US7752166B2 - System and methods for asynchronous synchronization - Google Patents

System and methods for asynchronous synchronization Download PDF

Info

Publication number
US7752166B2
US7752166B2 US10/295,702 US29570202A US7752166B2 US 7752166 B2 US7752166 B2 US 7752166B2 US 29570202 A US29570202 A US 29570202A US 7752166 B2 US7752166 B2 US 7752166B2
Authority
US
United States
Prior art keywords
modification
data
computing device
synchronization
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/295,702
Other versions
US20030130984A1 (en
Inventor
Sean Quinlan
Daniel J. Mendez
Rajiv Joshi
Yuri Ardulov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Malikie Innovations Ltd
Original Assignee
Visto Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visto Corp filed Critical Visto Corp
Priority to US10/295,702 priority Critical patent/US7752166B2/en
Assigned to VISTO CORPORATION reassignment VISTO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARDULOV, YURI, JOSHI, RAJIV, MENDEZ, DANIEL J., QUINLAN, SEAN
Publication of US20030130984A1 publication Critical patent/US20030130984A1/en
Priority to US12/645,799 priority patent/US8255359B2/en
Priority to US12/796,969 priority patent/US8069144B2/en
Publication of US7752166B2 publication Critical patent/US7752166B2/en
Application granted granted Critical
Assigned to GOOD TECHNOLOGY CORPORATION reassignment GOOD TECHNOLOGY CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: VISTO CORPORATION
Assigned to GOOD TECHNOLOGY HOLDINGS LIMITED reassignment GOOD TECHNOLOGY HOLDINGS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOOD TECHNOLOGY CORPORATION
Assigned to BLACKBERRY LIMITED reassignment BLACKBERRY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOOD TECHNOLOGY HOLDINGS LIMITED
Assigned to MALIKIE INNOVATIONS LIMITED reassignment MALIKIE INNOVATIONS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLACKBERRY LIMITED
Assigned to MALIKIE INNOVATIONS LIMITED reassignment MALIKIE INNOVATIONS LIMITED NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: BLACKBERRY LIMITED
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • G06F16/273Asynchronous replication or reconciliation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/52Program synchronisation; Mutual exclusion, e.g. by means of semaphores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99951File or database maintenance
    • Y10S707/99952Coherency, e.g. same view to multiple users
    • Y10S707/99955Archiving or backup

Definitions

  • This invention relates generally to computer systems, and more particularly provides a system and methods that provide for synchronizing information among two or more devices.
  • PC personal computer
  • PDA personal area network
  • Conventional synchronous data synchronization provides for completely synchronizing specified user data on two of the user's computing devices upon each application of a synchronization algorithm.
  • first device data specified user data residing on a first user device
  • server data the network server
  • Synchronization is then typically initiated upon a later startup or shutdown of the first user device, or periodically, according to user preferences.
  • the server completely synchronizes the server data with the first device data and with corresponding data residing on the second user device (“second device data”). That is, assuming no conflict exists, a copy of all identified modifications to the first device data is transferred to the server, and the server correspondingly replaces or adds to the server data; a copy of the modifications now made to the server data is then similarly made to the second device data, replacing or adding to the second device data as needed. If a conflict exists, i.e., a data element has been modified at both user devices, then the network server typically resolves the conflict by preferring one user device over the other, or by allowing the user to select one of the data versions. If the first device modification is selected, the server replaces the corresponding second device data. The server then similarly synchronizes any non-conflicting modifications to the second device data with the server data and then the first device data.
  • second device data i.e., a data element has been modified at both user devices
  • Synchronous synchronization can also require substantial network resources. For example, the network bandwidth required for synchronizing potentially large amounts of data for a increasing number of users may become unmanageable. Similarly, while apparently sufficient, a significant increase in the number of users seeking synchronization services may strain network server capabilities. In any event, those resources that might otherwise be available for other uses must instead be devoted to conducting synchronization.
  • Still further disadvantages include those relating to the availability of up-to-date information and security. For example, extended time requirements might prompt a user to conduct synchronization other than at startup (e.g., before using a cell phone) or on a less frequent periodic basis. A user might therefore end up using out-of-date data that is available and appears valid prior to synchronization. The maintaining of security might also become problematic, since authentication and any encryption of the entire dataset are typically conducted by the “more capable” network server of the synchronization service provider.
  • aspects of the invention provide for conducting synchronization asynchronously among two or more computing devices, while further enabling disadvantages of prior synchronization to be avoided.
  • embodiments enable synchronization to be conducted asynchronously, such that a first computing device can initiate synchronization of specified first device data with data of a second device at times that are independent of the second device receiving the first device data or initiating synchronization of second device data with the first device.
  • embodiments also enable such synchronization to be conducted among more than two devices, devices of more than one user, or both.
  • embodiments enable transfer of data modifications, updating and conflict resolution to be conducted by the synchronizing user devices, and enable prior server storing of all information designated to be synchronized or server conducting of synchronization to be avoided.
  • embodiments enable synchronization to be initiated on variable amounts or granularities of data, among still further aspects.
  • An asynchronous synchronization method example includes a first computing device receiving a first trigger and responding by determining whether a modification has been made to first device data and, if so, transferring to a routing system a modification indicator indicating the modification.
  • the modification is further capable of being received by a second computing device and synchronized with second device data of the second computing device in response to a second device trigger triggering asynchronously as compared with the first device trigger.
  • first trigger might be invoked as a result of each first device data modification in which a device user was not using the device or upon a third party issuing a specific update or an update to a specified dataset; the second trigger might be invoked as a result of a user requesting an update, connecting the second device to the routing system for some other purpose while a modification is pending receipt, and so on, among other examples.
  • a further method example according to the invention includes a first computing device receiving a first triggering event and responding to the event by connecting to a routing system, if disconnected from the routing system, and further, receiving from the routing system a modification indicator indicating a modification to second device data of a second computing device.
  • the modification indicator can be transferred to the routing system in response to a second device trigger that triggers asynchronously or “time-independently” with respect to the first device trigger.
  • a still further method example includes a routing system receiving, from a first computing device operating in response to a first device trigger, a modification indicator indicating a modification to first device data, and storing the modification indicator.
  • the method further includes receiving a request for first device modifications from a second computing device operating in response to a second device trigger that triggers asynchronously with respect to the first device trigger.
  • the method still further includes responding by transferring to the second computing device the modification indicator, and the modification being capable of being received by the second computing device and synchronized with second device data.
  • the modification indicator might, for example, include one modification to one data element, many modifications to different data, modifications to one or more data attributes, an indicator of a type/extent of a change, and so on.
  • the modification might have been converted to a form useable by the first/second device(s) or be convertible by them, or the amount of data sent or received might be different depending upon available device/network resources, user use of the device, and so on.
  • the data might include program code or multimedia data, and so on, among other examples.
  • aspects of the invention enable synchronization of information among two or more computing devices to be conducted in a highly effective and efficient manner.
  • the ability of different computing devices to send and receive data modifications asynchronously according to time/event criteria suitable to different devices, device resources or device operations is enabled.
  • the ability of computing devices to resolve data conflicts or resulting conflicts is further enabled.
  • the ability of different computing devices to send or receive different amounts, types or granularities of data in accordance with available or lesser desirable resources of the devices or network elements is still further enabled, among still further examples.
  • FIG. 1 is a flow diagram illustrating an asynchronous synchronization system according to an embodiment of the invention
  • FIG. 2 is a block diagram illustrating a processing system capable of implementing asynchronous synchronization system elements, according to an embodiment of the invention
  • FIG. 3 a is a flow diagram illustrating the use of an asynchronous synchronization assistant and a data center, according to an embodiment of the invention
  • FIG. 3 b is a block diagram illustrating the data center of FIG. 3 a in greater detail
  • FIG. 3 c is a flow diagram illustrating the operation of a first asynchronous synchronization assistant, according to an embodiment of the invention.
  • FIG. 3 d is a flow diagram illustrating the operation of a second asynchronous synchronization assistant, according to an embodiment of the invention.
  • FIG. 4 is a block diagram illustrating a common store manager, according to an embodiment of the invention.
  • FIG. 5 illustrates, in greater detail, an asynchronous synchronization assistant, according to an embodiment of the invention
  • FIG. 6 illustrates a synchronization engine according to an embodiment of the invention
  • FIG. 7 illustrates a synchronization message example according to an embodiment of the invention
  • FIG. 8 illustrates a synchronization history example according to an embodiment of the invention
  • FIG. 9 illustrates a server user device map according to an embodiment of the invention.
  • FIG. 10 illustrates a client user device map according to an embodiment of the invention.
  • FIG. 11 is a flowchart illustrating a method for initiating asynchronous synchronization according to an embodiment of the invention.
  • FIG. 12 a illustrates a method for determining modification recipients and conducting security in conjunction therewith, according to an embodiment of the invention
  • FIG. 12 b is a flowchart illustrating a method for configuring one or more modification indicators by an asynchronous synchronization initiating computing system according to an embodiment of the invention
  • FIG. 13 is a flowchart illustrating a method for a routing system handling one or more modifications transferred among asynchronously synchronizing computing systems, according to an embodiment
  • FIG. 14 is a flowchart illustrating a method for conducting asynchronous synchronization by a first device of one or more second device modifications according to an embodiment of the invention.
  • aspects of the invention enable information to be synchronized asynchronously among two or more computing devices. Aspects enable prior network server conducting of synchronization and copying of target data to be avoided. Aspects also enable synchronization to be conducted on a variety of information types and granularities, among still further aspects.
  • FIG. 1 illustrates an example of a generalized network system 100 that has been configured to enable asynchronous synchronization among various computing devices including, for example, corporate devices coupled via a corporate intranet, personal devices coupled via the Internet, or some combination.
  • system 100 includes ASync-enabled user devices 101 a - b and 101 c - f , network (e.g., 102 a - b ), network server (e.g., 103 a - b ) and common storage 104 .
  • ASync system 100 can also include one or more firewalls (e.g., firewall 105 ), as well as routers, caches, backup systems or other interconnected network elements, according to the requirements a particular application (not shown).
  • asynchronous synchronization enables a first user device to initiate synchronizing of at least one information modification, or to respond to initiated synchronizing of information of another user device, and preferably both, in an asynchronous manner. More preferably, the first user device can initiate repeated synchronizing of modifications to first user device information independently of whether a second user device is connected to the first or has completed a prior initiated synchronizing by the first device or the first device has completed prior initiated synchronization by the other device.
  • Embodiments also enable asynchronous synchronization to be conducted among one or more overlapping or non-overlapping groups of ASync-enabled user devices in which any grouping includes two or more such devices synchronizing corresponding workspace elements.
  • Each user device in a synchronizing group of user devices might, for example, initiate or respond to synchronizing according to its own time/event trigger, user initiation, or some other suitable synchronization trigger.
  • Asynchronous synchronization can also be enabled or disabled according to time, schedule, event, resource availability or other criteria for one or more selected user devices or user device groups.
  • synchronization is conducted via a routing system, here a data center having a temporary storage for temporarily storing synchronization messages communicated to and from the synchronizing devices.
  • ASync-enabled user devices 101 a - f can include any computing devices that are capable of storing user information, designating user information to be synchronized or “workspace elements” and conducting asynchronous synchronization of a portion of the workspace elements that has been modified (e.g., added or altered).
  • Each of ASync-enabled user devices 101 a - f can thus comprise any unitary or multiple function computing device that is further capable of conducting synchronization in an asynchronous manner not inconsistent with the discussion herein (i.e., that is “ASync-enabled”).
  • ASync-enabled user devices 101 a - f might include conventional user devices to which asynchronous synchronization functionality has been added. Such user devices can, for example, include but are not limited to desktop or laptop PCs, handheld computers, settop boxes, personal data assistants (“PDAs”), personal information managers (“PIMs”), cell phones, controllers or so-called “smart” devices, among other computing systems.
  • PDAs personal data assistants
  • PIMs personal information managers
  • ASync-enabled user devices 101 a - f can further include single or multi-user, or integrated or distributed computing devices.
  • a synchronizing user device group might, for example, include at least two of one or more users' devices, such as a single user's network couplable PC, PDA and cell phone (which is sometimes referred to as a “smart” phone).
  • Information to be synchronized includes information designated, typically by a user device user or another person acting as a system administrator, as requiring synchronization with at least one other user device.
  • Workspace elements can generally include substantially any type of program code or multimedia data (e.g., values, other attributes, value/attribute indicators, change indicators, and so on) that can be stored, referenced and transferred, at least in part, by each ASync-enabled user device synchronizing such information.
  • workspace elements might, for example, include one or more of email, bookmarks, contact, meeting. notes or project data, or attributes or portions thereof, or other user device information that is entered by a user into a resident or downloadable application program.
  • workspace elements can also be automatically (e.g., programmatically) generated or electronically received by suitably configured ASync-enabled user device.)
  • Asynchronous synchronization instead enables different user devices to run different application programs or versions thereof, and can synchronize less than complete workspace element attributes, according to the capabilities of the particular user devices. (See below.)
  • ASync-enabled user devices 101 a - f are further couplable for synchronizing user device information via one or more wired or wirelessly couplable connections, such as networks 102 a - b .
  • network 102 a is a wide area network or “WAN”, such as the Internet
  • network 102 b is a local area network or “LAN”, such as a corporate intranet.
  • WAN wide area network
  • LAN local area network
  • one or more of various static or reconfigurable interconnections can also be used for transferring workspace elements among user devices.
  • Network server 103 a in this example, operates as a part of a data center 103 .
  • a common synchronization controller for storing all workspace data and conducting synchronization between each of a pair of user devices is not required. Synchronization can instead be conducted asynchronously by ASync-enabled user devices 101 a - f.
  • network server 103 a instead operates as a common storage manager of temporary storage 104 a .
  • Network server 103 a more specifically responds to first user device requests by forming a communication link and then receiving and temporarily storing first user device information, or then retrieving and communicating, to the first user device, information asynchronously received and stored from another user device.
  • Network server 103 a can further provide for deleting temporarily stored user device information of a first user device following retrieval of the information by one or more other user devices in a same synchronization group.
  • Temporal storage 104 which stores the user device information, can comprise a memory, cache, more permanent storage device, or any suitable storage medium in accordance with a particular application.
  • network server 103 b operates in a conventional manner as a corporate network server. As such, network server 103 b operates in a transparent manner with respect to synchronization. It will be appreciated, however, that network server 103 b might also operate in an otherwise conventional manner to provide for caching information to be synchronized, or further provide for synchronization within corporate network 106 or distributed synchronization within system 100 .
  • ASync-enabled user devices 101 a - c are a PC, cell phone and PDA respectively of a single user that are configured for conducting asynchronous synchronization (i.e., ASync-enabled).
  • ASync-enabled asynchronous synchronization
  • the user configures each of the devices to synchronize all personal contact information (e.g., stored in a personal contact folder of a contact program running on each of the devices) to the remaining devices each time the personal contact information changes.
  • the user configures each of the devices to check, upon startup, for all synchronization information from each of the remaining devices, and that no device remains coupled to network server 103 a.
  • the PC couples via network 102 a to network server 103 a and transfers a modification message via network server 103 a to storage 104 .
  • the PDA couples via network 102 a to network server 103 a , and retrieves the modification message from storage 104 .
  • the PDA then stores the data corresponding to the modification message.
  • the PDA similarly becomes coupled to network server 103 a and transfers the modification to storage 104 . If the user then starts up one of the remaining devices, e.g., the cell phone, the cell phone couples via network 102 a to network server 103 a , and retrieves both of the modifications from storage 104 . Then, assuming that no conflict exists, the cell phone stores the data corresponding to the PC and PDA modifications.
  • FIG. 2 illustrates an exemplary processing system that can comprise one or more of the elements of system 100 ( FIG. 1 ). While other alternatives might be utilized, it will be presumed for clarity sake that elements of system 100 are implemented in hardware, software or some combination by one or more processing systems consistent therewith, unless otherwise indicated.
  • Processing system 200 comprises elements coupled via communication channels (e.g. bus 201 ) including one or more general or special purpose processors 202 , such as a Pentium®, Power PC®, digital signal processor (“DSP”), and so on.
  • System 200 elements also include one or more input devices 203 (such as a mouse, keyboard, microphone, pen, etc.), and one or more output devices 204 , such as a suitable display, speakers, actuators, etc., in accordance with a particular application.
  • System 200 also includes a computer readable storage media reader 205 coupled to a computer readable storage medium 206 , such as a storage/memory device or hard or removable storage/memory media; such devices or media are further indicated separately as storage device 208 and memory 209 , which can include hard disk variants, floppy/compact disk variants, digital versatile disk (“DVD”) variants, smart cards, read only memory, random access memory, cache memory, etc., in accordance with a particular application.
  • One or more suitable communication devices 207 can also be included, such as a modem, DSL, infrared or other suitable transceiver, etc. for providing inter-device communication directly or via one or more suitable private or public networks that can include but are not limited to those already discussed.
  • Working memory 210 (e.g. of memory 209 ) further includes operating system (“OS”) 211 elements and other programs 212 , such as application programs, mobile code, data, etc. for implementing system 100 a - c / 200 elements that might be stored or loaded therein during use.
  • OS operating system
  • the particular OS can vary in accordance with a particular device, features or other aspects in accordance with a particular application (e.g. Windows, Mac, Linux, Unix or Palm OS variants, a proprietary OS, etc.).
  • Various programming languages or other tools can also be utilized.
  • working memory 210 contents, broadly given as OS 211 and other programs 212 can vary considerably in accordance with a particular application.
  • a system 100 element When implemented in software (e.g. as an application program, object, agent, downloadable, servlet, and so on in whole or part), a system 100 element can be communicated transitionally or more persistently from local or remote storage to memory (or cache memory, etc.) for execution, or another suitable mechanism can be utilized, and elements can be implemented in compiled or interpretive form. Input, intermediate or resulting data or functional elements can further reside more transitionally or more persistently in a storage media, cache or other volatile or non-volatile memory, (e.g. storage device 307 or memory 308 ) in accordance with a particular application.
  • a storage media e.g. storage device 307 or memory 308
  • FIGS. 3 a through 3 d illustrate exemplary ASync-enabled user device and data center operation in greater detail.
  • ASync-enabled user device 301 includes an asynchronous synchronization manager or “assistant” that enables the user device to conduct asynchronous synchronization.
  • Assistant 312 is preferably implemented as a stand-alone resident or downloadable application. It will be appreciated, however, that assistant 312 can also be integrated to varying extents with an OS or one or more underlying applications.
  • Assistant 312 provides for initiating and conducting synchronization in accordance with (typically user) overrideable user preferences entered by a user prior to initiating synchronization, and which are predetermined during synchronization. During synchronization, assistant 312 responds to a synchronization trigger by transferring one or more modified workspace elements (here, application data 311 ) to/from an application data space, or transferring synchronization messages to/from data center 302 .
  • modified workspace elements here, application data 311
  • Assistant 312 more specifically responds to an initiation trigger by receiving from an application data space one or more workspace elements that have been modified, forming a synchronization message, interconnecting with data center 302 (if not already interconnected) and transferring the message thus formed to data center 302 .
  • Assistant 312 responds to a response trigger by interconnecting with data center 302 (if not already interconnected) and receiving from data center 302 typically one synchronization message.
  • Assistant 312 determines if a conflict exists with regard to workspace elements of ASync-enabled user device 301 . If no conflict exists, then assistant causes any data contained in the synchronization message to be stored in the application data space, thereby adding to or replacing existing data. If a conflict does exist, then assistant 312 initiates conflict resolution. (Conflict resolution is discussed separately below.)
  • each ASync-enabled user device can also be individually configured, for example, in accordance with available resources.
  • a more capable user device might be implemented to store, transfer or receive more synchronization messages, while another might conduct one or more operations with fewer synchronization messages according to currently available resources, and still another might always operate on only one message at a time.
  • assistant 312 conducts transfers in an otherwise conventional manner, for example, transferring data via an application protocol interface or “API”, and transferring messages using HTML or a message transfer protocol, such as SOAP.
  • API application protocol interface
  • SOAP message transfer protocol
  • other transfer mechanisms can also be used in accordance with a particular application.
  • FIGS. 3 c through 3 e and FIG. 4 illustrate how data center 302 can be implemented as a common store manager 321 and temporary storage including data queues 322 a - n.
  • Common store manager 321 provides for initializing and managing a temporary storage (message queues in this example) for storing synchronization messages of two or more ASync-enabled user devices. Prior to synchronization of related user devices, common store manager 321 responds to an initialization request from a user device by initializing a number of message queues corresponding to user preferences (e.g., a number of synchronizing devices in a synchronization group)
  • common store manager 321 responds to user device requests by receiving and storing one or more synchronization messages in a write message queue for retrieval by at least one other user device, or returning from a message queue to a requesting device synchronization messages received from another user device.
  • Common store manager 321 further provides for deleting synchronization messages that have already been received by the one or more corresponding user devices to which they are directed.
  • Common store manager 321 can also provide for polling of message queues (or otherwise determining whether a synchronization event exists), and transferring to one or more ASync-enabled user devices an alert trigger. Such triggering might be used, for example, to alert an ASync-enabled user device that is interconnected for sending a synchronization message or that has already received synchronization messages that one or more synchronization messages is also available for retrieval. In the present implementation, however, common store manager 321 polls message queues upon receipt of a request from a corresponding ASync-enabled user device.
  • common store manager includes a request controller 401 for responding to requests and invoking message queue handling, and a queue manager for conducting message queue initialization and polling, and message retrieval and storage.
  • Common store manager 321 can, for example, be implemented in an otherwise conventional manner as a storage device management function of a network server, such as server 103 a of FIG. 1 ).
  • a system of first-in-first-out or “FIFO” message queues is found to be a convenient temporary storage configuration for storing user device messages. For example, using a FIFO for each corresponding ASync-enabled user device ( FIGS. 3 c and 3 d ) provides a straight forward common storage configuration for asynchronous transfers of synchronization messages between ASync-enabled user devices 301 a and 301 b.
  • assistant- 1 312 a of ASync-enabled user device 301 a responds to a synchronization trigger by storing one or more synchronization messages in message queue-B 332 b , which message queue is accessible for receiving messages by assistant- 2 312 b of ASync-enabled user device 301 b .
  • Assistant- 1 312 a further responds to a response trigger by receiving one or more messages from message queue-A 332 b , which message queue is accessible for transferring messages by assistant- 2 312 b.
  • FIG. 3 d shows how assistant- 2 312 b responds to a synchronization trigger by storing one or more synchronization messages in message queue-A 332 b , which message queue is accessible for receiving messages by assistant- 1 312 b .
  • Assistant- 2 312 b further responds to a response trigger by receiving one or more messages from message queue-B 332 b , which message queue is accessible for transferring messages by assistant- 1 312 a.
  • the queue configuration is also useful where more than one synchronizing group of ASync-enabled user devices is utilized, e.g., implementing a new queue for each separately operating or overlapping ASync-enabled user device. Deleting received synchronization messages is further facilitated and can, for example, be conducted by common store manager 321 ( FIG. 3 c ) upon a synchronization message retrieval by each ASync-enabled user device. Other data structures or configurations of data structures can also be used in accordance with a particular application.
  • FIGS. 5 through 10 illustrate exemplary asynchronous synchronization assistants in greater detail.
  • assistant 500 includes asynchronous scheduler 501 , synchronization controller 503 , synchronization engine 505 , synchronization history 507 , synchronization adapters 509 , preference engine 511 , system monitor 513 and interface generator 515 .
  • Asynchronous scheduler 501 responds to triggering events by invoking synchronization controller 503 , and thereby causing a corresponding ASync-enabled user device to initiate synchronization or respond to a queued synchronization message.
  • the triggering events are selectably enabled by a user via user preference engine 511 and selection options are presented to a user by interface generator 515 .
  • Triggering events can include but are not limited to one or more of local database change notifications (e.g. from an application program interface or “API”, a positive result from polling an other device or “remote” message queue, receipt of a SMS alert, expiration of a scheduled synchronization timer or manual synchronization invocation by a user.
  • SMS Short message service
  • An SMS alert can be used to cause an application local to the device to be alerted by and react to the receipt of such messages, for example, for causing synchronization scheduler 501 to initiate synchronization activity.
  • Asynchronous scheduler 501 responds to system monitor 513 by causing or preventing initiating of a synchronization operation or by changing the manner of response. For example, a synchronization trigger can be delayed or a user alert can be initiated while a user is accessing a device. A greater or lesser number of synchronization messages can also be transferred/received in accordance with a corresponding greater or lesser availability of network or device resources, among other examples.
  • System monitor 513 operates in an otherwise conventional manner to determine and report ongoing user device or network activity levels. System monitor 513 also monitors particular activities, such as ongoing operation of a user device by a user.)
  • Synchronization controller 503 responds to synchronization scheduler 511 by identifying and initiating any workspace element modifications. More specifically, synchronization controller 503 fetches, from synchronization adapter 509 , a workspace element change list, if such a list exists.
  • the workspace element change list contains a reference to some or all of the workspace elements that have been recently modified. That is, workspace elements that have been added, modified, or deleted since the last synchronization message regarding that element was sent out to the other device(s) participating in the synchronization.
  • the synchronization adapter may determine this change list in a way appropriate to the change indication capabilities of the local element store to which it interfaces. (See below.)
  • Synchronization controller 503 further, invokes synchronization history 507 and synchronization adapters 509 , and transfers to synchronization adapters 509 any change list information. Synchronization controller 503 then invokes synchronization engine 505 .
  • Synchronization engine 505 provides for determining whether conflicting updates of the same workspace element exist, and if so, for resolving the conflict. Synchronization engine 405 also provides for initiating updating of local workspace elements (i.e., of the user device) and transfer of modified workspace elements of the user device.
  • synchronization engine 505 includes message parser 601 , history manager 602 , conflict engine 603 data transfer engine 604 , version assignor 605 and data reference manager 606 .
  • Conflict engine 603 includes conflict detector 631 for detecting conflicts and conflict resolver 602 for resolving conflicts
  • transfer engine 604 includes data transfer engine 641 message transfer engine 642 .
  • synchronization engine 505 determines the existence of a conflict by comparing version information of a received workspace element with that of the most recent version stored by the user device. More specifically, a version stamp is assigned for each synchronizing user device at least with respect to each workspace element by a respective version assignor 605 . (Other granularities might also be used, for example, to track one or more attributes of each workspace element. However, limited resources of many devices, such as PDAs or cell phones, can be prohibitive.) Each user device then increments its version stamp for the workspace element in conjunction with each modification of the workspace element entered by the user device, which modification is also transferred via the data center to the other synchronizing devices.
  • an unmodified (or new) workspace element X that is synchronized among two user devices might have a numerical version stamp of 0 X 0 . If only the first user device enters a modification, then the first user device increments its version before transferring the workspace element, yielding the version stamp of 1 X 0 . If only the second user device enters a modification, then the second user device increments its version before transferring the workspace element, yielding the version stamp of 0 X 1 .
  • the exemplary synchronization message of FIG. 7 shows how each synchronization message containing data includes the incremented version stamp for each user device, here user device- 1 704 and user device 2 705 .
  • the remaining message fields include a (unique) message ID 701 , an instruction 702 , the workspace element information or data 703 , the source user device of the data 706 , and the target user device of the data.
  • Case 1 If user device- 2 receives the modification entered by user device- 1 to element X and enters a modification to element X, then user device- 1 will receive a message containing the twice modified element X having the version 1 X 1 .
  • Case 2a If instead user device- 2 enters a modification to element X prior to receiving the modification by user device- 1 , then user device- 1 will instead receive the once modified element X (by user device- 2 ) having the version 0 X 1 .
  • Case 2b User device- 2 will also later receive the message from device- 1 containing the element X and the version 0 X 1 .
  • the exemplary synchronization history map of FIG. 8 shows how history manager 602 ( FIG. 6 ) of the synchronization engine of each user device further maintains each current synchronization state for all synchronizing user devices (e.g., user device- 1 version stamp 812 and the user device- 2 version stamp 813 ) for each synchronized workspace element prior to receiving a new message.
  • all synchronizing user devices e.g., user device- 1 version stamp 812 and the user device- 2 version stamp 813
  • More history map portions include hash values 814 for enabling record value comparison and change detection, and read-only flags 815 to enable change propagation to be inhibited where required.
  • a history map can further include a synchronization state not specific to any record (not shown), such as the current message version stamp counter or the modified date to use as a cutoff when conducting a full change scan of a local database or other data space containing workspace data, among other map portions.
  • Conflict detector 630 of synchronization engine 505 determines whether a conflict exists by comparing the new “received” version information received from message parser 601 (which parses a received synchronization message) with the current version information received from history manager 602 , which polls the synchronization history map.
  • the initial current version stamp for each of user device- 1 and user device- 2 was 0 X 0 .
  • user device- 1 updates X and then user device- 2 receives, such that the current version stamps for user devices 1 and 2 become 1 X 0 (1) and 0 X 0 (2) and the received version for user device 2 becomes 1 X 0 (2) .
  • user device- 2 updates X and then user device 1 receives.
  • the version stamps for user devices 1 and 2 become: Current ⁇ 1 X 0(1) and 1 X 1(2) ; Received ⁇ 1 X 1(1) and 1 X 1(2) .
  • user device- 1 updates X
  • user device- 2 updates X without receiving, and then user device 1 receives.
  • example 3 is the same as example 2 except that user device- 2 now receives the user-device- 1 update.
  • the version stamps for user devices 1 and 2 become Current ⁇ 1 X 0(1) and 0 X 1(2) ; Received ⁇ 1 X 1(1) and 1 X 1(2) .
  • Conflict detector 630 operates according to a general behavior that an event that “happened after” another event takes precedence over the event that “happened before”. However, events that occurred concurrently represent conflicts and must be resolved by applying conflict resolution rules. In applying even this general rule, the result of the conflict detector 630 comparison would indicate no conflict in example 1, but would indicate a conflict in examples 2 and 3 due to the concurrent updates.
  • the conflict detector of user device- 1 would thus detect a conflict upon receipt of the user device- 2 update in example 2, and the conflict detector of user device- 2 would detect the conflict upon receipt of the user device- 1 update in example 3.
  • the synchronization history is expected to keep “tombstones” for entries that are deleted. These are entries that simply record the element identifier and the local and remote version stamps associated with the record at the time of deletion (with the local version incremented account to the act of deletion itself). This allows conflict detection and resolution to be done even for locally deleted elements. If an Update arrives which applies to a deleted element, whose “tombstone” has been purged from the synchronization history, then the Update will be treated as an Add. The synchronization history should maintain the tombstones long enough for most such Update commands to work their way through the system first.
  • Conflict detector 631 upon detecting an update conflict, invokes conflict resolver 632 .
  • Conflict resolver 632 then applies conflict resolution rules to resolve the conflict, and further, invokes data transfer engine 641 or message transfer engine 642 to initiate respective transfers as needed.
  • Examples of conflict resolution rules for update commands can include the following accept, reject and duplicate rules.
  • conflict resolution should generally be conducted in a global manner among synchronizing devices.
  • conflict resolution rules should be predetermined for each user device and remain static, or rules or indicators of rules stored by user devices should be communicated among the user devices as they change.
  • Another alternative is to configure at least one synchronizing user device to operate as a control or “server” user device. In this case, the remaining or “client” user devices, upon detecting a version conflict, can duplicate the existing workspace element. Upon receipt of the resulting Add command, the server user device can resolve the conflicts and issue delete commands as needed.
  • Add commands are unique. Unlike existing workspace elements, there is no preexisting common reference to newly created workspace elements, unless each user device maintains an identical data space. However, a remote referencing mechanism is found that enables integration of new workspace elements with even vastly different user device configurations and applications programs or other sources of data.
  • data reference engine 606 of synchronization engine 505 parses the message for a local reference of the workspace data of the sending user device.
  • Data reference engine 606 stores the sending device workspace element reference in a data reference map, such as with element 901 - 912 of the exemplary data reference map 900 of FIG. 9 .
  • Data reference engine 606 further adds to the map a local reference for the receiving user device (e.g., reference 901 - 911 ), and the workspace data is stored according to the sending device reference. Data reference engine 606 repeats this process for every added workspace element, such that a map of all workspace elements of all user devices is maintained.
  • a local reference for the receiving user device e.g., reference 901 - 911
  • Data reference engine 606 repeats this process for every added workspace element, such that a map of all workspace elements of all user devices is maintained.
  • data reference engine 606 polls the data reference map for the corresponding local (hosting user device) reference and synchronization continues according to the local reference. Conversely, when synchronizing a local modification of the workspace data, reference engine 606 polls the data reference map for the local reference, retrieves the recipient reference and a synchronization message is formed according to the recipient reference.
  • source and local references do not need to correspond to a memory address.
  • the local references need only be sufficient for establishing the correspondence and conducting local processing.
  • this mechanism enables one user device, rather than all user devices, to maintain the data reference map.
  • This one “server” user device can, for example, have superior available resources than the other devices.
  • the second (or other) user devices can maintain merely a “reference sent” map indicating which references have been sent, such as in the exemplary completion map of FIG. 10 . Then, upon synchronization, the data reference manager of second user device can poll the reference sent map to determine whether a reference was sent. If not, then the reference manager can add the reference to the synchronization message and set the mapped flag to indicate that the reference has been sent.
  • Conflict detection and a Delete command is the same as that for an Update command, except that acceptance of a Deletion involves deleting the local copy of an element and marking the synchronization history entry for that element to indicate that the entry is merely an tombstone for a deleted record.
  • the Deletion conflict resolution options are the same as those for an Update command, except the duplication option, which does not apply.
  • Resulting conflict engine 607 further provides for resolving conflicts that ultimately result in such applications as calendaring or project management, among others. For example, a meeting might be scheduled to occur at two different locations, or sequential meetings might be too disparately located to attend both. Resulting conflict engine 607 polls workspace data and workspace data from message parser 601 for resulting conflicts and resolves the conflicts in accordance with resulting conflict resolution rules or user interaction.
  • synchronization adaptors 509 implement a generic interface that allows the Sync Engine to access a specific database, application or other data space. This interface allows the Sync Engine to fetch particular records and to iterate through the set of records that have “recently” changed. The interpretation of recent will depend on the type of adapter and the particular constructor used to instantiate it.
  • the synchronization controller can for example, at the start of synchronization activity, supply each synchronization adapter with a synchronization anchor.
  • the synchronization anchor can be a simple token (e.g., a timestamp or a sequence number) fetched from the synchronization history.
  • the token indicates a cutoff, corresponding to the moment that the previous instance of synchronization activity occurred.
  • the synchronization adapter may use the token to infer that elements that have changed prior to the indicated cutoff date or sequence number should not be returned in the change list.
  • the synchronization adapter can further return a “new anchor” token, which may be used in a subsequent synchronization activity to indicate a cutoff corresponding to the then present moment. If the synchronization engine successfully processes all elements in the change list, then the synchronization history can be updated with the new anchor token.
  • the synchronization engine can explicitly acknowledge to the synchronization adapter the successful processing of each change list element as it is processed. This enables the synchronization adapter to clear the associated change flag (case 1) or to delete the associate change event notification from an internal queue (case 4).
  • the synchronization adapter returns a list of all current elements in the change list.
  • the synchronization engine then processes all elements with every synchronization and uses the short hash of each element from the last synchronization (which is stored in the synchronization history) to determine when an element has actually changed. In this case, it can also compare the elements to those in the synchronization history to infer which elements have been deleted.
  • the synchronization engine can separately request from the synchronization adapter a list of all elements. The synchronization engine can then infer modifications from the change list and infer deletions from the synchronization history and the list of all current elements.
  • Local adapters enable access to a local database or other data space, and generally to any record contained therein.
  • the set of “recent” changes may be determined, for example, by a set of change events supplied in the constructor, by a “lastmodified” cutoff date (extracted from the SyncHistory), or by querying a database for dirty bits.
  • Local adapters also facilitate synchronization of workspace elements between applications. For example, synchronization of data between PIM applications with differing capabilities requires field mapping, field truncation, recurrence rule mapping, and (sometimes) value range projection. This can be accomplished by a Local Data Adapter mapping fields from the native representation to a common field representation before returning field data to the synchronization engine. Truncation, recurrence mapping, and range projection for a particular device are further applied to field data by a remote data adapter before Update messages are queued.
  • Remote adapters enable access to a remote database via update messages routed through the remote message queue.
  • Remote adapters generally enable only read access to records that have had update messages queued, and write access to records that should have update messages queued.
  • Remote adapters also enable a high degree of flexibility with regard to the the device configurations and data sources that can be used.
  • the adapters can make decisions regarding field mapping, field truncation, and recurrence rule support, and other modifications on behalf of the remote device.
  • the adapters can also conduct conversion or translation as needed. It is therefore not necessary that each synchronizing user device be the same device, run the same programs or maintain equivalent memory spaces.
  • Synchronization adapters must be able to access the data corresponding to workspace elements. This data can be translated into a common format that can be interpreted by the remote adapters which will handle marshalling of the data for transmission to another device.
  • the synchronization adapter exposes element access and modification methods, which will allow the synchronization engine to conduct the synchronization. These methods include can, for example, include setLastSyncAnchor, getNextSyncAnchor, getAllElementReferences, getChangedElementReferences, getHashRepresentationOfElement, addElement, copyElement, modifyElement, deleteElement, applyTruncationToElement, and acknowledgeChange.
  • security engine 515 provides for implementing such security measures as authentication and encryption. Encryption and decryption can be conducted on a workspace element in conjunction with message paser 601 ( FIG. 6 ). Given the variable data granularity afforded by asynchronous synchronization, encryption can be conducted in an otherwise conventional manner prior to transferring the workspace element to the data center even within a low-resource user device. Decryption is similarly conducted upon receipt of workspace element or, if stored in encrypted form, upon retrieval of the workspace element.
  • Crash recovery engine or “crash manager” 516 may be alerted of a synchronization errors noticed by the synchronization engine during processing.
  • the synchronization engine utilizes the local and remote version stamps to detect cases where the local or the remote device may have experienced data loss or corruption, possibly followed by a restore from backup.
  • the synchronization engine detects a crash as a condition in which a message is received that has a local version stamp greater than the current local version for the associated element. This is described in further detail above. In the event of a crash and restore from backup, the local current version stamps stored in the synchronization history for various elements will inevitably be set back to some prior values.
  • Remote crash/restore events may similarly be detected by receipt of messages where the remote version is less than or equal to the current remote version for the associated element and the message transport system is used where message delivery, message non-duplication and strict message ordering is guaranteed. This is described in further detail above.
  • a re-synchronization should be conducted.
  • the “crash manager” must decide whether to conduct a recovery. It may prompt a user for confirmation or use some other mechanism whether the recovery should be initiated. This might even include sending a message to another device (B), indicating that a crash has occurred at this device (A). The “crash manager” at device B might be better positioned to prompt for user feedback as to whether a recovery should be initiated.
  • the “crash manager” should send a message to the other device alerting it to the possibility that its own data may be corrupted.
  • the “crash manager” should alert the synchronization scheduler to execute a “recovery sync”.
  • the synchronization engine is directed to send to the other device Update messages for all mapped elements, Add messages for all unmapped elements, and Delete messages for all element tombstones in the synchronization history.
  • Each of these messages must be marked as “recovery” messages, so that receipt of such messages will not trigger crash detection on the other device.
  • a “recovery sync” request must be sent to the other device, which likewise will send recovery messages for all elements currently in the associated data element store or referenced by tombstones in the synchronization history. Processing of each of these recovery Add, Update, and Delete messages can be done as described above, except that the crash detection logic is not triggered by these messages, many of which may have backdated local or remote version stamps.
  • FIGS. 11 through 14 illustrate exemplary methods according to which synchronization can be initiated, routed, and received and processed.
  • a first computing device having received a triggering event in step 1101 , responds by determining whether any modifications have been made to first device data in step 1103 . If so (step 1105 ), then the first device determines one or more recipient devices and may conduct security procedures for the first device user and/or device in step 1107 .
  • Exemplary security procedures are given in FIG. 12 , wherein the first device retrieves recipient device identification and, if encrypted, decrypts the identification in step 1201 ; the first device also determines whether permissions exist for the current first device user and device to synchronize the modification. Unless the modification is disallowed in step 1205 , the method continues at step 1109 of FIG. 11 .
  • Permissions to, for example, synchronize additions, changes/updates or deletions with the recipient device can be conducted in an otherwise conventional manner. (Security might more typically apply where a third party device user, such as a secretary, spouse or child, attempts to synchronize modifications and access to a recipient device user's local device is unavailable.) It should be noted that security information or failed attempts to synchronize modifications can be propagated to or synchronized with a recipient device in a similar manner as with synchronization of information as discussed herein. Thus, for example, the operation of a lost device capable of modifying remote device information via synchronization can be avoided or reported.
  • the first device configures modification indicators corresponding to the modifications.
  • An example of such configuration is given in FIG. 12 b .
  • the first device determines a number of modifications to transfer, for example, in accordance with user accessing of the device, device resources or other factors (e.g., see above).
  • the first device further determines recipient device characteristics in step 1211 , converts the modifications to a global format in step 1213 and converts the modifications to a format suitable for the recipient device(s).
  • modifications might, for example, include data or data format manipulation, such as that discussed herein with regard to synchronization data adapters, among other examples.
  • the first device optionally encrypts the modification indicator(s), if the modification indicator(s) is/are to be transferred in encrypted form.
  • the modification indicator(s) is/are to be transferred in encrypted form.
  • the use of resources here can also be factored into determining a suitable number of modifications. Determination of resource requirements according to the data or data attributes or other factors and sensing of user utilization can, for example, be determined in an otherwise conventional manner.
  • the first device determines other information needed to communicate the modification.
  • the additional information can include a command type, command ID, any reference mapping information, and so on, such as that utilized in the above synchronization message examples.
  • step 1111 the first device transfers the modification indicator (or synchronization message) to a routing system, such that the modification is capable of being received by the second device and synchronized with second device data in response to a second device trigger triggering asynchronously with regard to the first device trigger.
  • FIG. 13 further illustrates a routing system method example.
  • the routing system receives a transfer request from a first device operating in response to a first device trigger in step 1301 (e.g., the trigger of the first device of FIG. 11 ).
  • the routing system further receives from the first device a modification indicator indicating a modification to first device data in step 1303 , and stores the modification indicator for asynchronous receipt by a second device in step 1305 .
  • the routing system (with regard to synchronization) waits for a further request in step 1306 .
  • Synchronization of the modification indicator of steps 1303 through 1305 can then continue with steps 1307 and 1309 .
  • asynchronous operation also enables further receipt of one or more further modification indicators from the first device in steps 1301 through 1305 , receipt of further modification indicators from a second device in steps 1311 through 1315 , or transfer of modification indicators to the first device in steps 1317 through 1319 .
  • the routing system receives a transfer request from a second device that is operating in response to a second device trigger triggering asynchronously with respect to the first device trigger. Then, in step 1309 , the routing system transfers to the second device one or more requested modification indicators stored by the routing system, the modification(s) being capable of being received by the second device and synchronized with second device data.
  • the routing system receives a transfer request from a second device that is operating in response to an asynchronous second device trigger.
  • the trigger is asynchronously initiating with regard to a first device trigger and can be the same trigger or, more typically, a different trigger than that of steps 1307 - 1309 (e.g., a modification to data, synchronization initiation schedule or user modification as opposed to opposed to a user access to information or a synchronization receipt schedule.).
  • the routing system receives from the second device a (second device) modification indicator indicating a modification to second device data, and the routing system stores the modification indicator in step 1315 .
  • the routing system receives a transfer request from the first device that is operating in response to a first device trigger triggering asynchronously with respect to the second device trigger.
  • the routing system further transfers to the first device one or more requested modification indicators, as available, the modification(s) being capable of being received by the first device and synchronized with first device data.
  • FIG. 14 illustrates an exemplary method for handling initiated synchronization.
  • a first device receives a first triggering event in step 1401 , and responds by connecting to a routing system (if not already so connected) in step 1403 .
  • the first device determines a number of modification indicators to request, e.g., in accordance with first device, other system, user or device utilization factors.
  • the first device receives from the routing system a modification indicator indicating a modification to second device data that was transferred to the routing system in response to an asynchronously triggering second device trigger (at least with respect to the first device trigger).
  • the first device optionally determines whether the modification meets security requirements for synchronization. (Note that security can be conducted by a sending device, a receiving device, or both, e.g., in a shared manner. See, for example, FIGS. 11 and 12 .)
  • the first device decrypts the modification indicator, if the indicator is encrypted, and in step 1413 , the first device synchronizes the second device modification with corresponding first device data, e.g., by adding, updating or deleting first device data.
  • the first device returns to step 1407 if more indicators remain to be processed. (It will be appreciated that all or a portion of modification indicators stored by a routing system may be retrieved from a routing system at once, in one synchronization “session” or in successive synchronization sessions.

Abstract

Aspects of the invention provide for information to be synchronized in an asynchronous manner among two or more computing devices.

Description

PRIORITY REFERENCE TO RELATED APPLICATIONS
This application claims benefit of and hereby incorporates by reference provisional application Ser. No. 60/336,326, entitled “System and Method for Asynchronous Synchronization,” filed on Nov. 15, 2001 by inventors Sean Quinlan, et al.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to computer systems, and more particularly provides a system and methods that provide for synchronizing information among two or more devices.
2. Background
The development of more capable and less expensive computing technologies is not only increasing the number of personal computer or “PC” users. It is also providing a broader variety and number of computing devices, and increasing the number of users utilizing more than one computing device (e.g. a PC, cell phone and PDA). It is observed, however, that techniques used with conventional computing devices and information may well become problematic with regard to emerging devices, device interconnection and information handling, as well as the number of users utilizing such emerging technologies.
Conventional synchronous data synchronization, for example, provides for completely synchronizing specified user data on two of the user's computing devices upon each application of a synchronization algorithm.
Prior to synchronization, specified user data residing on a first user device (“first device data”) is transferred to and stored at the network server (“server data”). Synchronization is then typically initiated upon a later startup or shutdown of the first user device, or periodically, according to user preferences.
During synchronization, the server completely synchronizes the server data with the first device data and with corresponding data residing on the second user device (“second device data”). That is, assuming no conflict exists, a copy of all identified modifications to the first device data is transferred to the server, and the server correspondingly replaces or adds to the server data; a copy of the modifications now made to the server data is then similarly made to the second device data, replacing or adding to the second device data as needed. If a conflict exists, i.e., a data element has been modified at both user devices, then the network server typically resolves the conflict by preferring one user device over the other, or by allowing the user to select one of the data versions. If the first device modification is selected, the server replaces the corresponding second device data. The server then similarly synchronizes any non-conflicting modifications to the second device data with the server data and then the first device data.
Despite its proliferation, however, conventional synchronization is also subject to certain disadvantages. For example, conducting each synchronization with regard to all of the specified data on even two of a user's devices can require substantial user device resources. This can become particularly problematic with less capable user devices, such as smart phones or PDAs, since a user may be denied use of his device throughout the synchronization process.
Synchronous synchronization can also require substantial network resources. For example, the network bandwidth required for synchronizing potentially large amounts of data for a increasing number of users may become unmanageable. Similarly, while apparently sufficient, a significant increase in the number of users seeking synchronization services may strain network server capabilities. In any event, those resources that might otherwise be available for other uses must instead be devoted to conducting synchronization.
Still further disadvantages include those relating to the availability of up-to-date information and security. For example, extended time requirements might prompt a user to conduct synchronization other than at startup (e.g., before using a cell phone) or on a less frequent periodic basis. A user might therefore end up using out-of-date data that is available and appears valid prior to synchronization. The maintaining of security might also become problematic, since authentication and any encryption of the entire dataset are typically conducted by the “more capable” network server of the synchronization service provider.
Accordingly, there is a need for a synchronization system and methods that enable computing device information to be synchronized while avoiding the disadvantages of existing synchronization.
SUMMARY OF THE INVENTION
Aspects of the invention provide for conducting synchronization asynchronously among two or more computing devices, while further enabling disadvantages of prior synchronization to be avoided.
In one aspect, embodiments enable synchronization to be conducted asynchronously, such that a first computing device can initiate synchronization of specified first device data with data of a second device at times that are independent of the second device receiving the first device data or initiating synchronization of second device data with the first device. In another aspect, embodiments also enable such synchronization to be conducted among more than two devices, devices of more than one user, or both. In a further aspect, embodiments enable transfer of data modifications, updating and conflict resolution to be conducted by the synchronizing user devices, and enable prior server storing of all information designated to be synchronized or server conducting of synchronization to be avoided. In yet another aspect, embodiments enable synchronization to be initiated on variable amounts or granularities of data, among still further aspects.
An asynchronous synchronization method example according to the invention includes a first computing device receiving a first trigger and responding by determining whether a modification has been made to first device data and, if so, transferring to a routing system a modification indicator indicating the modification. In this example, the modification is further capable of being received by a second computing device and synchronized with second device data of the second computing device in response to a second device trigger triggering asynchronously as compared with the first device trigger. For example, first trigger might be invoked as a result of each first device data modification in which a device user was not using the device or upon a third party issuing a specific update or an update to a specified dataset; the second trigger might be invoked as a result of a user requesting an update, connecting the second device to the routing system for some other purpose while a modification is pending receipt, and so on, among other examples.
A further method example according to the invention includes a first computing device receiving a first triggering event and responding to the event by connecting to a routing system, if disconnected from the routing system, and further, receiving from the routing system a modification indicator indicating a modification to second device data of a second computing device. In this example, the modification indicator can be transferred to the routing system in response to a second device trigger that triggers asynchronously or “time-independently” with respect to the first device trigger.
A still further method example according to the invention includes a routing system receiving, from a first computing device operating in response to a first device trigger, a modification indicator indicating a modification to first device data, and storing the modification indicator. The method further includes receiving a request for first device modifications from a second computing device operating in response to a second device trigger that triggers asynchronously with respect to the first device trigger. The method still further includes responding by transferring to the second computing device the modification indicator, and the modification being capable of being received by the second computing device and synchronized with second device data.
In accordance with the above or various other system or method examples, the modification indicator might, for example, include one modification to one data element, many modifications to different data, modifications to one or more data attributes, an indicator of a type/extent of a change, and so on. The modification might have been converted to a form useable by the first/second device(s) or be convertible by them, or the amount of data sent or received might be different depending upon available device/network resources, user use of the device, and so on. The data might include program code or multimedia data, and so on, among other examples.
Advantageously, aspects of the invention enable synchronization of information among two or more computing devices to be conducted in a highly effective and efficient manner. The ability of different computing devices to send and receive data modifications asynchronously according to time/event criteria suitable to different devices, device resources or device operations is enabled. The ability of computing devices to resolve data conflicts or resulting conflicts is further enabled. The ability of different computing devices to send or receive different amounts, types or granularities of data in accordance with available or lesser desirable resources of the devices or network elements is still further enabled, among still further examples. Other advantages will also become apparent by reference to the following text and figures.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a flow diagram illustrating an asynchronous synchronization system according to an embodiment of the invention;
FIG. 2 is a block diagram illustrating a processing system capable of implementing asynchronous synchronization system elements, according to an embodiment of the invention;
FIG. 3 a is a flow diagram illustrating the use of an asynchronous synchronization assistant and a data center, according to an embodiment of the invention;
FIG. 3 b is a block diagram illustrating the data center of FIG. 3 a in greater detail;
FIG. 3 c is a flow diagram illustrating the operation of a first asynchronous synchronization assistant, according to an embodiment of the invention;
FIG. 3 d is a flow diagram illustrating the operation of a second asynchronous synchronization assistant, according to an embodiment of the invention;
FIG. 4 is a block diagram illustrating a common store manager, according to an embodiment of the invention;
FIG. 5 illustrates, in greater detail, an asynchronous synchronization assistant, according to an embodiment of the invention;
FIG. 6 illustrates a synchronization engine according to an embodiment of the invention;
FIG. 7 illustrates a synchronization message example according to an embodiment of the invention;
FIG. 8 illustrates a synchronization history example according to an embodiment of the invention;
FIG. 9 illustrates a server user device map according to an embodiment of the invention;
FIG. 10 illustrates a client user device map according to an embodiment of the invention.
FIG. 11 is a flowchart illustrating a method for initiating asynchronous synchronization according to an embodiment of the invention;
FIG. 12 a illustrates a method for determining modification recipients and conducting security in conjunction therewith, according to an embodiment of the invention;
FIG. 12 b is a flowchart illustrating a method for configuring one or more modification indicators by an asynchronous synchronization initiating computing system according to an embodiment of the invention;
FIG. 13 is a flowchart illustrating a method for a routing system handling one or more modifications transferred among asynchronously synchronizing computing systems, according to an embodiment; and
FIG. 14 is a flowchart illustrating a method for conducting asynchronous synchronization by a first device of one or more second device modifications according to an embodiment of the invention.
DETAILED DESCRIPTION
In providing for asynchronous synchronization systems and methods, aspects of the invention enable information to be synchronized asynchronously among two or more computing devices. Aspects enable prior network server conducting of synchronization and copying of target data to be avoided. Aspects also enable synchronization to be conducted on a variety of information types and granularities, among still further aspects.
(Note that the term “or”, as used herein, is intended to generally mean “and/or”, unless otherwise indicated. “User device” and “computing device” will further be used interchangeably, as will “information to be synchronized” and “user device data”, so that the invention might be better understood. Such terms should not, however, be construed as limiting.)
FIG. 1 illustrates an example of a generalized network system 100 that has been configured to enable asynchronous synchronization among various computing devices including, for example, corporate devices coupled via a corporate intranet, personal devices coupled via the Internet, or some combination. As shown, system 100 includes ASync-enabled user devices 101 a-b and 101 c-f, network (e.g., 102 a-b), network server (e.g., 103 a-b) and common storage 104. ASync system 100 can also include one or more firewalls (e.g., firewall 105), as well as routers, caches, backup systems or other interconnected network elements, according to the requirements a particular application (not shown).
Broadly stated, asynchronous synchronization enables a first user device to initiate synchronizing of at least one information modification, or to respond to initiated synchronizing of information of another user device, and preferably both, in an asynchronous manner. More preferably, the first user device can initiate repeated synchronizing of modifications to first user device information independently of whether a second user device is connected to the first or has completed a prior initiated synchronizing by the first device or the first device has completed prior initiated synchronization by the other device.
Embodiments also enable asynchronous synchronization to be conducted among one or more overlapping or non-overlapping groups of ASync-enabled user devices in which any grouping includes two or more such devices synchronizing corresponding workspace elements. Each user device in a synchronizing group of user devices might, for example, initiate or respond to synchronizing according to its own time/event trigger, user initiation, or some other suitable synchronization trigger. Asynchronous synchronization can also be enabled or disabled according to time, schedule, event, resource availability or other criteria for one or more selected user devices or user device groups.
In the present example, synchronization is conducted via a routing system, here a data center having a temporary storage for temporarily storing synchronization messages communicated to and from the synchronizing devices.
ASync-enabled user devices 101 a-f can include any computing devices that are capable of storing user information, designating user information to be synchronized or “workspace elements” and conducting asynchronous synchronization of a portion of the workspace elements that has been modified (e.g., added or altered). Each of ASync-enabled user devices 101 a-f can thus comprise any unitary or multiple function computing device that is further capable of conducting synchronization in an asynchronous manner not inconsistent with the discussion herein (i.e., that is “ASync-enabled”).
More typically, ASync-enabled user devices 101 a-f might include conventional user devices to which asynchronous synchronization functionality has been added. Such user devices can, for example, include but are not limited to desktop or laptop PCs, handheld computers, settop boxes, personal data assistants (“PDAs”), personal information managers (“PIMs”), cell phones, controllers or so-called “smart” devices, among other computing systems. ASync-enabled user devices 101 a-f can further include single or multi-user, or integrated or distributed computing devices. A synchronizing user device group might, for example, include at least two of one or more users' devices, such as a single user's network couplable PC, PDA and cell phone (which is sometimes referred to as a “smart” phone).
Information to be synchronized (i.e., “user device information” or “workspace elements”) includes information designated, typically by a user device user or another person acting as a system administrator, as requiring synchronization with at least one other user device. Workspace elements can generally include substantially any type of program code or multimedia data (e.g., values, other attributes, value/attribute indicators, change indicators, and so on) that can be stored, referenced and transferred, at least in part, by each ASync-enabled user device synchronizing such information.
More typically, workspace elements might, for example, include one or more of email, bookmarks, contact, meeting. notes or project data, or attributes or portions thereof, or other user device information that is entered by a user into a resident or downloadable application program. (It will be appreciated that workspace elements can also be automatically (e.g., programmatically) generated or electronically received by suitably configured ASync-enabled user device.)
It should be noted that not all user devices must be able to handle complete workspace elements or to maintain all workspace elements in the same manner. Asynchronous synchronization instead enables different user devices to run different application programs or versions thereof, and can synchronize less than complete workspace element attributes, according to the capabilities of the particular user devices. (See below.)
ASync-enabled user devices 101 a-f are further couplable for synchronizing user device information via one or more wired or wirelessly couplable connections, such as networks 102 a-b. In the present example, network 102 a is a wide area network or “WAN”, such as the Internet, while network 102 b is a local area network or “LAN”, such as a corporate intranet. It will be appreciated, however, that one or more of various static or reconfigurable interconnections can also be used for transferring workspace elements among user devices.
Network server 103 a, in this example, operates as a part of a data center 103. Unlike prior synchronization systems, a common synchronization controller for storing all workspace data and conducting synchronization between each of a pair of user devices is not required. Synchronization can instead be conducted asynchronously by ASync-enabled user devices 101 a-f.
In the present example, network server 103 a instead operates as a common storage manager of temporary storage 104 a. Network server 103 a more specifically responds to first user device requests by forming a communication link and then receiving and temporarily storing first user device information, or then retrieving and communicating, to the first user device, information asynchronously received and stored from another user device. Network server 103 a can further provide for deleting temporarily stored user device information of a first user device following retrieval of the information by one or more other user devices in a same synchronization group. (Temporary storage 104, which stores the user device information, can comprise a memory, cache, more permanent storage device, or any suitable storage medium in accordance with a particular application.)
Finally, network server 103 b operates in a conventional manner as a corporate network server. As such, network server 103 b operates in a transparent manner with respect to synchronization. It will be appreciated, however, that network server 103 b might also operate in an otherwise conventional manner to provide for caching information to be synchronized, or further provide for synchronization within corporate network 106 or distributed synchronization within system 100.
As an operational example of system 100, assume that ASync-enabled user devices 101 a-c are a PC, cell phone and PDA respectively of a single user that are configured for conducting asynchronous synchronization (i.e., ASync-enabled). Prior to synchronization, the user configures each of the devices to synchronize all personal contact information (e.g., stored in a personal contact folder of a contact program running on each of the devices) to the remaining devices each time the personal contact information changes. Assume further that the user configures each of the devices to check, upon startup, for all synchronization information from each of the remaining devices, and that no device remains coupled to network server 103 a.
When the user modifies a personal contact (e.g., by changing an existing contact phone number) on the ASync-enabled PC, the PC couples via network 102 a to network server 103 a and transfers a modification message via network server 103 a to storage 104. Then, when the user starts up one of the remaining devices (e.g., the PDA), the PDA couples via network 102 a to network server 103 a, and retrieves the modification message from storage 104. (Any conflict resolution with regard to the modification, which is discussed below, would then be conducted.) The PDA then stores the data corresponding to the modification message.
If the user further modifies personal contact information on the PDA (e.g., adding a new contact), the PDA similarly becomes coupled to network server 103 a and transfers the modification to storage 104. If the user then starts up one of the remaining devices, e.g., the cell phone, the cell phone couples via network 102 a to network server 103 a, and retrieves both of the modifications from storage 104. Then, assuming that no conflict exists, the cell phone stores the data corresponding to the PC and PDA modifications.
FIG. 2 illustrates an exemplary processing system that can comprise one or more of the elements of system 100 (FIG. 1). While other alternatives might be utilized, it will be presumed for clarity sake that elements of system 100 are implemented in hardware, software or some combination by one or more processing systems consistent therewith, unless otherwise indicated.
Processing system 200 comprises elements coupled via communication channels (e.g. bus 201) including one or more general or special purpose processors 202, such as a Pentium®, Power PC®, digital signal processor (“DSP”), and so on. System 200 elements also include one or more input devices 203 (such as a mouse, keyboard, microphone, pen, etc.), and one or more output devices 204, such as a suitable display, speakers, actuators, etc., in accordance with a particular application.
System 200 also includes a computer readable storage media reader 205 coupled to a computer readable storage medium 206, such as a storage/memory device or hard or removable storage/memory media; such devices or media are further indicated separately as storage device 208 and memory 209, which can include hard disk variants, floppy/compact disk variants, digital versatile disk (“DVD”) variants, smart cards, read only memory, random access memory, cache memory, etc., in accordance with a particular application. One or more suitable communication devices 207 can also be included, such as a modem, DSL, infrared or other suitable transceiver, etc. for providing inter-device communication directly or via one or more suitable private or public networks that can include but are not limited to those already discussed.
Working memory 210 (e.g. of memory 209) further includes operating system (“OS”) 211 elements and other programs 212, such as application programs, mobile code, data, etc. for implementing system 100 a-c/200 elements that might be stored or loaded therein during use. The particular OS can vary in accordance with a particular device, features or other aspects in accordance with a particular application (e.g. Windows, Mac, Linux, Unix or Palm OS variants, a proprietary OS, etc.). Various programming languages or other tools can also be utilized. It will also be appreciated that working memory 210 contents, broadly given as OS 211 and other programs 212 can vary considerably in accordance with a particular application.
When implemented in software (e.g. as an application program, object, agent, downloadable, servlet, and so on in whole or part), a system 100 element can be communicated transitionally or more persistently from local or remote storage to memory (or cache memory, etc.) for execution, or another suitable mechanism can be utilized, and elements can be implemented in compiled or interpretive form. Input, intermediate or resulting data or functional elements can further reside more transitionally or more persistently in a storage media, cache or other volatile or non-volatile memory, (e.g. storage device 307 or memory 308) in accordance with a particular application.
FIGS. 3 a through 3 d illustrate exemplary ASync-enabled user device and data center operation in greater detail.
Beginning with FIG. 3 a, ASync-enabled user device 301 includes an asynchronous synchronization manager or “assistant” that enables the user device to conduct asynchronous synchronization. Assistant 312 is preferably implemented as a stand-alone resident or downloadable application. It will be appreciated, however, that assistant 312 can also be integrated to varying extents with an OS or one or more underlying applications.
Assistant 312 provides for initiating and conducting synchronization in accordance with (typically user) overrideable user preferences entered by a user prior to initiating synchronization, and which are predetermined during synchronization. During synchronization, assistant 312 responds to a synchronization trigger by transferring one or more modified workspace elements (here, application data 311) to/from an application data space, or transferring synchronization messages to/from data center 302.
Assistant 312 more specifically responds to an initiation trigger by receiving from an application data space one or more workspace elements that have been modified, forming a synchronization message, interconnecting with data center 302 (if not already interconnected) and transferring the message thus formed to data center 302. Assistant 312 responds to a response trigger by interconnecting with data center 302 (if not already interconnected) and receiving from data center 302 typically one synchronization message. Assistant 312 then determines if a conflict exists with regard to workspace elements of ASync-enabled user device 301. If no conflict exists, then assistant causes any data contained in the synchronization message to be stored in the application data space, thereby adding to or replacing existing data. If a conflict does exist, then assistant 312 initiates conflict resolution. (Conflict resolution is discussed separately below.)
Note that the present example presumes an assistant implementation in which no queuing of messages is conducted by the assistant. Such an implementation is found to benefit from lesser complexity and an approach suitable to devices having very limited storage/processing resources. However, each ASync-enabled user device can also be individually configured, for example, in accordance with available resources. Thus, a more capable user device might be implemented to store, transfer or receive more synchronization messages, while another might conduct one or more operations with fewer synchronization messages according to currently available resources, and still another might always operate on only one message at a time.
Preferably, assistant 312 conducts transfers in an otherwise conventional manner, for example, transferring data via an application protocol interface or “API”, and transferring messages using HTML or a message transfer protocol, such as SOAP. However, other transfer mechanisms can also be used in accordance with a particular application.
FIGS. 3 c through 3 e and FIG. 4 illustrate how data center 302 can be implemented as a common store manager 321 and temporary storage including data queues 322 a-n.
Common store manager 321 provides for initializing and managing a temporary storage (message queues in this example) for storing synchronization messages of two or more ASync-enabled user devices. Prior to synchronization of related user devices, common store manager 321 responds to an initialization request from a user device by initializing a number of message queues corresponding to user preferences (e.g., a number of synchronizing devices in a synchronization group)
During synchronization, common store manager 321 responds to user device requests by receiving and storing one or more synchronization messages in a write message queue for retrieval by at least one other user device, or returning from a message queue to a requesting device synchronization messages received from another user device. Common store manager 321 further provides for deleting synchronization messages that have already been received by the one or more corresponding user devices to which they are directed.
Common store manager 321 can also provide for polling of message queues (or otherwise determining whether a synchronization event exists), and transferring to one or more ASync-enabled user devices an alert trigger. Such triggering might be used, for example, to alert an ASync-enabled user device that is interconnected for sending a synchronization message or that has already received synchronization messages that one or more synchronization messages is also available for retrieval. In the present implementation, however, common store manager 321 polls message queues upon receipt of a request from a corresponding ASync-enabled user device.
As shown in FIG. 4, common store manager includes a request controller 401 for responding to requests and invoking message queue handling, and a queue manager for conducting message queue initialization and polling, and message retrieval and storage. (Common store manager 321 can, for example, be implemented in an otherwise conventional manner as a storage device management function of a network server, such as server 103 a of FIG. 1).
A system of first-in-first-out or “FIFO” message queues is found to be a convenient temporary storage configuration for storing user device messages. For example, using a FIFO for each corresponding ASync-enabled user device (FIGS. 3 c and 3 d) provides a straight forward common storage configuration for asynchronous transfers of synchronization messages between ASync-enabled user devices 301 a and 301 b.
In FIG. 3 c, for example, assistant-1 312 a of ASync-enabled user device 301 a responds to a synchronization trigger by storing one or more synchronization messages in message queue-B 332 b, which message queue is accessible for receiving messages by assistant-2 312 b of ASync-enabled user device 301 b. Assistant-1 312 a further responds to a response trigger by receiving one or more messages from message queue-A 332 b, which message queue is accessible for transferring messages by assistant-2 312 b.
Conversely, FIG. 3 d shows how assistant-2 312 b responds to a synchronization trigger by storing one or more synchronization messages in message queue-A 332 b, which message queue is accessible for receiving messages by assistant-1 312 b. Assistant-2 312 b further responds to a response trigger by receiving one or more messages from message queue-B 332 b, which message queue is accessible for transferring messages by assistant-1 312 a.
The queue configuration is also useful where more than one synchronizing group of ASync-enabled user devices is utilized, e.g., implementing a new queue for each separately operating or overlapping ASync-enabled user device. Deleting received synchronization messages is further facilitated and can, for example, be conducted by common store manager 321 (FIG. 3 c) upon a synchronization message retrieval by each ASync-enabled user device. Other data structures or configurations of data structures can also be used in accordance with a particular application.
FIGS. 5 through 10 illustrate exemplary asynchronous synchronization assistants in greater detail. As shown in FIG. 5, assistant 500 includes asynchronous scheduler 501, synchronization controller 503, synchronization engine 505, synchronization history 507, synchronization adapters 509, preference engine 511, system monitor 513 and interface generator 515.
Asynchronous scheduler 501 responds to triggering events by invoking synchronization controller 503, and thereby causing a corresponding ASync-enabled user device to initiate synchronization or respond to a queued synchronization message. The triggering events are selectably enabled by a user via user preference engine 511 and selection options are presented to a user by interface generator 515. Triggering events can include but are not limited to one or more of local database change notifications (e.g. from an application program interface or “API”, a positive result from polling an other device or “remote” message queue, receipt of a SMS alert, expiration of a scheduled synchronization timer or manual synchronization invocation by a user. (SMS or “short message service” is a system that allows transmission of short text messages to a cell phone or other wireless device. An SMS alert can be used to cause an application local to the device to be alerted by and react to the receipt of such messages, for example, for causing synchronization scheduler 501 to initiate synchronization activity.)
Asynchronous scheduler 501 responds to system monitor 513 by causing or preventing initiating of a synchronization operation or by changing the manner of response. For example, a synchronization trigger can be delayed or a user alert can be initiated while a user is accessing a device. A greater or lesser number of synchronization messages can also be transferred/received in accordance with a corresponding greater or lesser availability of network or device resources, among other examples.
(System monitor 513 operates in an otherwise conventional manner to determine and report ongoing user device or network activity levels. System monitor 513 also monitors particular activities, such as ongoing operation of a user device by a user.)
Synchronization controller 503 responds to synchronization scheduler 511 by identifying and initiating any workspace element modifications. More specifically, synchronization controller 503 fetches, from synchronization adapter 509, a workspace element change list, if such a list exists. The workspace element change list contains a reference to some or all of the workspace elements that have been recently modified. That is, workspace elements that have been added, modified, or deleted since the last synchronization message regarding that element was sent out to the other device(s) participating in the synchronization. The synchronization adapter may determine this change list in a way appropriate to the change indication capabilities of the local element store to which it interfaces. (See below.)
Synchronization controller 503 further, invokes synchronization history 507 and synchronization adapters 509, and transfers to synchronization adapters 509 any change list information. Synchronization controller 503 then invokes synchronization engine 505.
Synchronization engine 505 provides for determining whether conflicting updates of the same workspace element exist, and if so, for resolving the conflict. Synchronization engine 405 also provides for initiating updating of local workspace elements (i.e., of the user device) and transfer of modified workspace elements of the user device.
Continuing with FIG. 6, synchronization engine 505 includes message parser 601, history manager 602, conflict engine 603 data transfer engine 604, version assignor 605 and data reference manager 606. Conflict engine 603 includes conflict detector 631 for detecting conflicts and conflict resolver 602 for resolving conflicts, and transfer engine 604 includes data transfer engine 641 message transfer engine 642.
In the depicted example, synchronization engine 505 determines the existence of a conflict by comparing version information of a received workspace element with that of the most recent version stored by the user device. More specifically, a version stamp is assigned for each synchronizing user device at least with respect to each workspace element by a respective version assignor 605. (Other granularities might also be used, for example, to track one or more attributes of each workspace element. However, limited resources of many devices, such as PDAs or cell phones, can be prohibitive.) Each user device then increments its version stamp for the workspace element in conjunction with each modification of the workspace element entered by the user device, which modification is also transferred via the data center to the other synchronizing devices.
Thus, for example, an unmodified (or new) workspace element X that is synchronized among two user devices might have a numerical version stamp of 0X0. If only the first user device enters a modification, then the first user device increments its version before transferring the workspace element, yielding the version stamp of 1X0. If only the second user device enters a modification, then the second user device increments its version before transferring the workspace element, yielding the version stamp of 0X1.
The exemplary synchronization message of FIG. 7 shows how each synchronization message containing data includes the incremented version stamp for each user device, here user device-1 704 and user device 2 705. (The remaining message fields include a (unique) message ID 701, an instruction 702, the workspace element information or data 703, the source user device of the data 706, and the target user device of the data.) Thus, consider the following cases.
Example 1
Case 1: If user device-2 receives the modification entered by user device-1 to element X and enters a modification to element X, then user device-1 will receive a message containing the twice modified element X having the version 1X1.
Example 2
Case 2a: If instead user device-2 enters a modification to element X prior to receiving the modification by user device-1, then user device-1 will instead receive the once modified element X (by user device-2) having the version 0X1.
Example 3
Case 2b: User device-2 will also later receive the message from device-1 containing the element X and the version 0X1.
The exemplary synchronization history map of FIG. 8 shows how history manager 602 (FIG. 6) of the synchronization engine of each user device further maintains each current synchronization state for all synchronizing user devices (e.g., user device-1 version stamp 812 and the user device-2 version stamp 813) for each synchronized workspace element prior to receiving a new message.
(Other history map portions include hash values 814 for enabling record value comparison and change detection, and read-only flags 815 to enable change propagation to be inhibited where required. A history map can further include a synchronization state not specific to any record (not shown), such as the current message version stamp counter or the modified date to use as a cutoff when conducting a full change scan of a local database or other data space containing workspace data, among other map portions.)
Conflict detector 630 of synchronization engine 505 (FIG. 6) thus determines whether a conflict exists by comparing the new “received” version information received from message parser 601 (which parses a received synchronization message) with the current version information received from history manager 602, which polls the synchronization history map.
Returning now to the above examples, the initial current version stamp for each of user device-1 and user device-2 was 0X0. In example 1, user device-1 updates X and then user device-2 receives, such that the current version stamps for user devices 1 and 2 become 1X0 (1) and 0X0 (2) and the received version for user device 2 becomes 1X0 (2). Next, user device-2 updates X and then user device 1 receives. Thus, the version stamps for user devices 1 and 2 become:
Current→1X0(1) and 1X1(2); Received→1X1(1) and 1X1(2).
In example 2, user device-1 updates X, then user device-2 updates X without receiving, and then user device 1 receives. Thus, the version stamps for user devices 1 and 2 become
Current→1X0(1) and 0X1(2); Received→0X1(1) and not applicable(2).
Finally, example 3 is the same as example 2 except that user device-2 now receives the user-device-1 update. Thus, the version stamps for user devices 1 and 2 become
Current→1X0(1) and 0X1(2); Received→1X1(1) and 1X1(2).
Conflict detector 630 operates according to a general behavior that an event that “happened after” another event takes precedence over the event that “happened before”. However, events that occurred concurrently represent conflicts and must be resolved by applying conflict resolution rules. In applying even this general rule, the result of the conflict detector 630 comparison would indicate no conflict in example 1, but would indicate a conflict in examples 2 and 3 due to the concurrent updates. The conflict detector of user device-1 would thus detect a conflict upon receipt of the user device-2 update in example 2, and the conflict detector of user device-2 would detect the conflict upon receipt of the user device-1 update in example 3.
More specific rules for detecting conflicts are, however, found to be applicable to different types of modifications. Such modifications, which are provided as instructions or “commands” within synchronization messages, include: commands to update to existing workspace elements or “Update” (or “replace”) commands; commands to add new workspace elements or “Add” commands, and commands to delete workspace elements or “Delete” commands. (While other rules might also apply in a particular implementation, the following exemplary rules appear to work particularly well.)
When an assistant of an ASync-enabled user device receives an update command message and the conflict detector compares the current and new version stamps, there can be expected cases or unexpected cases (i.e., potential/actual errors). Among the expected Update command cases:
    • (1) If the current and received local versions (i.e., for the receiving user device) are equal and the received remote version (i.e., for the sending user device) is greater than the current remote version, then no conflict is detected and the update to the stored workspace element should be applied, and the received remote version stamp stored as current.
    • (2) If, however, the new local version is less than the current local version and the received remote version is greater than the current remote version, then a conflict or “conflicting update” exists.
Among the unexpected update cases:
    • (3) If the local versions are equal and the remote versions are equal, then an update conflict exists, and the following should be applied: If the received update data matches the local data, a duplicate message may have been sent. In this case, the command may be applied or ignored, as these are equivalent. If, however the update would alter the local data, then an error has taken place remotely. The update conflict resolution should be applied and remote crash-recovery should be invoked.
    • (4) If the received remote version is less than the current remote version and the received local version is less than or equal to the current local version, then an error has occurred. The update should not be applied. Either the message has been received out of order or an error has occurred at the remote device. If the message transport system used guarantees message ordering and delivery, then it may be assumed that the remote device is in error and remote crash-recovery should be invoked.
    • (5) If the received local version is greater than the current local version and the received remote version is greater than or equal to the current remote version, then an error has occurred locally. The update should be accepted and local crash-recovery should be invoked.
    • (6) If the received local version is less than the current local version and the new and current remote versions are equal, then an error has occurred and crash-recovery. The update should not be applied. Either a duplicate message has been received or an error has occurred at the remote device. If the message transport system used guarantees no duplicate delivery of messages, then it may be assumed that the remote device is in error and remote crash-recovery should be invoked.
    • (7) If the received local version is greater than the current local version and the received remote version is less than the current remote version, then an error has occurred and an update conflict exists. The update conflict resolution should be applied and local crash-recovery should be invoked.
Note that the synchronization history is expected to keep “tombstones” for entries that are deleted. These are entries that simply record the element identifier and the local and remote version stamps associated with the record at the time of deletion (with the local version incremented account to the act of deletion itself). This allows conflict detection and resolution to be done even for locally deleted elements. If an Update arrives which applies to a deleted element, whose “tombstone” has been purged from the synchronization history, then the Update will be treated as an Add. The synchronization history should maintain the tombstones long enough for most such Update commands to work their way through the system first.
Conflict detector 631 (FIG. 6) upon detecting an update conflict, invokes conflict resolver 632. Conflict resolver 632 then applies conflict resolution rules to resolve the conflict, and further, invokes data transfer engine 641 or message transfer engine 642 to initiate respective transfers as needed. Examples of conflict resolution rules for update commands can include the following accept, reject and duplicate rules.
    • 1) The receiving user device can accept the update. In this case, a resolution includes updating/replacing the existing workspace element and storing the maximum of the received remote and current remote version stamps as the current remote version, and storing the maximum of the received and current local version stamps as the current local version.
    • 2) The receiving device can reject the update. In this case, a resolution includes not updating the existing workspace element, but storing the maximum of the received remote version stamp asand current remote version stamps as the current.remote version and storing the maximum of the received and current local version stamps as the current local version.
    • 3) The receiving device can duplicate the local workspace element. In this case, a resolution includes accepting the change to the original workspace element by all but one “server” user device, and the server user device rejecting the change to the original and applying the change to the duplicate. The new workspace element (with the changes) will cause an Add command to be issued by the synchronizing user devices, which command can be resolved according to conflicting Add command conflict resolution. (This option should not be used in cases where the element update would not result in any change to the local element.)
It should, however, be noted that conflict resolution should generally be conducted in a global manner among synchronizing devices. Thus, conflict resolution rules should be predetermined for each user device and remain static, or rules or indicators of rules stored by user devices should be communicated among the user devices as they change. Another alternative is to configure at least one synchronizing user device to operate as a control or “server” user device. In this case, the remaining or “client” user devices, upon detecting a version conflict, can duplicate the existing workspace element. Upon receipt of the resulting Add command, the server user device can resolve the conflicts and issue delete commands as needed.
Turning first to FIG. 6, and then with further reference to FIGS. 7, 9 and 10, Add commands are unique. Unlike existing workspace elements, there is no preexisting common reference to newly created workspace elements, unless each user device maintains an identical data space. However, a remote referencing mechanism is found that enables integration of new workspace elements with even vastly different user device configurations and applications programs or other sources of data.
On receipt of a synchronization message including an Add command, data reference engine 606 of synchronization engine 505 parses the message for a local reference of the workspace data of the sending user device. Data reference engine 606 stores the sending device workspace element reference in a data reference map, such as with element 901-912 of the exemplary data reference map 900 of FIG. 9.
Data reference engine 606 further adds to the map a local reference for the receiving user device (e.g., reference 901-911), and the workspace data is stored according to the sending device reference. Data reference engine 606 repeats this process for every added workspace element, such that a map of all workspace elements of all user devices is maintained.
Thereafter, upon receipt of a synchronization message with the same sender reference, data reference engine 606 polls the data reference map for the corresponding local (hosting user device) reference and synchronization continues according to the local reference. Conversely, when synchronizing a local modification of the workspace data, reference engine 606 polls the data reference map for the local reference, retrieves the recipient reference and a synchronization message is formed according to the recipient reference.
Note that the source and local references do not need to correspond to a memory address. The local references need only be sufficient for establishing the correspondence and conducting local processing.
Further, this mechanism enables one user device, rather than all user devices, to maintain the data reference map. This one “server” user device can, for example, have superior available resources than the other devices. The second (or other) user devices can maintain merely a “reference sent” map indicating which references have been sent, such as in the exemplary completion map of FIG. 10. Then, upon synchronization, the data reference manager of second user device can poll the reference sent map to determine whether a reference was sent. If not, then the reference manager can add the reference to the synchronization message and set the mapped flag to indicate that the reference has been sent.
Conflict detection and resolution examples for an Add command are as follows. In general, synchronization should identify identical workspace elements being added to both sender and recipient user devices, and workspace element duplication should be avoided. More specifically, on receipt of an Add command:
    • 1) An included local version stamp greater than zero indicates a forced Add. A resolution can include adding a new workspace element, marking the workspace element as mapped and issuing a responsive Map command.
    • 2) Where a workspace element is included with an Add command, a response can include comparing the included workspace element to all local records not marked as mapped.
    • 3) If no match is found, then the Add is not in conflict. A response can include creating a new workspace element, marking the element as mapped and issuing a responsive Map command.
    • 4) If a match is found, then this is a conflicting Add. A resolution can include setting the remote component of the record version stamp to the value contained in the update command, marking the workspace element as mapped and issuing a responsive Map command.
      Note that newly created workspace elements are not marked as mapped and should be marked as mapped when a Map command is received.
Conflict detection and a Delete command is the same as that for an Update command, except that acceptance of a Deletion involves deleting the local copy of an element and marking the synchronization history entry for that element to indicate that the entry is merely an tombstone for a deleted record. The Deletion conflict resolution options are the same as those for an Update command, except the duplication option, which does not apply.
Resulting conflict engine 607 further provides for resolving conflicts that ultimately result in such applications as calendaring or project management, among others. For example, a meeting might be scheduled to occur at two different locations, or sequential meetings might be too disparately located to attend both. Resulting conflict engine 607 polls workspace data and workspace data from message parser 601 for resulting conflicts and resolves the conflicts in accordance with resulting conflict resolution rules or user interaction.
Returning again to FIG. 5, synchronization adaptors 509 implement a generic interface that allows the Sync Engine to access a specific database, application or other data space. This interface allows the Sync Engine to fetch particular records and to iterate through the set of records that have “recently” changed. The interpretation of recent will depend on the type of adapter and the particular constructor used to instantiate it.
For example, different operating systems, application programs or other systems may or may not provide indicators of data modifications. Examples of various system provisions are as follows:
    • 1. A flag for each workspace element is set each time the element is modified.
    • 2. A “last modified” date is recorded for each element;
    • 3. Some other indication, such as some current sequence number associated with the element store, is stored with each element when it is changed;
    • 4. The element store signals change events via a publish/subscribe type interface when an element is changed; and
    • 5. No element change indicator is stored.
To facilitate determination of recent changes in cases 2 and 3, the synchronization controller can for example, at the start of synchronization activity, supply each synchronization adapter with a synchronization anchor. The synchronization anchor can be a simple token (e.g., a timestamp or a sequence number) fetched from the synchronization history. The token indicates a cutoff, corresponding to the moment that the previous instance of synchronization activity occurred. The synchronization adapter may use the token to infer that elements that have changed prior to the indicated cutoff date or sequence number should not be returned in the change list. The synchronization adapter can further return a “new anchor” token, which may be used in a subsequent synchronization activity to indicate a cutoff corresponding to the then present moment. If the synchronization engine successfully processes all elements in the change list, then the synchronization history can be updated with the new anchor token.
To facilitate determination of recent changes in cases 1 and 4, the synchronization engine can explicitly acknowledge to the synchronization adapter the successful processing of each change list element as it is processed. This enables the synchronization adapter to clear the associated change flag (case 1) or to delete the associate change event notification from an internal queue (case 4).
In case 5, the synchronization adapter returns a list of all current elements in the change list. The synchronization engine then processes all elements with every synchronization and uses the short hash of each element from the last synchronization (which is stored in the synchronization history) to determine when an element has actually changed. In this case, it can also compare the elements to those in the synchronization history to infer which elements have been deleted.
In a case where the Sync Adapter can determine modifications, but not deletions based on a cutoff date, the synchronization engine can separately request from the synchronization adapter a list of all elements. The synchronization engine can then infer modifications from the change list and infer deletions from the synchronization history and the list of all current elements.
Local adapters enable access to a local database or other data space, and generally to any record contained therein. The set of “recent” changes may be determined, for example, by a set of change events supplied in the constructor, by a “lastmodified” cutoff date (extracted from the SyncHistory), or by querying a database for dirty bits.
Local adapters also facilitate synchronization of workspace elements between applications. For example, synchronization of data between PIM applications with differing capabilities requires field mapping, field truncation, recurrence rule mapping, and (sometimes) value range projection. This can be accomplished by a Local Data Adapter mapping fields from the native representation to a common field representation before returning field data to the synchronization engine. Truncation, recurrence mapping, and range projection for a particular device are further applied to field data by a remote data adapter before Update messages are queued.
Remote adapters enable access to a remote database via update messages routed through the remote message queue. Remote adapters generally enable only read access to records that have had update messages queued, and write access to records that should have update messages queued.
Remote adapters also enable a high degree of flexibility with regard to the the device configurations and data sources that can be used. The adapters can make decisions regarding field mapping, field truncation, and recurrence rule support, and other modifications on behalf of the remote device. The adapters can also conduct conversion or translation as needed. It is therefore not necessary that each synchronizing user device be the same device, run the same programs or maintain equivalent memory spaces.
Synchronization adapters must be able to access the data corresponding to workspace elements. This data can be translated into a common format that can be interpreted by the remote adapters which will handle marshalling of the data for transmission to another device. The synchronization adapter exposes element access and modification methods, which will allow the synchronization engine to conduct the synchronization. These methods include can, for example, include setLastSyncAnchor, getNextSyncAnchor, getAllElementReferences, getChangedElementReferences, getHashRepresentationOfElement, addElement, copyElement, modifyElement, deleteElement, applyTruncationToElement, and acknowledgeChange.
Of the remaining assistant elements, security engine 515 provides for implementing such security measures as authentication and encryption. Encryption and decryption can be conducted on a workspace element in conjunction with message paser 601 (FIG. 6). Given the variable data granularity afforded by asynchronous synchronization, encryption can be conducted in an otherwise conventional manner prior to transferring the workspace element to the data center even within a low-resource user device. Decryption is similarly conducted upon receipt of workspace element or, if stored in encrypted form, upon retrieval of the workspace element.
Crash recovery engine or “crash manager” 516 may be alerted of a synchronization errors noticed by the synchronization engine during processing. The synchronization engine utilizes the local and remote version stamps to detect cases where the local or the remote device may have experienced data loss or corruption, possibly followed by a restore from backup. The synchronization engine detects a crash as a condition in which a message is received that has a local version stamp greater than the current local version for the associated element. This is described in further detail above. In the event of a crash and restore from backup, the local current version stamps stored in the synchronization history for various elements will inevitably be set back to some prior values.
Remote crash/restore events may similarly be detected by receipt of messages where the remote version is less than or equal to the current remote version for the associated element and the message transport system is used where message delivery, message non-duplication and strict message ordering is guaranteed. This is described in further detail above.
When such failures are detected, a re-synchronization should be conducted. In the case of a local crash detection, the “crash manager” must decide whether to conduct a recovery. It may prompt a user for confirmation or use some other mechanism whether the recovery should be initiated. This might even include sending a message to another device (B), indicating that a crash has occurred at this device (A). The “crash manager” at device B might be better positioned to prompt for user feedback as to whether a recovery should be initiated. In the case of a remote crash, the “crash manager” should send a message to the other device alerting it to the possibility that its own data may be corrupted.
Once a decision has been made to initiate a recovery, the “crash manager” should alert the synchronization scheduler to execute a “recovery sync”. In such a sync, the synchronization engine is directed to send to the other device Update messages for all mapped elements, Add messages for all unmapped elements, and Delete messages for all element tombstones in the synchronization history. Each of these messages must be marked as “recovery” messages, so that receipt of such messages will not trigger crash detection on the other device. In addition, a “recovery sync” request must be sent to the other device, which likewise will send recovery messages for all elements currently in the associated data element store or referenced by tombstones in the synchronization history. Processing of each of these recovery Add, Update, and Delete messages can be done as described above, except that the crash detection logic is not triggered by these messages, many of which may have backdated local or remote version stamps.
FIGS. 11 through 14 illustrate exemplary methods according to which synchronization can be initiated, routed, and received and processed.
As shown in FIG. 11, a first computing device, having received a triggering event in step 1101, responds by determining whether any modifications have been made to first device data in step 1103. If so (step 1105), then the first device determines one or more recipient devices and may conduct security procedures for the first device user and/or device in step 1107.
Exemplary security procedures are given in FIG. 12, wherein the first device retrieves recipient device identification and, if encrypted, decrypts the identification in step 1201; the first device also determines whether permissions exist for the current first device user and device to synchronize the modification. Unless the modification is disallowed in step 1205, the method continues at step 1109 of FIG. 11.
Permissions to, for example, synchronize additions, changes/updates or deletions with the recipient device can be conducted in an otherwise conventional manner. (Security might more typically apply where a third party device user, such as a secretary, spouse or child, attempts to synchronize modifications and access to a recipient device user's local device is unavailable.) It should be noted that security information or failed attempts to synchronize modifications can be propagated to or synchronized with a recipient device in a similar manner as with synchronization of information as discussed herein. Thus, for example, the operation of a lost device capable of modifying remote device information via synchronization can be avoided or reported.
In step 1109 of FIG. 11, the first device configures modification indicators corresponding to the modifications. An example of such configuration is given in FIG. 12 b. Beginning with step 1211, the first device determines a number of modifications to transfer, for example, in accordance with user accessing of the device, device resources or other factors (e.g., see above).
The first device further determines recipient device characteristics in step 1211, converts the modifications to a global format in step 1213 and converts the modifications to a format suitable for the recipient device(s). Such modifications might, for example, include data or data format manipulation, such as that discussed herein with regard to synchronization data adapters, among other examples.
In step 1217, the first device optionally encrypts the modification indicator(s), if the modification indicator(s) is/are to be transferred in encrypted form. (While asynchronous synchronization enables lesser resource utilization than synchronous systems, the use of resources here can also be factored into determining a suitable number of modifications. Determination of resource requirements according to the data or data attributes or other factors and sensing of user utilization can, for example, be determined in an otherwise conventional manner.)
In steps 1219, the first device determines other information needed to communicate the modification. As discussed above, for example, the additional information can include a command type, command ID, any reference mapping information, and so on, such as that utilized in the above synchronization message examples.
Finally, in step 1111 (FIG. 11), the first device transfers the modification indicator (or synchronization message) to a routing system, such that the modification is capable of being received by the second device and synchronized with second device data in response to a second device trigger triggering asynchronously with regard to the first device trigger.
FIG. 13 further illustrates a routing system method example. As shown, the routing system receives a transfer request from a first device operating in response to a first device trigger in step 1301 (e.g., the trigger of the first device of FIG. 11). The routing system further receives from the first device a modification indicator indicating a modification to first device data in step 1303, and stores the modification indicator for asynchronous receipt by a second device in step 1305. The routing system (with regard to synchronization) waits for a further request in step 1306.
Synchronization of the modification indicator of steps 1303 through 1305 (and possibly other modification indicators) can then continue with steps 1307 and 1309. However, asynchronous operation also enables further receipt of one or more further modification indicators from the first device in steps 1301 through 1305, receipt of further modification indicators from a second device in steps 1311 through 1315, or transfer of modification indicators to the first device in steps 1317 through 1319.
Beginning with step 1303, the routing system receives a transfer request from a second device that is operating in response to a second device trigger triggering asynchronously with respect to the first device trigger. Then, in step 1309, the routing system transfers to the second device one or more requested modification indicators stored by the routing system, the modification(s) being capable of being received by the second device and synchronized with second device data.
Beginning instead with step 1311, the routing system receives a transfer request from a second device that is operating in response to an asynchronous second device trigger. As in the above examples, the trigger is asynchronously initiating with regard to a first device trigger and can be the same trigger or, more typically, a different trigger than that of steps 1307-1309 (e.g., a modification to data, synchronization initiation schedule or user modification as opposed to opposed to a user access to information or a synchronization receipt schedule.). In step 1313, the routing system receives from the second device a (second device) modification indicator indicating a modification to second device data, and the routing system stores the modification indicator in step 1315.
Beginning instead with step 1317, the routing system receives a transfer request from the first device that is operating in response to a first device trigger triggering asynchronously with respect to the second device trigger. (Various trigger options again exist, e.g., as given above.) The routing system further transfers to the first device one or more requested modification indicators, as available, the modification(s) being capable of being received by the first device and synchronized with first device data.
FIG. 14 illustrates an exemplary method for handling initiated synchronization. As shown, a first device receives a first triggering event in step 1401, and responds by connecting to a routing system (if not already so connected) in step 1403. In step 1405, the first device determines a number of modification indicators to request, e.g., in accordance with first device, other system, user or device utilization factors. In step 1407, the first device receives from the routing system a modification indicator indicating a modification to second device data that was transferred to the routing system in response to an asynchronously triggering second device trigger (at least with respect to the first device trigger).
In step 1409, the first device optionally determines whether the modification meets security requirements for synchronization. (Note that security can be conducted by a sending device, a receiving device, or both, e.g., in a shared manner. See, for example, FIGS. 11 and 12.) In step 1411, the first device decrypts the modification indicator, if the indicator is encrypted, and in step 1413, the first device synchronizes the second device modification with corresponding first device data, e.g., by adding, updating or deleting first device data. Finally, the first device returns to step 1407 if more indicators remain to be processed. (It will be appreciated that all or a portion of modification indicators stored by a routing system may be retrieved from a routing system at once, in one synchronization “session” or in successive synchronization sessions.
While the present invention has been described herein with reference to particular embodiments thereof, a degree of latitude of modification, various changes and substitutions are intended in the foregoing disclosure, and it will be appreciated that in some instances some features of the invention will be employed without corresponding use of other features without departing from the spirit and scope of the invention as set forth.

Claims (15)

1. A method, comprising:
receiving, by a first computing device, a first triggering event;
responding to the first triggering event, by the first computing device, by determining whether a modification has been made to first device data of the first computing device; and
transferring, to temporary storage in a routing system, a modification indicator identifying the modification to the first device data, when the modification is determined to have been made;
initializing a first queue for receiving first device modification indicators from the first computing device and transferring the first device modification indicators to the second device; and
initializing a second queue for receiving second device modification indicators from the second computing device and transferring the second device modification indicators to the first device,
wherein data relating to the modification indicator is received by a second computing device from the temporary storage and synchronized with second device data of the second computing device in response to an asynchronously triggering second device trigger, and the temporary storage comprises a storage device accessible by the first computing device and the second computing device.
2. A method according to claim 1, wherein at least one of the first computing device and the second computing device is selected from a group including a personal computer, a PDA, a PIM and a cell phone.
3. A method according to claim 1, wherein the first triggering event comprises a modification to the first device data.
4. A method according to claim 1, wherein the modification indicator comprises a synchronization message.
5. A method according to claim 4, wherein the synchronization message comprises modified data corresponding to the modification.
6. A method according to claim 4, wherein the synchronization message comprises at least one of a first version indicator indicating a first computing device version of the first device data and a second version indicator indicating a second computing device version of the second device data.
7. A method according to claim 1, wherein the routing system comprises a network server to which the first computing device and the second computing device are coupleable via a network.
8. A method according to claim 7, wherein the network comprises the Internet.
9. The method according to claim 1, wherein the modification indicator identifies only a subset of first device data corresponding to a modification session.
10. The method according to claim 5, wherein the synchronization message separately includes specific commands with respect to the modified data and modification indicator, a receiving device processing specific modifications of the modified data in accordance with the specific commands.
11. A synchronization system, comprising:
means for receiving, by a first computing device, a first triggering event;
means for responding to the first triggering event, by the first computing device, by determining whether a modification has been made to first device data of the first computing device; and
means for transferring, to temporary storage in a routing system, a modification indicator identifying the modification to the first device data, when the modification is determined to have been made;
means for initializing a first queue for receiving first device modification indicators from the first computing device and transferring the first device modification indicators to the second device; and
means for initializing a second queue for receiving second device modification indicators from the second computing device and transferring the second device modification indicators to the first device,
wherein data relating to the modification is capable of being received by a second computing device from the temporary storage and synchronized with second device data of the second device in response to an asynchronously triggering second device trigger, and the temporary storage comprises a storage device accessible by the first computing device and the second computing device.
12. The method according to claim 11, wherein the modification indicator identifies only a subset of first device data corresponding to a modification session.
13. A method, comprising:
receiving, by a first user device, a first triggering event;
responding to the first triggering event, by the first user device, by determining whether a modification has been made to a data element of the first user device;
transferring to temporary storage in a routing system a modification indicator identifying the modification to the data element of the first device data;
initializing a first queue for receiving first device modification indicators from the first computing device and transferring the first device modification indicators to the second device; and
initializing a second queue for receiving second device modification indicators from the second computing device and transferring the second device modification indicators to the first device;
receiving, by a second user device, a second triggering event, the second triggering event being time-independent of the first triggering event; and
responding to the second triggering event, by the second user device, by receiving the modification indicator from the temporary storage and synchronizing the modification with data stored on the second user device,
wherein the temporary storage comprises a storage device accessible by the first computing device and the second computing device.
14. The method according to claim 13, wherein the synchronization message separately includes specific commands with respect to the modified data and modification indicator, a receiving device processing specific modifications of the modified data in accordance with the specific commands.
15. A computer-readable storage medium storing computer-readable instructions thereon, the computer readable instructions when executed by a computer cause the computer to perform a method comprising:
receiving by a first computing device, a first triggering event;
responding to the first triggering event, by the first computing device, by determining whether a modification has been made to first device data of the first computing device; and
transferring, to temporary storage in a routing system, a modification indicator identifying to the data element of the first device data, when the modification is determined to have been made;
initializing a first queue for receiving first device modification indicators from the first computing device and transferring the first device modification indicators to the second device; and
initializing a second queue for receiving second device modification indicators from the second computing device and transferring the second device modification indicators to the first device,
wherein data relating to the modification is capable of being received by a second computing device from the temporary storage and synchronized with second service data of the second device in response to an asynchronously triggering second device trigger, and the temporary storage comprises a storage device accessible by the first computing device and the second computing device.
US10/295,702 2001-11-15 2002-11-15 System and methods for asynchronous synchronization Active 2024-11-06 US7752166B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/295,702 US7752166B2 (en) 2001-11-15 2002-11-15 System and methods for asynchronous synchronization
US12/645,799 US8255359B2 (en) 2001-11-15 2009-12-23 System and methods for asynchronous synchronization
US12/796,969 US8069144B2 (en) 2001-11-15 2010-06-09 System and methods for asynchronous synchronization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33632601P 2001-11-15 2001-11-15
US10/295,702 US7752166B2 (en) 2001-11-15 2002-11-15 System and methods for asynchronous synchronization

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/645,799 Division US8255359B2 (en) 2001-11-15 2009-12-23 System and methods for asynchronous synchronization
US12/796,969 Continuation US8069144B2 (en) 2001-11-15 2010-06-09 System and methods for asynchronous synchronization

Publications (2)

Publication Number Publication Date
US20030130984A1 US20030130984A1 (en) 2003-07-10
US7752166B2 true US7752166B2 (en) 2010-07-06

Family

ID=23315579

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/295,702 Active 2024-11-06 US7752166B2 (en) 2001-11-15 2002-11-15 System and methods for asynchronous synchronization
US12/645,799 Expired - Lifetime US8255359B2 (en) 2001-11-15 2009-12-23 System and methods for asynchronous synchronization
US12/796,969 Expired - Fee Related US8069144B2 (en) 2001-11-15 2010-06-09 System and methods for asynchronous synchronization

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/645,799 Expired - Lifetime US8255359B2 (en) 2001-11-15 2009-12-23 System and methods for asynchronous synchronization
US12/796,969 Expired - Fee Related US8069144B2 (en) 2001-11-15 2010-06-09 System and methods for asynchronous synchronization

Country Status (7)

Country Link
US (3) US7752166B2 (en)
EP (1) EP1459213B1 (en)
JP (1) JP2005509979A (en)
AU (1) AU2002357731A1 (en)
CA (1) CA2467404A1 (en)
IL (1) IL162008A0 (en)
WO (1) WO2003044698A1 (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080002743A1 (en) * 2006-06-29 2008-01-03 International Business Machines Corporation System and method for synchronizing in-memory caches while being updated by a high rate data stream
US20090012961A1 (en) * 2007-06-29 2009-01-08 Balaya Llc System and method for deepening group bonds by granting access to a data structure
US20090063660A1 (en) * 2007-09-04 2009-03-05 Apple Inc. Synchronization and transfer of digital media items
US20090183175A1 (en) * 2007-09-21 2009-07-16 Presenceid, Inc. Systems and methods for receiving and sending messages about changes to data attributes
US20090307281A1 (en) * 2008-06-06 2009-12-10 Mccarthy Brendan A Synchronization improvements
US20090307375A1 (en) * 2008-06-06 2009-12-10 Mccarthy Brendan A Synchronization improvements
US20090307280A1 (en) * 2008-06-06 2009-12-10 Mccarthy Brendan A Synchronization improvements
US20090313503A1 (en) * 2004-06-01 2009-12-17 Rajeev Atluri Systems and methods of event driven recovery management
US20100070776A1 (en) * 2008-09-17 2010-03-18 Shankar Raman Logging system events
US8386425B1 (en) 2010-02-19 2013-02-26 Netapp, Inc. Out of order delivery for data and metadata mirroring in a cluster storage system
US8386433B1 (en) * 2010-02-19 2013-02-26 Netapp, Inc. Coalescing metadata for mirroring to a remote node in a cluster storage system
US8407305B2 (en) 1998-05-29 2013-03-26 Research In Motion Limited System and method for pushing information from a mobile computer to another device
US8713646B2 (en) 2011-12-09 2014-04-29 Erich Stuntebeck Controlling access to resources on a network
US8756426B2 (en) 2013-07-03 2014-06-17 Sky Socket, Llc Functionality watermarking and management
US8775815B2 (en) 2013-07-03 2014-07-08 Sky Socket, Llc Enterprise-specific functionality watermarking and management
US8806217B2 (en) 2013-07-03 2014-08-12 Sky Socket, Llc Functionality watermarking and management
US8826432B2 (en) 2012-12-06 2014-09-02 Airwatch, Llc Systems and methods for controlling email access
US8832785B2 (en) 2012-12-06 2014-09-09 Airwatch, Llc Systems and methods for controlling email access
US8862868B2 (en) 2012-12-06 2014-10-14 Airwatch, Llc Systems and methods for controlling email access
US8914013B2 (en) 2013-04-25 2014-12-16 Airwatch Llc Device management macros
US8924608B2 (en) 2013-06-25 2014-12-30 Airwatch Llc Peripheral device management
US8978110B2 (en) 2012-12-06 2015-03-10 Airwatch Llc Systems and methods for controlling email access
US8997187B2 (en) 2013-03-15 2015-03-31 Airwatch Llc Delegating authorization to applications on a client device in a networked environment
US9021037B2 (en) 2012-12-06 2015-04-28 Airwatch Llc Systems and methods for controlling email access
US9058495B2 (en) 2013-05-16 2015-06-16 Airwatch Llc Rights management services integration with mobile device management
US9123031B2 (en) 2013-04-26 2015-09-01 Airwatch Llc Attendance tracking via device presence
US9148416B2 (en) 2013-03-15 2015-09-29 Airwatch Llc Controlling physical access to secure areas via client devices in a networked environment
US9203820B2 (en) 2013-03-15 2015-12-01 Airwatch Llc Application program as key for authorizing access to resources
US9219741B2 (en) 2013-05-02 2015-12-22 Airwatch, Llc Time-based configuration policy toggling
US9246918B2 (en) 2013-05-10 2016-01-26 Airwatch Llc Secure application leveraging of web filter proxy services
US9247432B2 (en) 2012-10-19 2016-01-26 Airwatch Llc Systems and methods for controlling network access
US9258301B2 (en) 2013-10-29 2016-02-09 Airwatch Llc Advanced authentication techniques
US9270777B2 (en) 2013-06-06 2016-02-23 Airwatch Llc Social media and data sharing controls for data security purposes
US9275245B2 (en) 2013-03-15 2016-03-01 Airwatch Llc Data access sharing
US9374435B2 (en) 1998-05-29 2016-06-21 Blackberry Limited System and method for using trigger events and a redirector flag to redirect messages
US9378350B2 (en) 2013-03-15 2016-06-28 Airwatch Llc Facial capture managing access to resources by a device
US9401915B2 (en) 2013-03-15 2016-07-26 Airwatch Llc Secondary device as key for authorizing access to resources
US9413754B2 (en) 2014-12-23 2016-08-09 Airwatch Llc Authenticator device facilitating file security
US9473417B2 (en) 2013-03-14 2016-10-18 Airwatch Llc Controlling resources used by computing devices
US20160342670A1 (en) * 2015-05-20 2016-11-24 Preventice, Inc. Device data synchronization
US9516005B2 (en) 2013-08-20 2016-12-06 Airwatch Llc Individual-specific content management
US9535857B2 (en) 2013-06-25 2017-01-03 Airwatch Llc Autonomous device interaction
US9544306B2 (en) 2013-10-29 2017-01-10 Airwatch Llc Attempted security breach remediation
US9558078B2 (en) 2014-10-28 2017-01-31 Microsoft Technology Licensing, Llc Point in time database restore from storage snapshots
US9563626B1 (en) * 2011-12-08 2017-02-07 Amazon Technologies, Inc. Offline management of data center resource information
US9584964B2 (en) 2014-12-22 2017-02-28 Airwatch Llc Enforcement of proximity based policies
US9584437B2 (en) 2013-06-02 2017-02-28 Airwatch Llc Resource watermarking and management
US9652518B2 (en) 2007-01-07 2017-05-16 Apple Inc. Synchronization methods and systems
US9665723B2 (en) 2013-08-15 2017-05-30 Airwatch, Llc Watermarking detection and management
US9680763B2 (en) 2012-02-14 2017-06-13 Airwatch, Llc Controlling distribution of resources in a network
US9705813B2 (en) 2012-02-14 2017-07-11 Airwatch, Llc Controlling distribution of resources on a network
US9787686B2 (en) 2013-04-12 2017-10-10 Airwatch Llc On-demand security policy activation
US9805052B2 (en) 2013-01-28 2017-10-31 Netapp, Inc. Coalescing metadata for mirroring to a remote storage node in a cluster storage system
US9819682B2 (en) 2013-03-15 2017-11-14 Airwatch Llc Certificate based profile confirmation
US9900261B2 (en) 2013-06-02 2018-02-20 Airwatch Llc Shared resource watermarking and management
US9916446B2 (en) 2016-04-14 2018-03-13 Airwatch Llc Anonymized application scanning for mobile devices
US9917862B2 (en) 2016-04-14 2018-03-13 Airwatch Llc Integrated application scanning and mobile enterprise computing management system
US9961477B2 (en) 2002-05-21 2018-05-01 M2M Solutions Llc System and method for remote asset management
US9990378B2 (en) 2012-06-27 2018-06-05 Microsoft Technology Licensing, Llc Opportunistic clearing of sync states associated with a database
US10067942B2 (en) 2007-11-09 2018-09-04 Topia Technology Architecture for management of digital files across distributed network
US10129242B2 (en) 2013-09-16 2018-11-13 Airwatch Llc Multi-persona devices and management
US10257194B2 (en) 2012-02-14 2019-04-09 Airwatch Llc Distribution of variably secure resources in a networked environment
US10404615B2 (en) 2012-02-14 2019-09-03 Airwatch, Llc Controlling distribution of resources on a network
US10452635B2 (en) 2016-03-23 2019-10-22 Microsoft Technology Licensing, Llc Synchronizing files on different computing devices using file anchors
US10515334B2 (en) 2013-06-04 2019-12-24 Airwatch Llc Item delivery optimization
US10652242B2 (en) 2013-03-15 2020-05-12 Airwatch, Llc Incremental compliance remediation
US10754966B2 (en) 2013-04-13 2020-08-25 Airwatch Llc Time-based functionality restrictions
US11337047B1 (en) 2002-05-21 2022-05-17 M2M Solutions Llc System and method for remote asset management
US11568011B2 (en) * 2018-11-01 2023-01-31 Rewardstyle, Inc. System and method for improved searching across multiple databases
US11824644B2 (en) 2013-03-14 2023-11-21 Airwatch, Llc Controlling electronically communicated resources

Families Citing this family (221)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060195595A1 (en) 2003-12-19 2006-08-31 Mendez Daniel J System and method for globally and securely accessing unified information in a computer network
US7739334B1 (en) 2000-03-17 2010-06-15 Visto Corporation System and method for automatically forwarding email and email events via a computer network to a server computer
US7225231B2 (en) * 2000-09-20 2007-05-29 Visto Corporation System and method for transmitting workspace elements across a network
US20040024910A1 (en) * 2001-06-01 2004-02-05 Marl Coyle B. Adaptive synchronization of service data
EP1451718B1 (en) * 2001-10-23 2012-08-08 Beechwood Limited Partnership System and method for merging remote and local data in a single user interface
EP1459213B1 (en) * 2001-11-15 2017-05-10 Good Technology Holdings Limited System and methods for asychronous synchronization
US7305700B2 (en) 2002-01-08 2007-12-04 Seven Networks, Inc. Secure transport for mobile communication network
US7076567B1 (en) * 2002-04-25 2006-07-11 Oracle International Corporation Simplified application object data synchronization for optimized data storage
US7606881B2 (en) * 2002-04-25 2009-10-20 Oracle International Corporation System and method for synchronization of version annotated objects
US7958455B2 (en) * 2002-08-01 2011-06-07 Apple Inc. Mode activated scrolling
US7814055B2 (en) * 2002-08-28 2010-10-12 Apple Inc. Method of managing a calendar and a computer system for implementing that method
US7787489B2 (en) * 2002-10-07 2010-08-31 Oracle International Corporation Mobile data distribution
US8468126B2 (en) 2005-08-01 2013-06-18 Seven Networks, Inc. Publishing data in an information community
US7917468B2 (en) 2005-08-01 2011-03-29 Seven Networks, Inc. Linking of personal information management data
US7853563B2 (en) 2005-08-01 2010-12-14 Seven Networks, Inc. Universal data aggregation
US7743022B2 (en) * 2003-02-28 2010-06-22 Microsoft Corporation Method and system for synchronizing data shared among peer computing devices
US7290019B2 (en) * 2003-03-03 2007-10-30 Microsoft Corporation Garbage collection of tombstones for optimistic replication systems
US7640324B2 (en) * 2003-04-15 2009-12-29 Microsoft Corporation Small-scale secured computer network group without centralized management
JP4149315B2 (en) * 2003-06-12 2008-09-10 インターナショナル・ビジネス・マシーンズ・コーポレーション Backup system
JP2005004661A (en) * 2003-06-13 2005-01-06 Sony Corp Data management system
EP1489862A1 (en) * 2003-06-20 2004-12-22 Axalto S.A. Database synchronization
US20050004954A1 (en) * 2003-07-01 2005-01-06 Hand Held Products, Inc. Systems and methods for expedited data transfer in a communication system using hash segmentation
US8131803B2 (en) 2003-08-19 2012-03-06 Research In Motion Limited System and method for integrating an address book with an instant messaging application in a mobile station
US7590643B2 (en) 2003-08-21 2009-09-15 Microsoft Corporation Systems and methods for extensions and inheritance for units of information manageable by a hardware/software interface system
US7483923B2 (en) * 2003-08-21 2009-01-27 Microsoft Corporation Systems and methods for providing relational and hierarchical synchronization services for units of information manageable by a hardware/software interface system
AU2004271525B2 (en) * 2003-08-21 2010-01-21 Microsoft Technology Licensing, Llc Systems and methods for providing synchronization services for units of information manageable by a hardware/software interface system
JP4583375B2 (en) * 2003-08-21 2010-11-17 マイクロソフト コーポレーション System for implementation of synchronization schema
US8166101B2 (en) 2003-08-21 2012-04-24 Microsoft Corporation Systems and methods for the implementation of a synchronization schemas for units of information manageable by a hardware/software interface system
US8238696B2 (en) 2003-08-21 2012-08-07 Microsoft Corporation Systems and methods for the implementation of a digital images schema for organizing units of information manageable by a hardware/software interface system
US7937433B1 (en) * 2003-09-23 2011-05-03 Embarq Holdings Company, Llc Queuing connector to promote message servicing
US8229888B1 (en) * 2003-10-15 2012-07-24 Radix Holdings, Llc Cross-device playback with synchronization of consumption state
US7080104B2 (en) * 2003-11-07 2006-07-18 Plaxo, Inc. Synchronization and merge engines
US7389324B2 (en) 2003-11-07 2008-06-17 Plaxo, Inc. Viral engine for network deployment
US8954420B1 (en) 2003-12-31 2015-02-10 Google Inc. Methods and systems for improving a search ranking using article information
US7526768B2 (en) * 2004-02-04 2009-04-28 Microsoft Corporation Cross-pollination of multiple sync sources
US20050181790A1 (en) * 2004-02-10 2005-08-18 Yach David P. Apparatus, and associated method, for facilitating efficient communication of data communicated pursuant to a syncrhonization session
US20050234929A1 (en) * 2004-03-31 2005-10-20 Ionescu Mihai F Methods and systems for interfacing applications with a search engine
US8275839B2 (en) 2004-03-31 2012-09-25 Google Inc. Methods and systems for processing email messages
US8631076B1 (en) 2004-03-31 2014-01-14 Google Inc. Methods and systems for associating instant messenger events
US7333976B1 (en) 2004-03-31 2008-02-19 Google Inc. Methods and systems for processing contact information
US7725508B2 (en) * 2004-03-31 2010-05-25 Google Inc. Methods and systems for information capture and retrieval
US8099407B2 (en) 2004-03-31 2012-01-17 Google Inc. Methods and systems for processing media files
US7581227B1 (en) * 2004-03-31 2009-08-25 Google Inc. Systems and methods of synchronizing indexes
US7941439B1 (en) 2004-03-31 2011-05-10 Google Inc. Methods and systems for information capture
US8386728B1 (en) 2004-03-31 2013-02-26 Google Inc. Methods and systems for prioritizing a crawl
US8161053B1 (en) 2004-03-31 2012-04-17 Google Inc. Methods and systems for eliminating duplicate events
US7412708B1 (en) 2004-03-31 2008-08-12 Google Inc. Methods and systems for capturing information
US7680888B1 (en) 2004-03-31 2010-03-16 Google Inc. Methods and systems for processing instant messenger messages
US8346777B1 (en) 2004-03-31 2013-01-01 Google Inc. Systems and methods for selectively storing event data
US7533134B2 (en) * 2004-04-01 2009-05-12 Microsoft Corporation Systems and methods for the propagation of conflict resolution to enforce item convergence (i.e., data convergence)
JP2005309968A (en) * 2004-04-23 2005-11-04 Kyosan Electric Mfg Co Ltd Newest information display system and train operation display system using it
US7730167B2 (en) * 2004-04-30 2010-06-01 Microsoft Corporation Methods and systems for halting synchronization loops in a distributed system
US7606820B2 (en) * 2004-05-11 2009-10-20 Sap Ag Detecting and handling changes to back-end systems
US7966391B2 (en) * 2004-05-11 2011-06-21 Todd J. Anderson Systems, apparatus and methods for managing networking devices
US7814231B2 (en) * 2004-05-24 2010-10-12 Apple Inc. Method of synchronizing between three or more devices
US7809682B2 (en) * 2004-05-24 2010-10-05 Apple Inc. Data synchronization between multiple devices
US7877356B1 (en) 2004-05-24 2011-01-25 Apple Inc. Retaining intermediate states of shared groups of objects and notification of changes to shared groups of objects
US7383291B2 (en) * 2004-05-24 2008-06-03 Apple Inc. Method for sharing groups of objects
US7490295B2 (en) 2004-06-25 2009-02-10 Apple Inc. Layer for accessing user interface elements
US8566732B2 (en) * 2004-06-25 2013-10-22 Apple Inc. Synchronization of widgets and dashboards
US8010082B2 (en) 2004-10-20 2011-08-30 Seven Networks, Inc. Flexible billing architecture
WO2006045102A2 (en) * 2004-10-20 2006-04-27 Seven Networks, Inc. Method and apparatus for intercepting events in a communication system
US7840528B2 (en) * 2004-10-22 2010-11-23 Research In Motion Limited System and method for integrating continuous synchronization on a host handheld device
US7706781B2 (en) 2004-11-22 2010-04-27 Seven Networks International Oy Data security in a mobile e-mail service
US7643818B2 (en) * 2004-11-22 2010-01-05 Seven Networks, Inc. E-mail messaging to/from a mobile terminal
FI117152B (en) 2004-12-03 2006-06-30 Seven Networks Internat Oy E-mail service provisioning method for mobile terminal, involves using domain part and further parameters to generate new parameter set in list of setting parameter sets, if provisioning of e-mail service is successful
EP1828932A4 (en) * 2004-12-10 2008-03-05 Seven Networks Internat Oy Database synchronization
US7634519B2 (en) 2004-12-17 2009-12-15 International Business Machines Corporation Bypassing an intermediate synchronization server of a three tiered synchronization system
DE602005025527D1 (en) 2004-12-23 2011-02-03 Research In Motion Ltd SYSTEMS AND METHOD FOR CONTINUOUS PIM SYNCHRONIZATION BETWEEN A HOSTPOMPUTER AND A HANDLED CLIENT DEVICE
FI120165B (en) * 2004-12-29 2009-07-15 Seven Networks Internat Oy Synchronization of a database through a mobile network
US7752633B1 (en) 2005-03-14 2010-07-06 Seven Networks, Inc. Cross-platform event engine
US8438633B1 (en) 2005-04-21 2013-05-07 Seven Networks, Inc. Flexible real-time inbox access
US7796742B1 (en) 2005-04-21 2010-09-14 Seven Networks, Inc. Systems and methods for simplified provisioning
US20060242204A1 (en) * 2005-04-22 2006-10-26 Microsoft Corporation Sync manager conflict resolution
US20060242206A1 (en) * 2005-04-22 2006-10-26 Microsoft Corporation System and method for peer to peer synchronization of files
US7774384B2 (en) * 2005-05-25 2010-08-10 At&T Intellectual Property I, L.P. Obtaining user feedback for unavailable content
WO2006136660A1 (en) 2005-06-21 2006-12-28 Seven Networks International Oy Maintaining an ip connection in a mobile network
WO2006136661A1 (en) * 2005-06-21 2006-12-28 Seven Networks International Oy Network-initiated data transfer in a mobile network
US8069166B2 (en) 2005-08-01 2011-11-29 Seven Networks, Inc. Managing user-to-user contact with inferred presence information
WO2007045051A1 (en) 2005-10-21 2007-04-26 Honeywell Limited An authorisation system and a method of authorisation
US7743336B2 (en) 2005-10-27 2010-06-22 Apple Inc. Widget security
US7752556B2 (en) 2005-10-27 2010-07-06 Apple Inc. Workflow widgets
US9104294B2 (en) 2005-10-27 2015-08-11 Apple Inc. Linked widgets
US7707514B2 (en) * 2005-11-18 2010-04-27 Apple Inc. Management of user interface elements in a display environment
US9262446B1 (en) 2005-12-29 2016-02-16 Google Inc. Dynamically ranking entries in a personal data book
US7769395B2 (en) 2006-06-20 2010-08-03 Seven Networks, Inc. Location-based operations and messaging
US7620721B2 (en) * 2006-02-28 2009-11-17 Microsoft Corporation Pre-existing content replication
US7890646B2 (en) * 2006-04-27 2011-02-15 Microsoft Corporation Synchronization orchestration
TWI305619B (en) * 2006-05-12 2009-01-21 Qisda Corp State synchronization systems and methods
TW200743028A (en) * 2006-05-12 2007-11-16 Benq Corp State synchronization apparatuses and methods
US7792792B2 (en) * 2006-05-22 2010-09-07 Microsoft Corporation Synchronizing structured web site contents
TWI320534B (en) * 2006-06-23 2010-02-11 Qisda Corp State synchronization systems and methods
US20090030952A1 (en) * 2006-07-12 2009-01-29 Donahue Michael J Global asset management
US8869027B2 (en) 2006-08-04 2014-10-21 Apple Inc. Management and generation of dashboards
US8135798B2 (en) 2006-11-15 2012-03-13 Hewlett-Packard Development Company, L.P. Over-the-air device services and management
US20080115152A1 (en) 2006-11-15 2008-05-15 Bharat Welingkar Server-controlled heartbeats
US7603435B2 (en) 2006-11-15 2009-10-13 Palm, Inc. Over-the-air device kill pill and lock
US20100005102A1 (en) * 2007-03-22 2010-01-07 Arinc Incorporated Method and apparatus for managing document/message content for distribution to subscribers
US7756995B1 (en) 2007-03-28 2010-07-13 Amazon Technologies, Inc. Regulating transmission rates
US7747770B1 (en) * 2007-03-28 2010-06-29 Amazon Technologies, Inc. Protocol for managing information
US8693494B2 (en) 2007-06-01 2014-04-08 Seven Networks, Inc. Polling
US8805425B2 (en) 2007-06-01 2014-08-12 Seven Networks, Inc. Integrated messaging
US20090024558A1 (en) * 2007-07-16 2009-01-22 Sap Ag Methods and systems for storing and retrieving rejected data
US8954871B2 (en) 2007-07-18 2015-02-10 Apple Inc. User-centric widgets and dashboards
US8364181B2 (en) 2007-12-10 2013-01-29 Seven Networks, Inc. Electronic-mail filtering for mobile devices
US8793305B2 (en) 2007-12-13 2014-07-29 Seven Networks, Inc. Content delivery to a mobile device from a content service
US9002828B2 (en) 2007-12-13 2015-04-07 Seven Networks, Inc. Predictive content delivery
US8107921B2 (en) 2008-01-11 2012-01-31 Seven Networks, Inc. Mobile virtual network operator
US8862657B2 (en) 2008-01-25 2014-10-14 Seven Networks, Inc. Policy based content service
US20090193338A1 (en) 2008-01-28 2009-07-30 Trevor Fiatal Reducing network and battery consumption during content delivery and playback
US20090234872A1 (en) * 2008-03-11 2009-09-17 Microsoft Corporation Synchronization of disconnected/offline data processing/entry
US8787947B2 (en) 2008-06-18 2014-07-22 Seven Networks, Inc. Application discovery on mobile devices
US8078158B2 (en) 2008-06-26 2011-12-13 Seven Networks, Inc. Provisioning applications for a mobile device
US8010487B2 (en) * 2008-06-27 2011-08-30 Microsoft Corporation Synchronization and collaboration within peer-to-peer and client/server environments
US8909759B2 (en) 2008-10-10 2014-12-09 Seven Networks, Inc. Bandwidth measurement
US8788655B2 (en) 2008-12-19 2014-07-22 Openpeak Inc. Systems for accepting and approving applications and methods of operation of same
US8615581B2 (en) 2008-12-19 2013-12-24 Openpeak Inc. System for managing devices and method of operation of same
US8713173B2 (en) 2008-12-19 2014-04-29 Openpeak Inc. System and method for ensuring compliance with organizational policies
US8650290B2 (en) 2008-12-19 2014-02-11 Openpeak Inc. Portable computing device and method of operation of same
US8745213B2 (en) 2008-12-19 2014-06-03 Openpeak Inc. Managed services platform and method of operation of same
US20100157990A1 (en) * 2008-12-19 2010-06-24 Openpeak, Inc. Systems for providing telephony and digital media services
US8856322B2 (en) 2008-12-19 2014-10-07 Openpeak Inc. Supervisory portal systems and methods of operation of same
US8612582B2 (en) 2008-12-19 2013-12-17 Openpeak Inc. Managed services portals and method of operation of same
US9614685B2 (en) 2009-03-09 2017-04-04 Nokia Technologies Oy Methods, apparatuses, and computer program products for facilitating synchronization of setting configurations
WO2010106474A1 (en) 2009-03-19 2010-09-23 Honeywell International Inc. Systems and methods for managing access control devices
US8156173B2 (en) 2009-04-06 2012-04-10 Novell, Inc. Synchronizing machines in groups
US8380669B2 (en) * 2009-06-05 2013-02-19 Apple Inc. Throttling to reduce synchronizations of excessively changing data
US9280365B2 (en) * 2009-12-17 2016-03-08 Honeywell International Inc. Systems and methods for managing configuration data at disconnected remote devices
US9015283B2 (en) 2009-12-18 2015-04-21 Microsoft Technology Roaming profiles and application compatibility in multi-user systems
US8606889B2 (en) * 2010-01-21 2013-12-10 Microsoft Corporation Roaming application settings across multiple computing devices
WO2011126889A2 (en) 2010-03-30 2011-10-13 Seven Networks, Inc. 3d mobile user interface with configurable workspace management
US8266102B2 (en) * 2010-05-26 2012-09-11 International Business Machines Corporation Synchronization of sequential access storage components with backup catalog
EP2577492A4 (en) * 2010-05-28 2015-01-07 Openpeak Inc Shared heartbeat service for managed devices
EP3651028A1 (en) 2010-07-26 2020-05-13 Seven Networks, LLC Mobile network traffic coordination across multiple applications
US9077630B2 (en) 2010-07-26 2015-07-07 Seven Networks, Inc. Distributed implementation of dynamic wireless traffic policy
US8838783B2 (en) 2010-07-26 2014-09-16 Seven Networks, Inc. Distributed caching for resource and mobile network traffic management
US8886176B2 (en) 2010-07-26 2014-11-11 Seven Networks, Inc. Mobile application traffic optimization
US8650658B2 (en) 2010-10-25 2014-02-11 Openpeak Inc. Creating distinct user spaces through user identifiers
CN103620576B (en) 2010-11-01 2016-11-09 七网络公司 It is applicable to the caching of mobile applications behavior and network condition
US8843153B2 (en) 2010-11-01 2014-09-23 Seven Networks, Inc. Mobile traffic categorization and policy for network use optimization while preserving user experience
US9060032B2 (en) 2010-11-01 2015-06-16 Seven Networks, Inc. Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic
US8326985B2 (en) 2010-11-01 2012-12-04 Seven Networks, Inc. Distributed management of keep-alive message signaling for mobile network resource conservation and optimization
US8204953B2 (en) 2010-11-01 2012-06-19 Seven Networks, Inc. Distributed system for cache defeat detection and caching of content addressed by identifiers intended to defeat cache
WO2012060995A2 (en) 2010-11-01 2012-05-10 Michael Luna Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
WO2012060997A2 (en) 2010-11-01 2012-05-10 Michael Luna Application and network-based long poll request detection and cacheability assessment therefor
US8484314B2 (en) 2010-11-01 2013-07-09 Seven Networks, Inc. Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
US9330196B2 (en) 2010-11-01 2016-05-03 Seven Networks, Llc Wireless traffic management system cache optimization using http headers
US8787725B2 (en) 2010-11-11 2014-07-22 Honeywell International Inc. Systems and methods for managing video data
CA2798523C (en) 2010-11-22 2015-02-24 Seven Networks, Inc. Aligning data transfer to optimize connections established for transmission over a wireless network
GB2500327B (en) 2010-11-22 2019-11-06 Seven Networks Llc Optimization of resource polling intervals to satisfy mobile device requests
US9992055B2 (en) 2010-12-31 2018-06-05 Openpeak Llc Disseminating commands from a DMS server to fielded devices using an extendable command architecture
GB2501416B (en) 2011-01-07 2018-03-21 Seven Networks Llc System and method for reduction of mobile network traffic used for domain name system (DNS) queries
US8868500B2 (en) * 2011-01-14 2014-10-21 Apple Inc. Data synchronization
FI20115060A0 (en) 2011-01-21 2011-01-21 Teliasonera Ab Sinking history information
WO2012145533A2 (en) 2011-04-19 2012-10-26 Seven Networks, Inc. Shared resource and virtual resource management in a networked environment
GB2496537B (en) 2011-04-27 2014-10-15 Seven Networks Inc System and method for making requests on behalf of a mobile device based on atmoic processes for mobile network traffic relief
EP2702500B1 (en) 2011-04-27 2017-07-19 Seven Networks, LLC Detecting and preserving state for satisfying application requests in a distributed proxy and cache system
US9229890B2 (en) * 2011-04-28 2016-01-05 Sandeep Jain Method and a system for integrating data from a source to a destination
EP2715571A1 (en) 2011-06-03 2014-04-09 Apple Inc. Cloud storage
US8949182B2 (en) * 2011-06-17 2015-02-03 International Business Machines Corporation Continuous and asynchronous replication of a consistent dataset
US9894261B2 (en) 2011-06-24 2018-02-13 Honeywell International Inc. Systems and methods for presenting digital video management system information via a user-customizable hierarchical tree interface
EP2737742A4 (en) 2011-07-27 2015-01-28 Seven Networks Inc Automatic generation and distribution of policy information regarding malicious mobile traffic in a wireless network
US10362273B2 (en) 2011-08-05 2019-07-23 Honeywell International Inc. Systems and methods for managing video data
WO2013020165A2 (en) 2011-08-05 2013-02-14 HONEYWELL INTERNATIONAL INC. Attn: Patent Services Systems and methods for managing video data
US9344684B2 (en) 2011-08-05 2016-05-17 Honeywell International Inc. Systems and methods configured to enable content sharing between client terminals of a digital video management system
US20130231971A1 (en) * 2011-08-23 2013-09-05 Judy Bishop Legal project management system and method
GB201115083D0 (en) * 2011-08-31 2011-10-19 Data Connection Ltd Identifying data items
US8695060B2 (en) 2011-10-10 2014-04-08 Openpeak Inc. System and method for creating secure applications
US8934414B2 (en) 2011-12-06 2015-01-13 Seven Networks, Inc. Cellular or WiFi mobile traffic optimization based on public or private network destination
WO2013086214A1 (en) 2011-12-06 2013-06-13 Seven Networks, Inc. A system of redundantly clustered machines to provide failover mechanisms for mobile traffic management and network resource conservation
WO2013086447A1 (en) 2011-12-07 2013-06-13 Seven Networks, Inc. Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol
WO2013086455A1 (en) 2011-12-07 2013-06-13 Seven Networks, Inc. Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic alleviation
WO2013090821A1 (en) 2011-12-14 2013-06-20 Seven Networks, Inc. Hierarchies and categories for management and deployment of policies for distributed wireless traffic optimization
EP2792188B1 (en) 2011-12-14 2019-03-20 Seven Networks, LLC Mobile network reporting and usage analytics system and method using aggregation of data in a distributed traffic optimization system
US9832095B2 (en) 2011-12-14 2017-11-28 Seven Networks, Llc Operation modes for mobile traffic optimization and concurrent management of optimized and non-optimized traffic
US8909202B2 (en) 2012-01-05 2014-12-09 Seven Networks, Inc. Detection and management of user interactions with foreground applications on a mobile device in distributed caching
WO2013116856A1 (en) 2012-02-02 2013-08-08 Seven Networks, Inc. Dynamic categorization of applications for network access in a mobile network
WO2013116852A1 (en) 2012-02-03 2013-08-08 Seven Networks, Inc. User as an end point for profiling and optimizing the delivery of content and data in a wireless network
US8813032B2 (en) * 2012-02-17 2014-08-19 National Instruments Corporation Customizing synchronization of custom code among multiple programmable hardware elements within a system
US8812695B2 (en) 2012-04-09 2014-08-19 Seven Networks, Inc. Method and system for management of a virtual network connection without heartbeat messages
WO2013155208A1 (en) 2012-04-10 2013-10-17 Seven Networks, Inc. Intelligent customer service/call center services enhanced using real-time and historical mobile application and traffic-related statistics collected by a distributed caching system in a mobile network
US9443230B2 (en) * 2012-04-30 2016-09-13 At&T Intellectual Property I, L.P. Point-to point data synchronization
US9116971B2 (en) 2012-05-08 2015-08-25 Softframe, Inc. Data synchronization using a composite change clock
US8775631B2 (en) 2012-07-13 2014-07-08 Seven Networks, Inc. Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications
US9262282B2 (en) * 2012-09-04 2016-02-16 Opshub, Inc. System and method for synchornisation of data and recovery of failures during synchronization between two systems
US9147004B2 (en) * 2012-09-07 2015-09-29 Cimpress Schweiz Gmbh Website builder systems and methods with device detection to adapt rendering behavior based on device type
US9170886B2 (en) * 2012-10-09 2015-10-27 International Business Machines Corporation Relaxed anchor validation in a distributed synchronization environment
US9161258B2 (en) 2012-10-24 2015-10-13 Seven Networks, Llc Optimized and selective management of policy deployment to mobile clients in a congested network to prevent further aggravation of network congestion
US9307493B2 (en) 2012-12-20 2016-04-05 Seven Networks, Llc Systems and methods for application management of mobile device radio state promotion and demotion
US9241314B2 (en) 2013-01-23 2016-01-19 Seven Networks, Llc Mobile device with application or context aware fast dormancy
US8874761B2 (en) 2013-01-25 2014-10-28 Seven Networks, Inc. Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols
US9326185B2 (en) 2013-03-11 2016-04-26 Seven Networks, Llc Mobile network congestion recognition for optimization of mobile traffic
KR102020358B1 (en) * 2013-03-14 2019-11-05 삼성전자 주식회사 Terminal and method for synchronizing application thereof
US9065765B2 (en) 2013-07-22 2015-06-23 Seven Networks, Inc. Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network
US9112749B2 (en) 2013-07-25 2015-08-18 Airwatch Llc Functionality management via application modification
US9226155B2 (en) 2013-07-25 2015-12-29 Airwatch Llc Data communications management
US9578117B2 (en) 2013-09-20 2017-02-21 Amazon Technologies, Inc. Service discovery using a network
WO2015042144A1 (en) * 2013-09-20 2015-03-26 Amazon Technologies, Inc. Service activity user interface
US9185099B2 (en) 2013-09-23 2015-11-10 Airwatch Llc Securely authorizing access to remote resources
US10523903B2 (en) 2013-10-30 2019-12-31 Honeywell International Inc. Computer implemented systems frameworks and methods configured for enabling review of incident data
US10025836B2 (en) * 2013-12-12 2018-07-17 Mobile Iron, Inc. Application synchronization
US10742520B2 (en) * 2013-12-31 2020-08-11 Citrix Systems, Inc. Providing mobile device management functionalities
US10394924B2 (en) * 2014-06-01 2019-08-27 Apple Inc. Synchronized web browsing histories: processing deletions and limiting communications to server
US9100390B1 (en) 2014-09-05 2015-08-04 Openpeak Inc. Method and system for enrolling and authenticating computing devices for data usage accounting
US9350818B2 (en) 2014-09-05 2016-05-24 Openpeak Inc. Method and system for enabling data usage accounting for unreliable transport communication
US20160071040A1 (en) 2014-09-05 2016-03-10 Openpeak Inc. Method and system for enabling data usage accounting through a relay
US9232013B1 (en) 2014-09-05 2016-01-05 Openpeak Inc. Method and system for enabling data usage accounting
US8938547B1 (en) 2014-09-05 2015-01-20 Openpeak Inc. Method and system for data usage accounting in a computing device
JP6499423B2 (en) * 2014-11-18 2019-04-10 キヤノン株式会社 Information processing system, information processing apparatus, and control method and program thereof
US10372285B2 (en) 2015-04-14 2019-08-06 Ebay Inc. Standardizing user interface elements
CN106168763B (en) * 2015-05-22 2021-04-27 松下电器(美国)知识产权公司 Control method and controller
US9652225B1 (en) * 2016-01-04 2017-05-16 International Business Machines Corporation Development community assessment via real-time workspace monitoring
CN106980625B (en) * 2016-01-18 2020-08-04 阿里巴巴集团控股有限公司 Data synchronization method, device and system
US10261961B2 (en) * 2016-03-17 2019-04-16 Change Healthcare Holdings, Llc Method and apparatus for replicating data across multiple data centers
US10360742B1 (en) 2016-04-22 2019-07-23 State Farm Mutual Automobile Insurance Company System and method for generating vehicle crash data
CN106997378B (en) * 2017-03-13 2020-05-15 上海摩库数据技术有限公司 Redis-based database data aggregation synchronization method
CN109981315B (en) * 2017-12-27 2021-08-27 华为技术有限公司 Information processing method, equipment and system of ANIMA network
US10963423B2 (en) * 2018-02-06 2021-03-30 Bank Of America Corporation Generating and identifying distinct portions of a merged file
US10476656B2 (en) * 2018-04-13 2019-11-12 DeGirum Corporation System and method for asynchronous, multiple clock domain data streams coalescing and resynchronization
US10909036B2 (en) * 2018-11-09 2021-02-02 International Business Machines Corporation Management of shared memory using asynchronous invalidation signals
US10691632B1 (en) 2019-03-14 2020-06-23 DeGirum Corporation Permutated ring network interconnected computing architecture

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714995A (en) 1985-09-13 1987-12-22 Trw Inc. Computer integration system
US4831582A (en) 1986-11-07 1989-05-16 Allen-Bradley Company, Inc. Database access machine for factory automation network
US4875159A (en) 1987-12-22 1989-10-17 Amdahl Corporation Version management system using plural control fields for synchronizing two versions of files in a multiprocessor system
US4897781A (en) 1987-02-13 1990-01-30 International Business Machines Corporation System and method for using cached data at a local node after re-opening a file at a remote node in a distributed networking environment
US5263157A (en) 1990-02-15 1993-11-16 International Business Machines Corporation Method and system for providing user access control within a distributed data processing system by the exchange of access control profiles
US5386564A (en) 1993-02-24 1995-01-31 Hewlett-Packard Company Conversion of data and objects across classes in an object management system
US5388255A (en) 1991-12-19 1995-02-07 Wang Laboratories, Inc. System for updating local views from a global database using time stamps to determine when a change has occurred
US5392390A (en) 1992-04-10 1995-02-21 Intellilink Corp. Method for mapping, translating, and dynamically reconciling data between disparate computer platforms
US5544320A (en) 1993-01-08 1996-08-06 Konrad; Allan M. Remote information service access system based on a client-server-service model
US5572643A (en) 1995-10-19 1996-11-05 Judson; David H. Web browser with dynamic display of information objects during linking
US5581749A (en) 1992-12-21 1996-12-03 Thedow Chemical Company System and method for maintaining codes among distributed databases using a global database
US5588132A (en) 1994-10-20 1996-12-24 Digital Equipment Corporation Method and apparatus for synchronizing data queues in asymmetric reflective memories
US5600834A (en) 1993-05-14 1997-02-04 Mitsubishi Electric Information Technology Center America, Inc. Method and apparatus for reconciling different versions of a file
WO1997004389A1 (en) 1995-07-20 1997-02-06 Novell, Inc. Transaction synchronization in a disconnectable computer and network
US5613012A (en) 1994-11-28 1997-03-18 Smarttouch, Llc. Tokenless identification system for authorization of electronic transactions and electronic transmissions
US5623601A (en) 1994-11-18 1997-04-22 Milkway Networks Corporation Apparatus and method for providing a secure gateway for communication and data exchanges between networks
US5627658A (en) 1994-12-14 1997-05-06 Xerox Corporation Automatic networked facsimile queuing system
US5634053A (en) 1995-08-29 1997-05-27 Hughes Aircraft Company Federated information management (FIM) system and method for providing data site filtering and translation for heterogeneous databases
US5647002A (en) 1995-09-01 1997-07-08 Lucent Technologies Inc. Synchronization of mailboxes of different types
US5652884A (en) 1994-11-14 1997-07-29 Object Technology Licensing Corp. Method and apparatus for dynamic update of an existing object in an object editor
US5664207A (en) 1994-12-16 1997-09-02 Xcellenet, Inc. Systems and methods for automatically sharing information among remote/mobile nodes
US5666530A (en) 1992-12-02 1997-09-09 Compaq Computer Corporation System for automatic synchronization of common file between portable computer and host computer via communication channel selected from a plurality of usable channels there between
WO1997035265A1 (en) 1996-03-19 1997-09-25 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US5678039A (en) 1994-09-30 1997-10-14 Borland International, Inc. System and methods for translating software into localized versions
EP0801475A2 (en) 1996-04-09 1997-10-15 Nec Corporation Optical amplifying apparatus and linear relay optical amplifier transmitter
US5680542A (en) 1995-06-07 1997-10-21 Motorola, Inc. Method and apparatus for synchronizing data in a host memory with data in target MCU memory
US5682524A (en) 1995-05-26 1997-10-28 Starfish Software, Inc. Databank system with methods for efficiently storing non-uniform data records
US5684990A (en) 1995-01-11 1997-11-04 Puma Technology, Inc. Synchronization of disparate databases
US5684984A (en) 1994-09-29 1997-11-04 Apple Computer, Inc. Synchronization and replication of object databases
US5687322A (en) 1989-05-01 1997-11-11 Credit Verification Corporation Method and system for selective incentive point-of-sale marketing in response to customer shopping histories
US5701400A (en) 1995-03-08 1997-12-23 Amado; Carlos Armando Method and apparatus for applying if-then-else rules to data sets in a relational data base and generating from the results of application of said rules a database of diagnostics linked to said data sets to aid executive analysis of financial data
US5706502A (en) 1996-03-25 1998-01-06 Sun Microsystems, Inc. Internet-enabled portfolio manager system and method
US5710918A (en) 1995-06-07 1998-01-20 International Business Machines Corporation Method for distributed task fulfillment of web browser requests
US5713019A (en) 1995-10-26 1998-01-27 Keaten; Timothy M. Iconic access to remote electronic monochrome raster data format document repository
US5715403A (en) 1994-11-23 1998-02-03 Xerox Corporation System for controlling the distribution and use of digital works having attached usage rights where the usage rights are defined by a usage rights grammar
US5717925A (en) 1993-10-08 1998-02-10 International Business Machines Corporation Information catalog system with object-dependent functionality
US5721908A (en) 1995-06-07 1998-02-24 International Business Machines Corporation Computer network for WWW server data access over internet
US5721914A (en) 1995-09-14 1998-02-24 Mci Corporation System and method for hierarchical data distribution
US5729735A (en) 1995-02-08 1998-03-17 Meyering; Samuel C. Remote database file synchronizer
US5745360A (en) 1995-08-14 1998-04-28 International Business Machines Corp. Dynamic hypertext link converter system and process
US5752246A (en) 1995-06-07 1998-05-12 International Business Machines Corporation Service agent for fulfilling requests of a web browser
US5757916A (en) 1995-10-06 1998-05-26 International Series Research, Inc. Method and apparatus for authenticating the location of remote users of networked computing systems
US5758354A (en) 1995-04-28 1998-05-26 Intel Corporation Application independent e-mail synchronization
US5758150A (en) 1995-10-06 1998-05-26 Tele-Communications, Inc. System and method for database synchronization
US5758355A (en) 1996-08-07 1998-05-26 Aurum Software, Inc. Synchronization of server database with client database using distribution tables
US5765171A (en) 1995-12-29 1998-06-09 Lucent Technologies Inc. Maintaining consistency of database replicas
US5764902A (en) 1995-09-29 1998-06-09 Intel Corporation Conditional insert or merge in a data conference
US5778346A (en) 1992-01-21 1998-07-07 Starfish Software, Inc. System and methods for appointment reconcilation
US5790790A (en) 1996-10-24 1998-08-04 Tumbleweed Software Corporation Electronic document delivery system in which notification of said electronic document is sent to a recipient thereof
US5790425A (en) 1997-02-19 1998-08-04 Sun Microsystems, Inc. Generic server benchmarking framework in a client-server environment
US5799318A (en) 1993-04-13 1998-08-25 Firstfloor Software Method and apparatus for collecting and displaying information from diverse computer resources
US5812773A (en) 1996-07-12 1998-09-22 Microsoft Corporation System and method for the distribution of hierarchically structured data
US5832483A (en) 1995-12-15 1998-11-03 Novell, Inc. Distributed control interface for managing the interoperability and concurrency of agents and resources in a real-time environment
US5835601A (en) 1994-03-15 1998-11-10 Kabushiki Kaisha Toshiba File editing system and shared file editing system with file content secrecy, file version management, and asynchronous editing
CA2210763A1 (en) 1997-07-17 1999-01-17 Weidong Kou Key generation from a given string for entity authentication
US5862325A (en) 1996-02-29 1999-01-19 Intermind Corporation Computer-based communication system and method using metadata defining a control structure
US5862346A (en) 1996-06-28 1999-01-19 Metadigm Distributed group activity data network system and corresponding method
WO1999005620A1 (en) 1997-07-22 1999-02-04 Visto Corporation System and method for synchronizing electronic mail across a network
US5870759A (en) 1996-10-09 1999-02-09 Oracle Corporation System for synchronizing data between computers using a before-image of data
US5878230A (en) 1995-01-05 1999-03-02 International Business Machines Corporation System for email messages wherein the sender designates whether the recipient replies or forwards to addresses also designated by the sender
US5924103A (en) 1997-03-12 1999-07-13 Hewlett-Packard Company Works-in-progress in an information management system
US5943676A (en) 1996-11-13 1999-08-24 Puma Technology, Inc. Synchronization of recurring records in incompatible databases
US5951652A (en) 1997-10-06 1999-09-14 Ncr Corporation Dependable data element synchronization mechanism
US5966714A (en) 1995-04-28 1999-10-12 Intel Corporation Method and apparatus for scaling large electronic mail databases for devices with limited storage
US5968131A (en) 1997-04-11 1999-10-19 Roampage, Inc. System and method for securely synchronizing multiple copies of a workspace element in a network
US5974238A (en) 1996-08-07 1999-10-26 Compaq Computer Corporation Automatic data synchronization between a handheld and a host computer using pseudo cache including tags and logical data elements
US5999947A (en) 1997-05-27 1999-12-07 Arkona, Llc Distributing database differences corresponding to database change events made to a database table located on a server computer
US5999932A (en) 1998-01-13 1999-12-07 Bright Light Technologies, Inc. System and method for filtering unsolicited electronic mail messages using data matching and heuristic processing
JP2000020370A (en) 1998-06-29 2000-01-21 Sharp Corp Data synchronous processor
US6021427A (en) 1997-05-22 2000-02-01 International Business Machines Corporation Method and system for preventing routing maelstrom loops of automatically routed electronic mail
US6020885A (en) 1995-07-11 2000-02-01 Sony Corporation Three-dimensional virtual reality space sharing method and system using local and global object identification codes
US6023708A (en) 1997-05-29 2000-02-08 Visto Corporation System and method for using a global translator to synchronize workspace elements across a network
US6023700A (en) 1997-06-17 2000-02-08 Cranberry Properties, Llc Electronic mail distribution system for integrated electronic communication
US6034621A (en) 1997-11-18 2000-03-07 Lucent Technologies, Inc. Wireless remote synchronization of data between PC and PDA
US6073165A (en) 1997-07-29 2000-06-06 Jfax Communications, Inc. Filtering computer network messages directed to a user's e-mail box based on user defined filters, and forwarding a filtered message to the user's receiver
US6108709A (en) 1997-02-26 2000-08-22 International Business Machines Corp. System for sending an e-mail message to a first type of terminal based upon content thereof and selected conditions and selectively forwarding it to a second type of terminal
US6118856A (en) 1998-12-28 2000-09-12 Nortel Networks Corporation Method and apparatus for automatically forwarding an email message or portion thereof to a remote device
US6131096A (en) 1998-10-05 2000-10-10 Visto Corporation System and method for updating a remote database in a network
US6131116A (en) 1996-12-13 2000-10-10 Visto Corporation System and method for globally accessing computer services
US6138146A (en) 1997-09-29 2000-10-24 Ericsson Inc. Electronic mail forwarding system and method
US6151606A (en) 1998-01-16 2000-11-21 Visto Corporation System and method for using a workspace data manager to access, manipulate and synchronize network data
US6212529B1 (en) 1996-11-13 2001-04-03 Puma Technology, Inc. Synchronization of databases using filters
US6249805B1 (en) 1997-08-12 2001-06-19 Micron Electronics, Inc. Method and system for filtering unauthorized electronic mail messages
US6295541B1 (en) 1997-12-16 2001-09-25 Starfish Software, Inc. System and methods for synchronizing two or more datasets
US6343313B1 (en) 1996-03-26 2002-01-29 Pixion, Inc. Computer conferencing system with real-time multipoint, multi-speed, multi-stream scalability
US20020060246A1 (en) * 2000-11-20 2002-05-23 Gobburu Venkata T. Method and apparatus for acquiring, maintaining, and using information to be communicated in bar code form with a mobile communications device
US20020087476A1 (en) * 1997-07-15 2002-07-04 Pito Salas Method and apparatus for controlling access to a product
US6477545B1 (en) 1998-10-28 2002-11-05 Starfish Software, Inc. System and methods for robust synchronization of datasets
US6510455B1 (en) 1999-09-01 2003-01-21 Inventec Corporation Electronic mail message checking system
US6564218B1 (en) 1998-12-10 2003-05-13 Premitech Aps Method of checking the validity of a set of digital information, and a method and an apparatus for retrieving digital information from an information source
US20030097358A1 (en) 2001-10-23 2003-05-22 Mendez Daniel J. System and method for merging remote and local data in a single user interface
US20040117310A1 (en) 2002-08-09 2004-06-17 Mendez Daniel J. System and method for preventing access to data on a compromised remote device
US20040215709A1 (en) * 2000-04-07 2004-10-28 Basani Vijay R. Method and apparatus for dynamic resource discovery and information distribution in a data network
US20050198087A1 (en) * 1999-09-10 2005-09-08 Bremers Robert C. Synchronized replica for web host
US7039679B2 (en) 1996-12-13 2006-05-02 Visto Corporation System and method for globally and securely accessing unified information in a computer network
US20060195595A1 (en) 2003-12-19 2006-08-31 Mendez Daniel J System and method for globally and securely accessing unified information in a computer network
US20070174433A1 (en) 2000-09-20 2007-07-26 Visto Corporation System and method for using a global translator to synchronize workspace elements across a network

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714994A (en) * 1985-04-30 1987-12-22 International Business Machines Corp. Instruction prefetch buffer control
US5815573A (en) 1996-04-10 1998-09-29 International Business Machines Corporation Cryptographic key recovery system
US6304881B1 (en) 1998-03-03 2001-10-16 Pumatech, Inc. Remote data access and synchronization
US6088789A (en) * 1998-05-13 2000-07-11 Advanced Micro Devices, Inc. Prefetch instruction specifying destination functional unit and read/write access mode
US6779019B1 (en) * 1998-05-29 2004-08-17 Research In Motion Limited System and method for pushing information from a host system to a mobile data communication device
EP1273135B1 (en) * 2000-04-10 2010-07-14 Research In Motion Limited System and method for bundling information
EP1459213B1 (en) * 2001-11-15 2017-05-10 Good Technology Holdings Limited System and methods for asychronous synchronization

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714995A (en) 1985-09-13 1987-12-22 Trw Inc. Computer integration system
US4831582A (en) 1986-11-07 1989-05-16 Allen-Bradley Company, Inc. Database access machine for factory automation network
US4897781A (en) 1987-02-13 1990-01-30 International Business Machines Corporation System and method for using cached data at a local node after re-opening a file at a remote node in a distributed networking environment
US4875159A (en) 1987-12-22 1989-10-17 Amdahl Corporation Version management system using plural control fields for synchronizing two versions of files in a multiprocessor system
US5687322A (en) 1989-05-01 1997-11-11 Credit Verification Corporation Method and system for selective incentive point-of-sale marketing in response to customer shopping histories
US5263157A (en) 1990-02-15 1993-11-16 International Business Machines Corporation Method and system for providing user access control within a distributed data processing system by the exchange of access control profiles
US5388255A (en) 1991-12-19 1995-02-07 Wang Laboratories, Inc. System for updating local views from a global database using time stamps to determine when a change has occurred
US5778346A (en) 1992-01-21 1998-07-07 Starfish Software, Inc. System and methods for appointment reconcilation
US5666553A (en) 1992-04-10 1997-09-09 Puma Technology, Inc. Method for mapping, translating, and dynamically reconciling data between disparate computer platforms
US5701423A (en) 1992-04-10 1997-12-23 Puma Technology, Inc. Method for mapping, translating, and dynamically reconciling data between disparate computer platforms
US5392390A (en) 1992-04-10 1995-02-21 Intellilink Corp. Method for mapping, translating, and dynamically reconciling data between disparate computer platforms
US5928329A (en) 1992-12-02 1999-07-27 Compaq Computer Corporation System for automatic synchronization of common file between portable computer and host computer via communication channel selected from a plurality of usable channels therebetween
US5666530A (en) 1992-12-02 1997-09-09 Compaq Computer Corporation System for automatic synchronization of common file between portable computer and host computer via communication channel selected from a plurality of usable channels there between
US5581749A (en) 1992-12-21 1996-12-03 Thedow Chemical Company System and method for maintaining codes among distributed databases using a global database
US5544320A (en) 1993-01-08 1996-08-06 Konrad; Allan M. Remote information service access system based on a client-server-service model
US5386564A (en) 1993-02-24 1995-01-31 Hewlett-Packard Company Conversion of data and objects across classes in an object management system
US5799318A (en) 1993-04-13 1998-08-25 Firstfloor Software Method and apparatus for collecting and displaying information from diverse computer resources
US5600834A (en) 1993-05-14 1997-02-04 Mitsubishi Electric Information Technology Center America, Inc. Method and apparatus for reconciling different versions of a file
US5717925A (en) 1993-10-08 1998-02-10 International Business Machines Corporation Information catalog system with object-dependent functionality
US5835601A (en) 1994-03-15 1998-11-10 Kabushiki Kaisha Toshiba File editing system and shared file editing system with file content secrecy, file version management, and asynchronous editing
US5684984A (en) 1994-09-29 1997-11-04 Apple Computer, Inc. Synchronization and replication of object databases
US5678039A (en) 1994-09-30 1997-10-14 Borland International, Inc. System and methods for translating software into localized versions
US5588132A (en) 1994-10-20 1996-12-24 Digital Equipment Corporation Method and apparatus for synchronizing data queues in asymmetric reflective memories
US5652884A (en) 1994-11-14 1997-07-29 Object Technology Licensing Corp. Method and apparatus for dynamic update of an existing object in an object editor
US5623601A (en) 1994-11-18 1997-04-22 Milkway Networks Corporation Apparatus and method for providing a secure gateway for communication and data exchanges between networks
US5715403A (en) 1994-11-23 1998-02-03 Xerox Corporation System for controlling the distribution and use of digital works having attached usage rights where the usage rights are defined by a usage rights grammar
US5613012A (en) 1994-11-28 1997-03-18 Smarttouch, Llc. Tokenless identification system for authorization of electronic transactions and electronic transmissions
US5627658A (en) 1994-12-14 1997-05-06 Xerox Corporation Automatic networked facsimile queuing system
US5664207A (en) 1994-12-16 1997-09-02 Xcellenet, Inc. Systems and methods for automatically sharing information among remote/mobile nodes
US5878230A (en) 1995-01-05 1999-03-02 International Business Machines Corporation System for email messages wherein the sender designates whether the recipient replies or forwards to addresses also designated by the sender
US5684990A (en) 1995-01-11 1997-11-04 Puma Technology, Inc. Synchronization of disparate databases
US5729735A (en) 1995-02-08 1998-03-17 Meyering; Samuel C. Remote database file synchronizer
US5701400A (en) 1995-03-08 1997-12-23 Amado; Carlos Armando Method and apparatus for applying if-then-else rules to data sets in a relational data base and generating from the results of application of said rules a database of diagnostics linked to said data sets to aid executive analysis of financial data
US5966714A (en) 1995-04-28 1999-10-12 Intel Corporation Method and apparatus for scaling large electronic mail databases for devices with limited storage
US5758354A (en) 1995-04-28 1998-05-26 Intel Corporation Application independent e-mail synchronization
US5682524A (en) 1995-05-26 1997-10-28 Starfish Software, Inc. Databank system with methods for efficiently storing non-uniform data records
US5752246A (en) 1995-06-07 1998-05-12 International Business Machines Corporation Service agent for fulfilling requests of a web browser
US5721908A (en) 1995-06-07 1998-02-24 International Business Machines Corporation Computer network for WWW server data access over internet
US5710918A (en) 1995-06-07 1998-01-20 International Business Machines Corporation Method for distributed task fulfillment of web browser requests
US5680542A (en) 1995-06-07 1997-10-21 Motorola, Inc. Method and apparatus for synchronizing data in a host memory with data in target MCU memory
US6020885A (en) 1995-07-11 2000-02-01 Sony Corporation Three-dimensional virtual reality space sharing method and system using local and global object identification codes
WO1997004389A1 (en) 1995-07-20 1997-02-06 Novell, Inc. Transaction synchronization in a disconnectable computer and network
US5745360A (en) 1995-08-14 1998-04-28 International Business Machines Corp. Dynamic hypertext link converter system and process
US5634053A (en) 1995-08-29 1997-05-27 Hughes Aircraft Company Federated information management (FIM) system and method for providing data site filtering and translation for heterogeneous databases
US5647002A (en) 1995-09-01 1997-07-08 Lucent Technologies Inc. Synchronization of mailboxes of different types
US5721914A (en) 1995-09-14 1998-02-24 Mci Corporation System and method for hierarchical data distribution
US5764902A (en) 1995-09-29 1998-06-09 Intel Corporation Conditional insert or merge in a data conference
US5758150A (en) 1995-10-06 1998-05-26 Tele-Communications, Inc. System and method for database synchronization
US5757916A (en) 1995-10-06 1998-05-26 International Series Research, Inc. Method and apparatus for authenticating the location of remote users of networked computing systems
US5572643A (en) 1995-10-19 1996-11-05 Judson; David H. Web browser with dynamic display of information objects during linking
US5713019A (en) 1995-10-26 1998-01-27 Keaten; Timothy M. Iconic access to remote electronic monochrome raster data format document repository
US5832483A (en) 1995-12-15 1998-11-03 Novell, Inc. Distributed control interface for managing the interoperability and concurrency of agents and resources in a real-time environment
US5765171A (en) 1995-12-29 1998-06-09 Lucent Technologies Inc. Maintaining consistency of database replicas
US5862325A (en) 1996-02-29 1999-01-19 Intermind Corporation Computer-based communication system and method using metadata defining a control structure
WO1997035265A1 (en) 1996-03-19 1997-09-25 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US5706502A (en) 1996-03-25 1998-01-06 Sun Microsystems, Inc. Internet-enabled portfolio manager system and method
US6343313B1 (en) 1996-03-26 2002-01-29 Pixion, Inc. Computer conferencing system with real-time multipoint, multi-speed, multi-stream scalability
EP0801475A2 (en) 1996-04-09 1997-10-15 Nec Corporation Optical amplifying apparatus and linear relay optical amplifier transmitter
US5862346A (en) 1996-06-28 1999-01-19 Metadigm Distributed group activity data network system and corresponding method
US5812773A (en) 1996-07-12 1998-09-22 Microsoft Corporation System and method for the distribution of hierarchically structured data
US5758355A (en) 1996-08-07 1998-05-26 Aurum Software, Inc. Synchronization of server database with client database using distribution tables
US5974238A (en) 1996-08-07 1999-10-26 Compaq Computer Corporation Automatic data synchronization between a handheld and a host computer using pseudo cache including tags and logical data elements
US5870759A (en) 1996-10-09 1999-02-09 Oracle Corporation System for synchronizing data between computers using a before-image of data
US5790790A (en) 1996-10-24 1998-08-04 Tumbleweed Software Corporation Electronic document delivery system in which notification of said electronic document is sent to a recipient thereof
US5943676A (en) 1996-11-13 1999-08-24 Puma Technology, Inc. Synchronization of recurring records in incompatible databases
US6212529B1 (en) 1996-11-13 2001-04-03 Puma Technology, Inc. Synchronization of databases using filters
US6131116A (en) 1996-12-13 2000-10-10 Visto Corporation System and method for globally accessing computer services
US7039679B2 (en) 1996-12-13 2006-05-02 Visto Corporation System and method for globally and securely accessing unified information in a computer network
US5790425A (en) 1997-02-19 1998-08-04 Sun Microsystems, Inc. Generic server benchmarking framework in a client-server environment
US6108709A (en) 1997-02-26 2000-08-22 International Business Machines Corp. System for sending an e-mail message to a first type of terminal based upon content thereof and selected conditions and selectively forwarding it to a second type of terminal
US5924103A (en) 1997-03-12 1999-07-13 Hewlett-Packard Company Works-in-progress in an information management system
US5961590A (en) 1997-04-11 1999-10-05 Roampage, Inc. System and method for synchronizing electronic mail between a client site and a central site
US5968131A (en) 1997-04-11 1999-10-19 Roampage, Inc. System and method for securely synchronizing multiple copies of a workspace element in a network
US6085192A (en) 1997-04-11 2000-07-04 Roampage, Inc. System and method for securely synchronizing multiple copies of a workspace element in a network
US6021427A (en) 1997-05-22 2000-02-01 International Business Machines Corporation Method and system for preventing routing maelstrom loops of automatically routed electronic mail
US5999947A (en) 1997-05-27 1999-12-07 Arkona, Llc Distributing database differences corresponding to database change events made to a database table located on a server computer
US6023708A (en) 1997-05-29 2000-02-08 Visto Corporation System and method for using a global translator to synchronize workspace elements across a network
US6023700A (en) 1997-06-17 2000-02-08 Cranberry Properties, Llc Electronic mail distribution system for integrated electronic communication
US20020087476A1 (en) * 1997-07-15 2002-07-04 Pito Salas Method and apparatus for controlling access to a product
CA2210763A1 (en) 1997-07-17 1999-01-17 Weidong Kou Key generation from a given string for entity authentication
WO1999005620A1 (en) 1997-07-22 1999-02-04 Visto Corporation System and method for synchronizing electronic mail across a network
US6073165A (en) 1997-07-29 2000-06-06 Jfax Communications, Inc. Filtering computer network messages directed to a user's e-mail box based on user defined filters, and forwarding a filtered message to the user's receiver
US6249805B1 (en) 1997-08-12 2001-06-19 Micron Electronics, Inc. Method and system for filtering unauthorized electronic mail messages
US6138146A (en) 1997-09-29 2000-10-24 Ericsson Inc. Electronic mail forwarding system and method
US5951652A (en) 1997-10-06 1999-09-14 Ncr Corporation Dependable data element synchronization mechanism
US6034621A (en) 1997-11-18 2000-03-07 Lucent Technologies, Inc. Wireless remote synchronization of data between PC and PDA
US6295541B1 (en) 1997-12-16 2001-09-25 Starfish Software, Inc. System and methods for synchronizing two or more datasets
US5999932A (en) 1998-01-13 1999-12-07 Bright Light Technologies, Inc. System and method for filtering unsolicited electronic mail messages using data matching and heuristic processing
US6151606A (en) 1998-01-16 2000-11-21 Visto Corporation System and method for using a workspace data manager to access, manipulate and synchronize network data
JP2000020370A (en) 1998-06-29 2000-01-21 Sharp Corp Data synchronous processor
US6131096A (en) 1998-10-05 2000-10-10 Visto Corporation System and method for updating a remote database in a network
US6477545B1 (en) 1998-10-28 2002-11-05 Starfish Software, Inc. System and methods for robust synchronization of datasets
US6564218B1 (en) 1998-12-10 2003-05-13 Premitech Aps Method of checking the validity of a set of digital information, and a method and an apparatus for retrieving digital information from an information source
US6118856A (en) 1998-12-28 2000-09-12 Nortel Networks Corporation Method and apparatus for automatically forwarding an email message or portion thereof to a remote device
US6510455B1 (en) 1999-09-01 2003-01-21 Inventec Corporation Electronic mail message checking system
US20050198087A1 (en) * 1999-09-10 2005-09-08 Bremers Robert C. Synchronized replica for web host
US20040215709A1 (en) * 2000-04-07 2004-10-28 Basani Vijay R. Method and apparatus for dynamic resource discovery and information distribution in a data network
US20070174433A1 (en) 2000-09-20 2007-07-26 Visto Corporation System and method for using a global translator to synchronize workspace elements across a network
US20020060246A1 (en) * 2000-11-20 2002-05-23 Gobburu Venkata T. Method and apparatus for acquiring, maintaining, and using information to be communicated in bar code form with a mobile communications device
US20030097358A1 (en) 2001-10-23 2003-05-22 Mendez Daniel J. System and method for merging remote and local data in a single user interface
US20040117310A1 (en) 2002-08-09 2004-06-17 Mendez Daniel J. System and method for preventing access to data on a compromised remote device
US20060195595A1 (en) 2003-12-19 2006-08-31 Mendez Daniel J System and method for globally and securely accessing unified information in a computer network

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
Bellovin, Steven M. et al., "Network Firewalls," IEEE Communications Magazine, Sep. 1994, pp. 50-57.
Braun, Hans-Werner, et al., "Web Traffic Characterization: An Assessment of the Impact of Caching Documents from NCSA's Web Server," Computer Networks and ISDN Systems, 1995, pp. 37-51, vol. 28.
Brown, Margaret J., "The Visto Briefcase Pro Puts Your PIM on The Internet," Aug. 13, 1998, 1 page.URL:http://www.zdnet.com/zdnn/stories/zdnn-display/0,3440,341892,00.html.
Cobb, S., Director of Special Projects National Computer Security Association, "Establishing Firewall Policy," Jun. 25-27, 1996, pp. 198-205, ISBN# 0-7803-3268-7.
Greenwald, Michael, et al., "Designing an Academic Firewall: Policy, Practice, and Experience With SURF," Proceedings of SNDSS 1996, 1996 IEEE, Feb. 22, 1996, pp. 79-92.
Kiuchi, Takahiro, et al., C-HTTP-The Development of a Secure, Closed HTTP-based Network on the Internet, Proceedings of SNDSS 1996, 1996 IEEE, Feb. 22, 1996, pp. 64-75.
Marinacci, Enzo, "Bookmark Translator 2.0-This Utility Transform Microsoft Internet Explore's Bookmarks in the Format Valid for Netscape Navigator and vice versa," Jul. 1997, 4 pages, Published in Rome, Italy.URL:http://www.bns.it/EMware/BookmarkTranslator-uk.html.
Nelson, Ruth, et al., "Security for Infinite Networks," 1995 IEEE, Aug. 22, 1995, pp. 11-19.
Research Disclosure; "Provide Auto-Forwarding Based on Criteria Selected by the User"; Oct. 1, 1989; 1 page; No. 306; Kenneth Mason Publications; XP000085405; ISSN 0374-4353.
Stempel, Steffen, "IpAccess-An Internet Service Access System for Firewall Installations," 1995 IEEE, Feb. 16, 1995, pp. 31-41.
U.S. Appl. No. 09/528,363, filed Mar. 17, 2000, Mendez, et al.
U.S. Appl. No. 90/007,040, filed May 18, 2004, Mendez, et al.
U.S. Appl. No. 90/007,093, filed Jun. 18, 2006, Mendez, et al.
U.S. Appl. No. 90/007,421, filed Feb. 15, 2005, Mendez, et al.
U.S. Appl. No. 90/007,933, filed Feb. 10, 2006, Mendez, et al.
U.S. Appl. No. 90/008,062, filed Jun. 23, 2006, Mendez, et al.
U.S. Appl. No. 90/008,131, filed Jul. 27, 2006, Mendez, et al.
U.S. Appl. No. 90/008,162, filed Aug. 11, 2006, Mendez, et al.
U.S. Appl. No. 90/008,292, filed Oct. 11, 2006, Mendez.
U.S. Appl. No. 90/008,397, filed Dec. 29, 2006, Mendez, et al.
US 5,373,559, 12/1994, Kaufman et al. (withdrawn)

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8407305B2 (en) 1998-05-29 2013-03-26 Research In Motion Limited System and method for pushing information from a mobile computer to another device
US9374435B2 (en) 1998-05-29 2016-06-21 Blackberry Limited System and method for using trigger events and a redirector flag to redirect messages
US10278041B2 (en) 2002-05-21 2019-04-30 M2M Solutions Llc System and method for remote asset management
US10791442B2 (en) 2002-05-21 2020-09-29 M2M Solutions Llc System and method for remote asset management
US9961477B2 (en) 2002-05-21 2018-05-01 M2M Solutions Llc System and method for remote asset management
US10038989B1 (en) 2002-05-21 2018-07-31 M2M Solutions Llc System and method for remote asset management
US11337047B1 (en) 2002-05-21 2022-05-17 M2M Solutions Llc System and method for remote asset management
US8949395B2 (en) * 2004-06-01 2015-02-03 Inmage Systems, Inc. Systems and methods of event driven recovery management
US20090313503A1 (en) * 2004-06-01 2009-12-17 Rajeev Atluri Systems and methods of event driven recovery management
US9098455B2 (en) 2004-06-01 2015-08-04 Inmage Systems, Inc. Systems and methods of event driven recovery management
US20080002743A1 (en) * 2006-06-29 2008-01-03 International Business Machines Corporation System and method for synchronizing in-memory caches while being updated by a high rate data stream
US8089987B2 (en) * 2006-06-29 2012-01-03 International Business Machines Corporation Synchronizing in-memory caches while being updated by a high rate data stream
US9652518B2 (en) 2007-01-07 2017-05-16 Apple Inc. Synchronization methods and systems
US10891301B2 (en) 2007-01-07 2021-01-12 Apple Inc. Synchronization methods and systems
US20090012961A1 (en) * 2007-06-29 2009-01-08 Balaya Llc System and method for deepening group bonds by granting access to a data structure
US8135865B2 (en) * 2007-09-04 2012-03-13 Apple Inc. Synchronization and transfer of digital media items
US20090063660A1 (en) * 2007-09-04 2009-03-05 Apple Inc. Synchronization and transfer of digital media items
US8584140B2 (en) * 2007-09-21 2013-11-12 Presenceid, Inc. Systems and methods for receiving and sending messages about changes to data attributes
US20090183175A1 (en) * 2007-09-21 2009-07-16 Presenceid, Inc. Systems and methods for receiving and sending messages about changes to data attributes
US11003622B2 (en) 2007-11-09 2021-05-11 Topia Technology, Inc. Architecture for management of digital files across distributed network
US10754823B2 (en) 2007-11-09 2020-08-25 Topia Technology, Inc. Pre-file-transfer availability indication based on prioritized metadata
US10067942B2 (en) 2007-11-09 2018-09-04 Topia Technology Architecture for management of digital files across distributed network
US11899618B2 (en) 2007-11-09 2024-02-13 Topia Technology, Inc. Architecture for management of digital files across distributed network
US10289607B2 (en) 2007-11-09 2019-05-14 Topia Technology, Inc. Architecture for management of digital files across distributed network
US10642787B1 (en) 2007-11-09 2020-05-05 Topia Technology, Inc. Pre-file-transfer update based on prioritized metadata
US20090307281A1 (en) * 2008-06-06 2009-12-10 Mccarthy Brendan A Synchronization improvements
US8429123B2 (en) 2008-06-06 2013-04-23 Apple Inc. Synchronization improvements
US20090307375A1 (en) * 2008-06-06 2009-12-10 Mccarthy Brendan A Synchronization improvements
US8135769B2 (en) * 2008-06-06 2012-03-13 Apple Inc. Synchronization improvements
US20090307280A1 (en) * 2008-06-06 2009-12-10 Mccarthy Brendan A Synchronization improvements
US20100070776A1 (en) * 2008-09-17 2010-03-18 Shankar Raman Logging system events
US8386425B1 (en) 2010-02-19 2013-02-26 Netapp, Inc. Out of order delivery for data and metadata mirroring in a cluster storage system
US8386433B1 (en) * 2010-02-19 2013-02-26 Netapp, Inc. Coalescing metadata for mirroring to a remote node in a cluster storage system
US9563626B1 (en) * 2011-12-08 2017-02-07 Amazon Technologies, Inc. Offline management of data center resource information
US8713646B2 (en) 2011-12-09 2014-04-29 Erich Stuntebeck Controlling access to resources on a network
US10951541B2 (en) 2012-02-14 2021-03-16 Airwatch, Llc Controlling distribution of resources on a network
US11082355B2 (en) 2012-02-14 2021-08-03 Airwatch, Llc Controllng distribution of resources in a network
US9680763B2 (en) 2012-02-14 2017-06-13 Airwatch, Llc Controlling distribution of resources in a network
US11483252B2 (en) 2012-02-14 2022-10-25 Airwatch, Llc Controlling distribution of resources on a network
US9705813B2 (en) 2012-02-14 2017-07-11 Airwatch, Llc Controlling distribution of resources on a network
US10404615B2 (en) 2012-02-14 2019-09-03 Airwatch, Llc Controlling distribution of resources on a network
US10257194B2 (en) 2012-02-14 2019-04-09 Airwatch Llc Distribution of variably secure resources in a networked environment
US9990378B2 (en) 2012-06-27 2018-06-05 Microsoft Technology Licensing, Llc Opportunistic clearing of sync states associated with a database
US9247432B2 (en) 2012-10-19 2016-01-26 Airwatch Llc Systems and methods for controlling network access
US10986095B2 (en) 2012-10-19 2021-04-20 Airwatch Llc Systems and methods for controlling network access
US9426129B2 (en) 2012-12-06 2016-08-23 Airwatch Llc Systems and methods for controlling email access
US8832785B2 (en) 2012-12-06 2014-09-09 Airwatch, Llc Systems and methods for controlling email access
US8978110B2 (en) 2012-12-06 2015-03-10 Airwatch Llc Systems and methods for controlling email access
US10243932B2 (en) 2012-12-06 2019-03-26 Airwatch, Llc Systems and methods for controlling email access
US10681017B2 (en) 2012-12-06 2020-06-09 Airwatch, Llc Systems and methods for controlling email access
US9325713B2 (en) 2012-12-06 2016-04-26 Airwatch Llc Systems and methods for controlling email access
US8862868B2 (en) 2012-12-06 2014-10-14 Airwatch, Llc Systems and methods for controlling email access
US9450921B2 (en) 2012-12-06 2016-09-20 Airwatch Llc Systems and methods for controlling email access
US10666591B2 (en) 2012-12-06 2020-05-26 Airwatch Llc Systems and methods for controlling email access
US9391960B2 (en) 2012-12-06 2016-07-12 Airwatch Llc Systems and methods for controlling email access
US11050719B2 (en) 2012-12-06 2021-06-29 Airwatch, Llc Systems and methods for controlling email access
US8826432B2 (en) 2012-12-06 2014-09-02 Airwatch, Llc Systems and methods for controlling email access
US9882850B2 (en) 2012-12-06 2018-01-30 Airwatch Llc Systems and methods for controlling email access
US9853928B2 (en) 2012-12-06 2017-12-26 Airwatch Llc Systems and methods for controlling email access
US9813390B2 (en) 2012-12-06 2017-11-07 Airwatch Llc Systems and methods for controlling email access
US9021037B2 (en) 2012-12-06 2015-04-28 Airwatch Llc Systems and methods for controlling email access
US9805052B2 (en) 2013-01-28 2017-10-31 Netapp, Inc. Coalescing metadata for mirroring to a remote storage node in a cluster storage system
US9473417B2 (en) 2013-03-14 2016-10-18 Airwatch Llc Controlling resources used by computing devices
US11824644B2 (en) 2013-03-14 2023-11-21 Airwatch, Llc Controlling electronically communicated resources
US10116583B2 (en) 2013-03-14 2018-10-30 Airwatch Llc Controlling resources used by computing devices
US9686287B2 (en) 2013-03-15 2017-06-20 Airwatch, Llc Delegating authorization to applications on a client device in a networked environment
US9438635B2 (en) 2013-03-15 2016-09-06 Airwatch Llc Controlling physical access to secure areas via client devices in a network environment
US9378350B2 (en) 2013-03-15 2016-06-28 Airwatch Llc Facial capture managing access to resources by a device
US10127751B2 (en) 2013-03-15 2018-11-13 Airwatch Llc Controlling physical access to secure areas via client devices in a networked environment
US11824859B2 (en) 2013-03-15 2023-11-21 Airwatch Llc Certificate based profile confirmation
USRE49585E1 (en) 2013-03-15 2023-07-18 Airwatch Llc Certificate based profile confirmation
US11689516B2 (en) 2013-03-15 2023-06-27 Vmware, Inc. Application program as key for authorizing access to resources
US9275245B2 (en) 2013-03-15 2016-03-01 Airwatch Llc Data access sharing
US10412081B2 (en) 2013-03-15 2019-09-10 Airwatch, Llc Facial capture managing access to resources by a device
US11283803B2 (en) 2013-03-15 2022-03-22 Airwatch Llc Incremental compliance remediation
US11069168B2 (en) 2013-03-15 2021-07-20 Airwatch, Llc Facial capture managing access to resources by a device
US9819682B2 (en) 2013-03-15 2017-11-14 Airwatch Llc Certificate based profile confirmation
US8997187B2 (en) 2013-03-15 2015-03-31 Airwatch Llc Delegating authorization to applications on a client device in a networked environment
US9847986B2 (en) 2013-03-15 2017-12-19 Airwatch Llc Application program as key for authorizing access to resources
US10972467B2 (en) 2013-03-15 2021-04-06 Airwatch Llc Certificate based profile confirmation
US10965658B2 (en) 2013-03-15 2021-03-30 Airwatch Llc Application program as key for authorizing access to resources
US9148416B2 (en) 2013-03-15 2015-09-29 Airwatch Llc Controlling physical access to secure areas via client devices in a networked environment
US9203820B2 (en) 2013-03-15 2015-12-01 Airwatch Llc Application program as key for authorizing access to resources
US10108808B2 (en) 2013-03-15 2018-10-23 Airwatch Llc Data access sharing
US9401915B2 (en) 2013-03-15 2016-07-26 Airwatch Llc Secondary device as key for authorizing access to resources
US10652242B2 (en) 2013-03-15 2020-05-12 Airwatch, Llc Incremental compliance remediation
US10560453B2 (en) 2013-03-15 2020-02-11 Airwatch Llc Certificate based profile confirmation
US10785228B2 (en) 2013-04-12 2020-09-22 Airwatch, Llc On-demand security policy activation
US10116662B2 (en) 2013-04-12 2018-10-30 Airwatch Llc On-demand security policy activation
US9787686B2 (en) 2013-04-12 2017-10-10 Airwatch Llc On-demand security policy activation
US11902281B2 (en) 2013-04-12 2024-02-13 Airwatch Llc On-demand security policy activation
US10754966B2 (en) 2013-04-13 2020-08-25 Airwatch Llc Time-based functionality restrictions
US11880477B2 (en) 2013-04-13 2024-01-23 Airwatch Llc Time-based functionality restrictions
US8914013B2 (en) 2013-04-25 2014-12-16 Airwatch Llc Device management macros
US10402789B2 (en) 2013-04-26 2019-09-03 Airwatch Llc Attendance tracking via device presence
US9123031B2 (en) 2013-04-26 2015-09-01 Airwatch Llc Attendance tracking via device presence
US11204993B2 (en) 2013-05-02 2021-12-21 Airwatch, Llc Location-based configuration profile toggling
US9703949B2 (en) 2013-05-02 2017-07-11 Airwatch, Llc Time-based configuration profile toggling
US10303872B2 (en) 2013-05-02 2019-05-28 Airwatch, Llc Location based configuration profile toggling
US9219741B2 (en) 2013-05-02 2015-12-22 Airwatch, Llc Time-based configuration policy toggling
US9426162B2 (en) 2013-05-02 2016-08-23 Airwatch Llc Location-based configuration policy toggling
US9246918B2 (en) 2013-05-10 2016-01-26 Airwatch Llc Secure application leveraging of web filter proxy services
US9825996B2 (en) 2013-05-16 2017-11-21 Airwatch Llc Rights management services integration with mobile device management
US9058495B2 (en) 2013-05-16 2015-06-16 Airwatch Llc Rights management services integration with mobile device management
US9516066B2 (en) 2013-05-16 2016-12-06 Airwatch Llc Rights management services integration with mobile device management
US9584437B2 (en) 2013-06-02 2017-02-28 Airwatch Llc Resource watermarking and management
US9900261B2 (en) 2013-06-02 2018-02-20 Airwatch Llc Shared resource watermarking and management
US10515334B2 (en) 2013-06-04 2019-12-24 Airwatch Llc Item delivery optimization
US11651325B2 (en) 2013-06-04 2023-05-16 Airwatch Llc Item delivery optimization
US9270777B2 (en) 2013-06-06 2016-02-23 Airwatch Llc Social media and data sharing controls for data security purposes
US10824757B2 (en) 2013-06-06 2020-11-03 Airwatch Llc Social media and data sharing controls
US9535857B2 (en) 2013-06-25 2017-01-03 Airwatch Llc Autonomous device interaction
US9514078B2 (en) 2013-06-25 2016-12-06 Airwatch Llc Peripheral device management
US8924608B2 (en) 2013-06-25 2014-12-30 Airwatch Llc Peripheral device management
US9202025B2 (en) 2013-07-03 2015-12-01 Airwatch Llc Enterprise-specific functionality watermarking and management
US9195811B2 (en) 2013-07-03 2015-11-24 Airwatch Llc Functionality watermarking and management
US9552463B2 (en) 2013-07-03 2017-01-24 Airwatch Llc Functionality watermarking and management
US9699193B2 (en) 2013-07-03 2017-07-04 Airwatch, Llc Enterprise-specific functionality watermarking and management
US8775815B2 (en) 2013-07-03 2014-07-08 Sky Socket, Llc Enterprise-specific functionality watermarking and management
US8806217B2 (en) 2013-07-03 2014-08-12 Sky Socket, Llc Functionality watermarking and management
US8756426B2 (en) 2013-07-03 2014-06-17 Sky Socket, Llc Functionality watermarking and management
US9665723B2 (en) 2013-08-15 2017-05-30 Airwatch, Llc Watermarking detection and management
US9516005B2 (en) 2013-08-20 2016-12-06 Airwatch Llc Individual-specific content management
US11070543B2 (en) 2013-09-16 2021-07-20 Airwatch, Llc Multi-persona management and devices
US10129242B2 (en) 2013-09-16 2018-11-13 Airwatch Llc Multi-persona devices and management
US9258301B2 (en) 2013-10-29 2016-02-09 Airwatch Llc Advanced authentication techniques
US9544306B2 (en) 2013-10-29 2017-01-10 Airwatch Llc Attempted security breach remediation
US9558078B2 (en) 2014-10-28 2017-01-31 Microsoft Technology Licensing, Llc Point in time database restore from storage snapshots
US9584964B2 (en) 2014-12-22 2017-02-28 Airwatch Llc Enforcement of proximity based policies
US10194266B2 (en) 2014-12-22 2019-01-29 Airwatch Llc Enforcement of proximity based policies
US9813247B2 (en) 2014-12-23 2017-11-07 Airwatch Llc Authenticator device facilitating file security
US9413754B2 (en) 2014-12-23 2016-08-09 Airwatch Llc Authenticator device facilitating file security
US20160342670A1 (en) * 2015-05-20 2016-11-24 Preventice, Inc. Device data synchronization
US10452635B2 (en) 2016-03-23 2019-10-22 Microsoft Technology Licensing, Llc Synchronizing files on different computing devices using file anchors
US9916446B2 (en) 2016-04-14 2018-03-13 Airwatch Llc Anonymized application scanning for mobile devices
US9917862B2 (en) 2016-04-14 2018-03-13 Airwatch Llc Integrated application scanning and mobile enterprise computing management system
US11568011B2 (en) * 2018-11-01 2023-01-31 Rewardstyle, Inc. System and method for improved searching across multiple databases

Also Published As

Publication number Publication date
EP1459213A4 (en) 2007-09-19
US20030130984A1 (en) 2003-07-10
US20100100641A1 (en) 2010-04-22
US8255359B2 (en) 2012-08-28
WO2003044698A1 (en) 2003-05-30
IL162008A0 (en) 2005-11-20
JP2005509979A (en) 2005-04-14
US20100268844A1 (en) 2010-10-21
EP1459213B1 (en) 2017-05-10
EP1459213A1 (en) 2004-09-22
US8069144B2 (en) 2011-11-29
AU2002357731A1 (en) 2003-06-10
CA2467404A1 (en) 2003-05-30

Similar Documents

Publication Publication Date Title
US7752166B2 (en) System and methods for asynchronous synchronization
US20230315690A1 (en) System and method for content synchronization
US7865469B2 (en) Method and system for supporting off-line mode of operation and synchronization
US6694335B1 (en) Method, computer readable medium, and system for monitoring the state of a collection of resources
US7860825B2 (en) Method for synchronizing software application and user data for asynchronous client-server and peer to peer computer networks
US6324544B1 (en) File object synchronization between a desktop computer and a mobile device
JP4405812B2 (en) Method and apparatus for synchronizing between a first data storage unit and a second data storage unit
US6983293B2 (en) Mid-tier-based conflict resolution method and system usable for message synchronization and replication
CN101167069B (en) System and method for peer to peer synchronization of files
US6457053B1 (en) Multi-master unique identifier allocation
US20150199414A1 (en) Locally cached file system
US6944642B1 (en) Systems and methods for detecting and resolving resource conflicts
US11899618B2 (en) Architecture for management of digital files across distributed network
US20030084104A1 (en) System and method for remote storage and retrieval of data
US20080195739A1 (en) Resolving Synchronization Duplication
US7698280B2 (en) Active cache offline sharing of project files
US20110208761A1 (en) Coordinating content from multiple data sources
JP2003256257A (en) Common processor for company-wide total integrated system, method therefor, and common processing program
JP4492569B2 (en) File operation control device, file operation control system, file operation control method, and file operation control program
Redkar et al. Introducing Message Queuing
JPH05176011A (en) Line control system

Legal Events

Date Code Title Description
AS Assignment

Owner name: VISTO CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:QUINLAN, SEAN;MENDEZ, DANIEL J.;JOSHI, RAJIV;AND OTHERS;REEL/FRAME:013864/0261;SIGNING DATES FROM 20030224 TO 20030304

Owner name: VISTO CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:QUINLAN, SEAN;MENDEZ, DANIEL J.;JOSHI, RAJIV;AND OTHERS;SIGNING DATES FROM 20030224 TO 20030304;REEL/FRAME:013864/0261

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: GOOD TECHNOLOGY CORPORATION, DELAWARE

Free format text: CHANGE OF NAME;ASSIGNOR:VISTO CORPORATION;REEL/FRAME:029347/0783

Effective date: 20120919

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: GOOD TECHNOLOGY HOLDINGS LIMITED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOOD TECHNOLOGY CORPORATION;REEL/FRAME:043274/0803

Effective date: 20160527

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

AS Assignment

Owner name: BLACKBERRY LIMITED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOOD TECHNOLOGY HOLDINGS LIMITED;REEL/FRAME:045196/0255

Effective date: 20180111

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

AS Assignment

Owner name: MALIKIE INNOVATIONS LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLACKBERRY LIMITED;REEL/FRAME:064104/0103

Effective date: 20230511

AS Assignment

Owner name: MALIKIE INNOVATIONS LIMITED, IRELAND

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:BLACKBERRY LIMITED;REEL/FRAME:064271/0199

Effective date: 20230511