US7468319B2 - Method for preventing a metal corrosion in a semiconductor device - Google Patents

Method for preventing a metal corrosion in a semiconductor device Download PDF

Info

Publication number
US7468319B2
US7468319B2 US11/179,455 US17945505A US7468319B2 US 7468319 B2 US7468319 B2 US 7468319B2 US 17945505 A US17945505 A US 17945505A US 7468319 B2 US7468319 B2 US 7468319B2
Authority
US
United States
Prior art keywords
metal layer
aluminum
metal
etching
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/179,455
Other versions
US20060019492A1 (en
Inventor
Jae Suk Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DB HiTek Co Ltd
Original Assignee
Dongbu Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongbu Electronics Co Ltd filed Critical Dongbu Electronics Co Ltd
Assigned to DONGBUANAM SEMICONDUCTOR INC. reassignment DONGBUANAM SEMICONDUCTOR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, JAE SUK
Publication of US20060019492A1 publication Critical patent/US20060019492A1/en
Assigned to DONGBU ELECTRONICS CO., LTD. reassignment DONGBU ELECTRONICS CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DONGBUANAM SEMICONDUCTOR INC.
Application granted granted Critical
Publication of US7468319B2 publication Critical patent/US7468319B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76888By rendering at least a portion of the conductor non conductive, e.g. oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02145Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing aluminium, e.g. AlSiOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Definitions

  • the present invention relates to semiconductor device manufacturing technology. More specifically, the present invention relates to a method for preventing corrosion of a metal layer in a semiconductor device, thereby enabling improvement of the reliability and yield of a semiconductor device.
  • a semiconductor device has been developed toward higher integration, miniaturization, and higher operational speed.
  • Processes of forming aluminum wiring generally comprise the steps of: forming an aluminum layer; coating and patterning a photoresist on the aluminum layer; etching an exposed portion of the aluminum layer (i.e., which is not covered with the photoresist) by means of plasma including chlorine; and removing the photoresist.
  • FIGS. 1 a to 1 c are cross-sectional views of a semiconductor device illustrating a conventional method for forming an aluminum wiring in the semiconductor device.
  • a photoresist is coated and patterned over a substrate 100 on which an oxide layer 102 , barrier 104 , aluminum layer 106 and antireflective coating 108 are formed in due order. Then, the antireflective coating 108 , aluminum layer 106 and barrier 104 are dry-etched by means of Reactive Ion Etching (RIE) using a chlorine source gas such as Cl 2 , BCl 3 and the like.
  • RIE Reactive Ion Etching
  • the patterned photoresist 110 is used as a mask for this etching process.
  • the patterned photoresist 110 is removed by means of O 2 plasma ashing process.
  • corrosion defects 112 on a surface of aluminum layer 106 may result from circumstances such as fluorine, NH 4 OH, water, etc., working conditions of RIE, cleaning solutions used for removal of a photoresist, and especially chlorine residues occurring during the etch of aluminum layer 106 .
  • the corrosion defects 112 deteriorate the electrical performance of the semiconductor device or integrated circuit, or cause failures such as a short circuit thus decreasing the yield of manufacturing the semiconductor device.
  • a first method involves cleaning the chlorine residues using deionized water, usually as a spray or in a bath.
  • a second method involves evaporating the chlorine residues by heat treatment.
  • a third method involves using a plasma containing fluorine.
  • the first method has little effect on removal of the chlorine residues, and generally does not prevent the corrosion of aluminum wirings in the long run.
  • the second method may produce or result in problems such as hillock formation, segregation, or recrystallization, etc. when the temperature of the heat treatment is over 300° C., which are generally related to the low melting point of aluminum.
  • the third method has been disclosed in Japanese Patent Publication No. 83-12343 and Korean Patent Laid-Open Publication No. 2000-27241, which relates to a method for removing chlorine residues by means of an etching gas containing fluorine, and then removing a photoresist through an ashing process.
  • this method may result in a problem where undercuts 114 on a titanium-containing layer (e.g., a TiN or TiW barrier) occur due to the fluorine-containing plasma, as shown in FIG. 1 c .
  • an underlying oxide layer may be damaged, and the aluminum may be changed to AlF 3 (which can result in metal degradation).
  • the reliability of semiconductor device may be conspicuously deteriorated.
  • an etching system for the purpose of preventing reaction between chlorine residues and water when a substrate is exposed to air, an etching system is equipped with an ashing chamber so that a process of stripping a photoresist is performed in situ.
  • chlorine residues are changed to hydrogen chloride (HCl) by means of H 2 O plasma, and then hydrogen chloride is exhausted by a pump, so that chlorine residues existing on surfaces of aluminum layer are generally removed.
  • H 2 O plasma hydrogen chloride
  • Korean Patent Publication No. 95-5351 discloses a method for preventing corrosion of a metal layer, comprising a plasma process using mixed gases of oxygen (O 2 ) and ammonia (NH 3 ).
  • Korean Patent Laid Open Publication No. 2001-35852 discloses a method for preventing corrosion of a metal layer, comprising the step of exposing an object to plasma formed of mixed gases of H 2 N 2 and oxygen.
  • a degree of preventing corrosion of a metal layer depends on a mixture ratio of gases.
  • these methods tend to have little effect on the prevention of corrosion.
  • an object of the present invention to provide a method for preventing metal corrosion in a semiconductor device (and, in one embodiment, simultaneously preventing formation of a bridge between metal wirings), thereby improving the profile of metal layer and the reliability and yield of the semiconductor device.
  • a method for preventing metal corrosion of a metal layer in a semiconductor device or integrated circuit comprises the steps of: etching a metal layer in a chamber, the metal layer having a photoresist pattern thereon or thereover; oxidizing a surface of the metal layer using a plasma comprising N 2 O in the chamber; and removing the photoresist.
  • the present method further includes the step of removing a portion of the oxidized metal surface by sputter etching using an inert gas, after the step of oxidizing the surface of the metal layer.
  • the inert gas includes at least one member of the group consisting of He, Ne, Ar, Kr, Xe and Rn.
  • the metal layer preferably comprises one or more layers consisting essentially of aluminum or an aluminum alloy (e.g., aluminum-copper or aluminum-silicon alloy).
  • the etch of the metal layer may be performed by dry etching using a plasma which includes chlorine.
  • the metal layer may have a width greater than a desired or predetermined critical dimension by 50 to 150 ⁇ .
  • the oxidized metal surface may have a width or thickness of from 50 to 150 ⁇ .
  • the step of removing the photoresist preferably comprises ashing with a plasma including a chlorine source gas (e.g., Cl 2 ) and a hydrofluorocarbon gas (e.g., CHF 3 ).
  • a chlorine source gas e.g., Cl 2
  • a hydrofluorocarbon gas e.g., CHF 3
  • FIGS. 1 a to 1 c illustrate a conventional method for forming an aluminum wiring in a semiconductor device.
  • FIGS. 2 a to 2 d illustrate a method for preventing corrosion of a metal layer in a semiconductor device, according to the present invention.
  • FIGS. 2 a to 2 d are cross-sectional views of a semiconductor device illustrating a method for preventing a metal corrosion according to the present invention.
  • a photoresist 210 is coated and patterned over a substrate 200 on which an oxide layer 202 , barrier 204 , metal layer 206 and antireflective coating 208 are formed in successive order. Then, antireflective coating 208 , metal layer 206 and barrier 204 are dry-etched using a plasma including a chlorine source gas such as Cl 2 , BCl 3 and/or the like. Such dry etching preferably comprises Reactive Ion Etching (RIE).
  • RIE Reactive Ion Etching
  • Metal layer 206 may comprise a single layer or a plurality of layers, at least one of which preferably consists essentially of aluminum, aluminum alloy (for example, Al—Cu or Al—Ti), aluminum-silicon alloy (for example, Al—Si, Al—Si—Cu, or Al—Ti—Si), and so on.
  • aluminum alloy for example, Al—Cu or Al—Ti
  • aluminum-silicon alloy for example, Al—Si, Al—Si—Cu, or Al—Ti—Si
  • materials are not limited to these metals or alloys thereof, and any metal or alloy thereof is available for the metal layer 206 in the present invention.
  • a metal layer 206 comprises aluminum
  • an aluminum layer may be weak for electromigration because aluminum has a relatively low melting point of around 660° C.
  • atoms of aluminum may be apt to move due to movement of electrons.
  • a barrier 204 comprising or consisting essentially of Ti, TiN, W or TiW can be formed under an aluminum layer.
  • barrier 204 consists essentially of a Ti/TiN bilayer.
  • an antireflective coating 208 comprising or consisting essentially of TiN or a Ti/TiN bilayer is preferably formed on the aluminum layer 206 , which can suppress or prevent hillock formation, electromigration and stress migration of the aluminum layer 206 , thus improving the reliability of the wiring.
  • Barrier 204 and antireflective coating 208 are optional components, not indispensable components.
  • a width W of a metal layer 206 is preferably wider than the desired (or predetermined) critical dimension by 50 to 150 ⁇ . Generally, that width corresponds to or is considered for a thickness of a lateral metal oxide to be formed in a subsequent process (e.g., plasma oxidation). In a conventional etching process, metal layer 206 may be overetched to a limited extent. However, in this embodiment according to the present invention, metal layer 206 is not overetched, so that portions of oxide layer 202 below metal layer 206 are not etched.
  • a surface of metal layer 206 (e.g., exposed as a result of the metal etching step) is oxidized using a plasma comprising N 2 O.
  • the oxidation may be performed in the same chamber as the etching process for metal layer 206 .
  • the metal etch and oxidation steps may be performed continuously, or oxidation may be conducted in situ.
  • lateral surfaces of a metal layer 206 are oxidized so that lateral oxides 212 are formed.
  • the lateral oxides 212 may have a width (or thickness) of from around 50 ⁇ to around 150 ⁇ .
  • Chlorine residues remaining or existing on lateral surfaces of metal layer 206 after the metal etch step are oxidized and removed by the N 2 O-containing plasma.
  • the present method further includes the steps of: exposing metal surfaces that may have chlorine residues thereon to an H 2 O-containing plasma before oxidization using the N 2 O-containing plasma, so as to change the chlorine residues to hydrogen chloride (or other volatile species); and exhausting the hydrogen chloride and/or other volatile, chlorine-containing species.
  • Sputter etching or ion beam etching is a method for physically etching a target by means of accelerating ions in a plasma state which are changed from an inert gas.
  • a portion of lateral oxides 212 is removed (e.g., the vertically exposed portions of lateral oxides 212 ) and a portion of oxide layer 202 is also etched at the same time.
  • the formation of a bridge or short circuit between adjacent metal lines, sometimes known as a “stringer” can be suppressed or prevented, thereby improving a profile of metal layer 206 .
  • a photoresist 210 is partially removed.
  • the inert gas comprises at least one of the noble gases (i.e., He, Ne, Ar, Kr, Xe and Rn).
  • photoresist 210 is removed.
  • a chlorine source gas e.g., Cl 2 , BCl 3 , HCl, etc., preferably Cl 2
  • the chamber for forming the ashing plasma has working conditions of: a pressure of from about 0.7 to about 1.3 Torr; an electric power of from about 800 to about 1700 W; an operating time of from about 20 to about 80 seconds; and a temperature less than room temperature.
  • the above-described embodiment according to the present invention has explained a series of processes, comprising the steps of: etching a metal layer in a chamber, the metal layer having thereon or thereover a predetermined photoresist pattern; oxidizing surfaces of the metal layer using a N 2 O-containing plasma; removing a portion of the oxidized metal layer surfaces and simultaneously etching an exposed oxide layer by sputter etching using an inert gas; and removing the photoresist by plasma ashing.
  • the step of sputter etching using an inert gas may be omitted.
  • the method according to the present invention may comprise the following steps of: etching a metal layer under a photoresist pattern; oxidizing surfaces of the metal layer with a plasma comprising N 2 O; and removing the photoresist by plasma ashing.
  • a metal layer is dry-etched, lateral oxides are formed using a N 2 O-containing plasma in situ, and then portions of the lateral oxides and an oxide layer (exposed as a result of the metal etch) are simultaneously removed by sputter etching using an inert gas. Therefore, metal corrosion and bridges (a type of short circuit between adjacent metal lines) can be suppressed or prevented, improving a profile of the metal layer. Moreover, undercuts into a barrier layer, damage to an oxide layer and/or deformation of the metal layer can be suppressed or prevented. As a result, the present invention may improve the reliability and yield of a semiconductor device.

Abstract

The present invention relates to a method for preventing a metal corrosion in a semiconductor device. The present method includes the steps of etching of a metal layer in a chamber, the metal layer having a photoresist pattern thereon or thereover; oxidizing a surface of the metal layer using a plasma comprising N2O in the same chamber; and removing the photoresist. Therefore, metal corrosion as well as bridges between metal wirings can be suppressed or prevented, thereby improving the profile of metal layer and the reliability and yield of the semiconductor device.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to semiconductor device manufacturing technology. More specifically, the present invention relates to a method for preventing corrosion of a metal layer in a semiconductor device, thereby enabling improvement of the reliability and yield of a semiconductor device.
2. Description of the Related Art
Following the rapid progress of information and communication media such as a computer, the technology of manufacturing a semiconductor device has been rapidly developed. A semiconductor device has been developed toward higher integration, miniaturization, and higher operational speed.
Currently, aluminum or aluminum alloys are widely used as a wiring material for integrated circuits such as VLSI (Very Large-Scale Integration) devices, because of their superior electric conductivity and low prices. Processes of forming aluminum wiring generally comprise the steps of: forming an aluminum layer; coating and patterning a photoresist on the aluminum layer; etching an exposed portion of the aluminum layer (i.e., which is not covered with the photoresist) by means of plasma including chlorine; and removing the photoresist.
FIGS. 1 a to 1 c are cross-sectional views of a semiconductor device illustrating a conventional method for forming an aluminum wiring in the semiconductor device.
First, as shown in FIG. 1 a, a photoresist is coated and patterned over a substrate 100 on which an oxide layer 102, barrier 104, aluminum layer 106 and antireflective coating 108 are formed in due order. Then, the antireflective coating 108, aluminum layer 106 and barrier 104 are dry-etched by means of Reactive Ion Etching (RIE) using a chlorine source gas such as Cl2, BCl3 and the like. Here, the patterned photoresist 110 is used as a mask for this etching process.
Next, as shown in FIG. 1 b, the patterned photoresist 110 is removed by means of O2 plasma ashing process. At this time, corrosion defects 112 on a surface of aluminum layer 106 may result from circumstances such as fluorine, NH4OH, water, etc., working conditions of RIE, cleaning solutions used for removal of a photoresist, and especially chlorine residues occurring during the etch of aluminum layer 106. The corrosion defects 112 deteriorate the electrical performance of the semiconductor device or integrated circuit, or cause failures such as a short circuit thus decreasing the yield of manufacturing the semiconductor device.
In order to prevent such corrosion defects, the following methods are conventionally used. A first method involves cleaning the chlorine residues using deionized water, usually as a spray or in a bath. A second method involves evaporating the chlorine residues by heat treatment. A third method involves using a plasma containing fluorine.
However, the first method has little effect on removal of the chlorine residues, and generally does not prevent the corrosion of aluminum wirings in the long run. The second method may produce or result in problems such as hillock formation, segregation, or recrystallization, etc. when the temperature of the heat treatment is over 300° C., which are generally related to the low melting point of aluminum.
The third method has been disclosed in Japanese Patent Publication No. 83-12343 and Korean Patent Laid-Open Publication No. 2000-27241, which relates to a method for removing chlorine residues by means of an etching gas containing fluorine, and then removing a photoresist through an ashing process. However, this method may result in a problem where undercuts 114 on a titanium-containing layer (e.g., a TiN or TiW barrier) occur due to the fluorine-containing plasma, as shown in FIG. 1 c. In addition, an underlying oxide layer may be damaged, and the aluminum may be changed to AlF3 (which can result in metal degradation). As a result, the reliability of semiconductor device may be conspicuously deteriorated.
In another method for manufacturing a semiconductor device, for the purpose of preventing reaction between chlorine residues and water when a substrate is exposed to air, an etching system is equipped with an ashing chamber so that a process of stripping a photoresist is performed in situ. Especially, before stripping a photoresist by means of plasma containing fluorine, chlorine residues are changed to hydrogen chloride (HCl) by means of H2O plasma, and then hydrogen chloride is exhausted by a pump, so that chlorine residues existing on surfaces of aluminum layer are generally removed. However, there are the same problems as the above-explained method has, which are caused by plasma containing fluorine.
To solve these problems, Korean Patent Publication No. 95-5351 discloses a method for preventing corrosion of a metal layer, comprising a plasma process using mixed gases of oxygen (O2) and ammonia (NH3). In addition, Korean Patent Laid Open Publication No. 2001-35852 discloses a method for preventing corrosion of a metal layer, comprising the step of exposing an object to plasma formed of mixed gases of H2N2 and oxygen. However, in case of using such mixed gases, a degree of preventing corrosion of a metal layer depends on a mixture ratio of gases. Moreover, these methods tend to have little effect on the prevention of corrosion.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a method for preventing metal corrosion in a semiconductor device (and, in one embodiment, simultaneously preventing formation of a bridge between metal wirings), thereby improving the profile of metal layer and the reliability and yield of the semiconductor device.
To achieve the above object(s), a method for preventing metal corrosion of a metal layer in a semiconductor device or integrated circuit according to the present invention comprises the steps of: etching a metal layer in a chamber, the metal layer having a photoresist pattern thereon or thereover; oxidizing a surface of the metal layer using a plasma comprising N2O in the chamber; and removing the photoresist.
Preferably, the present method further includes the step of removing a portion of the oxidized metal surface by sputter etching using an inert gas, after the step of oxidizing the surface of the metal layer. The inert gas includes at least one member of the group consisting of He, Ne, Ar, Kr, Xe and Rn. Also, the metal layer preferably comprises one or more layers consisting essentially of aluminum or an aluminum alloy (e.g., aluminum-copper or aluminum-silicon alloy).
The etch of the metal layer may be performed by dry etching using a plasma which includes chlorine. In addition, after the metal layer is etched, the metal layer may have a width greater than a desired or predetermined critical dimension by 50 to 150 Å. Further, the oxidized metal surface may have a width or thickness of from 50 to 150 Å.
In addition, the step of removing the photoresist preferably comprises ashing with a plasma including a chlorine source gas (e.g., Cl2) and a hydrofluorocarbon gas (e.g., CHF3).
These and other aspects of the invention will become evident by reference to the following description of the invention, often referring to the accompanying drawings.
BRIEF DESCRIPTION OF DRAWINGS
FIGS. 1 a to 1 c illustrate a conventional method for forming an aluminum wiring in a semiconductor device.
FIGS. 2 a to 2 d illustrate a method for preventing corrosion of a metal layer in a semiconductor device, according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 2 a to 2 d are cross-sectional views of a semiconductor device illustrating a method for preventing a metal corrosion according to the present invention.
First, as shown in FIG. 2 a, a photoresist 210 is coated and patterned over a substrate 200 on which an oxide layer 202, barrier 204, metal layer 206 and antireflective coating 208 are formed in successive order. Then, antireflective coating 208, metal layer 206 and barrier 204 are dry-etched using a plasma including a chlorine source gas such as Cl2, BCl3 and/or the like. Such dry etching preferably comprises Reactive Ion Etching (RIE).
Metal layer 206 may comprise a single layer or a plurality of layers, at least one of which preferably consists essentially of aluminum, aluminum alloy (for example, Al—Cu or Al—Ti), aluminum-silicon alloy (for example, Al—Si, Al—Si—Cu, or Al—Ti—Si), and so on. However, materials are not limited to these metals or alloys thereof, and any metal or alloy thereof is available for the metal layer 206 in the present invention.
In case a metal layer 206 comprises aluminum, an aluminum layer may be weak for electromigration because aluminum has a relatively low melting point of around 660° C. As a result, atoms of aluminum may be apt to move due to movement of electrons. Preferably, in order to prevent electromigration, a barrier 204 comprising or consisting essentially of Ti, TiN, W or TiW can be formed under an aluminum layer. In one embodiment, barrier 204 consists essentially of a Ti/TiN bilayer. Furthermore, in case a metal layer 206 comprises aluminum, an antireflective coating 208 comprising or consisting essentially of TiN or a Ti/TiN bilayer is preferably formed on the aluminum layer 206, which can suppress or prevent hillock formation, electromigration and stress migration of the aluminum layer 206, thus improving the reliability of the wiring. Barrier 204 and antireflective coating 208 are optional components, not indispensable components.
A width W of a metal layer 206 is preferably wider than the desired (or predetermined) critical dimension by 50 to 150 Å. Generally, that width corresponds to or is considered for a thickness of a lateral metal oxide to be formed in a subsequent process (e.g., plasma oxidation). In a conventional etching process, metal layer 206 may be overetched to a limited extent. However, in this embodiment according to the present invention, metal layer 206 is not overetched, so that portions of oxide layer 202 below metal layer 206 are not etched.
Next, as shown in FIG. 2 b, a surface of metal layer 206 (e.g., exposed as a result of the metal etching step) is oxidized using a plasma comprising N2O. The oxidation may be performed in the same chamber as the etching process for metal layer 206. Thus, the metal etch and oxidation steps may be performed continuously, or oxidation may be conducted in situ. During such an oxidization process, lateral surfaces of a metal layer 206 are oxidized so that lateral oxides 212 are formed. The lateral oxides 212 may have a width (or thickness) of from around 50 Å to around 150 Å. Chlorine residues remaining or existing on lateral surfaces of metal layer 206 after the metal etch step are oxidized and removed by the N2O-containing plasma. In order to effectively remove the chlorine residues, the present method further includes the steps of: exposing metal surfaces that may have chlorine residues thereon to an H2O-containing plasma before oxidization using the N2O-containing plasma, so as to change the chlorine residues to hydrogen chloride (or other volatile species); and exhausting the hydrogen chloride and/or other volatile, chlorine-containing species.
Next, as shown in FIG. 2 c, a sputter etch process or ion beam etch process is performed. Sputter etching or ion beam etching is a method for physically etching a target by means of accelerating ions in a plasma state which are changed from an inert gas. In this process, a portion of lateral oxides 212 is removed (e.g., the vertically exposed portions of lateral oxides 212) and a portion of oxide layer 202 is also etched at the same time. Thus, the formation of a bridge (or short circuit between adjacent metal lines, sometimes known as a “stringer”) can be suppressed or prevented, thereby improving a profile of metal layer 206. Moreover, a photoresist 210 is partially removed. It is preferable that the inert gas comprises at least one of the noble gases (i.e., He, Ne, Ar, Kr, Xe and Rn).
Finally, as shown in FIG. 2 d, photoresist 210 is removed. Preferably, the removal of photoresist 210 comprises a plasma ashing process using a chlorine source gas (e.g., Cl2, BCl3, HCl, etc., preferably Cl2) and a hydrofluorocarbon gas (e.g., CxHyFz, where x is an integer of from 1 to 4, y and z are each an integer of at least 1, and (y+z)=2x+2, such as CHF3, CH2F2, C2H2F4, C2HF5, etc., preferably CHF3). In addition, it is preferable that the chamber for forming the ashing plasma has working conditions of: a pressure of from about 0.7 to about 1.3 Torr; an electric power of from about 800 to about 1700 W; an operating time of from about 20 to about 80 seconds; and a temperature less than room temperature.
It is also preferable that the above-described series of processes, from the metal etch step as shown in FIG. 2 a to the photoresist removal step as shown in FIG. 2 d, are continuously performed in the same etching chamber.
The above-described embodiment according to the present invention has explained a series of processes, comprising the steps of: etching a metal layer in a chamber, the metal layer having thereon or thereover a predetermined photoresist pattern; oxidizing surfaces of the metal layer using a N2O-containing plasma; removing a portion of the oxidized metal layer surfaces and simultaneously etching an exposed oxide layer by sputter etching using an inert gas; and removing the photoresist by plasma ashing. However, the step of sputter etching using an inert gas may be omitted. Namely, the method according to the present invention may comprise the following steps of: etching a metal layer under a photoresist pattern; oxidizing surfaces of the metal layer with a plasma comprising N2O; and removing the photoresist by plasma ashing.
In a method for preventing a metal corrosion in a semiconductor device or integrated circuit according to the present invention, a metal layer is dry-etched, lateral oxides are formed using a N2O-containing plasma in situ, and then portions of the lateral oxides and an oxide layer (exposed as a result of the metal etch) are simultaneously removed by sputter etching using an inert gas. Therefore, metal corrosion and bridges (a type of short circuit between adjacent metal lines) can be suppressed or prevented, improving a profile of the metal layer. Moreover, undercuts into a barrier layer, damage to an oxide layer and/or deformation of the metal layer can be suppressed or prevented. As a result, the present invention may improve the reliability and yield of a semiconductor device.
While the present invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (19)

1. A method for preventing metal corrosion in a semiconductor or integrated circuit, comprising the steps of:
forming an oxide layer on a substrate;
forming a metal layer on the oxide layer;
etching the metal layer in a chamber to expose a surface of the oxide layer, the metal layer having a photoresist pattern thereon or thereover;
oxidizing lateral surfaces of the metal layer using a plasma comprising N2O in the chamber to form lateral metal oxides;
removing simultaneously a portion of the oxide layer exposed by etching the metal layer and vertically exposed portions of said lateral metal oxides by sputter etching with an inert gas in the chamber, and
removing the photoresist.
2. The meted of claim 1, wherein the inert gas includes at least one member of the group consisting of He, Ne, Ar, Kr, Xe and Rn.
3. The method of claim 1, wherein the metal layer comprises one or more aluminum layers consisting essentially of aluminum or aluminum alloy.
4. The method of claim 3, wherein the one or more aluminum layers consists essentially of an aluminum alloy selected from the group consisting of aluminum-copper, aluminum-titanium, and aluminum-silicon alloys.
5. The method of claim 3, wherein the aluminum alloy is selected from the group consisting of aluminum-copper and aluminum-copper-silicon alloys.
6. The method of claim 3, wherein the metal layer further comprises one or more barrier layers.
7. The method of claim 6, wherein the one or more barrier layers comprises a Ti, TiN, W or TiW layer.
8. The method of claim 7, wherein the one or more barrier layers comprises a Ti/TiN bilayer.
9. The method of claim 3, wherein the metal layer further comprises an antireflective coating.
10. The method of claim 9, wherein the antireflective coating comprises a TiN layer.
11. The method of claim 9, wherein the antireflective coating comprises a Ti/TiN bilayer.
12. The method of claim 1, wherein etching the metal layer comprises dry etching with a plasma comprising chlorine.
13. The method of claim 12, wherein the dry etching comprises reactive ion etching (RIE).
14. The method of claim 1, wherein the metal layer has a width 50 to 150 Å greater than a desired or predetermined critical dimension after the metal layer is etched.
15. The method of claim 1, wherein the oxidized metal surface has a width of from 50 to 159 Å.
16. The method of claim 1, wherein the step of removing the photoresist comprises ashing with a plasma comprising a chlorine source gas and a hydrofluorocarbon gas.
17. The method of claim 1, wherein the step of removing the photoresist comprises ashing with a plasma comprising Cl2 and CHF3 gases.
18. The method of claim 6, wherein the one or more barrier layers are under the metal layer.
19. The method of claim 9, wherein the antireflective coating is on the metal layer.
US11/179,455 2004-07-20 2005-07-11 Method for preventing a metal corrosion in a semiconductor device Expired - Fee Related US7468319B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040056363A KR100584485B1 (en) 2004-07-20 2004-07-20 Method for preventing metal corrosion of semiconductor devices
KR2004-56363 2004-07-20

Publications (2)

Publication Number Publication Date
US20060019492A1 US20060019492A1 (en) 2006-01-26
US7468319B2 true US7468319B2 (en) 2008-12-23

Family

ID=35657798

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/179,455 Expired - Fee Related US7468319B2 (en) 2004-07-20 2005-07-11 Method for preventing a metal corrosion in a semiconductor device

Country Status (2)

Country Link
US (1) US7468319B2 (en)
KR (1) KR100584485B1 (en)

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9309598B2 (en) * 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9355863B2 (en) 2012-12-18 2016-05-31 Applied Materials, Inc. Non-local plasma oxide etch
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9384997B2 (en) 2012-11-20 2016-07-05 Applied Materials, Inc. Dry-etch selectivity
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9412608B2 (en) 2012-11-30 2016-08-09 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9418858B2 (en) 2011-10-07 2016-08-16 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9437451B2 (en) 2012-09-18 2016-09-06 Applied Materials, Inc. Radical-component oxide etch
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US9449850B2 (en) 2013-03-15 2016-09-20 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9449845B2 (en) 2012-12-21 2016-09-20 Applied Materials, Inc. Selective titanium nitride etching
US9472412B2 (en) 2013-12-02 2016-10-18 Applied Materials, Inc. Procedure for etch rate consistency
US9472417B2 (en) 2013-11-12 2016-10-18 Applied Materials, Inc. Plasma-free metal etch
US9478432B2 (en) 2014-09-25 2016-10-25 Applied Materials, Inc. Silicon oxide selective removal
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11257834B2 (en) 2020-01-15 2022-02-22 Micron Technology, Inc. Microelectronic devices including corrosion containment features, and related electronic systems and methods
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4357570B2 (en) * 2008-01-31 2009-11-04 株式会社東芝 Method for manufacturing magnetic recording medium
US20110061812A1 (en) * 2009-09-11 2011-03-17 Applied Materials, Inc. Apparatus and Methods for Cyclical Oxidation and Etching
CN104766797A (en) * 2014-01-07 2015-07-08 北大方正集团有限公司 Aluminum etching method
US9543157B2 (en) * 2014-09-30 2017-01-10 Infineon Technologies Ag Method for processing a carrier, a method for operating a plasma processing chamber, and a method for processing a semiconductor wafer
US10236442B2 (en) * 2015-10-15 2019-03-19 Samsung Electronics Co., Ltd. Methods of forming an interconnection line and methods of fabricating a magnetic memory device using the same
KR102449182B1 (en) * 2015-10-15 2022-10-04 삼성전자주식회사 A method of forming a interconnection line and a method of forming magnetic memory devices using the same
CN110571129B (en) * 2018-06-05 2022-08-02 上海新微技术研发中心有限公司 Processing method of conductive metal oxide
US11955318B2 (en) 2021-03-12 2024-04-09 Applied Materials, Inc. Ash rate recovery method in plasma strip chamber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949671A (en) * 1985-10-24 1990-08-21 Texas Instruments Incorporated Processing apparatus and method
US5776832A (en) * 1996-07-17 1998-07-07 Taiwan Semiconductor Manufacturing Company Ltd. Anti-corrosion etch process for etching metal interconnections extending over and within contact openings
KR0180347B1 (en) 1994-03-15 1999-04-01 우에시마 세이스케 Electronic musical instrument
US5943601A (en) * 1997-04-30 1999-08-24 International Business Machines Corporation Process for fabricating a metallization structure
KR20000027241A (en) 1998-10-27 2000-05-15 윤종용 Method for forming metal wires of semiconductor devices
KR20010035852A (en) 1999-10-04 2001-05-07 윤종용 Method of Ashing in the Manufacturing Semiconductor
US20010045646A1 (en) * 1999-08-11 2001-11-29 Jeffrey A. Shields Silicon oxynitride arc for metal patterning
US20030098501A1 (en) * 2001-11-28 2003-05-29 Lee Jae Suk Semiconductor with a stress reduction layer and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949671A (en) * 1985-10-24 1990-08-21 Texas Instruments Incorporated Processing apparatus and method
KR0180347B1 (en) 1994-03-15 1999-04-01 우에시마 세이스케 Electronic musical instrument
US5776832A (en) * 1996-07-17 1998-07-07 Taiwan Semiconductor Manufacturing Company Ltd. Anti-corrosion etch process for etching metal interconnections extending over and within contact openings
US5943601A (en) * 1997-04-30 1999-08-24 International Business Machines Corporation Process for fabricating a metallization structure
KR20000027241A (en) 1998-10-27 2000-05-15 윤종용 Method for forming metal wires of semiconductor devices
US20010045646A1 (en) * 1999-08-11 2001-11-29 Jeffrey A. Shields Silicon oxynitride arc for metal patterning
KR20010035852A (en) 1999-10-04 2001-05-07 윤종용 Method of Ashing in the Manufacturing Semiconductor
US20030098501A1 (en) * 2001-11-28 2003-05-29 Lee Jae Suk Semiconductor with a stress reduction layer and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. Wolf and R.N. Tauber, (Silicon Processing for the VLSI Era, vol. 1- Process Technology, Lattice Press, 1986) (pp. 182-188). *

Cited By (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US9418858B2 (en) 2011-10-07 2016-08-16 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9437451B2 (en) 2012-09-18 2016-09-06 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US11264213B2 (en) 2012-09-21 2022-03-01 Applied Materials, Inc. Chemical control features in wafer process equipment
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US9384997B2 (en) 2012-11-20 2016-07-05 Applied Materials, Inc. Dry-etch selectivity
US9412608B2 (en) 2012-11-30 2016-08-09 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9355863B2 (en) 2012-12-18 2016-05-31 Applied Materials, Inc. Non-local plasma oxide etch
US9449845B2 (en) 2012-12-21 2016-09-20 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en) 2013-02-08 2021-06-01 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US9449850B2 (en) 2013-03-15 2016-09-20 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9659792B2 (en) 2013-03-15 2017-05-23 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9704723B2 (en) 2013-03-15 2017-07-11 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9472417B2 (en) 2013-11-12 2016-10-18 Applied Materials, Inc. Plasma-free metal etch
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9472412B2 (en) 2013-12-02 2016-10-18 Applied Materials, Inc. Procedure for etch rate consistency
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9564296B2 (en) 2014-03-20 2017-02-07 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US9309598B2 (en) * 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US20160222522A1 (en) * 2014-05-28 2016-08-04 Applied Materials, Inc. Oxide and metal removal
US10465294B2 (en) * 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US9478432B2 (en) 2014-09-25 2016-10-25 Applied Materials, Inc. Silicon oxide selective removal
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10707061B2 (en) 2014-10-14 2020-07-07 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10796922B2 (en) 2014-10-14 2020-10-06 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US11158527B2 (en) 2015-08-06 2021-10-26 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US11476093B2 (en) 2015-08-27 2022-10-18 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en) 2016-05-19 2023-08-22 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US11049698B2 (en) 2016-10-04 2021-06-29 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10541113B2 (en) 2016-10-04 2020-01-21 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10903052B2 (en) 2017-02-03 2021-01-26 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10529737B2 (en) 2017-02-08 2020-01-07 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10325923B2 (en) 2017-02-08 2019-06-18 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US11101136B2 (en) 2017-08-07 2021-08-24 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10699921B2 (en) 2018-02-15 2020-06-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US11004689B2 (en) 2018-03-12 2021-05-11 Applied Materials, Inc. Thermal silicon etch
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US11257834B2 (en) 2020-01-15 2022-02-22 Micron Technology, Inc. Microelectronic devices including corrosion containment features, and related electronic systems and methods

Also Published As

Publication number Publication date
US20060019492A1 (en) 2006-01-26
KR20060007541A (en) 2006-01-26
KR100584485B1 (en) 2006-05-29

Similar Documents

Publication Publication Date Title
US7468319B2 (en) Method for preventing a metal corrosion in a semiconductor device
JP4690512B2 (en) Method for reducing polymer deposition on etched vertical metal lines, corrosion of etched metal lines and corrosion during wet cleaning of etched metal features
KR101082993B1 (en) Separation-material composition for photo-resist and manufacturing methods of semiconductor device
JP2000216161A (en) Formation of wiring using inorganic anti-reflective film
KR100581244B1 (en) Fabricating method of semiconductor device
US7365017B2 (en) Method for finishing metal line for semiconductor device
JPH10178014A (en) Method for manufacturing semiconductor device
US6103630A (en) Adding SF6 gas to improve metal undercut for hardmask metal etching
JP2914443B2 (en) Semiconductor element wiring forming method
JP3116276B2 (en) Photosensitive film etching method
JP3082396B2 (en) Method for manufacturing semiconductor device
JP3264035B2 (en) Dry etching method
JP3326868B2 (en) Method of forming aluminum-based pattern
JP3118946B2 (en) Dry etching method
JPH07263426A (en) Dry etching of laminated wiring
JPH1041308A (en) Dry etching method
KR100363178B1 (en) Method for post treating a metal line of semiconductor
KR100467817B1 (en) Method for preventing metal corrosion of semiconductor
JPH05182937A (en) Dry-etching method
KR100600259B1 (en) Method for manufacturing the semiconductor device
JPH1116913A (en) Semiconductor device and its manufacture
JP2002246393A (en) Method of forming metal wiring
JPH0536684A (en) Manufacture of semiconductor device
JPH07249611A (en) Dry etching method of laminated wiring
JPH04330724A (en) Formation method of wiring

Legal Events

Date Code Title Description
AS Assignment

Owner name: DONGBUANAM SEMICONDUCTOR INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, JAE SUK;REEL/FRAME:016777/0283

Effective date: 20050707

AS Assignment

Owner name: DONGBU ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:DONGBUANAM SEMICONDUCTOR INC.;REEL/FRAME:019800/0147

Effective date: 20060328

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20121223