US7467929B2 - Device for axially conveying fluids - Google Patents

Device for axially conveying fluids Download PDF

Info

Publication number
US7467929B2
US7467929B2 US10/468,328 US46832804A US7467929B2 US 7467929 B2 US7467929 B2 US 7467929B2 US 46832804 A US46832804 A US 46832804A US 7467929 B2 US7467929 B2 US 7467929B2
Authority
US
United States
Prior art keywords
hollow body
conveying part
blading
radial bearing
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/468,328
Other versions
US20040115038A1 (en
Inventor
Peter Nüsser
Johannes Mueller
Hans-Erhard Peters
Joerg Mueller
Werner Neumann
Kurt Graichen
Andreas Arndt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Berlin Heart GmbH
Original Assignee
Berlin Heart GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berlin Heart GmbH filed Critical Berlin Heart GmbH
Assigned to BERLIN HEART AG reassignment BERLIN HEART AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEUMANN, WERNER, NUESSER, PETER, ARNDT, ANDREAS, GRAICHEN, KURT, MULLER, JORG, PETERS, HANS-ERHARD, MULLER, JOHANNES
Publication of US20040115038A1 publication Critical patent/US20040115038A1/en
Assigned to BERLIN HEART AG reassignment BERLIN HEART AG RECORD TO CORRECT SECOND AND FOURTH ASSIGNOR NAMES AND TO CORRECT WRONG SERIAL NUMBER 10468238 ON AN ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED AT REEL 104287 FRAME 0712 Assignors: NUESSER, PETER, GRAICHEN, KURT, ARNDT, ANDREAS, MUELLER, JOHANNES, MUELLER, JORG, PETERS, HANS-ERHARD, NEUMANN, WERNER
Assigned to BERLIN HEART GMBH reassignment BERLIN HEART GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BERLIN HEART AG
Priority to US11/931,053 priority Critical patent/US7934909B2/en
Application granted granted Critical
Publication of US7467929B2 publication Critical patent/US7467929B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • A61M60/812Vanes or blades, e.g. static flow guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0633Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • F04D3/02Axial-flow pumps of screw type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices

Definitions

  • the invention relates to a device for axially conveying fluids.
  • Blood is a particularly sensitive fluid system.
  • This opaque red body fluid of the vertebrates circulates in a self-enclosed vessel system where rhythmic contractions of the heart press the blood into various areas of the organism.
  • the blood transports the respiratory gases oxygen and carbon dioxide as well as nutrients, metabolic products and endogenous active ingredients.
  • the blood vessel system including the heart is hermetically isolated from the environment so that, in a healthy organism, the blood does not undergo any changes, except for the material exchange with the body cells, when it is pumped through the body by way of the heart.
  • the causes for hemolysis can be of a mechanical or metabolic nature. Increased hemolysis causes multiple organ damage and can lead to a person's death.
  • axial blood pumps which mainly consist of a cylindrical tube in which a conveying part, which is executed as a rotor of an externally located motor stator, rotates.
  • the rotor which is provided with a so-called blading, conveys the fluid in an axial direction after it has been made to rotate.
  • the bearing of these so-called axial pumps represents a major problem.
  • a purely mechanically bearing is disadvantageous with regard to blood damage and also the relatively high friction levels.
  • the magnet bearing variants as described up to the present have not, in particular, led to any satisfactory solution for the bearing conditions in axial pumps.
  • a device for the protective conveying of single- and multiple phase fluids whose conveying part is exclusively magnetically bearing-located.
  • permanent magnetic bearing elements for the magnet bearing-location as well as permanent magnetic elements for the functionality as a motor rotor of an electromotor are preferentially integrated in the conveying part.
  • the use of a magnet bearing for the conveying facility as described here makes it possible to waive bearing elements normally arranged in the flow current of the fluid to be conveyed which lead to dead water zones and vorticities of the fluid to be conveyed and, subsequently, have a negative influence on the current flow.
  • the magnetic bearing described here accommodates both the axial as well as the radial forces.
  • the axial location of the conveying part is actively stabilised whereas the radial bearing of the conveying part is effected exclusively passive by means of the existing permanent magnets.
  • the conveying facility as described has several disadvantages.
  • the passive magnetic radial bearing is characterised by relatively low rigidity and dampening where, during the pumping action, problems occur when passing through critical speeds of the rotor and/or the bearing. Possibly existing hydrodynamic and mechanical imbalance of the rotor has serious effects on the function of the pump, particularly when used as a blood-conveying facility.
  • the invention is based on the task assignment of presenting a device for the axial conveying of fluids whose conveying part is completely magnetically borne and whose radial bearing has sufficient rigidity and effective dampening so that problems encountered when passing through critical speeds and the disadvantageous effects of hydrodynamic and mechanical imbalance of the rotor are avoided.
  • the solution for the task assignment is effected with a device for axially conveying fluids consisting of a tube-shaped hollow body which conducts the fluid in an essentially axial manner, in which a magnetically borne conveying part is arranged in axial alignment with a motor stator located outside of the hollow body capable of rotating said conveying part, where the one conveying part having a magnetic bearing has rotor blading, wherein the magnetic bearing is combined with a hydrodynamic bearing.
  • the bearing of the conveying part has an actively stabilising magnetic axial bearing, a passive magnetic radial bearing and a hydrodynamic radial bearing.
  • the hydrodynamic radial bearing is executed in a further embodiment of the invention as a hollow-cylindrical, rotation-symmetrical back-up ring which is joined to the conveying part.
  • At least one back-up ring is arranged, where the back-up rings are arranged at the beginning of the motor rotor and/or at the end of the motor rotor or between these said positions.
  • the axial dimension of the back-up ring corresponds, at the maximum, to the axial length of the conveying part, and the axial dimension of the running surface of the back-up ring is smaller than one internal surface of the back-up ring.
  • the back-up ring has the same radial dimension as the rotor blading and is joined to it.
  • the back-up ring has such a radial dimension (thickness) that it can be provided with a radial profile which services the purpose of conditioning the inflow into the rotor blading of the conveying part.
  • a back-up ring is provided with such an axial reach that the blading over its entire length is restricted radially from the back-up ring.
  • the running surface of the back-up ring which points against internal side of the tube-shaped hollow body, has in an advantageous manner a surface coating with emergency run characteristics and this coating is, moreover, bio-compatible.
  • the internal surface of the back-up ring has, in one execution, a profile which can favourably influence the current flow properties.
  • the major rigidity and dampening of the radial bearing of the conveying part is achieved in such a way that, in addition to a magnetic bearing of the conveying part, a hydrodynamic bearing is envisaged.
  • the hydrodynamic bearing is achieved by at least one hollow-cylindrical, rotation-symmetrical back-up ring which is solidly joined to the conveying part. With a suitable execution of the back-up ring, the rotor receives major tilting rigidity.
  • this effect is obtained by a particularly large axial reach of the back-up ring or by the arrangement of at least two back-up rings at one rotor.
  • FIG. 1 a schematic illustration of an axial section of an axial blood pump with back-up ring
  • FIG. 2 a schematic illustration of an arrangement of a back-up ring on the rotor
  • FIG. 3 a schematic illustration of an arrangement of two back-up rings on the rotor
  • FIG. 4 a schematic illustration of an arrangement of a back-up ring with profiled internal surface
  • FIG. 5 a schematic illustration of a back-up ring reaching over the entire rotor
  • FIG. 6 a schematic illustration of a back-up ring on the rotor with a running line on the running surface.
  • FIG. 1 shows in an axial sectional illustration the construction of a category-related axial pump with the bearing, according to the invention, of a conveying part 4 .
  • the axial pump consists of a tube-shaped hollow body 1 and a pump casing 3 that includes a motor stator 7 and axial stabilisers 6 .
  • the pump casing 3 lies immediately and rotation-symmetrical on the tube-shaped hollow body 1 .
  • a fluid inlet guide facility 5 and a fluid outlet guide facility 5 ′ are envisaged, between which the conveying part 4 , which is rotated by the motor stator 7 , is arranged.
  • the conveying part 4 has a magnetic bearing where permanent magnetic bearing elements 9 and 9 ′ are arranged in the motor rotor 8 and permanent magnetic bearing elements 10 and 10 ′ are arranged in the fluid inlet- and fluid outlet guide facilities 5 and 5 ′.
  • a rotor blading 11 is envisaged which is combined with a back-up ring.
  • the magnetically bearing-located conveying part 4 is rotated by way of the motor stator 7 where, by means of the oppositely located permanent magnetic bearing elements 9 , 9 ′ and 10 , 10 ′ in combination with the axial stabilisers 6 , the conveying part is kept in a floating state and the back-up ring provides for an additional hydrodynamic bearing-location of the rotating conveying part 4 .
  • FIG. 2 shows in a schematic illustration the motor rotor 8 with the rotor blading 11 in a cut-open tube-shaped hollow body 1 .
  • the back-up ring here is arranged in the end zone of the motor stator 8 .
  • the fluid to be conveyed is moved between an internal surface 16 of the back-up ring 13 and the motor rotor 8 .
  • a running surface 14 of the back-up ring 13 is moved with a minimum clearance to an internal wall 2 of the tube-shaped hollow body 1 .
  • FIG. 3 shows in schematic illustration an arrangement of two back-up rings 13 and 13 ′ at the ends of a motor rotor 8 .
  • the illustration of the tube-shaped hollow body 1 has been left out here.
  • FIG. 4 shows a further embodiment, according to the invention, of the back-up ring 13 .
  • the internal surface 16 of the back-up ring 13 shows a profile 15 .
  • the profile 15 is executed here in a bearing-surface similar form. In this case also, the illustration of the tube-shaped hollow body has been waived.
  • a back-up ring 13 is arranged without an illustration of the tube-shaped hollow body 1 , and this back-up ring covers the entire axial length of the motor rotor 8 with its blading 11 .
  • the conveying of the fluid is also effected here between the internal surface 16 of the back-up ring 13 and the motor rotor 8 .
  • a back-up ring is shown in FIG. 6 whose running surface 14 has a raised running line 17 which facilitates a minimum clearance combined with a minimum friction opposite the internal wall 2 of the tube-shaped hollow body 1 .

Abstract

A device for axially conveying fluids, wherein the conveyor part thereof is entirely magnetically borne and the radial bearing thereof is provided with sufficient rigidity and efficiently dampened, whereby problems encountered when passing through critical speeds and the disadvantageous effects of hydrodynamic and mechanical imbalance of the rotor are avoided. The magnetic bearing is combined with a hydrodynamic bearing.

Description

BACKGROUND
The invention relates to a device for axially conveying fluids.
In particular, less stable multiple-phase fluids which can undergo irreversible changes caused by an energy input, such as in the case of emulsions and dispersions, can run into unstable ranges in a disadvantageous manner when being conveyed in corresponding devices such as pumps.
Blood is a particularly sensitive fluid system. This opaque red body fluid of the vertebrates circulates in a self-enclosed vessel system where rhythmic contractions of the heart press the blood into various areas of the organism. In this case, the blood transports the respiratory gases oxygen and carbon dioxide as well as nutrients, metabolic products and endogenous active ingredients. The blood vessel system including the heart is hermetically isolated from the environment so that, in a healthy organism, the blood does not undergo any changes, except for the material exchange with the body cells, when it is pumped through the body by way of the heart.
It is known that, when blood comes into contact with non-endogenous materials or as a result of the effect of energy from an external source, it has a tendency to hemolysis and clot formation. Clot formation can be fatal for the organism because it can lead to blockage in the extensive branching profile of the vessel system. Hemolysis describes the condition where the red blood cells are destroyed within the body beyond the physiological dimension.
The causes for hemolysis can be of a mechanical or metabolic nature. Increased hemolysis causes multiple organ damage and can lead to a person's death.
On the other hand it is evident that it is possible in principle, under certain prerequisites with reference to constructive aspects, to support the pumping capacity of the heart or even to replace the natural heart with a synthetic one. However, a continuous operation of implanted heart supporting systems or synthetic hearts is presently only possible with certain limitations because the interactive effects of these artificial products with the blood and the entire organism still always lead to disadvantageous changes of the blood and the organism.
In the state of the art, axial blood pumps are known which mainly consist of a cylindrical tube in which a conveying part, which is executed as a rotor of an externally located motor stator, rotates. The rotor which is provided with a so-called blading, conveys the fluid in an axial direction after it has been made to rotate. The bearing of these so-called axial pumps represents a major problem. A purely mechanically bearing is disadvantageous with regard to blood damage and also the relatively high friction levels. And the magnet bearing variants as described up to the present have not, in particular, led to any satisfactory solution for the bearing conditions in axial pumps.
In the WO 00/64030 a device for the protective conveying of single- and multiple phase fluids is described whose conveying part is exclusively magnetically bearing-located. For this purpose, permanent magnetic bearing elements for the magnet bearing-location as well as permanent magnetic elements for the functionality as a motor rotor of an electromotor are preferentially integrated in the conveying part. The use of a magnet bearing for the conveying facility as described here makes it possible to waive bearing elements normally arranged in the flow current of the fluid to be conveyed which lead to dead water zones and vorticities of the fluid to be conveyed and, subsequently, have a negative influence on the current flow.
The magnetic bearing described here accommodates both the axial as well as the radial forces. The axial location of the conveying part is actively stabilised whereas the radial bearing of the conveying part is effected exclusively passive by means of the existing permanent magnets. However, the conveying facility as described has several disadvantages.
The passive magnetic radial bearing is characterised by relatively low rigidity and dampening where, during the pumping action, problems occur when passing through critical speeds of the rotor and/or the bearing. Possibly existing hydrodynamic and mechanical imbalance of the rotor has serious effects on the function of the pump, particularly when used as a blood-conveying facility.
SUMMARY
The invention is based on the task assignment of presenting a device for the axial conveying of fluids whose conveying part is completely magnetically borne and whose radial bearing has sufficient rigidity and effective dampening so that problems encountered when passing through critical speeds and the disadvantageous effects of hydrodynamic and mechanical imbalance of the rotor are avoided.
The solution for the task assignment is effected with a device for axially conveying fluids consisting of a tube-shaped hollow body which conducts the fluid in an essentially axial manner, in which a magnetically borne conveying part is arranged in axial alignment with a motor stator located outside of the hollow body capable of rotating said conveying part, where the one conveying part having a magnetic bearing has rotor blading, wherein the magnetic bearing is combined with a hydrodynamic bearing.
Further advantageous embodiments are stated in the Subclaims.
The bearing of the conveying part has an actively stabilising magnetic axial bearing, a passive magnetic radial bearing and a hydrodynamic radial bearing. The hydrodynamic radial bearing is executed in a further embodiment of the invention as a hollow-cylindrical, rotation-symmetrical back-up ring which is joined to the conveying part.
On the conveying part, at least one back-up ring is arranged, where the back-up rings are arranged at the beginning of the motor rotor and/or at the end of the motor rotor or between these said positions.
In a further embodiment of the invention, the axial dimension of the back-up ring corresponds, at the maximum, to the axial length of the conveying part, and the axial dimension of the running surface of the back-up ring is smaller than one internal surface of the back-up ring.
The back-up ring has the same radial dimension as the rotor blading and is joined to it.
Furthermore as an embodiment, the back-up ring has such a radial dimension (thickness) that it can be provided with a radial profile which services the purpose of conditioning the inflow into the rotor blading of the conveying part.
In a further embodiment, a back-up ring is provided with such an axial reach that the blading over its entire length is restricted radially from the back-up ring. The running surface of the back-up ring which points against internal side of the tube-shaped hollow body, has in an advantageous manner a surface coating with emergency run characteristics and this coating is, moreover, bio-compatible.
The internal surface of the back-up ring has, in one execution, a profile which can favourably influence the current flow properties.
The execution of the running surface of the back-up ring as one running line leads to particularly favourable friction values.
The major rigidity and dampening of the radial bearing of the conveying part is achieved in such a way that, in addition to a magnetic bearing of the conveying part, a hydrodynamic bearing is envisaged. The hydrodynamic bearing is achieved by at least one hollow-cylindrical, rotation-symmetrical back-up ring which is solidly joined to the conveying part. With a suitable execution of the back-up ring, the rotor receives major tilting rigidity. Advantageously, this effect is obtained by a particularly large axial reach of the back-up ring or by the arrangement of at least two back-up rings at one rotor.
With a large axial reach of the back-up ring and/or extensive or complete encapsulation of the blading by means of such a back-up ring, damaging effects of the radial gap occurring at the blade ends are advantageously avoided.
The invention is explained in greater detail based on a drawing:
BRIEF DESCRIPTION OF THE FIGURES
The Figures show the following:
FIG. 1: a schematic illustration of an axial section of an axial blood pump with back-up ring;
FIG. 2: a schematic illustration of an arrangement of a back-up ring on the rotor;
FIG. 3: a schematic illustration of an arrangement of two back-up rings on the rotor;
FIG. 4: a schematic illustration of an arrangement of a back-up ring with profiled internal surface;
FIG. 5: a schematic illustration of a back-up ring reaching over the entire rotor, and
FIG. 6: a schematic illustration of a back-up ring on the rotor with a running line on the running surface.
DESCRIPTION OF PREFERRED EMBODIMENT
In an exemplary manner, FIG. 1 shows in an axial sectional illustration the construction of a category-related axial pump with the bearing, according to the invention, of a conveying part 4. In its main parts, the axial pump consists of a tube-shaped hollow body 1 and a pump casing 3 that includes a motor stator 7 and axial stabilisers 6. The pump casing 3 lies immediately and rotation-symmetrical on the tube-shaped hollow body 1. In the interior of the tube-shaped hollow body 1, a fluid inlet guide facility 5 and a fluid outlet guide facility 5′ are envisaged, between which the conveying part 4, which is rotated by the motor stator 7, is arranged.
The conveying part 4 has a magnetic bearing where permanent magnetic bearing elements 9 and 9′ are arranged in the motor rotor 8 and permanent magnetic bearing elements 10 and 10′ are arranged in the fluid inlet- and fluid outlet guide facilities 5 and 5′. On the motor rotor 8 of the conveying part 4, a rotor blading 11 is envisaged which is combined with a back-up ring. The magnetically bearing-located conveying part 4 is rotated by way of the motor stator 7 where, by means of the oppositely located permanent magnetic bearing elements 9, 9′ and 10, 10′ in combination with the axial stabilisers 6, the conveying part is kept in a floating state and the back-up ring provides for an additional hydrodynamic bearing-location of the rotating conveying part 4.
FIG. 2 shows in a schematic illustration the motor rotor 8 with the rotor blading 11 in a cut-open tube-shaped hollow body 1. In accordance with the invention, the back-up ring here is arranged in the end zone of the motor stator 8. The fluid to be conveyed is moved between an internal surface 16 of the back-up ring 13 and the motor rotor 8. A running surface 14 of the back-up ring 13 is moved with a minimum clearance to an internal wall 2 of the tube-shaped hollow body 1.
FIG. 3 shows in schematic illustration an arrangement of two back-up rings 13 and 13′ at the ends of a motor rotor 8. The illustration of the tube-shaped hollow body 1 has been left out here.
FIG. 4 shows a further embodiment, according to the invention, of the back-up ring 13. The internal surface 16 of the back-up ring 13 shows a profile 15. As can be seen in the sectional illustration of the back-up ring 13, the profile 15 is executed here in a bearing-surface similar form. In this case also, the illustration of the tube-shaped hollow body has been waived.
In a further embodiment of the invention, as shown in FIG. 5, a back-up ring 13 is arranged without an illustration of the tube-shaped hollow body 1, and this back-up ring covers the entire axial length of the motor rotor 8 with its blading 11. The conveying of the fluid is also effected here between the internal surface 16 of the back-up ring 13 and the motor rotor 8.
In a further embodiment of the invention, a back-up ring is shown in FIG. 6 whose running surface 14 has a raised running line 17 which facilitates a minimum clearance combined with a minimum friction opposite the internal wall 2 of the tube-shaped hollow body 1.
REFERENCED PARTS LIST
  • 1 Tube-shaped hollow body
  • 2 Internal wall
  • 3 Pump casing
  • 4 conveying part
  • 5 Fluid inlet guide facility
  • 5′ Fluid outlet guide facility
  • 6 Axial stabiliser
  • 7 Motor stator
  • 8 Motor rotor
  • 9 Permanent magnetic bearing element
  • 9′ Permanent magnetic bearing element
  • 10 Permanent magnetic bearing element
  • 10′ Permanent magnetic bearing element
  • 11 Rotor blading
  • 12 Fluid guide blading
  • 12′ Fluid guide blading
  • 13 Back-up ring
  • 13′ Back-up ring
  • 14 Running surface
  • 15 Profile
  • 16 Internal surface
  • 17 Running line

Claims (11)

1. A device for axially conveying fluids, comprising: a tube-shaped hollow body having a constant internal diameter for conducting fluid in an essentially axial manner, a motor stator located outside of the hollow body, a conveying part responsive to the motor stator and arranged within the hollow body in axial alignment with the hollow body, the conveying part including a central motor rotor having a continuous outer surface extending between a first end and a second end, blading fixed to the continuous outer surface for conveying fluid within the hollow body upon rotation of the conveying part by the motor stator, at least one hollow ring fixed to a radial outer portion of the blading defining a hydrodynamic radial bearing, the hollow ring defining the hydrodynamic radial bearing having an inner surface that is radially inwardly bowed toward the central rotor continuous outer surface for conditioning the fluid inflow into the rotor blading of the conveying part, an actively stabilizing magnetic axial bearing, and a passive magnetic radial bearing located within the hollow body, the bearings maintaining the conveying part within the tube-shaped hollow body in proximity to the motor stator.
2. A device according to claim 1, further comprising a fluid inlet guide facility and a fluid outlet guide facility, both of the guide facilities being situated in axial alignment within the tube-shaped hollow body and spaced from opposite ends of the conveying part, a permanent magnet being situated in each of the guide facilities adjacent the conveying part.
3. A device according to claim 1 or claim 2, wherein the blading fixed to the continuous outer surface of the central rotor extends from the first end to the second end, and another permanent magnet is situated in each of the ends of the rotor confronting the guide facilities.
4. A device according to claim 1 or claim 2, wherein the at least one ring defining the hydrodynamic radial bearing comprises at least one hollow, rotationally-symmetrical ring joined to the conveying part.
5. A device according to claim 4, wherein the at least one hollow, rotationally-symmetrical ring defining the hydrodynamic radial bearing is joined circumferentially to the blading at the first end.
6. A device according to claim 5, wherein a second hollow, rotationally-symmetrical ring is joined circumferentially to the blading at the second end.
7. A device according to claim 5, wherein the hollow, rotationally-symmetrical ring defining the hydrodynamic radial bearing extends entirely between the first end and the second end.
8. A device according to claim 4, wherein the at least one hollow, rotationally-symmetrical ring defining the hydrodynamic radial bearing has a cylindrical outer surface spaced from an inner surface of the tube-shaped hollow body.
9. A device according to claim 1, wherein the cylindrical outer surface of the hydrodynamic radial bearing includes an outwardly extending circumferential running line facilitating a minimum clearance and a minimum friction with the internal surface of the tube-shaped hollow body.
10. A device according to claim 1 or claim 2 wherein the at least one hollow ring is non-magnetic.
11. A device for axially conveying fluids, comprising: a tube-shaped hollow body having a constant internal diameter for conducting fluid in an essentially axial manner from a first end to a second end, a motor stator located outside of the hollow body, a conveying part responsive to the motor stator and arranged within the hollow body in axial alignment with the hollow body, the conveying part including a central rotor having a continuous outer surface extending between the first end and the second end, blading fixed to the continuous outer surface for conveying fluid within the hollow body upon rotation of the conveying part by the motor stator, a hollow non-magnetic ring fixed to a radial outer portion of the blading at the first end defining a hydrodynamic radial bearing, the hollow non-magnetic ring defining the hydrodynamic radial bearing having an inner surface that is radially inwardly bowed toward the central rotor continuous outer surface for conditioning the fluid inflow into the rotor blading of the conveying part, an actively stabilizing magnetic axial bearing, and a passive magnetic radial bearing, the bearings maintaining the conveying part within the tube-shaped hollow body in proximity to the motor stator.
US10/468,328 2001-02-16 2002-02-18 Device for axially conveying fluids Expired - Fee Related US7467929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/931,053 US7934909B2 (en) 2001-02-16 2007-10-31 Device for axially conveying fluids

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10108810.8 2001-02-16
DE10108810A DE10108810A1 (en) 2001-02-16 2001-02-16 Device for the axial conveyance of liquids
PCT/EP2002/001740 WO2002066837A1 (en) 2001-02-16 2002-02-18 Device for axially conveying fluids

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/931,053 Continuation US7934909B2 (en) 2001-02-16 2007-10-31 Device for axially conveying fluids

Publications (2)

Publication Number Publication Date
US20040115038A1 US20040115038A1 (en) 2004-06-17
US7467929B2 true US7467929B2 (en) 2008-12-23

Family

ID=7675280

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/468,328 Expired - Fee Related US7467929B2 (en) 2001-02-16 2002-02-18 Device for axially conveying fluids
US11/931,053 Expired - Fee Related US7934909B2 (en) 2001-02-16 2007-10-31 Device for axially conveying fluids

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/931,053 Expired - Fee Related US7934909B2 (en) 2001-02-16 2007-10-31 Device for axially conveying fluids

Country Status (10)

Country Link
US (2) US7467929B2 (en)
EP (1) EP1360416B1 (en)
JP (1) JP4200006B2 (en)
CN (1) CN1293310C (en)
AT (1) ATE307295T1 (en)
AU (1) AU2002233346B2 (en)
CA (1) CA2438679C (en)
DE (2) DE10108810A1 (en)
RU (1) RU2326268C2 (en)
WO (1) WO2002066837A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145855A1 (en) * 2005-12-28 2007-06-28 Ming-Hwa Liu Motor device utilizing magnetic force to drive a rotor
US20080292478A1 (en) * 2005-07-01 2008-11-27 Coras Medical Axial Flow Pump with a Spiral-Shaped Vane
US20120082543A1 (en) * 2010-07-30 2012-04-05 Ahsan Choudhuri Axial-Flow Pumps and Related Methods
US8690749B1 (en) 2009-11-02 2014-04-08 Anthony Nunez Wireless compressible heart pump
US8900060B2 (en) 2009-04-29 2014-12-02 Ecp Entwicklungsgesellschaft Mbh Shaft arrangement having a shaft which extends within a fluid-filled casing
US8926492B2 (en) 2011-10-11 2015-01-06 Ecp Entwicklungsgesellschaft Mbh Housing for a functional element
US8932141B2 (en) 2009-10-23 2015-01-13 Ecp Entwicklungsgesellschaft Mbh Flexible shaft arrangement
US8944748B2 (en) 2009-05-05 2015-02-03 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US8979493B2 (en) 2009-03-18 2015-03-17 ECP Entwicklungsgesellscaft mbH Fluid pump
US8998792B2 (en) 2008-12-05 2015-04-07 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US9028216B2 (en) 2009-09-22 2015-05-12 Ecp Entwicklungsgesellschaft Mbh Rotor for an axial flow pump for conveying a fluid
US9067006B2 (en) 2009-06-25 2015-06-30 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US9089670B2 (en) 2009-02-04 2015-07-28 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US9089634B2 (en) 2009-09-22 2015-07-28 Ecp Entwicklungsgesellschaft Mbh Fluid pump having at least one impeller blade and a support device
US9155827B2 (en) 2010-02-17 2015-10-13 Flow Forward Medical, Inc. System and method to increase the overall diameter of veins
US9217442B2 (en) 2010-03-05 2015-12-22 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US9314558B2 (en) 2009-12-23 2016-04-19 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US9328741B2 (en) 2010-05-17 2016-05-03 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US9339596B2 (en) 2009-12-23 2016-05-17 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US9358330B2 (en) 2009-12-23 2016-06-07 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US9416791B2 (en) 2010-01-25 2016-08-16 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US9416783B2 (en) 2009-09-22 2016-08-16 Ecp Entwicklungsgellschaft Mbh Compressible rotor for a fluid pump
US9539380B2 (en) 2011-08-17 2017-01-10 Flow Forward Medical, Inc. System and method to increase the overall diameter of veins and arteries
US9555174B2 (en) 2010-02-17 2017-01-31 Flow Forward Medical, Inc. Blood pump systems and methods
US9603983B2 (en) 2009-10-23 2017-03-28 Ecp Entwicklungsgesellschaft Mbh Catheter pump arrangement and flexible shaft arrangement having a core
US9611743B2 (en) 2010-07-15 2017-04-04 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US9662431B2 (en) 2010-02-17 2017-05-30 Flow Forward Medical, Inc. Blood pump systems and methods
US9771801B2 (en) 2010-07-15 2017-09-26 Ecp Entwicklungsgesellschaft Mbh Rotor for a pump, produced with a first elastic material
WO2017196271A1 (en) 2016-05-13 2017-11-16 Koc Universitesi Internal axial flow blood pump with passive magnets and hydrodynamic radial bearing
US9867916B2 (en) 2010-08-27 2018-01-16 Berlin Heart Gmbh Implantable blood conveying device, manipulating device and coupling device
US9895475B2 (en) 2010-07-15 2018-02-20 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US9974893B2 (en) 2010-06-25 2018-05-22 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US10107299B2 (en) 2009-09-22 2018-10-23 Ecp Entwicklungsgesellschaft Mbh Functional element, in particular fluid pump, having a housing and a conveying element
US10172985B2 (en) 2009-08-06 2019-01-08 Ecp Entwicklungsgesellschaft Mbh Catheter device having a coupling device for a drive device
US10258730B2 (en) 2012-08-17 2019-04-16 Flow Forward Medical, Inc. Blood pump systems and methods
US10391278B2 (en) 2011-03-10 2019-08-27 Ecp Entwicklungsgesellschaft Mbh Push device for the axial insertion of an elongate, flexible body
US10426878B2 (en) 2011-08-17 2019-10-01 Flow Forward Medical, Inc. Centrifugal blood pump systems
US10561773B2 (en) 2011-09-05 2020-02-18 Ecp Entwicklungsgesellschaft Mbh Medical product comprising a functional element for the invasive use in a patient's body
US11534593B2 (en) 2016-04-29 2022-12-27 Artio Medical, Inc. Conduit tips and systems and methods for use

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0103034B1 (en) * 2001-07-16 2009-05-05 bomb.
US7048518B2 (en) 2001-07-16 2006-05-23 Eberle Equipamentos E Processos S.A. Pump
US7052253B2 (en) * 2003-05-19 2006-05-30 Advanced Bionics, Inc. Seal and bearing-free fluid pump incorporating a passively suspended self-positioning impeller
US20040241019A1 (en) 2003-05-28 2004-12-02 Michael Goldowsky Passive non-contacting smart bearing suspension for turbo blood-pumps
DE102004019718A1 (en) * 2004-03-18 2005-10-06 Medos Medizintechnik Ag pump
DE102004019721A1 (en) 2004-03-18 2005-10-06 Medos Medizintechnik Ag pump
DE102005039446B4 (en) 2005-08-18 2009-06-25 Ilias-Medical Gmbh Device for accumulating and depleting substances in a liquid
EP2315883A4 (en) * 2008-06-06 2014-07-09 Bayer Medical Care Inc Apparatus and methods for delivery of fluid injection boluses to patients and handling harmful fluids
WO2009157408A1 (en) 2008-06-23 2009-12-30 テルモ株式会社 Blood pump apparatus
EP2372160B1 (en) 2008-12-08 2014-07-30 Thoratec Corporation Centrifugal pump device
JP5378010B2 (en) 2009-03-05 2013-12-25 ソラテック コーポレーション Centrifugal pump device
CN102341600B (en) 2009-03-06 2014-12-10 胸腔科技有限公司 Centrifugal pump device
US8579789B1 (en) 2009-09-23 2013-11-12 Leviticus Cardio Ltd. Endovascular ventricular assist device, using the mathematical objective and principle of superposition
EP2319552B1 (en) 2009-11-06 2014-01-08 Berlin Heart GmbH Blood pump
EP2333514A1 (en) * 2009-11-30 2011-06-15 Berlin Heart GmbH Device and method for measuring material parameters of a fluid which affect flow mechanics
JP5443197B2 (en) 2010-02-16 2014-03-19 ソラテック コーポレーション Centrifugal pump device
JP5572832B2 (en) 2010-03-26 2014-08-20 ソーラテック コーポレイション Centrifugal blood pump device
JP5681403B2 (en) 2010-07-12 2015-03-11 ソーラテック コーポレイション Centrifugal pump device
JP5577506B2 (en) 2010-09-14 2014-08-27 ソーラテック コーポレイション Centrifugal pump device
WO2012132850A1 (en) 2011-03-28 2012-10-04 Ntn株式会社 Rotation and drive device and centrifugal pump device using same
EP2520317B1 (en) 2011-05-05 2014-07-09 Berlin Heart GmbH Blood pump
US9308304B2 (en) * 2011-05-05 2016-04-12 Berlin Heart Gmbh Blood pump
US10543303B2 (en) 2013-11-08 2020-01-28 Leviticus Cardio Ltd. Batteries for use in implantable medical devices
US9343224B2 (en) 2011-08-19 2016-05-17 Leviticus Cardio Ltd. Coplanar energy transfer
US9793579B2 (en) 2013-11-08 2017-10-17 Leviticus Cardio Ltd. Batteries for use in implantable medical devices
US9642958B2 (en) 2011-08-19 2017-05-09 Leviticus Cardio Ltd. Coplanar wireless energy transfer
US8979728B2 (en) 2011-08-22 2015-03-17 Leviticus Cardio Ltd. Safe energy transfer
JP6083929B2 (en) 2012-01-18 2017-02-22 ソーラテック コーポレイション Centrifugal pump device
US9125976B2 (en) 2012-06-07 2015-09-08 Bayer Medical Care Inc. Shield adapters
US9393441B2 (en) 2012-06-07 2016-07-19 Bayer Healthcare Llc Radiopharmaceutical delivery and tube management system
US9889288B2 (en) 2012-06-07 2018-02-13 Bayer Healthcare Llc Tubing connectors
US8845510B2 (en) 2012-12-11 2014-09-30 Leviticus Cardio Ltd. Flexible galvanic primary and non galvanic secondary coils for wireless coplanar energy transfer (CET)
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9869020B2 (en) 2013-04-10 2018-01-16 Picosun Oy Protecting a target pump interior with an ALD coating
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
DE102013211848A1 (en) * 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pump housing made of at least two different sinterable materials
DE102013211844A1 (en) * 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pump housing made of a magnetic and a non-magnetic material
DE102013211845A1 (en) * 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pump housing with hard inner layer and weldable outer layer
CN104436338B (en) * 2013-09-17 2020-06-19 上海微创医疗器械(集团)有限公司 Implanted self-suspension axial flow blood pump
DE102014004121A1 (en) 2014-03-24 2015-09-24 Heraeus Deutschland GmbH & Co. KG Pump housing made of at least three different sinterable materials
EP2962710A1 (en) 2014-07-03 2016-01-06 Berlin Heart GmbH Method and heart support system for determining an outlet pressure
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
WO2016130846A1 (en) 2015-02-11 2016-08-18 Thoratec Corporation Heart beat identification and pump speed synchronization
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
EP3626277A1 (en) 2015-02-13 2020-03-25 Tc1 Llc Impeller suspension mechanism for heart pump
US10177627B2 (en) 2015-08-06 2019-01-08 Massachusetts Institute Of Technology Homopolar, flux-biased hysteresis bearingless motor
EP3141271A1 (en) 2015-09-11 2017-03-15 Berlin Heart GmbH Blood pump, preferably for assisting a heart
EP3141270A1 (en) * 2015-09-11 2017-03-15 Berlin Heart GmbH Blood pump, preferably for assisting a heart
EP3157145A1 (en) * 2015-10-13 2017-04-19 Berlin Heart GmbH Rotor for a pump and pump and method for assembly
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
CN105688298B (en) * 2016-01-13 2018-02-27 山东大学 New-type inner impeller axial blood pump
CN110621357A (en) * 2017-05-19 2019-12-27 心脏器械股份有限公司 Center rod magnet
US10833570B2 (en) 2017-12-22 2020-11-10 Massachusetts Institute Of Technology Homopolar bearingless slice motors
DE102018201030A1 (en) 2018-01-24 2019-07-25 Kardion Gmbh Magnetic coupling element with magnetic bearing function
DE102018211327A1 (en) 2018-07-10 2020-01-16 Kardion Gmbh Impeller for an implantable vascular support system
CN113217257B (en) * 2021-06-10 2022-10-11 华能澜沧江水电股份有限公司 Method for detecting hydraulic imbalance fault of water turbine

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139832A (en) 1963-07-24 1964-07-07 Alan P Saunders Centrifugal enclosed inert pump
US3608088A (en) 1969-04-17 1971-09-28 Univ Minnesota Implantable blood pump
US4763032A (en) * 1983-11-29 1988-08-09 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Magnetic rotor bearing
US4779614A (en) 1987-04-09 1988-10-25 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
US4898518A (en) 1988-08-31 1990-02-06 Minnesota Mining & Manufacturing Company Shaft driven disposable centrifugal pump
US4944748A (en) 1986-10-12 1990-07-31 Bramm Gunter W Magnetically suspended and rotated rotor
US4957504A (en) * 1988-12-02 1990-09-18 Chardack William M Implantable blood pump
DE3935502A1 (en) 1989-10-25 1991-05-02 Heimes Horst Peter Dr Ing Blood pump pendulum, bearing - uses contactless magnetic drive to produce swivel
US5049134A (en) 1989-05-08 1991-09-17 The Cleveland Clinic Foundation Sealless heart pump
JPH03286775A (en) 1990-04-02 1991-12-17 Terumo Corp Centrifugal pump
US5078741A (en) 1986-10-12 1992-01-07 Life Extenders Corporation Magnetically suspended and rotated rotor
US5112200A (en) 1990-05-29 1992-05-12 Nu-Tech Industries, Inc. Hydrodynamically suspended rotor axial flow blood pump
US5126610A (en) 1988-03-12 1992-06-30 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Axially stabilized magnetic bearing having a permanently magnetized radial bearing
US5147187A (en) 1990-04-16 1992-09-15 Nikkiso Co., Ltd. Blood pump and extracorporeal blood circulating apparatus
JPH0571492A (en) * 1991-09-12 1993-03-23 Power Reactor & Nuclear Fuel Dev Corp Hybrid pump
WO1993007388A1 (en) 1991-10-07 1993-04-15 Kletschka Harold D Fluid pump with magnetically levitated impeller
US5211546A (en) * 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
EP0583781A1 (en) 1992-08-20 1994-02-23 Nikkiso Co., Ltd. Blood pump
WO1994009274A1 (en) 1992-10-19 1994-04-28 The Cleveland Clinic Foundation Sealless rotodynamic pump
US5316440A (en) 1991-05-10 1994-05-31 Terumo Kabushiki Kaisha Blood pump apparatus
WO1994013955A1 (en) 1992-12-16 1994-06-23 Kletschka Harold D Fluid pump with improved magnetically levitated impeller
US5324177A (en) 1989-05-08 1994-06-28 The Cleveland Clinic Foundation Sealless rotodynamic pump with radially offset rotor
JPH06218043A (en) 1993-01-27 1994-08-09 Nikkiso Co Ltd Blood pump
US5360317A (en) 1992-07-30 1994-11-01 Spin Corporation Centrifugal blood pump
WO1995000185A1 (en) 1993-06-25 1995-01-05 Dieter Westphal Centrifugal blood pump
US5393207A (en) 1993-01-21 1995-02-28 Nimbus, Inc. Blood pump with disposable rotor assembly
US5399074A (en) 1992-09-04 1995-03-21 Kyocera Corporation Motor driven sealless blood pump
US5405251A (en) 1992-09-11 1995-04-11 Sipin; Anatole J. Oscillating centrifugal pump
US5507629A (en) 1994-06-17 1996-04-16 Jarvik; Robert Artificial hearts with permanent magnet bearings
US5575630A (en) 1995-08-08 1996-11-19 Kyocera Corporation Blood pump having magnetic attraction
US5588812A (en) 1995-04-19 1996-12-31 Nimbus, Inc. Implantable electric axial-flow blood pump
US5601418A (en) 1993-04-28 1997-02-11 Kyocera Corporation Blood pump
US5686772A (en) 1994-01-19 1997-11-11 Alcatel Cit Magnetic bearing and an assembly comprising a stator portion and a rotor portion suspended via such a bearing
US5695471A (en) 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
WO1997049440A2 (en) 1996-06-26 1997-12-31 University Of Pittsburgh Magnetically suspended miniature fluid pump and method of making the same
US5707218A (en) 1995-04-19 1998-01-13 Nimbus, Inc. Implantable electric axial-flow blood pump with blood cooled bearing
US5725357A (en) 1995-04-03 1998-03-10 Ntn Corporation Magnetically suspended type pump
US5729065A (en) 1993-01-16 1998-03-17 Leybold Aktiengesellschaft Magnetic bearing cell with rotor and stator
WO1998011650A1 (en) 1996-09-10 1998-03-19 Sulzer Electronics Ag Rotary pump and process to operate it
US5947703A (en) 1996-01-31 1999-09-07 Ntn Corporation Centrifugal blood pump assembly
US6080133A (en) 1996-02-20 2000-06-27 Kriton Medical, Inc. Sealless rotary blood pump
US6100618A (en) 1995-04-03 2000-08-08 Sulzer Electronics Ag Rotary machine with an electromagnetic rotary drive
US6135729A (en) * 1993-11-10 2000-10-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Blood pump bearing system
WO2000064031A1 (en) * 1999-04-20 2000-10-26 Forschungszentrum Jülich GmbH Rotor device
WO2000064030A1 (en) 1999-04-20 2000-10-26 Berlin Heart Ag Device for delivering single-phase or multiphase fluids without altering the properties thereof
WO2000064508A1 (en) 1999-04-28 2000-11-02 Kriton Medical, Inc. Rotary blood pump
US20020094281A1 (en) 1996-05-03 2002-07-18 Khanwilkar Pratap S. Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method

Patent Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139832A (en) 1963-07-24 1964-07-07 Alan P Saunders Centrifugal enclosed inert pump
US3608088A (en) 1969-04-17 1971-09-28 Univ Minnesota Implantable blood pump
US5385581A (en) 1982-04-04 1995-01-31 Life Extenders Corporation Magnetically suspended and rotated rotor
US4763032A (en) * 1983-11-29 1988-08-09 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Magnetic rotor bearing
US5326344A (en) 1985-04-04 1994-07-05 Life Extenders Corporation Magnetically suspended and rotated rotor
US5078741A (en) 1986-10-12 1992-01-07 Life Extenders Corporation Magnetically suspended and rotated rotor
US4944748A (en) 1986-10-12 1990-07-31 Bramm Gunter W Magnetically suspended and rotated rotor
US4779614A (en) 1987-04-09 1988-10-25 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
US5126610A (en) 1988-03-12 1992-06-30 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Axially stabilized magnetic bearing having a permanently magnetized radial bearing
US4898518A (en) 1988-08-31 1990-02-06 Minnesota Mining & Manufacturing Company Shaft driven disposable centrifugal pump
US4957504A (en) * 1988-12-02 1990-09-18 Chardack William M Implantable blood pump
US5049134A (en) 1989-05-08 1991-09-17 The Cleveland Clinic Foundation Sealless heart pump
US5370509A (en) 1989-05-08 1994-12-06 The Cleveland Clinic Foundation Sealless rotodynamic pump with fluid bearing
US5324177A (en) 1989-05-08 1994-06-28 The Cleveland Clinic Foundation Sealless rotodynamic pump with radially offset rotor
DE3935502A1 (en) 1989-10-25 1991-05-02 Heimes Horst Peter Dr Ing Blood pump pendulum, bearing - uses contactless magnetic drive to produce swivel
JPH03286775A (en) 1990-04-02 1991-12-17 Terumo Corp Centrifugal pump
US5147187A (en) 1990-04-16 1992-09-15 Nikkiso Co., Ltd. Blood pump and extracorporeal blood circulating apparatus
US5211546A (en) * 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
US5112200A (en) 1990-05-29 1992-05-12 Nu-Tech Industries, Inc. Hydrodynamically suspended rotor axial flow blood pump
US5316440A (en) 1991-05-10 1994-05-31 Terumo Kabushiki Kaisha Blood pump apparatus
JPH0571492A (en) * 1991-09-12 1993-03-23 Power Reactor & Nuclear Fuel Dev Corp Hybrid pump
WO1993007388A1 (en) 1991-10-07 1993-04-15 Kletschka Harold D Fluid pump with magnetically levitated impeller
US5360317A (en) 1992-07-30 1994-11-01 Spin Corporation Centrifugal blood pump
EP0583781A1 (en) 1992-08-20 1994-02-23 Nikkiso Co., Ltd. Blood pump
US5399074A (en) 1992-09-04 1995-03-21 Kyocera Corporation Motor driven sealless blood pump
US5405251A (en) 1992-09-11 1995-04-11 Sipin; Anatole J. Oscillating centrifugal pump
WO1994009274A1 (en) 1992-10-19 1994-04-28 The Cleveland Clinic Foundation Sealless rotodynamic pump
WO1994013955A1 (en) 1992-12-16 1994-06-23 Kletschka Harold D Fluid pump with improved magnetically levitated impeller
US5729065A (en) 1993-01-16 1998-03-17 Leybold Aktiengesellschaft Magnetic bearing cell with rotor and stator
US5393207A (en) 1993-01-21 1995-02-28 Nimbus, Inc. Blood pump with disposable rotor assembly
JPH06218043A (en) 1993-01-27 1994-08-09 Nikkiso Co Ltd Blood pump
US5601418A (en) 1993-04-28 1997-02-11 Kyocera Corporation Blood pump
US5803720A (en) 1993-04-28 1998-09-08 Kyocera Corporation Blood pump
WO1995000185A1 (en) 1993-06-25 1995-01-05 Dieter Westphal Centrifugal blood pump
US5863179A (en) 1993-06-25 1999-01-26 Baxter International Inc. Centrifugal blood pump
US5746575A (en) 1993-06-25 1998-05-05 Baxter International, Inc. Blood pump as centrifugal pump
US6135729A (en) * 1993-11-10 2000-10-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Blood pump bearing system
US5686772A (en) 1994-01-19 1997-11-11 Alcatel Cit Magnetic bearing and an assembly comprising a stator portion and a rotor portion suspended via such a bearing
US5507629A (en) 1994-06-17 1996-04-16 Jarvik; Robert Artificial hearts with permanent magnet bearings
US6100618A (en) 1995-04-03 2000-08-08 Sulzer Electronics Ag Rotary machine with an electromagnetic rotary drive
US5725357A (en) 1995-04-03 1998-03-10 Ntn Corporation Magnetically suspended type pump
US5588812A (en) 1995-04-19 1996-12-31 Nimbus, Inc. Implantable electric axial-flow blood pump
US5951263A (en) 1995-04-19 1999-09-14 Nimbus, Inc. Implantable electric axial-flow blood pump with blood-cooled bearing
US5707218A (en) 1995-04-19 1998-01-13 Nimbus, Inc. Implantable electric axial-flow blood pump with blood cooled bearing
US5683231A (en) 1995-08-08 1997-11-04 Kyocera Corporation Blood pump having magnetic attraction force adjuster
US5575630A (en) 1995-08-08 1996-11-19 Kyocera Corporation Blood pump having magnetic attraction
US5947703A (en) 1996-01-31 1999-09-07 Ntn Corporation Centrifugal blood pump assembly
US6368083B1 (en) 1996-02-20 2002-04-09 Kriton Medical, Inc. Sealless rotary blood pump
US6080133A (en) 1996-02-20 2000-06-27 Kriton Medical, Inc. Sealless rotary blood pump
US5695471A (en) 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
US20040234397A1 (en) 1996-02-20 2004-11-25 Heartware, Inc. (A Delaware Corporation) Sealless rotary blood pump
US6688861B2 (en) 1996-02-20 2004-02-10 Heartware, Inc. Sealless rotary blood pump
US20020102169A1 (en) 1996-02-20 2002-08-01 Kriton Medical, Inc. Sealless rotary blood pump
US6234998B1 (en) 1996-02-20 2001-05-22 Kriton Medical, Inc. Sealless rotary blood pump
US20020094281A1 (en) 1996-05-03 2002-07-18 Khanwilkar Pratap S. Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
WO1997049440A2 (en) 1996-06-26 1997-12-31 University Of Pittsburgh Magnetically suspended miniature fluid pump and method of making the same
WO1998011650A1 (en) 1996-09-10 1998-03-19 Sulzer Electronics Ag Rotary pump and process to operate it
US6053705A (en) * 1996-09-10 2000-04-25 Sulzer Electronics Ag Rotary pump and process to operate it
US6368075B1 (en) * 1999-04-20 2002-04-09 Forschungszentrum Julich Gmbh Pump with a magnetically supported rotor
WO2000064030A1 (en) 1999-04-20 2000-10-26 Berlin Heart Ag Device for delivering single-phase or multiphase fluids without altering the properties thereof
WO2000064031A1 (en) * 1999-04-20 2000-10-26 Forschungszentrum Jülich GmbH Rotor device
US6234772B1 (en) 1999-04-28 2001-05-22 Kriton Medical, Inc. Rotary blood pump
WO2000064508A1 (en) 1999-04-28 2000-11-02 Kriton Medical, Inc. Rotary blood pump

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080292478A1 (en) * 2005-07-01 2008-11-27 Coras Medical Axial Flow Pump with a Spiral-Shaped Vane
US8366411B2 (en) * 2005-07-01 2013-02-05 Doan Baykut Axial flow pump with a spiral-shaped vane
US20070145855A1 (en) * 2005-12-28 2007-06-28 Ming-Hwa Liu Motor device utilizing magnetic force to drive a rotor
US8998792B2 (en) 2008-12-05 2015-04-07 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US11852155B2 (en) 2008-12-05 2023-12-26 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US10495101B2 (en) 2008-12-05 2019-12-03 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US9964115B2 (en) 2008-12-05 2018-05-08 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US10662967B2 (en) 2008-12-05 2020-05-26 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US9404505B2 (en) 2008-12-05 2016-08-02 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US9981110B2 (en) 2009-02-04 2018-05-29 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US11229774B2 (en) 2009-02-04 2022-01-25 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US9089670B2 (en) 2009-02-04 2015-07-28 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US9649475B2 (en) 2009-02-04 2017-05-16 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US10406323B2 (en) 2009-02-04 2019-09-10 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US8979493B2 (en) 2009-03-18 2015-03-17 ECP Entwicklungsgesellscaft mbH Fluid pump
US8900060B2 (en) 2009-04-29 2014-12-02 Ecp Entwicklungsgesellschaft Mbh Shaft arrangement having a shaft which extends within a fluid-filled casing
US11786718B2 (en) 2009-05-05 2023-10-17 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US9512839B2 (en) 2009-05-05 2016-12-06 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US10265448B2 (en) 2009-05-05 2019-04-23 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US8944748B2 (en) 2009-05-05 2015-02-03 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US11278711B2 (en) 2009-05-05 2022-03-22 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US11577066B2 (en) 2009-05-05 2023-02-14 Ecp Entwicklundgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US11268521B2 (en) 2009-06-25 2022-03-08 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US10330101B2 (en) 2009-06-25 2019-06-25 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US9067006B2 (en) 2009-06-25 2015-06-30 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US11116960B2 (en) 2009-08-06 2021-09-14 Ecp Entwicklungsgesellschaft Mbh Catheter device having a coupling device for a drive device
US10172985B2 (en) 2009-08-06 2019-01-08 Ecp Entwicklungsgesellschaft Mbh Catheter device having a coupling device for a drive device
US11421701B2 (en) 2009-09-22 2022-08-23 Ecp Entwicklungsgesellschaft Mbh Compressible rotor for a fluid pump
US9089634B2 (en) 2009-09-22 2015-07-28 Ecp Entwicklungsgesellschaft Mbh Fluid pump having at least one impeller blade and a support device
US10208763B2 (en) 2009-09-22 2019-02-19 Ecp Entwicklungsgesellschaft Mbh Fluid pump having at least one impeller blade and a support device
US11592028B2 (en) 2009-09-22 2023-02-28 Ecp Entwicklungsgesellschaft Mbh Fluid pump having at least one impeller blade and a support device
US10107299B2 (en) 2009-09-22 2018-10-23 Ecp Entwicklungsgesellschaft Mbh Functional element, in particular fluid pump, having a housing and a conveying element
US11773861B2 (en) 2009-09-22 2023-10-03 Ecp Entwicklungsgesellschaft Mbh Compressible rotor for a fluid pump
US9416783B2 (en) 2009-09-22 2016-08-16 Ecp Entwicklungsgellschaft Mbh Compressible rotor for a fluid pump
US9028216B2 (en) 2009-09-22 2015-05-12 Ecp Entwicklungsgesellschaft Mbh Rotor for an axial flow pump for conveying a fluid
US9603983B2 (en) 2009-10-23 2017-03-28 Ecp Entwicklungsgesellschaft Mbh Catheter pump arrangement and flexible shaft arrangement having a core
US8932141B2 (en) 2009-10-23 2015-01-13 Ecp Entwicklungsgesellschaft Mbh Flexible shaft arrangement
US10792406B2 (en) 2009-10-23 2020-10-06 Ecp Entwicklungsgesellschaft Mbh Catheter pump arrangement and flexible shaft arrangement having a core
US8690749B1 (en) 2009-11-02 2014-04-08 Anthony Nunez Wireless compressible heart pump
US11266824B2 (en) 2009-12-23 2022-03-08 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US11434922B2 (en) 2009-12-23 2022-09-06 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US9903384B2 (en) 2009-12-23 2018-02-27 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US9314558B2 (en) 2009-12-23 2016-04-19 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US9339596B2 (en) 2009-12-23 2016-05-17 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US10806838B2 (en) 2009-12-23 2020-10-20 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US9795727B2 (en) 2009-12-23 2017-10-24 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US10561772B2 (en) 2009-12-23 2020-02-18 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US11486400B2 (en) 2009-12-23 2022-11-01 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US11781557B2 (en) 2009-12-23 2023-10-10 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US11549517B2 (en) 2009-12-23 2023-01-10 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US11773863B2 (en) 2009-12-23 2023-10-03 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US11815097B2 (en) 2009-12-23 2023-11-14 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US10557475B2 (en) 2009-12-23 2020-02-11 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US9358330B2 (en) 2009-12-23 2016-06-07 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US11517739B2 (en) 2010-01-25 2022-12-06 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US10316853B2 (en) 2010-01-25 2019-06-11 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US9416791B2 (en) 2010-01-25 2016-08-16 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US10293089B2 (en) 2010-02-17 2019-05-21 Flow Forward Medical, Inc. System and method to increase the overall diameter of veins
US9662431B2 (en) 2010-02-17 2017-05-30 Flow Forward Medical, Inc. Blood pump systems and methods
US9155827B2 (en) 2010-02-17 2015-10-13 Flow Forward Medical, Inc. System and method to increase the overall diameter of veins
US10537674B2 (en) 2010-02-17 2020-01-21 Flow Forward Medical, Inc. System and method to increase the overall diameter of veins
US11724018B2 (en) 2010-02-17 2023-08-15 Artio Medical, Inc. System and method to increase the overall diameter of veins
US9555174B2 (en) 2010-02-17 2017-01-31 Flow Forward Medical, Inc. Blood pump systems and methods
US10376629B2 (en) 2010-02-17 2019-08-13 Flow Forward Medical, Inc. Methods to increase the overall diameter of donating veins and arteries
US9907891B2 (en) 2010-03-05 2018-03-06 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US9217442B2 (en) 2010-03-05 2015-12-22 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US10413646B2 (en) 2010-03-05 2019-09-17 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US11168705B2 (en) 2010-05-17 2021-11-09 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US9759237B2 (en) 2010-05-17 2017-09-12 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US10221866B2 (en) 2010-05-17 2019-03-05 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US9328741B2 (en) 2010-05-17 2016-05-03 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US10874781B2 (en) 2010-06-25 2020-12-29 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US10898625B2 (en) 2010-06-25 2021-01-26 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US9974893B2 (en) 2010-06-25 2018-05-22 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US11844939B2 (en) 2010-07-15 2023-12-19 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US11913467B2 (en) 2010-07-15 2024-02-27 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US10589012B2 (en) 2010-07-15 2020-03-17 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US11702938B2 (en) 2010-07-15 2023-07-18 Ecp Entwicklungsgesellschaft Mbh Rotor for a pump, produced with a first elastic material
US9611743B2 (en) 2010-07-15 2017-04-04 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US9895475B2 (en) 2010-07-15 2018-02-20 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US10584589B2 (en) 2010-07-15 2020-03-10 Ecp Entwicklungsgellschaft Mbh Rotor for a pump having helical expandable blades
US10920596B2 (en) 2010-07-15 2021-02-16 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US9771801B2 (en) 2010-07-15 2017-09-26 Ecp Entwicklungsgesellschaft Mbh Rotor for a pump, produced with a first elastic material
US10066627B2 (en) * 2010-07-30 2018-09-04 Board Of Regents, The University Of Texas Systems Axial-flow pumps and related methods
US20120082543A1 (en) * 2010-07-30 2012-04-05 Ahsan Choudhuri Axial-Flow Pumps and Related Methods
US20160138596A1 (en) * 2010-07-30 2016-05-19 Board Of Regents, The University Of Texas System Axial-flow pumps and related methods
US9909588B2 (en) * 2010-07-30 2018-03-06 The Board Of Regents Of The University Of Texas System Axial-flow pumps and related methods
US9867916B2 (en) 2010-08-27 2018-01-16 Berlin Heart Gmbh Implantable blood conveying device, manipulating device and coupling device
US11083885B2 (en) 2010-08-27 2021-08-10 Berlin Heart Gmbh Implantable blood conveying device, manipulating device and coupling device
US10391278B2 (en) 2011-03-10 2019-08-27 Ecp Entwicklungsgesellschaft Mbh Push device for the axial insertion of an elongate, flexible body
US11235125B2 (en) 2011-03-10 2022-02-01 Ecp Entwicklungsgesellschaft Mbh Push device for the axial insertion of an elongate, flexible body
US9539380B2 (en) 2011-08-17 2017-01-10 Flow Forward Medical, Inc. System and method to increase the overall diameter of veins and arteries
US11400275B2 (en) 2011-08-17 2022-08-02 Artio Medical, Inc. Blood pump system for causing persistent increase in the overall diameter of a target vessel
US10426878B2 (en) 2011-08-17 2019-10-01 Flow Forward Medical, Inc. Centrifugal blood pump systems
US11666746B2 (en) 2011-09-05 2023-06-06 Ecp Entwicklungsgesellschaft Mbh Medical product comprising a functional element for the invasive use in a patient's body
US10561773B2 (en) 2011-09-05 2020-02-18 Ecp Entwicklungsgesellschaft Mbh Medical product comprising a functional element for the invasive use in a patient's body
US8926492B2 (en) 2011-10-11 2015-01-06 Ecp Entwicklungsgesellschaft Mbh Housing for a functional element
US11160914B2 (en) 2012-08-17 2021-11-02 Artio Medical, Inc. Blood pump systems and methods
US10258730B2 (en) 2012-08-17 2019-04-16 Flow Forward Medical, Inc. Blood pump systems and methods
US11534593B2 (en) 2016-04-29 2022-12-27 Artio Medical, Inc. Conduit tips and systems and methods for use
WO2017196271A1 (en) 2016-05-13 2017-11-16 Koc Universitesi Internal axial flow blood pump with passive magnets and hydrodynamic radial bearing

Also Published As

Publication number Publication date
EP1360416A1 (en) 2003-11-12
WO2002066837A1 (en) 2002-08-29
US7934909B2 (en) 2011-05-03
US20080091265A1 (en) 2008-04-17
DE10108810A1 (en) 2002-08-29
ATE307295T1 (en) 2005-11-15
US20040115038A1 (en) 2004-06-17
CN1293310C (en) 2007-01-03
AU2002233346B2 (en) 2005-07-14
JP2004522894A (en) 2004-07-29
CA2438679A1 (en) 2002-08-29
RU2003124638A (en) 2005-02-27
CN1491323A (en) 2004-04-21
EP1360416B1 (en) 2005-10-19
RU2326268C2 (en) 2008-06-10
JP4200006B2 (en) 2008-12-24
DE50204600D1 (en) 2006-03-02
CA2438679C (en) 2007-10-30

Similar Documents

Publication Publication Date Title
US7467929B2 (en) Device for axially conveying fluids
US10702641B2 (en) Ventricular assist devices having a hollow rotor and methods of use
US8894387B2 (en) Hydrodynamic chamfer thrust bearing
US7575423B2 (en) Sealless rotary blood pump
US6234772B1 (en) Rotary blood pump
US5112200A (en) Hydrodynamically suspended rotor axial flow blood pump
US6254359B1 (en) Method for providing a jewel bearing for supporting a pump rotor shaft
JP4889492B2 (en) Impeller
US6135729A (en) Blood pump bearing system
US6716157B2 (en) Magnetic suspension blood pump
US10926012B2 (en) Blood pump, preferably for assisting a heart
US20140309481A1 (en) Rotary pump with levitated impeller having thrust bearing for improved startup
KR20000010735A (en) Rotary centrifugal pump device having mixing magnetic suspension function and pumping method thereby
JPH08504490A (en) Sealless rotodynamic pump
KR20000010736A (en) Electromagnetically suspended and rotated centrifugal pumping device
GB2451161A (en) Cardiac pump
JP2009018192A (en) Sealless blood pump with thrombosis prevention means
JP2003501155A (en) Magnetic levitation supported blood pump
JP2022502174A (en) Sealed micro pump
KR20000052056A (en) Sealless blood pump with means for avoiding thrombus formation
AU2017430315B2 (en) Blood pump device
US6436027B1 (en) Hydrodynamic blood bearing
Aber Blood Pump Bearing System

Legal Events

Date Code Title Description
AS Assignment

Owner name: BERLIN HEART AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NUESSER, PETER;MULLER, JOHANNES;PETERS, HANS-ERHARD;AND OTHERS;REEL/FRAME:014287/0712;SIGNING DATES FROM 20040105 TO 20040111

AS Assignment

Owner name: BERLIN HEART AG, GERMANY

Free format text: RECORD TO CORRECT SECOND AND FOURTH ASSIGNOR NAMES AND TO CORRECT WRONG SERIAL NUMBER 10468238 ON AN ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED AT REEL 104287 FRAME 0712;ASSIGNORS:NUESSER, PETER;MUELLER, JOHANNES;PETERS, HANS-ERHARD;AND OTHERS;REEL/FRAME:016204/0165;SIGNING DATES FROM 20040228 TO 20040308

AS Assignment

Owner name: BERLIN HEART GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:BERLIN HEART AG;REEL/FRAME:019419/0132

Effective date: 20060512

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20201223