Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7938825 B2
Publication typeGrant
Application numberUS 11/593,886
Publication date10 May 2011
Filing date7 Nov 2006
Priority date25 Sep 2002
Also published asCA2499855A1, CA2499855C, DE60309901D1, DE60309901T2, EP1542603A1, EP1542603B1, EP1719471A2, EP1719471A3, EP2258295A2, EP2258295A3, US6860881, US7160293, US20040059323, US20050021022, US20070073284, WO2004028385A1, WO2004028385A9
Publication number11593886, 593886, US 7938825 B2, US 7938825B2, US-B2-7938825, US7938825 B2, US7938825B2
InventorsThomas A. Sturm, William N. Gregg, Raymond A. Fredricks
Original AssigneeCovidien Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Multiple RF return pad contact detection system
US 7938825 B2
Abstract
A multiple RF return pad contact detection system is provided which is adaptive to different physiological characteristics of patients without being susceptible to electrosurgical current interference (e.g., interference or measurement interaction between components of the detection system). The detection system can measure or sense the contact resistance or impedance between the patient and pairs of RF return pads or return electrodes where multiple pairs of RF return pads are utilized due to the high current frequently needed during electrosurgery while eliminating or minimizing the risk of measurement interaction between the RF return pad pairs. The system allows for the independent and simultaneous measurement of the pad contact impedance for each pair of RF return pads. If the impedance of any pad pair is above a predetermined limit, the system turns off or reduces the electrosurgical output of the electrosurgical generator to prevent excess heating. The system eliminates or minimizes interference or measurement interaction between the pad pairs by providing a different signal source frequency for each pad contact pair, but a frequency which matches an associated series resonant network frequency. The current that flows in the series resonant network is a direct reflection or function of the pad impedance of the corresponding pad pair.
Images(3)
Previous page
Next page
Claims(14)
1. A method for adaptive impedance monitoring of at least two patient return pads configured for contacting a patient and transmitting electrosurgical energy back to an electrosurgical generator, the method comprising the steps of:
generating operating currents for the at least two patient return pads;
tuning first and second resonant circuits in operative communication with the electrosurgical generator to respective first and second frequencies, the first and second resonant circuits responsive to the operating currents for producing a signal as a function of an instantaneous impedance between the at least two patient return pads;
selecting a desired impedance range having a lower limit and an upper limit;
recording the instantaneous impedance value;
determining whether the instantaneous impedance is within the impedance range;
updating the upper limit as a function of the instantaneous impedance value according to the determination of the determining step; and
monitoring the impedance of the at least one patient return pad to determine if the impedance is between the lower limit and the updated upper limit.
2. A method according to claim 1, further comprising the step of:
measuring initial impedance of the at least two patient return pads to determine whether the initial impedance is within the desired impedance for a predetermined interval of time.
3. A method according to claim 2, further comprising the step of: generating a control signal for controlling the operation of an electrosurgical generator according the determination made by the monitoring impedance step.
4. A method according to claim 3, wherein the control signal of the generating step signals the electrosurgical generator to perform an operation selected from the group consisting of issuing an alert and adjusting supply of electrosurgical energy.
5. A method according to claim 1, wherein the function of the updating step for updating the upper limit is multiplication of the instantaneous impedance by a factor larger than 1.0.
6. A method according to claim 1, further comprising the step of:
detecting a termination of a downward impedance trend to determine whether the instantaneous impedance value is a minimum impedance value.
7. A method according to claim 6, further comprising the step of:
updating the upper limit as a function of the instantaneous impedance value according to the determination of the detecting step.
8. An electrosurgical system comprising:
an electrosurgical generator configured to generate electrosurgical energy, the electrosurgical generator coupled to at least two patient return pads configured for contacting a patient and transmitting electrosurgical energy back to the electrosurgical generator, the electrosurgical generator including at least two signal sources for generating an operating current for the at least two patient return pads, the at least two signal sources in operative communication with at least two resonant circuits tuned to different frequencies, the at least two resonant circuits responsive to the operating current for producing a signal as a function of the impedance between the at least two patient return pads;
an impedance measurement subsystem coupled to the at least two patient return pads and adapted to record the impedance between the at least two patient return pads to obtain an instantaneous impedance value; and
a microprocessor configured to:
select a desired impedance range having a lower limit and an upper limit;
update the upper limit as a function of the instantaneous impedance value according to the determination whether the instantaneous impedance is within the impedance range; and
monitor the impedance of the at least one patient return pad to determine if the impedance is between the lower limit and the updated upper limit.
9. An electrosurgical system according to claim 8, wherein the impedance measurement subsystem measures initial impedance of the at least two patient return pads and the microprocessor is further configured to determine whether the initial impedance is within the desired impedance for a predetermined interval of time.
10. An electrosurgical system according to claim 9, wherein the microprocessor is configured to generate a control signal which controls the operation of the electrosurgical generator according the determination made by the monitoring impedance step.
11. An electrosurgical system according to claim 10, wherein the control signal of the microprocessor signals the electro surgical generator to perform an operation selected from the group consisting of issuing an alert and adjusting the supply of electrosurgical energy.
12. An electrosurgical system according to claim 8, wherein the upper limit is updated by multiplying the instantaneous impedance by a factor larger than 1.0.
13. An electrosurgical system according to claim 8, wherein the microprocessor is configured to detect a termination of a downward impedance trend to determine whether the instantaneous impedance value is a minimum impedance value.
14. An electrosurgical system according to claim 13, wherein the microprocessor is configured to update the upper limit as a function of the instantaneous impedance value if the instantaneous impedance value is the minimum impedance value.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/918,984, filed Aug. 16, 2004 by Sturm et al., entitled “MULTIPLE RF RETURN PAD CONTACT DETECTION SYSTEM”, now U.S. Pat. No. 7,160,293, which is a continuation of U.S. application Ser. No. 10/254,956, filed Sep. 25, 2002 by Sturm et al., entitled “MULTIPLE RF RETURN PAD CONTACT DETECTION SYSTEM”, now U.S. Pat. No. 6,860,881.

BACKGROUND

1. Technical Field

The present disclosure is directed to electrosurgery and, in particular, to circuitry for measuring or sensing the contact resistance or impedance between the patient and pairs of RF return pad contacts or electrodes employed in such surgery.

2. Description of the Related Art

One potential risk involved in electrosurgery is the possibility of stray electrical currents causing excess heating proximate the RF return pad contacts or patient return electrodes. The most common conditions which are thought to lead to excess heating include:

(1) Tenting: Lifting of the return electrode from the patient due to patient movement or improper application. This situation may lead to excess heating if the area of electrode-patient contact is significantly reduced;

(2) Incorrect Application Site: Application of a return electrode over a highly resistive body location (e.g., excessive adipose tissue, scar tissue, erythema or lesions, excessive hair) will lead to a greater, more rapid temperature increase. Or, if the electrode is not applied to the patient (i.e. electrode hangs freely or is attached to another surface), the current may seek an alternate return path such as the table or monitoring electrodes; and

(3) Gel drying either due to premature opening of the electrode pouch or use of an electrode which has exceeded the recommended shelf life.

Many monitor or detection systems have been developed in the past, but most cannot directly guard against all three of the above listed situations. In order to protect against these potentially hazardous situations, the contact resistance or impedance between the return electrode and the patient should be monitored in addition to the continuity of the patient return circuit.

Safety circuitry is known whereby split (or double) patient electrodes are employed and a DC current (see German Pat. No. 1,139,927, published Nov. 22, 1962) or an AC current (see U.S. Pat. Nos. 3,933,157 and 4,200,104) is passed between the split electrodes to sense the contact resistance or impedance between the patient and the electrodes. U.S. Pat. No. 3,913,583 discloses circuitry for reducing the current passing through the patient depending upon the area of contact of the patient with a solid, patient plate. A saturable reactor is included in the output circuit, the impedance of which varies depending upon the sensed impedance of the contact area.

The above systems are subject to at least one or more of the following shortcomings: (a) lack of sensitivity or adaptiveness to different physiological characteristics of patients and (b) susceptibility to electrosurgical current interference when monitoring is continued during electrosurgical activation.

U.S. Pat. Nos. 4,416,276 and 4,416,277 describe a split-patient return electrode monitoring system which is adaptive to different physiological characteristics of patients, and a return electrode monitoring system which has little, if any, susceptibility to electrosurgical current interference when monitoring is continued during electrosurgical activation. The entire contents of both U.S. Pat. Nos. 4,416,276 and 4,416,277 are incorporated herein by reference.

Still a need exists for a detection or monitoring system, which is: 1) adaptive to different physiological characteristics of patients; 2) has little, if any, susceptibility to electrosurgical current interference, (including interference or measurement interaction between components of the detection system); 3) can measure or sense the contact resistance or impedance between the patient and pairs of RF return pads or electrodes where multiple pairs of RF return pads are utilized due to the high current frequently needed during electrosurgery, such as during tissue ablation; and 4) eliminates or minimizes the risk of measurement interaction between the RF return pad pairs.

Therefore, it is an aspect of the invention to provide a multiple RF return pad contact detection system for use during electrosurgical activation which achieves the above objectives.

SUMMARY

A multiple RF return pad contact detection system is disclosed which is adaptive to different physiological characteristics of patients, without being susceptible to electrosurgical current interference. The detection system includes interference or measurement interaction between components of the detection system which can measure or sense the contact resistance or impedance between the patient and pairs of RF return pads or electrodes when multiple pairs of RF return pads are utilized. Due to the high current frequently needed during electrosurgery, such as during tissue ablation, the detection system eliminates or minimizes the risk of measurement interaction between the RF return pad pairs.

The circuitry of the multiple RF return pad contact detection system is preferably provided within an electrosurgical generator for controlling the generator according to various measurements, such as the contact resistance or impedance between the patient and pairs of RF return pads or return electrodes. The system allows for the independent and simultaneous measurement of the pad contact impedance for each pair of RF return pads. If the impedance of any pad pair is above a predetermined limit, the system turns off or reduces the electrosurgical output of the electrosurgical generator to prevent excess heating.

The system eliminates or minimizes interference or measurement interaction between the pad pairs by providing a different signal source frequency for each pad contact pair, but a frequency which matches an associated series resonant network frequency. The current that flows in the series resonant network is a direct reflection or function of the pad impedance of the corresponding pad pair. Since the two resonant networks are tuned to different frequencies, there is minimal interaction, if any, within the system, thus reducing the chances of inaccurate measurements.

The system could be modified by providing a multiplexer to multiplex the measurements corresponding to each pad contact pair to eliminate or minimize measurement interaction and also minimize hardware resources.

Further features of the multiple RF return pad contact detection system of the invention will become more readily apparent to those skilled in the art from the following detailed description of the apparatus taken in conjunction with the drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention will be described herein below with reference to the drawings wherein:

FIG. 1 is a schematic diagram of the multiple RF return pad contact detection system in accordance with a preferred embodiment of the invention; and

FIG. 2 is a graph illustrating the operation of the pad contact impedance measurement subsystem of FIG. 1.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Reference should be made to the drawings where like reference numerals refer to similar elements. Referring to FIG. 1, there is shown a schematic diagram of the multiple RF return pad contact detection system 100 of the present invention wherein electrosurgical generator 10 includes known circuitry such as a radio frequency oscillator 12 and an output amplifier 14 which generate an electrosurgical current. This current is applied to a patient (not shown) via an active electrode 16. The electrosurgical current is returned to the generator 10 via pad contact pairs or return electrode pairs 18 a, 18 b having pads or electrodes 20 a, 20 b and 22 a, 22 b and a corresponding two conductor patient cable 24 a, 24 b having leads 26 and 28. Two capacitors 32 and 34 are connected across each of the secondary windings 40 a, 40 b of transformer 38 a, 38 b.

Each primary winding 36 a, 36 b is connected to a corresponding a.c. signal source 42 a, 42 b and a series resonant network 44 a, 44 b. The purpose of each series resonant network 44 a, 44 b is to produce a current (i.e., left and right current senses) which is a function of the impedance between pads or electrodes 20 a, 20 b and 22 a, 22 b.

The system 100 eliminates or minimizes interference or measurement interaction between the pads 20 a, 20 b and 22 a, 22 b, while allowing for the independent and simultaneous measurement of the pad contact impedance for each pair of RF return pads by having each a.c. signal source 42 a, 42 b provide a different signal source frequency for its corresponding pad contact pair. The frequency of each series resonant network 44 a, 44 b is tuned to match the frequency of the current produced by its associated a.c. signal source 42 a, 42 b.

Accordingly, the frequency of one of the series resonant networks 44 a is different from the frequency of the other series resonant network 44 b. Hence, there is minimal interaction, if any, between the left and right circuitry of the system 100, especially the two contact pad pairs 18 a, 18 b. This essentially eliminates inaccurate or confusing measurements.

Additionally, the frequency of the electrosurgical current produced by the electrosurgical generator 10 is substantially different from that of the current produced by the a.c. signal sources 42 a, 42 b.

The current that flows in each series resonant network 44 a, 44 b, i.e., left and right current senses, is a direct reflection or function of the pad impedance of the corresponding pad contact pair 18 a, 18 b according to the physics of a series resonant network. Each series resonant network 44 a, 44 b is an RCL network or a combination of R (resistance), L (inductance) and C (capacitance). In a preferred embodiment of the series resonant networks 44 a, 44 b, the inductive component for each network is integrated into the respective transformer 38 a, 38 b.

The frequency response of a series resonant network has a maximum resonant frequency fR. At the resonant frequency, the series resonant network has the minimum impedance, as opposed to a parallel resonant network which has the maximum impedance at the resonant frequency, and the phase angle is equal to zero degrees. The total impedance of a series resonant network is ZT+jXL−jXC=R+j(XL−XC). At resonance: XL=XC, fR=1/(2πsqrtLC), ZT=R, and VL=VC. The resonance of a series resonant network occurs when the inductive and capacitive reactances are equal in magnitude but cancel each other because they are 180 degrees apart in phase.

The left and right current senses are applied to pad contact impedance measurement subsystem 46 which determines whether the impedance measurements between pads or return electrodes 20 a, 20 b and 22 a, 22 b are within a desired range. The range is preferably adaptable to the physiological characteristics of the patient. If at least one of the impedance measurements is not within a desired range, an inhibit signal is applied over a line 48 to internally disable the electrosurgical generator 10 (or reduce the RF output therefrom) to prevent excess heating.

U.S. Pat. Nos. 4,416,276 and 4,416,277 describe a method for determining the desired range according to the physiological characteristics of the patient, the entire contents of these patents is incorporated herein by reference.

Preferably, the desired range for which the impedance must fall between return electrodes 20 a, 20 b and 22 a, 22 b is about 20 to about 144 ohms. If not, the electrosurgical generator 10 is disabled. Thus, in one method of operation of the present invention, the lower limit is fixed at the nominal value of 20 ohms, thus reducing the onset of patient injury as a result of stray current paths which may surface if a contact pad or electrode is applied to a surface other than the patient. The upper limit is set to avoid such problems as those mentioned hereinbefore, i.e., tenting, incorrect application site, gel drying, etc.

In accordance with an important aspect of the invention, the upper limit is adjustable from the absolute maximum (typically about 144 ohms) downward to as low as typically 20 ohms to thereby provide for automatic adaptiveness to the physiological characteristics of the patient. This provides the multiple RF return pad contact detection system 100 of the present invention with significantly more control over the integrity of the RF pad contact or electrode connections without limiting the range of patient types with which the multiple RF return pad contact detection system 100 may be used or burdening the operator with additional concerns.

That is, the physiological characteristics can vary significantly from patient to patient and from one location site for the pad pairs to another. Thus, patients may vary in their respective amounts of adipose tissue (which is one determining factor in the impedance measurement between the various pads) without effecting the detection system. Further, for a particular patient, one location site may be more fatty, hairy or scarred than another. Again, this does not reduce the effectiveness of the system, i.e., all of these factors typically affect the impedance measured between pads 20 a, 20 b and 22 a, 22 b and thus concern the operator as to which site is optimal for a particular patient. Such concerns are eliminated in accordance with the present invention by providing for automatic adaptability to the physiological characteristics of the patient.

Reference should now be made to FIG. 2 which is a graph illustrating the operation of pad contact impedance measurement subsystem 46.

During operation, the desired impedance range (that is, the acceptable range of the impedance detected between pads 20 a, 20 b and 22 a, 22 b) is preset when the power is turned on to an upper limit of, for example, 120 ohms and a lower limit of, for example, 20 ohms as can be seen at time T=0 seconds in FIG. 2. If the monitored impedance for any pad contact pair is determined to be outside of this range (T=A seconds) by comparing the current sense signal (or a signal derived there from) with a reference signal (e.g., a signal equal to 120 ohms or 20 ohms) using comparator circuitry (e.g., when a pad pair or any single contact pad is not affixed to the patient) an alert will be asserted and the electrosurgical generator 10 will be disabled over line 48.

The impedance between two contact pads of a contact pad pair at any instant is designated the return RF electrode monitor (REM) Instantaneous Value (RIV) in FIG. 2. When the REM impedance enters the range (T=B seconds) bounded by the Upper Limit (UL) and the Lower Limit (LL), a timing sequence begins. If after five seconds the RIV is still within range (T=C seconds), the alert condition will cease and the REM impedance value is stored in memory. This is designated as REM Nominal Value (RNV). The upper limit is then reestablished as 120% of this amount. The 80 ohm RIV shown in FIG. 2 causes the upper limit to be at 96 ohms. This feature of the invention is particularly important because it is at this time (T=C seconds) that adaptation is initially made to the physiological characteristics of the patient. Note if the RIV were to exceed 96 ohms at a time between T=C and T=F seconds (while the upper limit is 96 ohms), the alert will be asserted and the electrosurgical generator 10 disabled.

However, if the upper limit had not been adjusted to 96 ohms, the alert would not have been asserted until after the RIV exceeded the initial 120 ohms upper limit as determined by the comparator circuitry, thus possibly heating one or both of the pads 20 a, 20 b and 22 a, 22 b. This situation is of course exacerbated if the patient's initial RIV within the preset 20 to 120 ohm range is 30 ohms.

An initial RIV of 10 ohms within the preset range of 20 to 120 ohms sets an upper limit of 144 ohms.

In accordance with another aspect of the invention, it has been observed that the impedance between contact pads of contact pad pairs decreases over a relatively long period, such as a number of hours. Since many surgical procedures can extend a number of hours, this effect is also taken into consideration in the present invention. Accordingly, RIV is continuously monitored and any minima in REM impedance (e.g., a downward trend followed by a constant or upward trend in REM impedance) initiates a new five second timing interval (T=E seconds) at the end of which the RNV is updated to the RIV if the RIV is lower (T=F seconds). The REM upper limit of 120% of RNV is re-established at this time. The five second interval causes any temporary negative change in REM impedance (T=D seconds) to be disregarded. Operation will continue in this manner provided RNV does not exceed the upper limit of 120% RNV or drop below the lower limit of 20 ohms. Exceeding the upper limit (T=G seconds) causes an alert and the electrosurgical generator 10 is disabled. It will remain in alert until the RIV drops to 115% of RNV or less (T=H seconds) or until the system 100 is reinitialized. RIV dropping to less than 20 ohms (T=I seconds) causes a similar alert which continues until either the RIV exceeds 24 ohms (T=J seconds) or the system 100 is reinitialized. The hysteresis in the limits of the REM range (that is, the changing of the upper limit to 115% of RNV and the lower limit to 24 ohms in the previous examples) prevents erratic alerting when RIV is marginal.

It should be noted in the example of FIG. 2 that the alert actually does not turn off when RIV returns to a value greater than 24 ohms because the pad pairs are removed before 5 seconds after T=J seconds elapse. Thus, the alarm stays on due to the removal of the pad contact pairs 18 a, 18 b.

Removing the pad contact pairs 18 a, 18 b from the patient or unplugging the cables 26, 28 from the electrosurgical generator 10 (T=K seconds) for more than one second causes the system 100 to be reinitialized to the original limits of 120 and 20 ohms. This permits a pad to be relocated or replaced (T=L seconds) without switching the electrosurgical generator 10 off. The RIV at the new location is 110 ohms and 120% RNV is 132 ohms. Thus, as described above, this is the one time (whenever RIV enters the 20 to 120 ohms range (either as preset during power on or as reinitialized as at T=K seconds) for the first time) that the upper limit can be raised during the normal REM cycle. Otherwise, it is continually decreased to adapt to the decreasing RIV impedance with the passage of time.

The preferred implementation of the foregoing FIG. 2 operation of the pad contact impedance measurement subsystem 46 is effected by a set of programmable instructions configured for execution by a microprocessor.

The system 100 could be modified by providing a multiplexer to multiplex the measurements corresponding to each pad contact pair 18 a, 18 b to eliminate or minimize measurement interaction and also minimize hardware resources.

Other pad contact pair arrangements can be provided in the system 100 of the present invention besides the pad pair arrangements shown in FIG. 1. For example, ten pad contact pairs 18 can be provided and connected to electrosurgical generator 10 by cables 26 and 28, where the corresponding a.c. signal source 42 and series resonant network 44 corresponding to each pad contact pair 18 are tuned to the same frequency which is different from the frequency of the other a.c. signal sources 42 and series resonant networks 44.

It is provided that the system 100 of the present invention allows for impedance comparisons to be performed between pad pairs. Therefore, if the pad pairs are placed symmetrically on the patient, i.e., left leg and right leg, comparison of the contact impedance can provide another degree of detection and safety.

Although the subject apparatus has been described with respect to preferred embodiments, it will be readily apparent to those having ordinary skill in the art to which it appertains that changes and modifications may be made thereto without departing from the spirit or scope of the subject apparatus.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US253627118 Oct 19462 Jan 1951Hartford Nat Bank & Trust CoDevice for the medical treatment of persons with high-frequency energy and electrodefor such a device
US338044524 Sep 196530 Apr 1968Int Rectifier CorpElectrical pickup structure for electrocardiographs and the like
US353430618 Oct 196813 Oct 1970Gen ElectricSolid state temperature sensor
US354376011 Mar 19681 Dec 1970Medical Plastic IncDisposable ground plate electrode
US364200815 Oct 196915 Feb 1972Medical Plastics IncGround electrode and test circuit
US368392325 Sep 197015 Aug 1972Valleylab IncElectrosurgery safety circuit
US381286115 Nov 197228 May 1974Peters RDisposable electrode
US39135833 Jun 197421 Oct 1975Sybron CorpControl circuit for electrosurgical units
US392306315 Jul 19742 Dec 1975Sybron CorpPulse control circuit for electrosurgical units
US393315723 Oct 197320 Jan 1976Aktiebolaget Stille-WernerTest and control device for electrosurgical apparatus
US39877962 Jul 197526 Oct 1976Dentsply Research & Development CorporationElectrosurgical device
US40673426 Apr 197610 Jan 1978Medtronic, Inc.Tape electrode
US40929852 Aug 19766 Jun 1978John George KaufmanBody electrode for electro-medical use
US40943209 Sep 197613 Jun 1978Valleylab, Inc.Electrosurgical safety circuit and method of using same
US410234116 Dec 197625 Jul 1978Olympus Optical Co., Ltd.Electric knife device
US41146221 Jun 197619 Sep 1978Dentsply Research And Development CorporationElectrosurgical device
US411784619 Jul 19773 Oct 1978Consolidated Medical EquipmentSkin conducting electrode and electrode assembly
US412159014 Mar 197724 Oct 1978Dentsply Research And Development CorporationSystem for monitoring integrity of a patient return circuit
US412613721 Jan 197721 Nov 1978Minnesota Mining And Manufacturing CompanyElectrosurgical unit
US418892712 Jan 197819 Feb 1980Valleylab, Inc.Multiple source electrosurgical generator
US420010417 Nov 197729 Apr 1980Valleylab, Inc.Contact area measurement apparatus for use in electrosurgery
US420010526 May 197829 Apr 1980Dentsply Research & Development Corp.Electrosurgical safety circuit
US421346324 Jul 197822 Jul 1980Graphic Controls CorporationBody electrode with indicator to ensure optimal securement
US42313724 Nov 19744 Nov 1980Valleylab, Inc.Safety monitoring circuit for electrosurgical unit
US423788723 Jan 19759 Dec 1980Valleylab, Inc.Electrosurgical device
US425372124 Sep 19793 Mar 1981Kaufman John GeorgeCable connector
US430307317 Jan 19801 Dec 1981Medical Plastics, Inc.Electrosurgery safety monitor
US430423510 Sep 19798 Dec 1981Kaufman John GeorgeElectrosurgical electrode
US433114928 Jun 197625 May 1982Dentsply Research And Development Corp.Electrosurgical device
US43433089 Jun 198010 Aug 1982Gross Robert DSurgical ground detector
US43817893 Nov 19803 May 1983Siemens AktiengesellschaftElectrode system
US43845822 Jun 198024 May 1983Drg (Uk) Ltd.Patient plate for diathermy apparatus, and diathermy apparatus fitted with it
US438771413 May 198114 Jun 1983Purdue Research FoundationElectrosurgical dispersive electrode
US43935849 Oct 198119 Jul 1983C. R. Bard, Inc.Method of manufacture of electrode construction
US441627626 Oct 198122 Nov 1983Valleylab, Inc.Adaptive, return electrode monitoring system
US44162773 Nov 198122 Nov 1983Valleylab, Inc.Return electrode monitoring system for use during electrosurgical activation
US44374649 Nov 198120 Mar 1984C.R. Bard, Inc.Electrosurgical generator safety apparatus
US44945412 Nov 198122 Jan 1985Medical Plastics, Inc.Electrosurgery safety monitor
US46431934 Jun 198517 Feb 1987C. R. Bard, Inc.ECG electrode with sensing element having a conductive coating in a pattern thereon
US465701514 Feb 198514 Apr 1987Werner IrnichControl device for a high frequency surgical apparatus
US465881913 Sep 198321 Apr 1987Valleylab, Inc.Electrosurgical generator
US46623694 Apr 19865 May 1987Castle CompanyElectrosurgical apparatus having a safety circuit
US466946820 Mar 19812 Jun 1987American Hospital Supply CorporationCapacitively coupled indifferent electrode
US469914612 Sep 198513 Oct 1987Valleylab, Inc.Radiation cross-linked polymer with three-dimensional matrix, plasticizer
US472276128 Mar 19862 Feb 1988Baxter Travenol Laboratories, Inc.Curing electroconductive hydrogel in situ; disposable
US472571320 May 198516 Feb 1988Graco Inc.Electrically heated hose employing a hose simulator for temperature control
US47413347 May 19863 May 1988Werner IrnichMonitoring arrangement for a high frequency surgery device
US474591810 Nov 198624 May 1988Peter FeuchtNeutral electrode and terminal clamp therefor
US474898320 Aug 19867 Jun 1988Kureha Kagaku Kogyo Kabushiki KaishaPorous material of carbon fibers, graphite and carbonized thermosetting resin
US47504821 Oct 198514 Jun 1988Pfizer Inc.Hydrophilic, elastomeric, pressure-sensitive adhesive
US475475710 Nov 19865 Jul 1988Peter FeuchtMethod and apparatus for monitoring the surface contact of a neutral electrode of a HF-surgical apparatus
US476851423 Jan 19876 Sep 1988C. R. Bard, Inc.Medical electrode
US47701737 Apr 198713 Sep 1988Siemens AktiengesellschaftMultiple element flat electrode useful for HF-surgery
US478897716 Nov 19876 Dec 1988Erbe Elektromedizin GmbhHigh-frequency surgical instrument
US47994804 Aug 198724 Jan 1989ConmedElectrode for electrosurgical apparatus
US480762115 Sep 198728 Feb 1989Siemens AktiengesellschaftMulti-element flat electrode especially useful for HF-surgery
US484406328 Sep 19874 Jul 1989Clark Ronald DSurgical diathermy apparatus
US484833516 Feb 198818 Jul 1989Aspen Laboratories, Inc.Return electrode contact monitor
US486288919 Jan 19895 Sep 1989Siemens AktiengesellschaftMonitoring circuit for an RF surgical apparatus
US487397421 Apr 198817 Oct 1989Siemens AktiengesellschaftNeutral electrode for a high-frequency surgical instrument
US48951699 Feb 198823 Jan 1990Darox CorporationDisposable non-invasive stimulating electrode set
US494231317 Aug 198817 Jul 1990Asea Brown Boveri AktiengesellschaftMethod for detecting a current flowing over the human body between a forward and a return conductor and a circuit configuration for carrying out the method
US494784610 Jun 198814 Aug 1990Tdk CorporationWaterproof electrode device for a living body
US495538126 Aug 198811 Sep 1990Cardiotronics, Inc.For stimulation/monitoring a patient's heart at or about the same time
US496104724 Oct 19892 Oct 1990Smiths Industries Public Limited CompanyElectrical power control apparatus and methods
US49698857 Feb 199013 Nov 1990Erbe Elektromedizin GmbhHigh frequency surgery device for cutting and/or coagulating biologic tissue
US500075330 Jan 199019 Mar 1991Siemens AktiengesellschaftThree-part neutral electrode for a high frequency surgery device
US500442510 Oct 19892 Apr 1991Jes, L.P.Antistatic
US501089617 Oct 198930 Apr 1991Westec CorporationPulsed galvanic stimulator
US503879613 Apr 198913 Aug 1991Axelgaard Manufacturing Co., Ltd.Electrical stimulation electrode with impedance compensation
US50429813 May 198927 Aug 1991Fuchelman Sociedad AnonimaAssembly comprising a surgical drape and a contour-type electrosurgical dispersive electrode, and method for its use
US506191427 Jun 198929 Oct 1991Tini Alloy CompanyShape-memory alloy micro-actuator
US508725721 Mar 199011 Feb 1992Erbe Elektromedizin GmbhApparatus for monitoring the application of neutral electrodes on a patient undergoing high frequency electro-surgery
US511442427 Aug 199019 May 1992Siemens AktiengesellschaftMultipart planar electrode for an hf-surgery device
US515276216 Nov 19906 Oct 1992Birtcher Medical Systems, Inc.Current leakage control for electrosurgical generator
US516033430 Apr 19913 Nov 1992Utah Medical Products, Inc.Electrosurgical generator and suction apparatus
US519600823 Aug 199023 Mar 1993Siemens AktiengesellschaftMethod and circuit for monitoring electrode surfaces at the body tissue of a patient in an hf surgery device
US52464391 Sep 199221 Sep 1993Smiths Industries Public Limited CompanyElectrosurgery equipment
US527141719 Nov 199121 Dec 1993Cardiac Pacemakers, Inc.Defibrillation electrode having smooth current distribution
US527607915 Nov 19914 Jan 1994Minnesota Mining And Manufacturing CompanyPressure-sensitive poly(n-vinyl lactam) adhesive composition and method for producing and using same
US528625529 Jul 199115 Feb 1994Linvatec CorporationSurgical forceps
US531240110 Jul 199117 May 1994Electroscope, Inc.Electrosurgical apparatus for laparoscopic and like procedures
US533625511 Jan 19939 Aug 1994Kanare Donald MElectrical stimulation heat/cool pack
US53523155 Nov 19934 Oct 1994Ludlow CorporationA continuous process of forming the kits by printing on a dielectric backings, applying an electroconductive inks, hot melts adhesives, cutting to individual electrodes, joining by releasing liner
US536242021 Dec 19938 Nov 1994Minnesota Mining And Manufacturing CompanyLow impedance pressure sensitive adhesive composition and biomedical electrodes using same
US537064519 Apr 19936 Dec 1994Valleylab Inc.Electrosurgical processor and method of use
US538567930 Jul 199331 Jan 1995Minnesota Mining And ManufacturingSolid state conductive polymer compositions, biomedical electrodes containing such compositions, and method of preparing same
US538849030 Dec 199214 Feb 1995Buck; Byron L.Rotary die cutting system and method for sheet material
US538937615 Oct 199314 Feb 1995Minnesota Mining And Manufacturing CompanyHydrophilic; radiation-crosslinked; unirradiated plasticizer; biomedical uses
US53903824 Nov 199221 Feb 1995Smiths Industries Public Limited CompanyPatient support tables and monitors
US540996615 Oct 199325 Apr 1995Minnesota Mining And Manufacturing CompanyMethod for producing pressure sensitive poly (N-vinyl lactam)
US544751327 Aug 19935 Sep 1995Ethicon, Inc.Endoscopic ligation and division instrument
US544936519 Apr 199412 Sep 1995United States Surgical CorporationSurgical clamp apparatus
US545272526 Feb 199326 Sep 1995Fisher & Paykel LimitedTemperature measuring apparatus
US548039914 Mar 19942 Jan 1996Smiths Industries Public Limited CompanyElectrosurgery monitor and apparatus
US54963127 Oct 19935 Mar 1996Valleylab Inc.Impedance and temperature generator control
US549636313 Jul 19945 Mar 1996Minnesota Mining And Manufacturing CompanyElectrode for transcutaneous electrical nerve stimulation
US552018027 Sep 199428 May 1996Minnesota Mining And Manufactoring CompanyBiomedical electrodes containing solid state conductive polymer compositions
US553644627 Sep 199416 Jul 1996Minnesota Mining And Manufacturing CompanySolid state conductive polymer compositions
Non-Patent Citations
Reference
1Boyles, Walt; "Instrumentation Reference Book", 2002; Butterworth-Heinemann ; 262-264.
2European Search Report relating to EP 06 00 8198 dated Jun. 10, 2010.
3International Search Report EP 05002027.0 dated May 12, 2005.
4International Search Report EP 05021944.3 dated Jan. 25, 2006.
5International Search Report EP 06006961 dated Aug. 3, 2006.
6International Search Report EP06006961.4 dated Oct. 5, 2007.
7International Search Report EP06018206.0 dated Oct. 13, 2006.
8International Search Report EP06023756.7 dated Feb. 21, 2008.
9International Search Report EP07000567.3 dated Dec. 3, 2008.
10International Search Report EP07000885.9 dated May 2, 2007.
11International Search Report EP07007783.9 dated Aug. 6, 2007.
12International Search Report EP07018375.1 dated Jan. 8, 2008.
13International Search Report EP07019173.9 dated Feb. 12, 2008.
14International Search Report EP07019178.8 dated Feb. 12, 2008.
15International Search Report EP07253835.8 dated Feb. 20, 2007.
16International Search Report EP08006731 dated Jul. 14, 2008.
17International Search Report EP08006731.7 dated Jul. 29, 2008.
18International Search Report EP08006734.1 dated Aug. 18, 2008.
19International Search Report EP08006735.8 dated Jan. 8, 2009.
20International Search Report EP08008510.3 dated Oct. 27, 2008.
21International Search Report EP08013758.1 dated Nov. 20, 2008.
22International Search Report EP08013760.7 dated Nov. 20, 2008.
23International Search Report EP08155779 dated Jan. 23, 2009.
24International Search Report EP08155779-partial dated Sep. 8, 2008.
25International Search Report EP09152032 dated Jun. 17, 2009.
26International Search Report EP09152130.2 dated Apr. 6, 2009.
27International Search Report PCT/US2004/004196 dated Oct. 4, 2007.
Classifications
U.S. Classification606/35
International ClassificationA61B18/04, A61B18/12, A61B18/16
Cooperative ClassificationA61B18/16, A61B18/1233
European ClassificationA61B18/12G6
Legal Events
DateCodeEventDescription
1 Jun 2010ASAssignment
Owner name: COVIDIEN AG,SWITZERLAND
Free format text: CHANGE OF NAME;ASSIGNOR:SHERWOOD SERVICES AG;REEL/FRAME:24468/243
Effective date: 20070309
Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP AG;REEL/FRAME:24468/248
Owner name: TYCO HEALTHCARE GROUP AG,SWITZERLAND
Effective date: 20081215
Free format text: MERGER;ASSIGNOR:COVIDIEN AG;REEL/FRAME:24468/245
Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP AG;REEL/FRAME:024468/0248
Free format text: CHANGE OF NAME;ASSIGNOR:SHERWOOD SERVICES AG;REEL/FRAME:024468/0243
Free format text: MERGER;ASSIGNOR:COVIDIEN AG;REEL/FRAME:024468/0245
Owner name: COVIDIEN AG, SWITZERLAND
Owner name: TYCO HEALTHCARE GROUP AG, SWITZERLAND
21 Jan 2010ASAssignment
Owner name: SHERWOOD SERVICES AG, SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STURM, THOMAS A.;GREGG, WILLIAM N.;FREDRICKS, RAYMOND A.;REEL/FRAME:023821/0517;SIGNING DATES FROM 20020916 TO 20020917
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STURM, THOMAS A.;GREGG, WILLIAM N.;FREDRICKS, RAYMOND A.;SIGNING DATES FROM 20020916 TO 20020917;REEL/FRAME:023821/0517