200120 May 2003Sherwood Services AgElectrosurgical return electrode monitor
US656556210 Sep 200120 May 2003Baylis Medical Company Inc.Method for the radio frequency perforation and the enlargement of a body tissue
US657596921 Aug 200010 Jun 2003Sherwood Services AgCool-tip radiofrequency thermosurgery electrode system for tumor ablation
US65785797 May 200117 Jun 2003Scimed Life Systems, Inc.Systems and methods for preventing automatic identification of re-used single use devices
US657928830 Aug 200017 Jun 2003Scimed Life Systems, Inc.Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US65824273 Mar 200024 Jun 2003Gyrus Medical LimitedElectrosurgery system
US660224321 Mar 20015 Aug 2003Alsius CorporationFoley catheter having redundant temperature sensors and method
US66022523 Jan 20025 Aug 2003Starion Instruments CorporationCombined dissecting, cauterizing, and stapling device
US66117937 Sep 199926 Aug 2003Scimed Life Systems, Inc.Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
US662015728 Dec 200016 Sep 2003Senorx, Inc.High frequency power source
US66201896 Nov 200016 Sep 2003Radiant Medical, Inc.Method and system for control of a patient's body temperature by way of a transluminally insertable heat exchange catheter
US662342327 Feb 200123 Sep 2003Olympus Optical Co., Ltd.Surgical operation system
US662690113 Aug 199930 Sep 2003The Trustees Of Columbia University In The City Of New YorkElectrothermal instrument for sealing and joining or cutting tissue
US662997321 Jan 20007 Oct 2003Elekta AbMethod and an apparatus for controlled destruction of tissue
US66321935 Jan 200014 Oct 2003Arthrocare CorporationSystems and methods for electrosurgical tissue treatment
US66350569 Oct 200121 Oct 2003Cardiac Pacemakers, Inc.RF ablation apparatus and method using amplitude control
US66350571 Dec 200021 Oct 2003Olympus Optical Co. Ltd.Electric operation apparatus
US664519820 Sep 200011 Nov 2003Ntero Surgical, Inc.Systems and methods for reducing post-surgical complications
US664888324 Apr 200218 Nov 2003Medtronic, Inc.Ablation system and method of use
US66516697 Sep 199925 Nov 2003Scimed Life Systems, Inc.Systems and methods to identify and disable re-used single use devices based on cataloging catheter usage
US665251324 Sep 200125 Nov 2003Ep Technologies, Inc.Tissue heating and ablation systems and methods which predict maximum tissue temperature
US665251413 Sep 200125 Nov 2003Alan G. EllmanIntelligent selection system for electrosurgical instrument
US66535696 Feb 200325 Nov 2003Yun-Ching SungSerial ATA cable
US665617719 Feb 20022 Dec 2003Csaba TruckaiElectrosurgical systems and techniques for sealing tissue
US666362313 Mar 200016 Dec 2003Olympus Optical Co., Ltd.Electric surgical operation apparatus
US666362430 Jul 199916 Dec 2003Rita Medical Systems, Inc.RF treatment apparatus
US666362724 Apr 200216 Dec 2003Medtronic, Inc.Ablation system and method of use
US666686016 Aug 200023 Dec 2003Olympus Optical Co., Ltd.Electric treatment system
US667215115 Jan 20026 Jan 2004Sentech, Inc.Apparatus and method for remote sensing and receiving
US667987512 Feb 200220 Jan 2004Olympus CorporationMedical treatment system
US668252713 Mar 200127 Jan 2004Perfect Surgical Techniques, Inc.Method and system for heating tissue with a bipolar instrument
US668570013 Nov 20013 Feb 2004Radiotherapeutics CorporationMethod and system for heating solid tissue
US668570110 Jun 20023 Feb 2004Sherwood Services AgSmart recognition apparatus and method
US668570319 Oct 20013 Feb 2004Scimed Life Systems, Inc.Generator and probe adapter
US66891318 Mar 200110 Feb 2004Tissuelink Medical, Inc.Electrosurgical device having a tissue reduction sensor
US669248920 Jul 200017 Feb 2004Team Medical, LlcElectrosurgical mode conversion system
US669378220 Sep 200017 Feb 2004Dell Products L.P.Surge suppression for current limiting circuits
US669583713 Mar 200224 Feb 2004Starion Instruments CorporationPower supply for identification and control of electrical surgical tools
US669684431 Aug 200124 Feb 2004Engineering & Research Associates, Inc.Apparatus and method for real time determination of materials' electrical properties
US671281326 Sep 200130 Mar 2004Alan G. EllmanRF probe for electrosurgical instrument
US673007822 Apr 20024 May 2004Cardiac Pacemakers, Inc.RF ablation apparatus and method using multi-frequency energy delivery
US673007922 Jul 20024 May 2004Medtronic Vidamed, Inc.Method for calculating impedance and apparatus utilizing same
US673008014 Aug 20014 May 2004Olympus CorporationElectric operation apparatus
US67334957 Sep 200011 May 2004Curon Medical, Inc.Systems and methods for monitoring and controlling use of medical devices
US673349819 Feb 200211 May 2004Live Tissue Connect, Inc.System and method for control of tissue welding
US674007912 Jul 200125 May 2004Neothermia CorporationElectrosurgical generator
US674008513 Nov 200125 May 2004Olympus CorporationHeating treatment system
US674322527 Mar 20011 Jun 2004Uab Research FoundationElectrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates
US67462842 Oct 20038 Jun 2004Hon Hai Precision Ind. Co., Ltd.Electrical connector assembly having signal and power terminals
US674962420 Dec 200115 Jun 2004Edward W. KnowltonFluid delivery apparatus
US675582513 Sep 200129 Jun 2004Sherwood Services AgElectrosurgical device having a dielectric seal
US67588462 Feb 20016 Jul 2004Gyrus Medical LimitedElectrosurgical instrument and an electrosurgery system including such an instrument
US676171618 Sep 200113 Jul 2004Cardiac Pacemakers, Inc.System and method for assessing electrode-tissue contact and lesion quality during RF ablation by measurement of conduction time
US67835235 Aug 200231 Aug 2004Curon Medical, Inc.Unified systems and methods for controlling use and operation of a family of different treatment devices
US678440524 Apr 200331 Aug 2004The State Of Oregon, Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State UniversityVariable frequency automated capacitive radio frequency (RF) dielectric heating system
US678690530 May 20027 Sep 2004Ep Technologies, Inc.Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body
US679020631 Jan 200214 Sep 2004Scimed Life Systems, Inc.Compensation for power variation along patient cables
US67923904 Aug 200314 Sep 2004Scimed Life Systems, Inc.Systems and methods to identify and disable re-used devices based on detecting environmental changes
US679698021 Nov 200128 Sep 2004Cardiac Pacemakers, Inc.System and method for validating and troubleshooting ablation system set-up
US679698111 Feb 200228 Sep 2004Sherwood Services AgVessel sealing system
US680950818 Sep 200126 Oct 2004Ethicon Endo-Surgery, Inc.Detection circuitry for surgical handpiece system
US681800019 Dec 200216 Nov 2004Celon Ag Medical InstrumentsElectrode arrangement for electrothermal treatment of human or animal bodies
US68245392 Aug 200230 Nov 2004Storz Endoskop Produktions GmbhTouchscreen controlling medical equipment from multiple manufacturers
US683056919 Nov 200214 Dec 2004Conmed CorporationElectrosurgical generator and method for detecting output power delivery malfunction
US683788825 Feb 20024 Jan 2005Arthrocare CorporationElectrosurgical probe with movable return electrode and methods related thereto
US684368228 Jul 200318 Jan 2005Smk CorporationPlug
US68437892 Jul 200218 Jan 2005Gyrus Medical LimitedElectrosurgical system
US684907324 Apr 20021 Feb 2005Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US685514122 Jul 200215 Feb 2005Medtronic, Inc.Method for monitoring impedance to control power and apparatus utilizing same
US685514229 Apr 200215 Feb 2005Olympus CorporationElectrosurgical device for treating body tissue with high-frequency power
US686088125 Sep 20021 Mar 2005Sherwood Services AgMultiple RF return pad contact detection system
US686468618 Oct 20028 Mar 2005Storz Endoskop GmbhHigh-frequency surgical device and operation monitoring device for a high-frequency surgical device
US687521019 Nov 20025 Apr 2005Conmed CorporationElectrosurgical generator and method for cross-checking mode functionality
US689033128 Sep 200110 May 2005Xo Care A/SElectrosurgical apparatus
US689343529 Oct 200117 May 2005Gyrus Medical LimitedElectrosurgical system
US689953819 Jul 200131 May 2005J. Morita Manufacturing CorporationIdentification type instrument assembly, identification type adapter, identification type tube, and medical apparatus using them
US69238041 Aug 20032 Aug 2005Neothermia CorporationElectrosurgical generator
US69296415 Mar 200316 Aug 2005Gyrus Medical LimitedElectrosurgical system
US693604714 May 200130 Aug 2005Agility Capital LlcMulti-channel RF energy delivery with coagulum reduction
US69393442 Aug 20016 Sep 2005Syneron Medical Ltd.Method for controlling skin temperature during thermal treatment
US693934628 Jun 20026 Sep 2005Oratec Interventions, Inc.Method and apparatus for controlling a temperature-controlled probe
US693934719 Nov 20026 Sep 2005Conmed CorporationElectrosurgical generator and method with voltage and frequency regulated high-voltage current mode power supply
US694266019 Nov 200213 Sep 2005Conmed CorporationElectrosurgical generator and method with multiple semi-autonomously executable functions
US694850319 Nov 200227 Sep 2005Conmed CorporationElectrosurgical generator and method for cross-checking output power
US695806414 Nov 200325 Oct 2005Boston Scientific Scimed, Inc.Systems and methods for performing simultaneous ablation
US696258725 Jul 20018 Nov 2005Rita Medical Systems, Inc.Method for detecting and treating tumors using localized impedance measurement
US69669075 Mar 200322 Nov 2005Gyrus Medical LimitedElectrosurgical generator and system
US697445320 Apr 200113 Dec 2005Arthrocare CorporationDual mode electrosurgical clamping probe and related methods
US697446314 Aug 200213 Dec 2005Innercool Therapies, Inc.System and method for patient temperature control employing temperature projection algorithm
US697749516 Jan 200420 Dec 2005Ethicon Endo-Surgery, Inc.Detection circuitry for surgical handpiece system
US698423127 Aug 200210 Jan 2006Gyrus Medical LimitedElectrosurgical system
US698901011 Feb 200324 Jan 2006Medtronic, Inc.Ablation system and method of use
US699470415 Aug 20027 Feb 2006Curon Medical, Inc.Graphical user interface for monitoring and controlling use of medical devices
US69947074 Aug 20037 Feb 2006Ellman Alan GIntelligent selection system for electrosurgical instrument
US700137912 Jan 200421 Feb 2006Boston Scientific Scimed, Inc.Method and system for heating solid tissue
US700138117 Nov 200321 Feb 2006Olympus CorporationElectric operation apparatus
US700417413 Sep 200228 Feb 2006Neothermia CorporationElectrosurgery with infiltration anesthesia
US700836922 Oct 20027 Mar 2006Cuppen Johannes JApparatus and method for electromagnetic therapy
US700841722 Apr 20027 Mar 2006Medtronics, Inc.Detecting coagulum formation
US700842114 Apr 20037 Mar 2006Resect Medical, Inc.Apparatus and method for tissue resection
US70257644 Dec 200211 Apr 2006Live Tissue Connect, Inc.Bonding of soft biological tissues by passing high frequency electric current therethrough
US703335114 Jul 200325 Apr 2006Starion Instruments CorporationPower supply for identification and control of electrical surgical tools
US704109624 Oct 20029 May 2006Synergetics Usa, Inc.Electrosurgical generator apparatus
US70449484 Dec 200316 May 2006Sherwood Services AgCircuit for controlling arc energy from an electrosurgical generator
US704494927 Jan 200416 May 2006Sherwood Services AgSmart recognition apparatus and method
US706006313 Nov 200313 Jun 2006Ethicon Endo-Surgery, IncDevices and methods for controlling initial movement of an electrosurgical electrode
US70623311 May 200213 Jun 2006Abiomed, Inc.Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system
US706369228 Jul 200320 Jun 2006Olympus CorporationSurgical operation system
US70669338 Aug 200127 Jun 2006Erbe Elektromedizin GmbhHigh-frequency generator for performing high-frequency surgery having adjustable power limitation, and method for controlling the power limitation
US707421723 Dec 200211 Jul 2006Cytyc Surgical ProductsRadio-frequency generator for powering an ablation device
US70836185 Apr 20021 Aug 2006Sherwood Services AgVessel sealer and divider
US709423122 Jan 200422 Aug 2006Ellman Alan GDual-mode electrosurgical instrument
US71151218 Dec 20033 Oct 2006Storz Endoskop GmbhElectrosurgical apparatus
US711512425 Oct 20043 Oct 2006Jia Hua XiaoDevice and method for tissue ablation using bipolar radio-frequency current
US711856426 Nov 200310 Oct 2006Ethicon Endo-Surgery, Inc.Medical treatment system with energy delivery device for limiting reuse
US712203119 Dec 200117 Oct 2006Curon Medical, Inc.Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US71314455 Dec 20037 Nov 2006Gyrus Medical LimitedElectrosurgical method and apparatus
US713186020 Nov 20037 Nov 2006Sherwood Services AgConnector systems for electrosurgical generator
US71379801 May 200321 Nov 2006Sherwood Services AgMethod and system for controlling output of RF medical generator
US714621028 Mar 20035 Dec 2006Standen Ltd.Apparatus and method for optimizing tumor treatment efficiency by electric fields
US714763829 Apr 200412 Dec 2006Sherwood Services AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US715196430 May 200319 Dec 2006Desai Jawahar MDevice and method for multi-phase radio-frequency ablation
US715330030 Jun 200526 Dec 2006Gyrus Medical LimitedElectrosurgical system
US715684420 Nov 20032 Jan 2007Sherwood Services AgElectrosurgical pencil with improved controls
US715684613 Jun 20032 Jan 2007Sherwood Services AgVessel sealer and divider for use with small trocars and cannulas
US716029316 Aug 20049 Jan 2007Sherwood Services AgMultiple RF return pad contact detection system
US716353610 Jun 200416 Jan 2007Baylis Medical Company Inc.Determining connections of multiple energy sources and energy delivery devices
US716914431 Oct 200330 Jan 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US717259111 Sep 20036 Feb 2007Olympus CorporationElectric operation apparatus
US71756189 Sep 200313 Feb 2007Senorx, Inc.High frequency power source
US717562125 Nov 200313 Feb 2007Surginetics, LlcElectrosurgical mode conversion system
US719242719 Feb 200320 Mar 2007Afx, Inc.Apparatus and method for assessing transmurality of a tissue ablation
US719562711 Jan 200527 Mar 2007Gyrus Medical LimitedElectrosurgical generator
US720355622 Oct 200410 Apr 2007Storz Endoskop Produktions GmbhDevice for monitoring medical equipment
US721108123 Dec 20031 May 2007Gyrus Medical LimitedElectrosurgical generator
US721422418 Aug 20038 May 2007Gyrus Medical LimitedElectrosurgical system
US721726928 Oct 200415 May 2007Uab Research FoundationElectrosurgical control system
US722026019 Jun 200322 May 2007Gyrus Medical LimitedElectrosurgical system
US722326415 Mar 200429 May 2007Resect Medical, Inc.Thermal coagulation of tissue during tissue resection
US722644723 Jun 20045 Jun 2007Smith & Nephew, Inc.Electrosurgical generator
US722946926 Apr 200312 Jun 2007Quantumcor, Inc.Methods for treating and repairing mitral valve annulus
US723243719 May 200519 Jun 2007Medical Cv, Inc.Assessment of lesion transmurality
US723818122 Oct 20043 Jul 2007Storz Endoskop Produktions GmbhHigh-frequency surgery generator
US723818310 Feb 20043 Jul 2007Syneron Medical Ltd.System and method for treating skin
US724425522 Oct 200417 Jul 2007Storz Endoskop Produktions GmbhHigh-frequency surgical generator
US724715518 May 200424 Jul 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US725004820 Aug 200431 Jul 2007Medtronic, Inc.Ablation system and method of use
US725074630 Mar 200531 Jul 2007Matsushita Electric Industrial Co., Ltd.Current mode switching regulator with predetermined on time
US72556944 Dec 200314 Aug 2007Sherwood Services AgVariable output crest factor electrosurgical generator
US725868816 Apr 200221 Aug 2007Baylis Medical Company Inc.Computerized electrical signal generator
US72820482 Jun 200416 Oct 2007Gyrus Medical LimitedElectrosurgical generator and system
US72820493 Oct 200516 Oct 2007Sherwood Services AgElectrosurgical system employing multiple electrodes and method thereof
US728511715 Mar 200223 Oct 2007Boston Scientific Scimed, Inc.Medical device control systems
US729412714 Apr 200513 Nov 2007Baylis Medical Company Inc.Electrosurgical tissue treatment method
US730043521 Nov 200327 Nov 2007Sherwood Services AgAutomatic control system for an electrosurgical generator
US73004373 Jun 200427 Nov 2007Telea Electronic Engineering SrlElectronic scalpel to cut organic tissues
US730355727 Dec 20044 Dec 2007Sherwood Services AgVessel sealing system
US730531122 Apr 20054 Dec 2007Advanced Energy Industries, Inc.Arc detection and handling in radio frequency power applications
US731795412 Dec 20038 Jan 2008Conmed CorporationVirtual control of electrosurgical generator functions
US731795512 Dec 20038 Jan 2008Conmed CorporationVirtual operating room integration
US732435723 Sep 200429 Jan 2008Olympus CorporationPower supply apparatus for electric operation
US73338596 Jul 200119 Feb 2008Salvatore RinaldiRadioelectric asymmetric conveyer for therapeutic use
US734158612 Jul 200411 Mar 2008Resect Medical, Inc.Thermal coagulation of tissue during tissue resection
US73445328 Dec 200418 Mar 2008Gyrus Medical LimitedElectrosurgical generator and system
US735306810 Aug 20041 Apr 2008Olympus CorporationControl device for a medical system and control method for medical system
US735443628 Sep 20058 Apr 2008Boston Scientific Scimed, Inc.Systems and methods for performing simultaneous ablation
US735780014 Feb 200315 Apr 2008Boston Scientific Scimed, Inc.Power supply and control apparatus and electrophysiology systems including the same
US736457724 Jul 200329 Apr 2008Sherwood Services AgVessel sealing system
US73645783 Dec 200429 Apr 2008Medtronic, Inc.System and method of performing an electrosurgical procedure
US736497215 Nov 200629 Apr 2008Kabushiki Kaisha ToshibaSemiconductor device
US73679729 Sep 20036 May 2008Medtronic, Inc.Ablation system
US7396336 *27 Oct 20048 Jul 2008Sherwood Services AgSwitched resonant ultrasonic power amplifier system
US740275430 Apr 200322 Jul 2008Kirwan Surgical Products, Inc.Integral electrically conducting cord and lumen
US74075025 Jul 20055 Aug 2008Cytyc CorporationRadio-frequency generator for powering an ablation device
US741643723 Aug 200626 Aug 2008Sherwood Services AgConnector systems for electrosurgical generator
US741654910 Oct 200326 Aug 2008Boston Scientific Scimed, Inc.Multi-zone bipolar ablation probe assembly
US742258230 Sep 20049 Sep 2008Stryker CorporationControl console to which powered surgical handpieces are connected, the console configured to simultaneously energize more than one and less than all of the handpieces
US742258628 Feb 20019 Sep 2008Angiodynamics, Inc.Tissue surface treatment apparatus and method
US742583520 May 200516 Sep 2008Erbe Elektromedizin GmbhMethod and measurement apparatus for determining the transition impedance between two parts of a subdivided neutral electrode
US746530212 Aug 200516 Dec 2008Encision, Inc.System and method for performing an electrosurgical procedure
US747027230 Jun 200430 Dec 2008Medtronic, Inc.Device and method for ablating tissue
US747914016 Sep 200520 Jan 2009Ellman International, Inc.Intelligent selection system for electrosurgical instrument
US749119928 Oct 200517 Feb 2009Gyrus Medical LimitedElectrosurgical generator and system
US749120114 May 200417 Feb 2009Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US751389624 Jan 20067 Apr 2009Covidien AgDual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US752539818 Oct 200528 Apr 2009Avago Technologies General Ip (Singapore) Pte. Ltd.Acoustically communicating data signals across an electrical isolation barrier
US2003018189828 Feb 200325 Sep 2003Bowers William J.RF filter for an electrosurgical generator
US2003019986322 Nov 200223 Oct 2003Swanson David K.Systems and methods for controlling power in an electrosurgical probe
US2004001515917 Jul 200322 Jan 2004Syntheon, LlcMethods and apparatus for treating the wall of a blood vessel with electromagnetic energy
US2004003033018 Apr 200212 Feb 2004Brassell James L.Electrosurgery systems
US2004006830426 Sep 20038 Apr 2004Paton Boris E.Bonding of soft biological tissues by passing high freouency electric current therethrough
US2004009791218 Nov 200220 May 2004Gonnering Wayne J.Electrosurgical generator and method with removable front panel having replaceable electrical connection sockets and illuminated receptacles
US2004014326313 Nov 200322 Jul 2004Schechter David A.Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US200401720163 Mar 20042 Sep 2004Curon Medical, Inc.Systems and methods for monitoring and controlling use of medical devices
US2005000456430 Apr 20046 Jan 2005Wham Robert H.Method and system for programming and controlling an electrosurgical generator system
US2005000463429 Jul 20046 Jan 2005Arthrocare CorporationMethods for electrosurgical treatment of spinal tissue
US2005002102030 Apr 200427 Jan 2005Blaha Derek M.System for activating an electrosurgical instrument
US2005010911130 Oct 200326 May 2005Delphi Technologies, Inc.Sensor and method of transmitting sensor data
US2005014915127 Oct 20047 Jul 2005Orszulak James H.Switched resonant ultrasonic power amplifier system
US200501823984 Feb 200518 Aug 2005Paterson William G.Method and system for continuity testing of medical electrodes
US2005019765923 Feb 20058 Sep 2005Bahney Timothy J.Vessel sealing system using capacitive RF dielectric heating
US2005020350427 Jan 200515 Sep 2005Wham Robert H.Method and system for controlling output of RF medical generator
US200600257606 May 20032 Feb 2006Podhajsky Ronald JBlood detector for controlling anesu and method therefor
US2006007987116 May 200513 Apr 2006Sherwood Services AgUniversal foot switch contact port
US2006011171130 Nov 200525 May 2006Gyrus Medical LimitedSurgical instrument
US2006016114810 Jan 200620 Jul 2006Robert BehnkeCircuit and method for controlling an electrosurgical generator using a full bridge topology
US200601786643 Mar 200610 Aug 2006Keppel David SCircuit for controlling arc energy from an electrosurgical generator
US2006022415227 Mar 20065 Oct 2006Sherwood Services AgMethod and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US2006028136023 Aug 200614 Dec 2006Sartor Joe DConnector systems for electrosurgical generator
US2006029117822 Jun 200628 Dec 2006Delta Electronics Inc.High frequency circuit module
US2007003820924 Oct 200615 Feb 2007Buysse Steven PMethod and system for controlling output of RF medical generator
US2007009380030 Apr 200426 Apr 2007Sherwood Services AgMethod and system for programming and controlling an electrosurgical generator system
US2007009380121 Oct 200526 Apr 2007Robert BehnkeCircuit and method for reducing stored energy in an electrosurgical generator
US2007013581212 Dec 200514 Jun 2007Sherwood Services AgLaparoscopic apparatus for performing electrosurgical procedures
US2007017380224 Jan 200626 Jul 2007Keppel David SMethod and system for transmitting data across patient isolation barrier
US2007017380324 Apr 200626 Jul 2007Wham Robert HSystem and method for terminating treatment in impedance feedback algorithm
US2007017380424 Jan 200726 Jul 2007Wham Robert HSystem and method for tissue sealing
US2007017380524 Jan 200726 Jul 2007Craig WeinbergMethod and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US2007017380624 Jan 200726 Jul 2007Sherwood Services AgSystem and method for closed loop monitoring of monopolar electrosurgical apparatus
US2007017381024 Jan 200626 Jul 2007Orszulak James HDual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US2007017381324 Jan 200626 Jul 2007Sherwood Services AgSystem and method for tissue sealing
US200702083393 Mar 20066 Sep 2007Sherwood Services AgSystem and method for controlling electrosurgical snares
US2007022569821 Mar 200627 Sep 2007Sherwood Services AgSystem and method for generating radio frequency energy
US2007025005224 Apr 200625 Oct 2007Sherwood Services AgArc based adaptive control system for an electrosurgical unit
US2007026561210 May 200615 Nov 2007Sherwood Services AgSystem and method for reducing leakage current in an electrosurgical generator
US2007028232030 May 20066 Dec 2007Sherwood Services AgSystem and method for controlling tissue heating rate prior to cellular vaporization
US2008001556324 Jul 200717 Jan 2008Hoey Michael FApparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US2008001556418 Sep 200717 Jan 2008Wham Robert HMethod and system for programming and controlling an electrosurgical generator system
US200800398318 Aug 200614 Feb 2008Sherwood Services AgSystem and method for measuring initial tissue impedance
US200800398368 Aug 200614 Feb 2008Sherwood Services AgSystem and method for controlling RF output during tissue sealing
US2008008209428 Sep 20063 Apr 2008Sherwood Services AgTransformer for RF voltage sensing
US2008012576723 Oct 200329 May 2008Sherwood Services AgThermocouple Measurement Circuit
US2008017719918 Jan 200824 Jul 2008Podhajsky Ronald JSystem and Method of Using Thermal and Electrical Conductivity of Tissue
US2008024868516 Jun 20089 Oct 2008Joe Don SartorConnector Systems for Electrosurgical Generator
US2008028131510 Jun 200813 Nov 2008David Lee GinesElectrosurgical Generator With Adaptive Power Control
US2008028131610 May 200713 Nov 2008Tyco Healthcare Group LpAdjustable impedance electrosurgical electrodes
US2008028779127 Jun 200820 Nov 2008Orszulak James HSwitched Resonant Ultrasonic Power Amplifier System
US2008028783827 Jun 200820 Nov 2008Orszulak James HSwitched Resonant Ultrasonic Power Amplifier System
US2009001853611 Jul 200715 Jan 2009Robert BehnkeMeasurement and control systems and methods for electrosurgical procedures
US2009002412016 Jul 200722 Jan 2009Sartor Joe DConnection cable and method for activating a voltage-controlled generator
US2009003688330 Jul 20075 Feb 2009Robert BehnkeElectrosurgical systems and printed circuit boards for use therewith
US200900698017 Sep 200712 Mar 2009Jensen Jeffrey LSystem and method for transmission of combined data stream
US2009008276521 Sep 200726 Mar 2009Tyco Healthcare Group LpReal-time arc control in electrosurgical generators
US2009015707123 Feb 200918 Jun 2009Covidien AgSystem and Method for Tissue Sealing
US2009015707223 Feb 200918 Jun 2009Covidien AgSystem and Method for Tissue Sealing
US2009015707325 Feb 200918 Jun 2009Sherwood Services AgDual Synchro-Resonant Electrosurgical Apparatus with Bi-Directional Magnetic Coupling
US2009015707523 Feb 200918 Jun 2009Covidien AgSystem and Method for Tissue Sealing
USD57432312 Feb 20075 Aug 2008Tyco Healthcare Group LpGenerator
USRE3443219 Feb 19922 Nov 1993Birtcher Medical Systems, Inc.Power control technique for beam-type electrosurgical unit
USRE3935819 Dec 200217 Oct 2006Gyrus Medical LimitedElectrosurgery system and method
USRE403888 May 200317 Jun 2008Covidien AgElectrosurgical generator with adaptive power control
DE390937C13 Oct 19223 Mar 1924Adolf ErbVorrichtung zur Innenbeheizung von Wannenoefen zum Haerten, Anlassen, Gluehen, Vergueten und Schmelzen
DE1099658B29 Apr 195916 Feb 1961Siemens Reiniger Werke AgSelbsttaetige Einschaltvorrichtung fuer Hochfrequenzchirurgiegeraete
DE1139927B3 Jan 196122 Nov 1962Friedrich LaberHochfrequenz-Chirurgiegeraet
DE1149832C225 Feb 196113 Oct 1977 Title not available
DE1439302A126 Oct 196323 Jan 1969Siemens AgHochfrequenz-Chirurgiegeraet
DE2407559C316 Feb 197421 Jan 1982Dornier System Gmbh, 7990 Friedrichshafen, DeTitle not available
DE2439587C317 Aug 197430 Apr 1980Matburn (Holdings) Ltd., LondonTitle not available
DE2455174A121 Nov 197422 May 1975Termiflex CorpEin/ausgabegeraet zum datenaustausch mit datenverarbeitungseinrichtungen
DE2504280C31 Feb 197528 Aug 1980Hans Heinrich Prof. Dr. 8035 Gauting MeinkeTitle not available
DE2540968C213 Sep 197530 Dec 1982Erbe Elektromedizin Gmbh, 7400 Tuebingen, DeTitle not available
DE2602517C323 Jan 197613 Jan 1983Dentsply International Inc., 17404 York, Pa., UsTitle not available
DE2803275C326 Jan 197825 Sep 1980Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 TuttlingenTitle not available
DE2820908C212 May 197816 Nov 1989Joseph Coubron Fr SkovajsaTitle not available
DE2823291A127 May 197829 Nov 1979Rainer Ing Grad KochCoagulation instrument automatic HF switching circuit - has first lead to potentiometer and second to transistor base
DE2946728C220 Nov 197930 Jul 1987Erbe Elektromedizin Gmbh, 7400 Tuebingen, DeTitle not available
DE3045996A15 Dec 19808 Jul 1982Medic Eschmann HandelsgesellscElectro-surgical scalpel instrument - has power supply remotely controlled by surgeon
DE3120102C220 May 198120 Aug 1987Fischer Met Gmbh, 7800 Freiburg, DeTitle not available
DE3143421C22 Nov 19812 May 1985The Agency Of Industrial Science And Technology, Tokio/Tokyo, JpTitle not available
DE3510586C223 Mar 198528 Jul 1988Erbe Elektromedizin Gmbh, 7400 Tuebingen, DeTitle not available
DE3604823C215 Feb 19861 Jun 1995Lindenmeier HeinzHochfrequenzgenerator mit automatischer Leistungsregelung für die Hochfrequenzchirurgie
DE3904558C215 Feb 198918 Sep 1997Lindenmeier HeinzAutomatisch leistungsgeregelter Hochfrequenzgenerator für die Hochfrequenz-Chirurgie
DE3942998C227 Dec 198926 Nov 1998Delma Elektro Med AppElektrochirurgisches Hochfrequenzgerät
DE4339049C216 Nov 199328 Jun 2001Erbe ElektromedizinEinrichtung zur Konfiguration chirurgischer Systeme
DE19717411A125 Apr 19975 Nov 1998Aesculap Ag & Co KgMonitoring of thermal loading of patient tissue in contact region of neutral electrode of HF treatment unit
DE19848540A121 Oct 199825 May 2000Reinhard KalfhausCircuit layout and method for operating a single- or multiphase current inverter connects an AC voltage output to a primary winding and current and a working resistance to a transformer's secondary winding and current.
EP1051948B125 Apr 20001 Mar 2006Sherwood Services AGAutomatic activation of electrosurgical generator bipolar output
EP1053720A118 May 200022 Nov 2000Gyrus Medical LimitedElectrosurgery system and method
EP1151725A122 Sep 19957 Nov 2001Ethicon Endo-SurgeryImpedance feedback monitor for electrosurgical instrument
EP1293171A214 Aug 200219 Mar 2003Alan G. EllmanIntelligent selection system for electrosurgical instrument
EP1472984B127 Apr 200431 Jul 2013Covidien AGControl system for performing electrosurgical procedures
EP1495712B124 Jun 200410 Mar 2010Olympus CorporationBlood vessel detection device
EP1500378A17 Jul 200426 Jan 2005Sherwood Services AGVessel sealing system
EP1535581B16 Apr 200114 Jul 2010Covidien AGVessel sealer and divider
EP1609430B122 Jun 200510 Aug 2011Covidien AGOpen vessel sealing instrument with cutting mechanism
EP1645235B17 Oct 200511 Aug 2010Covidien AGElectrosurgical system employing multiple electrodes
EP1707143B130 Mar 20064 Jun 2008Covidien AGElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
EP1707144B130 Mar 200619 Mar 2014Covidien AGMethod and system for compensating for external impedance of energy carrying component when controlling electrosurgical generator
EP1744354A221 Jun 200617 Jan 2007E.I.Du Pont de Nemours and CompanyCapacitive device, organic dielectric laminates, multilayer structures incorporating such devices, and methods of making thereof
EP1810628B124 Jan 200715 Jul 2009Covidien AGSystem for tissue sealing
EP1810630A124 Jan 200725 Jul 2007Sherwood Services AGSystem for terminating treatment in impedance feedback algorithm
EP1810633A224 Jan 200725 Jul 2007Sherwood Services AGA system for controlling an electrosurgical generator having an impedance based control algorithm
EP1854423B19 May 200713 Jul 2011Covidien AGSystem for reducing leakage current in an electrosurgical generator
FR1275415A Title not available
FR1347865A Title not available
FR2313708B1 Title not available
FR2364461A1 Title not available
FR2502935B1 Title not available
FR2517953A1 Title not available
FR2573301B3 Title not available
GB607850A Title not available
GB702510A Title not available
GB855459A Title not available
GB902775A Title not available
GB2164473B Title not available
GB2214430B Title not available
GB2358934B Title not available
SU727201A2 Title not available
WO2002053048A121 Dec 200111 Jul 2002Senorx IncElectrosurgical high frequency power source
WO2002088128A129 Apr 20027 Nov 2002Gross ThoralfRational syntheses of heteroleptic lanthanide sandwich coordination complexes
WO2003090635A128 Apr 20036 Nov 2003Storz Endoskop Produktions GmbhHigh-frequency surgical generator
WO2003092520A16 May 200313 Nov 2003Ronald J PodhajskyBlood detector for controlling anesu and method therefor
WO2004028385A111 Sep 20038 Apr 2004Fredricks Raymond AMultiple rf return pad contact detection system
WO2005046496A121 Nov 200326 May 2005Sherwood Serv AgAutomatic control system for an electrosurgical generator
WO2005048809A123 Oct 20032 Jun 2005Derek M BlahaRedundant temperature monitoring in electrosurgical systems for safety mitigation
WO2005050151A123 Oct 20032 Jun 2005Derek M BlahaThermocouple measurement circuit
WO2005060849A120 Nov 20037 Jul 2005Steven Paul BuysseElectrosurgical pencil with plurality of controls
WO2006050888A17 Nov 200518 May 2006Erbe ElektromedizinHf surgical instrument
Non-Patent Citations
Reference
1Alexander et al., "Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy" Journal Neurosurgery, 83; (1995) pp. 271-276.
2Anderson et al., "A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia" International Journal of Bio-Medical Computing, 35 (1994) pp. 297-307.
3Astrahan, "A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants" Medical Physics, 9 (3), May/Jun. 1982.
4Bergdahl et al., "Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator" Journal of Neurosurgery 75:1, (Jul. 1991) pp. 148-151.
5Chicharo et al. "A Sliding Goertzel Algorith" Aug. 1996, pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL vol. 52 No. 3.
6Cosman et al., "Methods of Making Nervous System Lesions" In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499.
7Cosman et al., "Radiofrequency Lesion Generation and Its Effect on Tissue Impedance" Applied Neurophysiology 51: (1988) pp. 230-242.
8Cosman et al., "Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone" Neurosurgery 15:(1984) pp. 945-950.
9Examination Report for Australian Appln. No. 2004224955, May 4, 2010.
10Geddes et al., "The Measurement of Physiologic Events by Electrical Impedence" Am. J. MI, Jan. Mar. 1964, pp. 16-27.
11Goldberg et al., "Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume" Acad Radio (1995) vol. 2, No. 5, pp. 399-404.
12Hadley I C D et al., "Inexpensive Digital Thermometer for Measurements on Semiconductors" International Journal of Electronics; Taylor and Francis. Ltd.; London, GB; vol. 70, No. 6 Jun. 1, 1991; pp. 1155-1162.
13International Search Report EP 04009964 dated Jul. 13, 2004.
14International Search Report EP 04015981.6 dated Sep. 29, 2004.
15International Search Report EP 05002769.7 dated Jun. 9, 2006.
16International Search Report EP 05014156.3 dated Dec. 28, 2005.
17International Search Report EP 05021944.3 dated Jan. 18, 2006.
18International Search Report EP 05022350.2 dated Jan. 18, 2006.
19International Search Report EP 06000708.5 dated Apr. 21, 2006.
20International Search Report EP 06006717.0 dated Aug. 7, 2006.
21International Search Report EP 06010499.9 dated Jan. 29, 2008.
22International Search Report EP 06022028.2 dated Feb. 5, 2007.
23International Search Report EP 06025700.3 dated Apr. 12, 2007.
24International Search Report EP 07001481.6 dated Apr. 23, 2007.
25International Search Report EP 07001485.7 dated May 15, 2007.
26International Search Report EP 07001489.9 dated Dec. 20, 2007.
27International Search Report EP 07001491 dated Jun. 6, 2007.
28International Search Report EP 07001527.6 dated May 9, 2007.
29International Search Report EP 07004355.9 dated May 21, 2007.
30International Search Report EP 07008207.8 dated Sep. 5, 2007.
31International Search Report EP 07009322.4 dated Jan. 14, 2008.
32International Search Report EP 07010673.7 dated Sep. 24, 2007.
33International Search Report EP 07015601.3 dated Jan. 4, 2008.
34International Search Report EP 07015602.1 dated Dec. 20, 2007.
35International Search Report EP 07019174.7 dated Jan. 29, 2008.
36International Search Report EP 98300964.8 dated Dec. 4, 2000.
37International Search Report EP04707738 dated Jul. 4, 2007.
38International Search Report EP08004667.5 dated Jun. 3, 2008.
39International Search Report EP08006733.3 dated Jul. 28, 2008.
40International Search Report EP08012503 dated Sep. 19, 2008.
41International Search Report EP08013605 dated Nov. 17, 2008.
42International Search Report EP08015601.1 dated Dec. 5, 2008.
43International Search Report EP08016540.0 dated Feb. 25, 2009.
44International Search Report EP08155780 dated Jan. 19, 2009.
45International Search Report EP08166208.2 dated Dec. 1, 2008.
46International Search Report PCT/US03/33711 dated Jul. 16, 2004.
47International Search Report PCT/US03/33832 dated Jun. 17, 2004.
48International Search Report PCT/US03/37110 dated Jul. 25, 2005.
49International Search Report PCT/US03/37310 dated Aug. 13, 2004.
50International Search Report PCT/US04/02961 dated Aug. 2, 2005.
51International Search Report-extended EP 06000708.5 dated Aug. 22, 2006.
52International Search Report—extended EP 06000708.5 dated Aug. 22, 2006.
53Medtrex Brochure "The O.R. Pro 300" 1 p. Sep. 1998.
54Muller et al. "Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System" Innovations That Work; Sep. 1999.
55Ni W. et al. "A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . " Journal of Applied Sciences-Yingyong Kexue Xuebao, Shangha CN, vol. 23 No. 2;(Mar. 2005); pp. 160-164.
56Ogden Goertzel Alternative to the Fourier Transform: Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG vol. 99, No. 9. 1687.
57Richard Wolf Medical Instruments Corp. Brochure, "Kleppinger Bipolar Forceps & Bipolar Generator" 3 pp. Jan. 1989.
58Sugita et al., "Bipolar Coagulator with Automatic Thermocontrol" J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779.
59US 6,878,148, 04/2005, Goble et al. (withdrawn)
60Valleylab Brochure "Valleylab Electroshield Monitoring System" 2 pp. Nov. 1995.
61Vallfors et al., "Automatically Controlled Bipolar Electrosoagulation-'COA-COMP" Neurosurgical Review 7:2-3 (1984) pp. 187-190.
62Wald et al., "Accidental Burns", JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US848599316 Jan 201216 Jul 2013Covidien AgSwitched resonant ultrasonic power amplifier system
US848606124 Aug 201216 Jul 2013Covidien LpImaginary impedance process monitoring and intelligent shut-off
US86473404 Jan 201211 Feb 2014Covidien AgThermocouple measurement system
US896698116 Jul 20133 Mar 2015Covidien AgSwitched resonant ultrasonic power amplifier system
US910627010 Sep 201311 Aug 2015Covidien LpTransmitting data across a patient isolation barrier using an electric-field capacitive coupler module
Classifications
U.S. Classification601/2, 73/579, 607/96
International ClassificationA61F7/00, B06B1/02, H03F3/217, H03F1/02, A61B18/00
Cooperative ClassificationA61N7/00, H01L41/042, A61N2007/0056, B06B1/0261, B06B2201/76, B06B1/0253
European ClassificationB06B1/02D3C2B, B06B1/02D3C2C
Legal Events
DateCodeEventDescription
30 Jul 2008ASAssignment
Owner name: SHERWOOD SERVICES AG, SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ORSZULAK, JAMES H.;MCPHERSON, JAMES W.;REEL/FRAME:021318/0376;SIGNING DATES FROM 20041201 TO 20041202
Owner name: SHERWOOD SERVICES AG, SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ORSZULAK, JAMES H.;MCPHERSON, JAMES W.;SIGNING DATES FROM 20041201 TO 20041202;REEL/FRAME:021318/0376
8 Jul 2010ASAssignment
Owner name: COVIDIEN AG, SWITZERLAND
Free format text: CHANGE OF NAME;ASSIGNOR:SHERWOOD SERVICES AG;REEL/FRAME:024651/0373
Effective date: 20070309
12 Jul 2010ASAssignment
Owner name: TYCO HEALTHCARE GROUP AG, SWITZERLAND
Free format text: MERGER;ASSIGNOR:COVIDIEN AG;REEL/FRAME:024662/0395
Effective date: 20081215
Owner name: COVIDIEN AG, SWITZERLAND
Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP AG;REEL/FRAME:024662/0398
Effective date: 20081215
22 Jan 2015FPAYFee payment
Year of fee payment: 4