Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6946000 B2
Publication typeGrant
Application numberUS 10/332,798
Publication date20 Sep 2005
Filing date20 Dec 2001
Priority date22 Dec 2000
Fee statusPaid
Also published asDE60105639D1, DE60105639T2, EP1343424A1, EP1343424B1, US20040024458, WO2002051326A1
Publication number10332798, 332798, US 6946000 B2, US 6946000B2, US-B2-6946000, US6946000 B2, US6946000B2
InventorsJacques Senegas, Denis Pasquet, Régis Le Couedic
Original AssigneeSpine Next
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Intervertebral implant with deformable wedge
US 6946000 B2
Abstract
The invention relates to an intervertebral implant including a wedge which is inserted between two spinous processes and has two opposite grooves in which said spinous processes engage, which grooves have substantially parallel axes, and each of which grooves is defined by two flanges. The wedge has at least one central opening between said two grooves and said central opening passes completely through said wedge along an axis Ac substantially parallel to the axes Ag1 and Ag2 of said grooves, which renders said wedge elastically deformable.
Images(3)
Previous page
Next page
Claims(16)
1. An intervertebral implant including a wedge which is adapted to be inserted between two spinout processes, wherein said wedge has two opposite grooves each having an axis and each being defined by two flanges, the axes of said two grooves being substantially parallel to each other and for engagement of said spinous processes therein, said wedge has at least one central opening between said two grooves, said central opening passes completely through said wedge along an axis substantially parallel to the axes of said grooves, and the volume of said central opening is from 10% to 30% of the total volume of said wedge, which renders said wedge elastically deformable.
2. An intervertebral implant according to claim 1, wherein said wedge has two superposed openings between said two grooves, each opening having an axis, and the axes of said openings and the axes of said two grooves are substantially parallel to each other.
3. An intervertebral implant according to claim 2, including a single fixing band whose first end is connected to said wedge by said fixing means and whose second end is connected to said wedge by said self-locking fixing means formed in one of its lateral walls, and wherein said wedge further has, in the lateral wall opposite said lateral wall having the self-locking fixing means, guide means in which said fixing band can slide so that said band is able to surround said spinous processes and said wedge.
4. An intervertebral implant including a wedge which is adapted to be inserted between two spinous processes, wherein said wedge has two opposite grooves each having an axis and each being defined by two flanges, the axes of said two grooves being substantially parallel to each other and for engagement of said spinous processes therein, said wedge has at least one central opening between said two grooves, said central opening passes completely through said wedge along an axis substantially parallel to the axes of said grooves, and the volume of said central opening is from 10% to 30% of the total volume of said wedge, which renders said wedge elastically deformable; and
wherein said wedge is made of polyether ether ketone.
5. An intervertebral implant according to claim 4, wherein said opening has a substantially rectangular parallelepiped shape with two parallel faces perpendicular to an axis intersecting the axes of said grooves at right angles.
6. An intervertebral implant according to claim 4, wherein said wedge has two superposed openings between said two grooves, each opening having an axis, and the axes of said openings and the axes of said two grooves are substantially parallel to each other, the intervertebral implant further including a single fixing band whose first end is connected to said wedge by said fixing means and whose second end is connected to said wedge by said self-locking fixing means formed in one of its lateral walls, and wherein said wedge further has, in the lateral wall opposite said lateral wall having the self-locking fixing means, guide means in which said fixing band can slide so that said band is able to surround said spinous processes and said wedge.
7. An intervertebral implant according to claim 4, including a fixing band adapted to retain said wedge between said processes,
said wedge further having:
fixing means for connecting said band to said wedge, and
self-locking fixing means in its lateral walls adapted to receive said fixing band in order to immobilize it relative to said wedge,
wherein said fixing means include at least one lateral bore in one of said flanges opening into one of said grooves, and
wherein said self-locking fixing means include at least two separate blind lateral bores having an intersection and a longitudinal bore passing through the flange opposite the flange having a lateral bore and opening into said intersection, and said longitudinal bore and said lateral bores are adapted to receive said fixing band to form a loop.
8. An intervertebral implant including a wedge which is adapted to be inserted between two spinous processes, wherein said wedge has two opposite grooves each having an axis and each being defined by two flanges, the axes of said two grooves being substantially parallel to each other and for engagement of said spinous processes therein, said wedge has at least one central opening between said two grooves, said central opening passes completely through said wedge along an axis substantially parallel to the axes of said grooves, and the volume of said central opening is from 10%to 30% of the total volume of said wedge, which renders said wedge elastically deformable;
wherein said opening has a substantially rectangular parallelepiped shape with two parallel faces perpendicular to an axis intersecting the axes of said grooves at right angles.
9. An intervertebral implant according to claim 8, wherein said wedge has two superposed openings between said two grooves, each opening having an axis, and the axes of said openings and the axes of said two grooves are substantially parallel to each other, the intervertebral implant further including a single fixing band whose first end is connected to said wedge by said fixing means and whose second end is connected to said wedge by said self-locking fixing means formed in one of its lateral walls, and wherein said wedge further has, in the lateral wall opposite said lateral wall having the self-locking fixing means, guide means in which said fixing band can slide so that said band is able to surround said spinous processes and said wedge.
10. An intervertebral implant according to claim 8, including a fixing band adapted to retain said wedge between said processes,
said wedge further having:
fixing means for connecting said band to said wedge, and
self-locking fixing means is its lateral walls adapted to receive said fixing band is order to immobilize it relative to said wedge,
wherein said fixing means include at least one lateral bore in one of said flanges opening into one of said grooves, and
wherein said self-locking fixing means include at least two separate blind lateral bores having an intersection and a longitudinal bore passing through the flange opposite the flange having a lateral bore and opening into said intersection, and said longitudinal bore and said lateral bores are adapted to receive said fixing band to form a loop.
11. An intervertebral implant including a wedge which is adapted to be inserted between two spinous processes, and a fixing band adapted to retain said wedge between said processes,
wherein said wedge has two opposite grooves each having as axis and each being defined by two flanges, the axes of said two grooves being substantially parallel to each other and for engagement of said spinous processes therein, said wedge has at least one central opening between said two grooves, said central opening passes completely through said wedge along an axis substantially parallel to the axes of said grooves, and the volume of said central opening is from 10% to 30% of the total volume of said wedge, which renders said wedge elastically deformable;
said wedge further having:
fixing means for connecting said band to said wedge; and
self-locking fixing means in its lateral walls adapted to receive said fixing band in order to immobilize it relative to said wedge.
12. An intervertebral implant according to claim 4, wherein said fixing means include at least one lateral bore in one of said flanges opening into one of said grooves.
13. An intervertebral implant according to claim 11, wherein said opening has a substantially rectangular parallelepiped shape with two parallel faces perpendicular to an axis intersecting the axes of said grooves at right angles.
14. An intervertebral implant according to claim 11, wherein said wedge has two superposed openings between said two grooves, each opening having an axis, and the axes of said openings and the axes of said two groves are substantially parallel to each other, the intervertebral implant further including a single fixing band whose first end is connected to said wedge by said fixing means and whose second end is connected to said wedge by said self-locking fixing means formed in one of its lateral walls, and wherein said wedge further has, in the lateral wall opposite said lateral wall having the self-locking fixing means, guide means in which said fixing band can slide so that said band is able to surround said spinous processes and said wedge.
15. An intervertebral implant according to claim 8,
wherein said fixing means include at least one lateral bore in one of said flanges opening into one of said grooves, and
wherein said self-locking fixing means include at least two separate blind lateral bores having an intersection and a longitudinal bore passing through the flange opposite the flange having a lateral bore and opening into said intersection, and said longitudinal bore and said lateral bore are adapted to receive said fixing band to form a loop.
16. An intervertebral implant according to claim 8, wherein said wedge is made of polyether ether ketone.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable

FIELD OF THE INVENTION

The present invention relates to an intervertebral implant including a wedge adapted to be inserted between two spinous processes, said wedge having two opposite grooves each defined by two flanges, the sea of acid two grooves being substantially parallel to each other and said spinous processes engaging in said two groove. The present invention also relates to a method of manufacturing as intervertebral implant, in particular the above defined type.

BACKGROUND OF THE INVENTION

Intervertebral implants including a wedge which is inserted between the spinous processes which extend the posterior part of two consecutive vertebrae and which limits movement towards each other of the two vertebrae are well known in the art.

Degenerative pathologies of the intervertebral disc cause the vertebrae to move towards each other, possibly in the extent of coming into contact, which can pinch the roots of nerves routed laterally between the vertebrae. To remedy this, a wedge is fixed between the spinous processes of the two consecutive vertebrae that can come into contact on movement of the spine, using appropriate fixing means. The wedge therefore blocks the movement of the vertebrae towards each other, in particular when the spine it extended.

The wedges are made from a rigid biocompatible alloy, usually one based on titanium, and cannot be deformed by the forces that are applied to them, unlike the normal intervertebral disc, which is elastically deformable within certain limits. Thus although the wedges prevent contact between two vertebrae, they constitute an incomplete replacement for the intervertebral disc, which allows relative movement of the vertebrae.

To obtain wedges that are elastically deformable, wedges have been envisaged having two opposite rigid material members forming grooves in which the spinous processes of the two vertebrae engage, the two members forming the grooves being connected together by two elastically deformable leaf spring portions. Thus the wedge as a whole is elastically deformable, which gives it properties adapted to reproduce the normal physiological conditions of relative movement of the vertebrae.

However, the above type of wedge is relatively complicated to manufacture and the materials of the leaf springs are usually not biocompatible. What is more, the springs must be relatively large to achieve the necessary elasticity, and then take up a great deal of room.

Accordingly, wedges have been envisaged that are easier to produce, being made in one piece from a rigid material obtained by polymerization and having a modulus of elasticity much lower than the modulus of elasticity of titanium. However, the modulus of elasticity of the material must be sufficient for the grooves of said wedges to be able to immobilize the spinous processes correctly, and for the reason, although they are more deformable than titanium alloy wedges, they are not sufficiently deformable to fulfill their function.

OBJECTS AND SUMMARY OF THE INVENTION

According to a first aspect, the invention aims to propose an intervertebral implant including a deformable wedge made from a rigid material obtained by polymerization.

According to do invention, the above object is achieved by virtue of the fact that the wedge has a central opening between said two grooves, said central opening passes completely through said wedge along an axis substantially parallel to said axes of said grooves, and the volume of said central opening is from 10% to 30% of the total volume of said wedge, which renders said wedge elastically deformable.

Thus one feature of the invention is the provision of a central opening in a relatively undeformable solid wedge to obtain walls mobile relative to each other so that the wedge can deform elastically without being made excessively fragile. Because of the void between said walls, the walls can deform elastically under load at the base of each groove, in particular when the spinous processes move towards each other.

The wedge therefore constitutes an obstacle to movement the vertebrae towards each other. However, the forces exerted by the wedge on the spinous processes are proportional to the relative movements of the two vertebrae, since the wedge is elastically deformable, which reproduces normal or virtually normal physiological conditions of relative movement of the vertebrae.

In a first particular embodiment of the invention the opening has a substantially rectangular parallelepiped shape with two parallel faces perpendicular to an axis intersecting the axes of said grooves at right angles.

Thus the bottom of the two grooves is constituted by a wall and the walls of the two grooves are substantially parallel to each other and perpendicular to the main direction of movement towards each other of the two vertebrae. The wedge therefore has a large amplitude of deformation, in particular in compression.

In a second particular embodiment the invention the wedge has two superposed openings between said two grooves and the axes of said openings and the axes of said two grooves are substantially parallel to each other.

In this particular embodiment, the two openings produce three partitions adapted to be deformed elastically by a load normal to said partitions.

In a preferred embodiment of the invention the implant further includes a fixing band adapted to retain said wedge between said processes and said wedge has fixing means for connecting said band to said wedge and self-locking fixing means in its lateral walls adopted to receive said fixing band in order to immobilize it relative to said wedge.

The fixing band is therefore pre-mounted on the wedge, before the surgical procedure, and the surgeon can insert the wedge between the spinous processes and then fasten it to the processes by pulling on the free end of the band, which wedges in the self-locking fixing means.

The fixing means are advantageously formed in said wedge by at least one lateral bore in one of said flanges opening into one of said grooves. Accordingly, the end of the band opposite said free end is connected to said wedge, forming a loop passing through the lateral bore. The band is clipped to itself. Of course, the lateral bore is only for fixing the end of the band, and is separate from said central opening, which is exclusively for making the wedge deformable.

The self-locking fixing means in said wedge are advantageously formed by at least two separate blind lateral bores having an intersection and a longitudinal bore passing through the flange opposite the flange having a lateral bore and opening into said intersection, and said longitudinal bore and said lateral bores are advantageously adapted to receive said fixing band to form a loop.

Accordingly the free end of the fixing band is first passed though the first longitudinal bore into said intersection, exits the wedge through one of the two bores, is reinserted so that it enters said intersection again, and then exits in the opposite direction via said longitudinal bore, so that it rubs against the band portion that has already been inserted. This immobilizes the band relative to the wedge.

A preferred embodiment of the implant of the invention includes a single fixing band whose first end is connected to said wedge by said fixing means and whose second end is connected to said wedge by the self-locking fixing means formed in one of its lateral walls, and said wedge has, in the lateral wall opposite said lateral wall having the self-locking fixing means, guide means in which said fixing band can slide so that said band is able to surround said spinous processes and said wedge.

Accordingly the first end of the band is connected to the wedge at the level of the lateral bore and then surrounds the spinous process which is inserted into the first groove and rejoins the lateral wall having the guide means. The band then surrounds the spinous process which is inserted in the second groove and returns to the self-locking fixing means so that it is immobilized relative to the wedge.

It is particularly advantageous if the wedge is molded in one piece from a material obtained by polymerization. This means that wedges according to the invention can be produced at advantageous cost compared to wedges obtained by machining.

In one particular embodiment of the invention the wedge is made of polyether ether ketone.

In a second aspect, the invention provides a method of manufacturing an intervertebral implant, in particular of the above defined type, which method simplifies manufacture. This result is achieved due to the fact that the wedge of the implant is made by injection molding a polymer.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the invention will emerge on reading the following description of particular embodiments of the invention, which are provided by way of non-limiting example; the description is given with reference to the accompanying drawings, in which:

FIG. 1 is a diagrammatic perspective view of a first particular embodiment of a wedge inserted between the spinous processes of two consecutive vertebrae;

FIG. 2 is a diagrammatic view in vertical section of the wedge, shown in FIG. 1; and

FIG. 3 is a diagrammatic perspective view of a second particular embodiment of a wedge inserted between the spinous processes of two consecutive vertebrae.

DETAILED DESCRIPTION OF THE INVENTION

A first embodiment of the intervertebral implant according to the invention is described first with reference to FIG. 1.

FIG. 1 shows two consecutive vertebrae V1 and V2 extended in their posterior part by respective spinous processes A1 and A2. A wedge 10 having a top groove 12 and a bottom groove 14 is inserted between the spinous processes A1 and A2 so that to processes A1 engages in the groove 12 and the process A2 engages in the groove 14. The top groove 12 and bottom groove 14 have respective and substantially parallel axes Ag1 and Ag2.

The wedge 10 has a central opening 16 between the two grooves 12 and 14; the opening is of substantially rectangular parallelepiped shape and passes completely through said wedge 10. For practical reasons concerning the manufacture of said wedge 10, the corners 18 of the opening are rounded throughout the thickness of the wedge.

The central opening has an axis Ac substantially parallel to the axes Ag1 and Ag2 of the top groove 12 and the bottom groove 14.

The central opening 16 has a top face 20 parallel to a facing bottom face 22 and said faces 20, 22 are substantial perpendicular to an axis Ap intersecting the axes Ag1 and Ag2 of said grooves 12 and 14 and the axis Ac of the central opening at right angles.

FIG. 2 to a rear view of the wedge 10, showing the axis Ap and the top face 20 and the bottom face 22 perpendicular thereto.

The wedge 10 is molded from a polymer material. However it could be machined from a block of polymer material. Wedges according to the invention are made from biocompatible materials.

The wedge 10 according to the invention is advantageously made of polyether ether ketone. This material has an intrinsically low coefficient of deformation under load and therefore a high modulus of elasticity, of the order of 3.5 GPs. However, the wedge 10 made from the above material deforms more readily because a central opening is formed in it.

The central opening 16 represents from 10 to 30% of the volume of the wedge. The width of the opening advantageously represents 38% of the total width of the wedge 10 and its height advantageously represents 40% of the total height of the wedge 10.

If the opening 16 represents 30% of the volume of the wedge 10, it deforms readily when a force is applied to it without its mechanical strength being compromised. On the other hand, if the opening 16 represents 10% of the volume of the wedge 10, it deforms relatively little, but with a greater amplitude then a wedge with no such opening.

It is therefore possible to adjust the capacity for deformation of the wedge 10 as a function of the specific applications for which it is intended by forming an opening of appropriate size.

As shown in FIG. 2, the central opening 16 divides the wedge 10 into two portions 24 and 26 joined by a top wall 28 and a bottoms wall 30. The top wall 28 and the bottom wall 30 respective constitute the bottom of the groove 12 and the bottom of the groove 14. Clearly the walls 28, 30 are thin relative to the portion of the wedge 10 between the two grooves 12 and 14 if the wedge 10 has no opening 16 and can be flexible relative to said portions 24 and 26.

Accordingly, as the spinous processes A1 and A2 move towards each other when the spine is extended, they tend aid to compress the two walls 28 and 30 and move them towards each other. Obviously, because of the opening and despite the high modulus of elasticity of the material, the two walls 28 and 30 are able to move elastically towards each other and therefore to allow a greater amplitude of movement of the two processes A1 and A2 relative to each other.

The compressive mechanical force exerted on the wedge causes deformation of the opening such that the two walls 28 and 30 move towards each other. However, the spine can also deform in other directions, as described in more detail in the remainder of the description.

In order to describe other deformations of the wedge 10, the method of fixing the wedge 10 to the spinous processes A1 and A2 in the manner shown is FIGS. 1 and 2 is described next.

This particular embodiment of the intervertebral implant according to the invention includes a single fixing band 32 for fastening the wedge 10 to the spinous processes A1 and A2.

The first end 34 of the band 32 is connected to the first flange 36 of the top groove 12 by means of a lateral bore 38 which is formed in the flange 36 and opens into the top groove 12. Accordingly, the first end 34 of the band 32 is inserted in the bore 38 to form a loop around the top portion of the flange 36 and is clipped to itself. This connects the band 32 firmly to the wedge 10 so that the band 32 can be tensioned without damaging the connection.

The band 32 surrounds the spinous processes A1 and A2 and the wedge 10 so that the processes are retained in the groove 12 and 14. To fix the band 32 and guide it on the wedge 10, the latter has self-locking fixing means 40 in one lateral wall and a longitudinal bore 41 and guide means 42 in the opposite lateral wall.

The self-locking fixing means 40 take the form of a first lateral bore 44 and a second lateral bore 46 which join at an intersection 47 within the thickness of the wedge. A longitudinal bore 41 passes through the flange of the groove and opens into the said intersection 47.

The wedge portion 48 between the two lateral bores 44 and 46 has a projecting transverse edge 50 adapted to constitute friction means for immobilizing the band 32.

Accordingly, the band 32, whose first end 34 is connected to the flange 36, bears on the top part of the spinous processes A1 and then on the and of the second flange 52 of the top groove 12, and is inserted in the guide means 42 on the lateral wall of the wedge 10. The band 32 then bears on the spinous process A2 and on the ends of the two flanges of the bottom groove 14. The free end 54 of the band 32 is inserted in the longitudinal bore 41 said crosses said intersection 47 to exit the wedge through the second bore 46; the band is then inserted in the first bore 44, crosses said intersection 47 again and exits through the longitudinal bore 41. Accordingly, the band 32 when tensioned is immobilized to translation by friction against itself in the longitudinal bore 41, The projecting edge 50 of the wedge portion 48 also immobilizes the band 32.

Thus the wedge 10 can be fastened to the spinous processes A1 and A2 by tensioning the band 32, which is immobilized relative to the wedge 10 in the self-locking means 40.

As a result, relative movement of the spinous processes A1 and A2 respectively trapped to the grooves 12 said 14 causes elastic deformation of the wedge 10, regardless of the direction of movement.

A second embodiment of an intervertebral implant in which the wedge has two openings is described next with reference to FIG. 3.

FIG. 3 shows a wedge 60 between two vertebrae V1 and V2 which are extended by respective spinous processes A1 and A2 which engage in a top groove 62 and a bottom groove 64 of the wedge 60. The wedge is connected to the spinous processes by a fixing band in a similar manner to the wedge 10 shown in FIGS. 1 and 2.

The wedge 60 has two superposed opening 66 and 68 with respective axes Ac1 and Ac2 substantially parallel to each other and to the axes Ag1 and Ag2 of said grooves 62 and 64. The superposed openings 66 and 68 have a shape including two parallel superposed faces and two facing curved walls.

Thus the wedge 60 is divided into two parts joined together by three partitions 70, 72 and 74 adapted to deform when a force is exerted on the wedge 60. Obviously, the capacities for deformation of the wedge 60 are less than that of the wedge 10 shown in FIGS. 1 and 2 because the two parts of the wedge 10 are connected by only two partitions. This is true only if the partitions 70, 72, 74 and 28, 30 are substantially the same size.

In this second particular embodiment of the invention, the self-locking means are also produced by forming two bores in the thickness of the lateral wall of the wedge 60 which meet at an intersection, and a longitudinal bore in the flange that opens into said intersection.

The previous two embodiments provide intervertebral implants including wedges with mechanical properties, in particular deformation properties, matching the reaction forces required to be exerted on the spinous processes when the latter move relative to each other.

The invention is not limited to the previous embodiments, but encompasses wedges having at least one opening in their central portion, regardless of the shape of said opening. In particular the opening can be circular.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5496318 *18 Aug 19935 Mar 1996Advanced Spine Fixation Systems, Inc.Interspinous segmental spine fixation device
US5836948 *2 Jan 199717 Nov 1998Saint Francis Medical Technologies, LlcSpine distraction implant and method
US6602293 *1 Nov 19965 Aug 2003The Johns Hopkins UniversityPolymeric composite orthopedic implant
FR2722088A1 Title not available
FR2775183A1 Title not available
WO1997009000A16 Sep 199513 Mar 1997Robert FriggBone plate
WO1999040866A127 Jan 199919 Aug 1999Erick CloixInterspinous stabiliser to be fixed to spinous processes of two vertebrae
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7377942 *6 Aug 200327 May 2008Warsaw Orthopedic, Inc.Posterior elements motion restoring device
US7481828 *22 Jul 200327 Jan 2009Abbott Spine, Inc.Vertebral fixing system
US7500991 *31 Dec 200210 Mar 2009Depuy Acromed, Inc.Banana cage
US7520887 *17 Feb 200421 Apr 2009Warsaw Orthopedic, Inc.Interspinous device for impeding the movements of two successive vertebrae, and method for making a pad designed for it
US758531621 May 20048 Sep 2009Warsaw Orthopedic, Inc.Interspinous spacer
US75885922 Oct 200715 Sep 2009Kyphon SarlSystem and method for immobilizing adjacent spinous processes
US76115263 Aug 20053 Nov 2009K Spine, Inc.Spinous process reinforcement device and method
US763537727 Apr 200722 Dec 2009Kyphon SarlSpine distraction implant and method
US766218729 Jun 200716 Feb 2010Kyphon SarlInterspinous process implants and methods of use
US769113027 Jan 20066 Apr 2010Warsaw Orthopedic, Inc.Spinal implants including a sensor and methods of use
US77087653 Aug 20054 May 2010K Spine, Inc.Spine stabilization device and method
US772723329 Apr 20051 Jun 2010Warsaw Orthopedic, Inc.Spinous process stabilization devices and methods
US774925327 Apr 20076 Jul 2010Kyphon SŔRLSpine distraction implant and method
US77539385 Aug 200513 Jul 2010Synthes Usa, LlcApparatus for treating spinal stenosis
US778070912 Apr 200524 Aug 2010Warsaw Orthopedic, Inc.Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US778989815 Apr 20057 Sep 2010Warsaw Orthopedic, Inc.Transverse process/laminar spacer
US779905819 Apr 200721 Sep 2010Zimmer GmbhInterspinous spacer
US783771127 Jan 200623 Nov 2010Warsaw Orthopedic, Inc.Artificial spinous process for the sacrum and methods of use
US784618528 Apr 20067 Dec 2010Warsaw Orthopedic, Inc.Expandable interspinous process implant and method of installing same
US78625908 Apr 20054 Jan 2011Warsaw Orthopedic, Inc.Interspinous process spacer
US786259110 Nov 20054 Jan 2011Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7918875 *2 Dec 20055 Apr 2011Lanx, Inc.Interspinous distraction devices and associated methods of insertion
US795965423 Jan 200914 Jun 2011Zimmer Spine S.A.S.Vertebral fixing system
US798524631 Mar 200626 Jul 2011Warsaw Orthopedic, Inc.Methods and instruments for delivering interspinous process spacers
US799820829 Mar 200716 Aug 2011Kyphon SarlPercutaneous spinal implants and methods
US80028056 Aug 200923 Aug 2011Zimmer SpineIntervertebral implant
US8021394 *9 May 200720 Sep 2011Life Spine, Inc.Stenotic device
US802954930 Oct 20074 Oct 2011Kyphon SarlPercutaneous spinal implants and methods
US80295505 Oct 20094 Oct 2011Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US804333530 Oct 200725 Oct 2011Kyphon SarlPercutaneous spinal implants and methods
US804333621 Jan 201025 Oct 2011Warsaw Orthopedic, Inc.Posterior vertebral support assembly
US8048120 *31 May 20071 Nov 2011Medicine Lodge, Inc.System and method for segmentally modular spinal plating
US806674231 Mar 200529 Nov 2011Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US80707794 Jun 20086 Dec 2011K2M, Inc.Percutaneous interspinous process device and method
US807559330 Jan 200813 Dec 2011Spinal Simplicity LlcInterspinous implants and methods for implanting same
US809245924 May 200710 Jan 2012Kyphon SarlPercutaneous spinal implants and methods
US809253526 Jun 200710 Jan 2012Kyphon SarlInterspinous process implants and methods of use
US809701918 Oct 200717 Jan 2012Kyphon SarlSystems and methods for in situ assembly of an interspinous process distraction implant
US811413516 Jan 200914 Feb 2012Kyphon SarlAdjustable surgical cables and methods for treating spinal stenosis
US812863523 Oct 20076 Mar 2012Zimmer Spine S.A.S.Bone fixation tensioning tool and method
US812866114 Sep 20096 Mar 2012Kyphon SarlInterspinous process distraction system and method with positionable wing and method
US81424797 Aug 200927 Mar 2012Spinal Simplicity LlcInterspinous process implants having deployable engagement arms
US816294620 Sep 200624 Apr 2012Zimmer Spine S.A.S.Instrument for tensioning a flexible tie
US817284318 Sep 20068 May 2012Zimmer Spine S.A.S.Vertebral fixing system
US821627629 Jul 200910 Jul 2012Warsaw Orthopedic, Inc.Interspinous spacer
US82162777 Dec 200910 Jul 2012Kyphon SarlSpine distraction implant and method
US821627822 Dec 200910 Jul 2012Synthes Usa, LlcExpandable interspinous process spacer
US821627918 Feb 201010 Jul 2012Warsaw Orthopedic, Inc.Spinal implant kits with multiple interchangeable modules
US822146331 May 200717 Jul 2012Kyphon SarlInterspinous process implants and methods of use
US822146424 Sep 200817 Jul 2012Zimmer Spine, S.A.S.Device for clamping two portions of a braid and an intervertebral implant comprising a spacer, a braid, and such a clamping device
US82214658 Jun 201017 Jul 2012Warsaw Orthopedic, Inc.Multi-chamber expandable interspinous process spacer
US82413302 Nov 200714 Aug 2012Lanx, Inc.Spinous process implants and associated methods
US825202921 Feb 200828 Aug 2012Zimmer GmbhExpandable interspinous process spacer with lateral support and method for implantation
US826269714 Jan 201011 Sep 2012X-Spine Systems, Inc.Modular interspinous fixation system and method
US827310725 Oct 200725 Sep 2012Kyphon SarlInterspinous process implant having a thread-shaped wing and method of implantation
US8323318 *20 Mar 20094 Dec 2012Zimmer Spine S.A.S.Flexible tie fastening system
US832331911 Aug 20104 Dec 2012Zimmer Spine S.A.S.Vertebral fixing system
US834897627 Aug 20078 Jan 2013Kyphon SarlSpinous-process implants and methods of using the same
US834897730 Jun 20108 Jan 2013Warsaw Orthopedic, Inc.Artificial spinous process for the sacrum and methods of use
US834897828 Apr 20068 Jan 2013Warsaw Orthopedic, Inc.Interosteotic implant
US84039609 May 201226 Mar 2013Blackstone Medical, Inc.Distance-keeping inter-process implant
US840396118 Apr 200826 Mar 2013Simpirica Spine, Inc.Methods and devices for controlled flexion restriction of spinal segments
US84039648 Aug 201126 Mar 2013Simpirica Spine, Inc.Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment
US84255609 Mar 201123 Apr 2013Farzad MassoudiSpinal implant device with fixation plates and lag screws and method of implanting
US845465929 Jun 20074 Jun 2013Kyphon SarlInterspinous process implants and methods of use
US849668923 Feb 201130 Jul 2013Farzad MassoudiSpinal implant device with fusion cage and fixation plates and method of implanting
US852960610 Mar 201010 Sep 2013Simpirica Spine, Inc.Surgical tether apparatus and methods of use
US85626501 Mar 201122 Oct 2013Warsaw Orthopedic, Inc.Percutaneous spinous process fusion plate assembly and method
US856265310 Mar 201022 Oct 2013Simpirica Spine, Inc.Surgical tether apparatus and methods of use
US856846027 Apr 200729 Oct 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US86521749 Jul 201218 Feb 2014DePuy Synthes Products, LLCExpandable interspinous process spacer
US20110106163 *23 Jan 20075 May 2011Hochschuler Stephen HInterlaminar Stabilizing System
US20120323276 *18 Jun 201220 Dec 2012Bryan OkamotoExpandable interspinous device
US20130158604 *6 Feb 201320 Jun 2013Bryan OkamotoExpandable Interspinous Device
USRE44417 *1 Mar 20116 Aug 2013Depuy Spine, Inc.Banana cage
WO2011047157A114 Oct 201021 Apr 2011Latitude Holdings, LlcSpinous process fixation plate and minimally invasive method for placement
Classifications
U.S. Classification623/17.11, 606/249, 606/910, 606/248
International ClassificationA61B17/58, A61L27/00, A61B17/70, A61F2/44
Cooperative ClassificationY10S606/91, A61B17/7062
European ClassificationA61B17/70P
Legal Events
DateCodeEventDescription
20 Feb 2013FPAYFee payment
Year of fee payment: 8
18 Feb 2010ASAssignment
Owner name: ZIMMER SPINE,FRANCE
Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT SPINE;US-ASSIGNMENT DATABASE UPDATED:20100218;REEL/FRAME:23950/732
Effective date: 20090220
Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT SPINE;REEL/FRAME:023950/0732
30 Oct 2009ASAssignment
Owner name: ZIMMER SPINE, FRANCE
Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT SPINE;REEL/FRAME:023452/0467
Effective date: 20090220
13 Mar 2009ASAssignment
Owner name: ZIMMER SPINE AUSTIN, INC., TEXAS
Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT SPINE INC.;REEL/FRAME:022390/0379
Effective date: 20081215
Owner name: ZIMMER SPINE AUSTIN, INC.,TEXAS
Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT SPINE INC.;US-ASSIGNMENT DATABASE UPDATED:20100223;REEL/FRAME:22390/379
Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT SPINE INC.;US-ASSIGNMENT DATABASE UPDATED:20100304;REEL/FRAME:22390/379
Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT SPINE INC.;US-ASSIGNMENT DATABASE UPDATED:20100427;REEL/FRAME:22390/379
30 Sep 2008FPAYFee payment
Year of fee payment: 4
22 May 2006ASAssignment
Owner name: ABBOTT SPINE, FRANCE
Free format text: CHANGE OF NAME;ASSIGNOR:SPINE NEXT;REEL/FRAME:017649/0371
Effective date: 20050317
25 Feb 2003ASAssignment
Owner name: SPINE NEXT, FRANCE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SENEGAS, JACQUES;PASQUET, DENIS;LE COUEDIC, REGIS;REEL/FRAME:013777/0465
Effective date: 20030124