US6527115B2 - Dispensation and disposal container for medical devices - Google Patents

Dispensation and disposal container for medical devices Download PDF

Info

Publication number
US6527115B2
US6527115B2 US09/775,908 US77590801A US6527115B2 US 6527115 B2 US6527115 B2 US 6527115B2 US 77590801 A US77590801 A US 77590801A US 6527115 B2 US6527115 B2 US 6527115B2
Authority
US
United States
Prior art keywords
container
locking mechanism
cylindrical section
probe
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US09/775,908
Other versions
US20020117412A1 (en
Inventor
Robert A. Rabiner
Bradley A. Hare
James H. Loper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cybersonics Inc
Original Assignee
Omnisonics Medical Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/775,908 priority Critical patent/US6527115B2/en
Application filed by Omnisonics Medical Technologies Inc filed Critical Omnisonics Medical Technologies Inc
Assigned to OMNISONICS MEDICAL TECHNOLOGIES, INC. reassignment OMNISONICS MEDICAL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARE, BRADLEY A., RABINER, ROBERT
Priority to PCT/US2002/001885 priority patent/WO2002062238A1/en
Assigned to OMNISONICS MEDICAL TECHNOLOGIES, INC. reassignment OMNISONICS MEDICAL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOPER, JAMES
Publication of US20020117412A1 publication Critical patent/US20020117412A1/en
Priority to US10/351,665 priority patent/US20030132131A1/en
Publication of US6527115B2 publication Critical patent/US6527115B2/en
Application granted granted Critical
Assigned to EMIGRANT BANK, N.A. reassignment EMIGRANT BANK, N.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OMNISONICS MEDICAL TECHNOLOGIES, INC.
Assigned to CYBERSONICS, INC. reassignment CYBERSONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMIGRANT BANK, N.A.
Assigned to EMIGRANT BANK, N.A. reassignment EMIGRANT BANK, N.A. SECURITY AGREEMENT Assignors: CYBERSONICS, INC.
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D43/00Lids or covers for rigid or semi-rigid containers
    • B65D43/14Non-removable lids or covers
    • B65D43/20Non-removable lids or covers linearly slidable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • A61B50/36Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments for collecting or disposing of used articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B2050/005Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers with a lid or cover
    • A61B2050/0067Types of closures or fasteners
    • A61B2050/0081Pins cooperating with slots of a slideable locking bar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3205Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
    • A61M5/321Means for protection against accidental injuries by used needles
    • A61M5/3213Caps placed axially onto the needle, e.g. equipped with finger protection guards

Definitions

  • the present invention relates generally to a container for storage, dispensation, transport and disposal of a medical device. More particularly, this invention is directed to a container for storing a sterile ultrasonic surgical probe that allows its dispensation for use, and for its safe storage and disposal after use, thereby protecting the user from the hazards of accidental needle sticks and possible contamination from small-diameter probes.
  • the container of the present invention also provides a mechanism for restricting access to the probe to prevent its reuse, and a method for its safe attachment to and detachment from an ultrasonic medical device.
  • Such devices may contain contaminating bacterial and viral species that remain viable as the device is transported from the site through a waste hauling system to a decontamination facility. Additionally, a number of currently used disposal devices, especially sharps, do not affirmatively lock when closed, resulting in their being accidentally or intentionally reopened thereby exposing medical and waste disposal personnel to potentially dangerous biological contaminants.
  • Sharps containers in the art typically include a valved opening, and a closure mechanism (see, e.g., model 5400 series available from Becton Dickinson and Company of Rutherford, N.J.) or non-valved openings (see, e.g., U.S. Pat. No. 4,569,554).
  • the containers typically can be filled with multiple sharp objects.
  • Other sharps containers (Model 8600, Becton Dickinson and Company of Rutherford, N.J.) include a mechanism to disable a sharp object being disposed of (e.g., a needle), but also invites filling with multiple sharp objects.
  • a great majority of sharp containers disclosed in the art for example in U.S.
  • Pat. Nos. 4,666,538, 4,804,090, 4,842,138 and 5,281,391, 5,630,506) are limited to the disposal of needles, more particularly syringe needles, and are designed to be disposal containers capable of accepting and containing several units, after which the container is sealed and transported for disposal. Since these containers are designed for disposal only, they offer only a limited advantage, since they do not obviate the need for the healthcare professional to manipulate the needle manually to detach it from the syringe prior to discarding them in such containers. The aforementioned risks of accidental injury are, therefore, not precluded.
  • Ultrasonic surgical probes especially those operating in transverse mode described in applicants co-pending provisional applications U.S. Ser. Nos. 60/178,901 and 60/225,060, have a plurality of regions of maximum energy referred to as nodes, along the length of the probe. This results in a plurality of regions of high stress, resulting in potential for degradation of structural integrity of the probe. Repetitive use of the probe can potentially worsen this problem, with inadequate means by the user to determine the residual life of the probe. Stress fractures may develop, creating a greater tendency for the probe to shatter with the potential of foreign bodies being induced into the patient, or resulting in microscopic irregularities in the surface that may render the probe difficult to decontaminate between uses.
  • ultrasonic probes should be treated as single use, single patient contact medical devices, and after each use be considered medical waste.
  • a probe sheath is also used in conjunction with the probe, the small sheath lumen will incorporate blood and cellular debris during use, which due to their small diameter, render them extremely difficult to clean. For safety purposes they should be discarded.
  • Medical waste disposal devices also do not normally allow visual inspection and counting of enclosed sharps or other devices after the devices is closed, thereby precluding an accounting means to ensure the number and type of medical waste included in such sealed containers.
  • current medical-waste disposal methods typically require large treatment systems involving complex operation that are non-portable and highly expensive. Such systems include autoclaving, incineration and bulk chemical treatment of the medical device waste. It is therefore, desirable to provide an improved portable disinfecting and disposal device for such medical device waste.
  • the device containment segment of the container may be rigid, or flexible with rigid ends to accommodate devices that are flexible.
  • a container assembly which is utilized for both storing and dispensing new sharps such as a small diameter ultrasonic probes and accompanying accessories, if any, such as sheath assemblies, balloon catheters, etc. prior to use, and receiving such contaminated or used devices for storage, transport and disposal.
  • the preferred embodiment comprises a container for an ultrasonic probe which prevents the probe's reuse and provides a method for dispensing and disposing an ultrasonic probe.
  • the container is designed for containing a probe or probe assembly, a means for attaching the probe to an ultrasonic medical device, a means for simultaneously containing the used probe while detaching the probe from the ultrasonic medical device, without requiring direct handling of the probe.
  • the container comprises a hollow cylindrical tube having two collar assemblies (herein referred to as “Collar”) at the open ends that function as lids.
  • the inner diameter and length of the cylinder with an inner dimension defining a space for the probe and its accompanying accessories, if any.
  • the collars are designed to be adaptable to cylinders with varied lengths and diameters to accommodate probes and probe assemblies of different dimensions.
  • Each collar comprises of two segments, both of which have apertures centrally located, having diameters that correspond to the dimension of the probe or probe assembly for which the container is adapted.
  • the said apertures in the collars permit access to the cylindrical segment of the container.
  • the collars are also designed such that they are securely affixed to the container body in a manner that provides evidence of tampering when removed.
  • a complement of tamper resistant mechanisms including locking assemblies in the collars, are provided that render opening of the container relatively restricted.
  • the locking mechanism within the collars are configured to function in a manner complementary with respect to each other, thereby enabling the collar at the dispensing end to permit a one-time dispensation of a new, unused device, whereas the collar at the disposal end permits receipt of used or contaminated device.
  • the said locking mechanisms in the collar assemblies prevent the reuse of the container by substantially preventing the removal or re-dispensation of a previously disposed device in the associated container.
  • the collar at the disposal end includes an area for placement of a used or contaminated device, wherein a person may then deposit the article into the container body without directly touching the device being disposed of. Additionally, the collar assembly prevents further handling of the used devices by medical personnel subsequent to disposal.
  • the collar assemblies have a larger diameter than the cylindrical tube section of the container.
  • the interior surface of the collar assemblies are arcuate or conical shaped, tapering from a larger diameter at the end distal to the cylindrical section to a smaller diameter approaching the aperture, thereby providing a means of guiding or directing the used probe into the device, and also providing clearance for attaching or detaching the probe to or from the transducer.
  • an extended rigid or semi-rigid structure located around the collar provides a means of shielding the hand of the operator that holds the container while the probe is inserted.
  • the first locking mechanism can be, for example a plate that slides along a groove in a direction perpendicular to the longitudinal axis of the container.
  • the locking mechanism can be a rod or an extrusion.
  • the locking means is adapted for engaging the medical article or device stored or disposed within the container.
  • the locking mechanism is capable of engaging the proximal end an ultrasonic probe at one or more grooves or threads located at proximal end of said probe or at a depression, aperture, or a raised surface designed on the probe at its proximal end.
  • articulation of the locking means by the operator disengages the locking mechanism from the probe, thereby allowing its release from within the container for dispensation.
  • articulation of the locking mechanism by the operator engages the probe thereby securing the probe irreversibly within the container, thereby preventing further access.
  • the locking mechanisms are capable of securing the probe immovably within the container, thereby providing a mechanism for communicating torsional forces applied to the probe, for example, when the probe is affixed to or detached from an ultrasonic medical device.
  • the attachment the probe and its detachment from the medical device can be accomplished for example, by screwing the probe on to, or off of the device, by rotating the device handle after affixing it to the proximal end of the probe.
  • the locking mechanism can be threaded, or a ratcheting means, or other such ways of constraining the probe in a unidirectional manner while torsional forces are applied to the container to effectuate attachment or detachment of the probe from the ultrasonic medical device.
  • the container of the invention comprises a single open end having a plurality of locking assemblies, thereby enabling the dispensation and disposal of a medical device from the same end of said container.
  • the container of the invention comprises of a single open end having a single locking assembly, thereby enabling its utilization exclusively for safe disposal of used medical devices and articles.
  • the container of the present invention is provided together with an ultrasonic probe contained therein in the form of a kit.
  • container of the present invention is provided together with a probe comprising accessories such as a sheath assembly, balloon catheter, and the like contained therein, as required for specific surgical procedures.
  • the container within the kit with the probe and accessories, if any contained therein further comprises packaging, whereby said container and its contents are pre-sterilized, and sealed against environmental contaminants.
  • the container comprising the probe and accessories are provided in a manner complying with regulations governing packaging, storage, handling, transport and disposal of sharp medical devices.
  • the container provides a means of attaching the ultrasonic probe together with its accessories to an ultrasonic medical device, and further provides a means for detaching them from the said device, without necessitating direct manipulation or handling of the probe (and its accessories if any), and a means for removing the said probe and assembly from the ultrasonic medical device after use.
  • container having a probe contained within provided a sterile kit comprises single use locking mechanisms located at the dispensing and disposal ends of said container, wherein said locking mechanism at the dispensing end enables attachment of the probe to an ultrasonic medical device solely through the said container, thereby allowing its dispensation from within the container, and wherein the said locking mechanism at the disposal end allows its disposal into the container in a manner preventing re-insertion of the probe through the dispensing end and re-extracting the used probe from the disposal end.
  • FIG. 1 shows the container for single use medical articles comprising a dispensing end and a disposal end.
  • FIG. 2 shows a medical device comprising a disposable ultrasonic probe that is dispensed from and disposed into the container.
  • FIG. 3 shows the ultrasonic probe of the surgical device inserted into the container for disposal.
  • FIG. 4 shows cross-sectional view of the collar assembly comprising the locking mechanisms enabling, irreversible dispensation and disposal respectively of a medical article.
  • FIG. 5 depicts the container with a cross-sectional view of the collar assemblies at the dispensation and disposal ends showing the articulation handles for engaging the locking mechanism within the collars.
  • FIG. 6 shows a sectional view the locking mechanisms within the collar at the disposal end ( 6 a and 6 b ).
  • FIG. 7 shows a sectional view the locking mechanisms within the collar at the dispensing end ( 7 a and 7 b ).
  • Container refers to an apparatus used for safe dispensation, storage and disposal of a medical article or device, in most particularly, sharp medical devices.
  • distal and proximal when pertaining to description of a probe or probe assembly are relative to the operator, i.e. distal is away from the operator and indicates the forward end of the device, whereas proximal is nearest to the operator and relates to the rear end of the device.
  • distal is the segment of the collar that is furthest from the cylindrical section
  • proximal refers to the segment that nearest to said cylindrical section.
  • Disposing end and “Disposal end” as used herein refers to the ends of the container that allow dispensation and disposal respectively of a medical article or medical device.
  • Probe refers to a device capable of being adapted to an ultrasonic generator means, which is capable of propagating the energy emitted by the ultrasonic generator means along its length, and is capable of acoustic impedance resulting in transformation of ultrasonic energy into mechanical energy.
  • “Sharps” as used herein refers to an elongated medical instrument or medical device with a small diameter, for example, less than 2 mm.
  • a “Sharps Container” as used herein is a container capable of retaining a sharp medical device or the sharp portion thereof, such that a handler is not exposed to the sharp portion of the device.
  • Sheath assembly refers to a device for covering, encasing, or shielding in whole or in part, a probe or portion thereof connected to an ultrasonic generation means.
  • FIG. 1 shows a “sharps” container 30 of the present invention for dispensing and disposal of an ultrasonic probe.
  • Container 30 comprises a cylindrical section 32 capable of accommodating probe 18 (shown partially) terminally connected to collars 36 and 38 that form the dispensing and disposal ends respectively of container 30 .
  • Articulation levers 43 enable engagement of the locking mechanisms (not shown) within collars.
  • FIG. 2 shows a transverse mode ultrasonic medical device 1 comprising a disposable elongated probe 6 designed for a one time use, which is coupled to a device handle 66 that contains a source or generation means for the production of ultrasonic energy (shown in phantom in the figure as 66 ) that is transmitted to said probe to enable its function.
  • the probe diameter decreases at defined intervals 14 , 18 , 20 , and 22 .
  • probe interval 18 has at least one groove 45 at the end proximal to probe handle 66 .
  • Groove 45 is capable of being engaged by the locking mechanisms at the dispensing and disposal ends of the container 30 , so as to constrain the probe within the cylindrical volume of said container, thereby enabling its dispensation and disposal without requiring direct handling of the probe itself.
  • FIG. 3 shows a cross-sectional view of collar 34 comprising of two segments, a first segment 42 proximal to the cylindrical section (not shown) and a second segment 44 distal to the tube. Between the first and second segments is a locking mechanism capable of being engaged by the user.
  • the locking means can be engaged by a lever, not shown in this view.
  • the lever extends laterally to the outside of the collar assembly, allowing articulation by the user.
  • the lever engages the locking mechanism, causing it to slide laterally within a groove in segment 42 of the collar.
  • the locking mechanism comprises a locking assembly, such as for example, a plate 48 having a keyhole shaped slot 50 , both shown partially, and a pin-hole (not shown) capable of sliding over a pin 46 seated on a spring 52 that exerts a unidirectional force on the pin.
  • plate 48 Upon engaging the locking mechanism, for example with a lever, plate 48 is capable of sliding over pin 46 so as to align pin-hole in the plate with the pin, thereby rendering it capable of receiving the pin.
  • the pin is forced into the pinhole by spring so as to “lock” the plate, rendering it incapable of further lateral movement since it is constrained within the collar assembly.
  • the locking assembly once engaged by the pin, is therefore prevented from retrograde articulation.
  • the keyhole shaped slot 50 in the plates at the dispensing and disposal ends of the container are aligned inversely with respect to one another, so as to permit dispensation and disposal of the probe respectively, upon activation of the locking mechanisms at the respective ends, by engaging or disengaging groove 45 in the probe.
  • FIG. 4 shows, a used ultrasonic probe 18 (shown partially) that is still connected to probe handle 66 inserted into the disposal end of the container through collar 38 prior to its disposal within cylindrical section 32 .
  • Disposal of the probe is accomplished by depressing lever (not shown) that articulates locking assembly 48 within the collar assembly 34 , causing said locking assembly to move to a irreversibly to a “locked” position wherein pin 46 is aligned with a slot in the locking assembly 48 , further causing pin 46 to be forced into the slot by the unidirectional force exerted by a spring (not shown) on said pin.
  • assembly 48 engages a groove or set of grooves (not shown) in probe 18 located at the end proximal to probe handle 66 , thereby causing said probe to be restrained irreversibly within container 31 .
  • the probe is subsequently disengaged from the handle 66 by turning the latter in a counter clockwise direction, thereby releasing the probe into container for safe disposal.
  • FIG. 5 shows container 31 and a cross-sectional view of collars 34 illustrating the locking assembly plates 48 connected to articulation handles 43 at disposal end 36 and dispensing end 38 of the container.
  • the locking mechanism of container 31 at disposal end 36 is adapted to engage probe 18 in a specific manner to enable its disposal as shown, such as for example, by engaging one or more set of grooves in the probe proximal to the probe handle 66 .
  • Engaging the locking mechanism by depressing lever 43 causes plate 48 to slide laterally within the space defined by collar assembly over pin (not shown in this view), forcing the pin to align with and engage a pinhole in plate 48 , thereby “locking” the plate.
  • Rendering the plate “locked” further causes said locking mechanism to engage probe 18 in an irreversible manner, thereby preventing its re-dispensation.
  • the probe Upon disengagement of the probe from device handle (not shown in figure), the probe is deposited within container for disposal. The irreversible engagement of the locking mechanism, therefore, prevents access to the probe disposed within the container.
  • FIG. 6 shows sectional views of collar segment 42 at the disposal end 36 comprising of a central aperture 36 capable of communicating with the cylindrical section of container (not shown in this view).
  • a locking assembly comprising plate 48 having a key hole shaped slot 50 is capable of being articulated by lever 43 , thereby causing it to slide laterally over aperture 36 .
  • Plate 48 further comprises pinhole 54 capable of aligning with pin 46 seated on a spring (not shown in this view) within collar segment 42 such that it exerts a unidirectional force on pin 46 , thereby causing the pin to remain in intimate contact with plate 48 .
  • the circular section of the key hole slot 50 in plate 48 is aligned with aperture 36 , thereby enabling insertion of a used probe for disposal.
  • Articulation of the locking mechanism by depressing lever 43 causes plate 48 to slide laterally over aperture 36 , thereby causing the circular segment of keyhole shaped slot 50 to be displaced from aperture 36 .
  • the lateral movement of plate 48 further causes pinhole 54 to aligned with pin 46 such that pin 46 irreversibly enters pinhole 54 by action of the spring, thereby causing plate 48 to remain in the “locked” position, wherein the rectangular segment of keyhole slot 50 engages a groove or set of grooves on the probe at the end proximal to the device handle.
  • the irreversible action of the locking mechanism therefore, precludes subsequent retraction of the probe after its disposal into the container and activation said locking mechanism.
  • FIG. 7 shows sectional views of collar segment 42 at the dispensing end.
  • the arrangement of components and articulation of the locking mechanism is identical to that at the disposal end illustrated in FIG. 6 as described in the foregoing section, with the exception of the orientation of key hole slot 50 , which is inverse to that at the disposal end (FIG. 6 ).
  • the inverse orientation of slot 50 causes an unused probe to be restrained in a non-retractable manner when the plate 48 of locking mechanism is in a non-locked position (FIG. 6 a ), and allows retraction of the said probe for dispensation upon moving plate 48 to a locked position by articulation of lever 43 .
  • Dispensation of the probe is accomplished by attachment of the probe handle of a medical device to the proximal end of the probe, following which engaging the locking assembly by articulation of lever 43 to cause plate 48 to move irreversibly into a “locked” position further causes alignment of aperture 38 with the circular segment of keyhole 50 , thereby enabling retraction of probe from the container.
  • the irreversible movement of plate 48 in a locked position precludes re-insertion of probe into container for re-dispensation.
  • Dispensation and disposal of an ultrasonic probe using the container of the invention is accomplished in the following manner.
  • a new unused probe packaged in the container with the locking mechanism at the dispensation in the non-locked position so as to constrain the probe within said container is, dispensed by inserting probe handle into collar at dispensing end, affixing probe to the handle by clockwise rotation causing threads on the probe handle to engage complementary threads in the device handle, depressing the lever at that end results in articulation of the locking mechanism 48 thereby disengaging the said locking mechanism from the grooves on the probe and allowing the operator to withdraw the probe from the container.
  • the operator inserts the probe at the disposal end of the container.
  • Engaging the locking mechanism at the disposal end causes the used probe to be secured within the container, thereby enabling detachment of the probe handle by counter clockwise rotation to disengage the threads on the probe from the complementary threads on the handle.
  • the used probe is permanently engaged by and contained within the container, and can be disposed of in compliance with the provisions governing the disposal of medical waste. Because the probe assembly is contained by the invention, the sharp probe tip does not present a safety hazard, and can be safely handled and disposed of as medical trash.
  • Materials useful for the present invention include any material rigid or semi-rigid materials that are substantially resistant to puncture from a sharp medical instrument, and capable of being sterilized by, for example, gamma irradiation or ethylene oxide gas (ETO), without losing their structural integrity.
  • Such materials include but are not limited to, rubber, or plastics such as polytetrafluoroethylene (PTFE), polyethylene, polypropylene, silicone, polyetherimide or other similar plastics. Ceramic, metallic, and glassy materials can also be used, and have the added benefit being sterilizable by autoclaving. Where sterilization by ultraviolet irradiation is contemplated the materials for construction of the container must be substantially UV-transmissible. Combinations of the aforementioned materials can be used.
  • the proportions of the device depend on the probe that will be contained within the device.
  • a container that is designed to accommodate a probe of for example, eight inches long, would utilize a tube approximately the same length.
  • the diameter of the tube must be sufficient to accommodate the probe, which will vary depending on the shape of the probe tip, for example, straight, rounded, curved, crescent, or “U” shaped, or the presence of a probe sheath. Glass or clear high-density plastic is preferred as the probe itself can be visualized in the container.
  • the collar assembly has an inside diameter at least as wide as the tube, with an outside diameter greater than the inside diameter.
  • the outside diameter of the collar is at least two to five times the inside diameter, and the inside surface tapers in width from the widest point at the terminus of the collar, and narrows proximally to the cylindrical section of the container.
  • This taper provides a means to guide the probe into the tube, and it also provides clearance between the inside surface of the collar, allowing attachment to the ultrasonic medical device.
  • a large outer diameter for the collar provides greater shielding capability to protect the hand of the operator from accidental pricks when a used probe is inserted into the container.
  • the collar assembly may be manufactured out of any substantially rigid material that will not deform, crack, or shatter under the torsional forces generated from attaching or detaching the probe to the ultrasonic medical device, for example, high density plastic, metal, ceramic, or hard rubber, and the like.

Abstract

The invention is directed to a container for storage, dispensation, transport and disposal of a medical device such a disposable ultrasonic surgical probe, that allows its dispensation for use, and for its safe storage and disposal after use, thereby protecting the user from the hazards of needle pricks and possible contamination from small-diameter probes. The container of the present invention also provides a mechanism for restricting access to the probe to prevent its reuse, and a method for its safe attachment to and detachment from an ultrasonic medical device. The container comprises a cylindrical tube having two ends and an inner surface defining a space for containing the probe. The probe is held within the cylindrical section of the container by a locking means that allows a single dispensation for its use and enables its disposal after use in an inaccessible manner, so as to enable its attachment and detachment to the non-disposable segment of the device such as an ultrasonic probe handle without requiring direct handling by the user. The user, is therefore protected from against accidental sticks from a possibly contaminated probe. The container also prevents re-use of the probe, and provides a means for its safe disposal.

Description

FIELD OF THE INVENTION
The present invention relates generally to a container for storage, dispensation, transport and disposal of a medical device. More particularly, this invention is directed to a container for storing a sterile ultrasonic surgical probe that allows its dispensation for use, and for its safe storage and disposal after use, thereby protecting the user from the hazards of accidental needle sticks and possible contamination from small-diameter probes. The container of the present invention also provides a mechanism for restricting access to the probe to prevent its reuse, and a method for its safe attachment to and detachment from an ultrasonic medical device.
BACKGROUND OF THE INVENTION
The increased utilization of disposable medical devices such as scalpels, syringes, lances needles, and the like, commonly referred to as “sharps” is raising concern with regard to the safe disposal of such devices. Improper handling of sharps by medical and healthcare personnel is attributed to being the leading cause of accidental skin puncture wounds. The consequences of such injuries can be life threatening, since used medical devices that are contaminated with blood and other biological media can result in transmission of dangerous infectious diseases such as hepatitis and AIDS. Furthermore, conventional disposal units for such devices do not normally allow for positive neutralization of the biological hazard at the site of the surgical procedure. Such devices, therefore, may contain contaminating bacterial and viral species that remain viable as the device is transported from the site through a waste hauling system to a decontamination facility. Additionally, a number of currently used disposal devices, especially sharps, do not affirmatively lock when closed, resulting in their being accidentally or intentionally reopened thereby exposing medical and waste disposal personnel to potentially dangerous biological contaminants.
Various devices have been proposed in the art for disposal of sharps. Sharps containers in the art typically include a valved opening, and a closure mechanism (see, e.g., model 5400 series available from Becton Dickinson and Company of Rutherford, N.J.) or non-valved openings (see, e.g., U.S. Pat. No. 4,569,554). The containers typically can be filled with multiple sharp objects. Other sharps containers (Model 8600, Becton Dickinson and Company of Rutherford, N.J.) include a mechanism to disable a sharp object being disposed of (e.g., a needle), but also invites filling with multiple sharp objects. A great majority of sharp containers disclosed in the art (for example in U.S. Pat. Nos. 4,666,538, 4,804,090, 4,842,138 and 5,281,391, 5,630,506) are limited to the disposal of needles, more particularly syringe needles, and are designed to be disposal containers capable of accepting and containing several units, after which the container is sealed and transported for disposal. Since these containers are designed for disposal only, they offer only a limited advantage, since they do not obviate the need for the healthcare professional to manipulate the needle manually to detach it from the syringe prior to discarding them in such containers. The aforementioned risks of accidental injury are, therefore, not precluded.
While many of the prior art devices have provided innovative and improved disposal methods for sharps, more particularly, needles, these devices suffer from some of the following disadvantages:
i) inadequate design for disposal of single use specialty devices such as probes, catheters, guide-wires and other non-permanent implants. Although such devices that have to be disposed of taking the same precautionary steps as needles to prevent accidental contamination, they are presently discarded using conventional disposal devices that require physical handling by the healthcare personnel.
ii) they require direct handling of sharps by medical personnel to remove them from manufacturers sterile packaging for attachment to ancillary devices such as a handle of a surgical device or a dispensing syringe, and for their subsequent detachment from said ancillary device for discarding into a disposal container. Such handling can result in inadvertent microbiological contamination of the sharp prior to use that can pose risk of infecting the patient, and pose concerns of health hazard to the healthcare provider arising from contact with contaminated biological materials such as blood or tissue from the used device during the process of detaching them from the ancillary device for their disposal.
iii) they do not offer efficient means to remove new sharps from sterile packaging, their attachment and detachment to device ancillary units, and disposal without substantial human contact, thereby eliminating inadvertent injury caused by handling the sharps and associated concerns such as contaminating unused sharps prior to use on a patient, or contracting contagious diseases from used contaminated sharps.
Due to the recent advent of disposable forms of devices such as endoscopes, ultrasonic tissue ablation probes, and the like, previously only being envisioned as reusable devices, there exists a significant need for an improved apparatus for containing devices (herein referred to as “container”) and methods for dispensation, storage and safe disposal of such devices, that allows their easy removal for use substantially without direct human contact, and subsequent placement of the device in the same container after its use again without requiring such direct contact. It is also desirable for the container to maintain used devices contained in them such that they are substantially isolated from further access during handling for disposal. There is also a need for the container to be able to preclude retrieval of used medical devices placed in them, thereby discouraging their unauthorized reuse. Additionally, it is desirable to have the ability to package new unused medical devices such as “sharps” in the multi-functional container that enables dispensation, storage and disposal of the device. Presently, new sharps are typically packaged and transported in one type of container and disposed in another container after use. Furthermore, it is generally recognized by those skilled in transport and delivery of medical instruments and devices that it is critically important to provide evidence of tampering for each user immediately prior to opening a container of new medical instruments and devices.
Ultrasonic surgical probes, especially those operating in transverse mode described in applicants co-pending provisional applications U.S. Ser. Nos. 60/178,901 and 60/225,060, have a plurality of regions of maximum energy referred to as nodes, along the length of the probe. This results in a plurality of regions of high stress, resulting in potential for degradation of structural integrity of the probe. Repetitive use of the probe can potentially worsen this problem, with inadequate means by the user to determine the residual life of the probe. Stress fractures may develop, creating a greater tendency for the probe to shatter with the potential of foreign bodies being induced into the patient, or resulting in microscopic irregularities in the surface that may render the probe difficult to decontaminate between uses. As such, ultrasonic probes should be treated as single use, single patient contact medical devices, and after each use be considered medical waste. Where a probe sheath is also used in conjunction with the probe, the small sheath lumen will incorporate blood and cellular debris during use, which due to their small diameter, render them extremely difficult to clean. For safety purposes they should be discarded.
Medical waste disposal devices also do not normally allow visual inspection and counting of enclosed sharps or other devices after the devices is closed, thereby precluding an accounting means to ensure the number and type of medical waste included in such sealed containers. Furthermore current medical-waste disposal methods typically require large treatment systems involving complex operation that are non-portable and highly expensive. Such systems include autoclaving, incineration and bulk chemical treatment of the medical device waste. It is therefore, desirable to provide an improved portable disinfecting and disposal device for such medical device waste.
Based on the aforementioned limitations in the current disposal containers for medical devices disclosed in the art, and a lack of an efficient container that functions both as a dispensing as well as a disposal container for a disposable surgical device in the art. There is a need for such a dispensing and disposal container for sharp disposable medical devices, such as a small diameter ultrasonic probe used for tissue ablation. Such probes are described in the Applicant's co-pending provisional applications U.S. Serial Nos. 60/178,901, and 60/225,060 which further describe the design parameters for an ultrasonic probe operating in a transverse mode and the use of such a probe to remodel tissues, as well as the Applicants co-pending utility application Ser. No. 09/776,025 entitled “Ultrasonic medical device operating in a transverse mode for removing occlusions” which describes the use of such probes combined with probe sheath assemblies that modulate the cavitation energy emitted by the probe, and catheter balloon assemblies for removing blood vessel occlusions. The entirety of these applications are herein incorporated by reference.
SUMMARY OF INVENTION
It is therefore an object of the present invention to provide a tamper-resistant light-weight container for safely holding a medical-surgical device, allowing its dispensation of the device from the container for use, and for it's disposal after use, without requiring direct touching or handling of the probe itself. The device containment segment of the container may be rigid, or flexible with rigid ends to accommodate devices that are flexible.
It is yet another object of the present invention to provide such a container to hold, dispense and dispose of medical sharps safely, particularly thin ultrasonic probes utilized for tissue ablation and removal of occlusion materials from vascular occlusions in blood vessels.
It is yet a further object of the invention to provide a container for an ultrasonic probe that is capable of dispensing a new probe or probe assembly for attachment to an ultrasonic surgical device, and for detaching the probe from the said device, without requiring direct handling of the probe or probe assembly.
It is another object of the present invention to provide a container for a medical device such as an ultrasonic probe, consisting of a tamper resistant locking mechanism that prevents reuse of a used device disposed within by precluding access to said device.
It is yet another object of the invention to provide a container for a medical device such as an ultrasonic probe which may be disposed of simultaneously with the disposal of the used medical-surgical device, thereby obviating the need for sterilizing the container itself.
Briefly summarized, the foregoing objects are achieved by a container assembly which is utilized for both storing and dispensing new sharps such as a small diameter ultrasonic probes and accompanying accessories, if any, such as sheath assemblies, balloon catheters, etc. prior to use, and receiving such contaminated or used devices for storage, transport and disposal.
The preferred embodiment comprises a container for an ultrasonic probe which prevents the probe's reuse and provides a method for dispensing and disposing an ultrasonic probe. The container is designed for containing a probe or probe assembly, a means for attaching the probe to an ultrasonic medical device, a means for simultaneously containing the used probe while detaching the probe from the ultrasonic medical device, without requiring direct handling of the probe.
The container comprises a hollow cylindrical tube having two collar assemblies (herein referred to as “Collar”) at the open ends that function as lids. The inner diameter and length of the cylinder with an inner dimension defining a space for the probe and its accompanying accessories, if any. The collars are designed to be adaptable to cylinders with varied lengths and diameters to accommodate probes and probe assemblies of different dimensions. Each collar comprises of two segments, both of which have apertures centrally located, having diameters that correspond to the dimension of the probe or probe assembly for which the container is adapted. The said apertures in the collars permit access to the cylindrical segment of the container. The collars are also designed such that they are securely affixed to the container body in a manner that provides evidence of tampering when removed. A complement of tamper resistant mechanisms, including locking assemblies in the collars, are provided that render opening of the container relatively restricted. The locking mechanism within the collars are configured to function in a manner complementary with respect to each other, thereby enabling the collar at the dispensing end to permit a one-time dispensation of a new, unused device, whereas the collar at the disposal end permits receipt of used or contaminated device. The said locking mechanisms in the collar assemblies prevent the reuse of the container by substantially preventing the removal or re-dispensation of a previously disposed device in the associated container. The collar at the disposal end includes an area for placement of a used or contaminated device, wherein a person may then deposit the article into the container body without directly touching the device being disposed of. Additionally, the collar assembly prevents further handling of the used devices by medical personnel subsequent to disposal.
In a preferred embodiment, the collar assemblies have a larger diameter than the cylindrical tube section of the container. The interior surface of the collar assemblies are arcuate or conical shaped, tapering from a larger diameter at the end distal to the cylindrical section to a smaller diameter approaching the aperture, thereby providing a means of guiding or directing the used probe into the device, and also providing clearance for attaching or detaching the probe to or from the transducer. In another embodiment of the invention, an extended rigid or semi-rigid structure located around the collar provides a means of shielding the hand of the operator that holds the container while the probe is inserted.
Between the first and second segments of the collar is a locking mechanism capable of manipulation by the user. The first locking mechanism can be, for example a plate that slides along a groove in a direction perpendicular to the longitudinal axis of the container. Alternatively the locking mechanism can be a rod or an extrusion. The locking means is adapted for engaging the medical article or device stored or disposed within the container. In a preferred embodiment, the locking mechanism is capable of engaging the proximal end an ultrasonic probe at one or more grooves or threads located at proximal end of said probe or at a depression, aperture, or a raised surface designed on the probe at its proximal end. At one end of the container (herein referred to as “dispensing end”), articulation of the locking means by the operator, disengages the locking mechanism from the probe, thereby allowing its release from within the container for dispensation. At the end opposite from the dispensing end of the container (herein referred to as “disposal end”), articulation of the locking mechanism by the operator engages the probe thereby securing the probe irreversibly within the container, thereby preventing further access. The locking mechanisms are capable of securing the probe immovably within the container, thereby providing a mechanism for communicating torsional forces applied to the probe, for example, when the probe is affixed to or detached from an ultrasonic medical device. The attachment the probe and its detachment from the medical device can be accomplished for example, by screwing the probe on to, or off of the device, by rotating the device handle after affixing it to the proximal end of the probe. In other embodiments of the invention the locking mechanism can be threaded, or a ratcheting means, or other such ways of constraining the probe in a unidirectional manner while torsional forces are applied to the container to effectuate attachment or detachment of the probe from the ultrasonic medical device.
In another embodiment, the container of the invention comprises a single open end having a plurality of locking assemblies, thereby enabling the dispensation and disposal of a medical device from the same end of said container. In a further embodiment, the container of the invention comprises of a single open end having a single locking assembly, thereby enabling its utilization exclusively for safe disposal of used medical devices and articles.
In one aspect, the container of the present invention is provided together with an ultrasonic probe contained therein in the form of a kit. In another aspect, container of the present invention is provided together with a probe comprising accessories such as a sheath assembly, balloon catheter, and the like contained therein, as required for specific surgical procedures. In yet another aspect of the invention, the container within the kit with the probe and accessories, if any contained therein, further comprises packaging, whereby said container and its contents are pre-sterilized, and sealed against environmental contaminants. In another aspect, the container comprising the probe and accessories are provided in a manner complying with regulations governing packaging, storage, handling, transport and disposal of sharp medical devices.
In a preferred embodiment, the container provides a means of attaching the ultrasonic probe together with its accessories to an ultrasonic medical device, and further provides a means for detaching them from the said device, without necessitating direct manipulation or handling of the probe (and its accessories if any), and a means for removing the said probe and assembly from the ultrasonic medical device after use. In one aspect, container having a probe contained within provided a sterile kit, comprises single use locking mechanisms located at the dispensing and disposal ends of said container, wherein said locking mechanism at the dispensing end enables attachment of the probe to an ultrasonic medical device solely through the said container, thereby allowing its dispensation from within the container, and wherein the said locking mechanism at the disposal end allows its disposal into the container in a manner preventing re-insertion of the probe through the dispensing end and re-extracting the used probe from the disposal end.
The foregoing specific objects and advantages of the invention are illustrative of those that can be achieved by the present invention, and are not intended to be exhaustive of the possible advantages that can be realized. Thus these, and other objects and advantages of the invention will be apparent from the specifications and drawings, herein or can be learned by practicing the invention, both as embodied herein or as modified in the view of any variations which may be apparent to those skilled in the art. Accordingly, the present invention resides in the novel parts, construction, configurations, improvements and utility herein shown and described.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the container for single use medical articles comprising a dispensing end and a disposal end.
FIG. 2 shows a medical device comprising a disposable ultrasonic probe that is dispensed from and disposed into the container.
FIG. 3 shows the ultrasonic probe of the surgical device inserted into the container for disposal.
FIG. 4 shows cross-sectional view of the collar assembly comprising the locking mechanisms enabling, irreversible dispensation and disposal respectively of a medical article.
FIG. 5 depicts the container with a cross-sectional view of the collar assemblies at the dispensation and disposal ends showing the articulation handles for engaging the locking mechanism within the collars.
FIG. 6 shows a sectional view the locking mechanisms within the collar at the disposal end (6 a and 6 b).
FIG. 7 shows a sectional view the locking mechanisms within the collar at the dispensing end (7 a and 7 b).
DETAILED DESCRIPTION OF THE INVENTION
“Container” as used herein refers to an apparatus used for safe dispensation, storage and disposal of a medical article or device, in most particularly, sharp medical devices.
Throughout this description, the terms “distal” and “proximal” when pertaining to description of a probe or probe assembly are relative to the operator, i.e. distal is away from the operator and indicates the forward end of the device, whereas proximal is nearest to the operator and relates to the rear end of the device.
When aforementioned terms are used pertaining to description of collar assemblies of the container, they are relative to the hollow cylindrical portion of the container wherein a medical device such as an ultrasonic probe is stored, i.e. “distal” is the segment of the collar that is furthest from the cylindrical section, whereas “proximal” refers to the segment that nearest to said cylindrical section.
“Dispensing end” and “Disposal end” as used herein refers to the ends of the container that allow dispensation and disposal respectively of a medical article or medical device.
“Probe” as used herein refers to a device capable of being adapted to an ultrasonic generator means, which is capable of propagating the energy emitted by the ultrasonic generator means along its length, and is capable of acoustic impedance resulting in transformation of ultrasonic energy into mechanical energy.
“Sharps” as used herein refers to an elongated medical instrument or medical device with a small diameter, for example, less than 2 mm. A “Sharps Container” as used herein is a container capable of retaining a sharp medical device or the sharp portion thereof, such that a handler is not exposed to the sharp portion of the device.
“Sheath assembly” as used herein refers to a device for covering, encasing, or shielding in whole or in part, a probe or portion thereof connected to an ultrasonic generation means.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
FIG. 1 shows a “sharps” container 30 of the present invention for dispensing and disposal of an ultrasonic probe. Container 30 comprises a cylindrical section 32 capable of accommodating probe 18 (shown partially) terminally connected to collars 36 and 38 that form the dispensing and disposal ends respectively of container 30. Articulation levers 43 enable engagement of the locking mechanisms (not shown) within collars.
FIG. 2 shows a transverse mode ultrasonic medical device 1 comprising a disposable elongated probe 6 designed for a one time use, which is coupled to a device handle 66 that contains a source or generation means for the production of ultrasonic energy (shown in phantom in the figure as 66) that is transmitted to said probe to enable its function. In the example shown, the probe diameter decreases at defined intervals 14, 18, 20, and 22. In this example, probe interval 18 has at least one groove 45 at the end proximal to probe handle 66. Groove 45 is capable of being engaged by the locking mechanisms at the dispensing and disposal ends of the container 30, so as to constrain the probe within the cylindrical volume of said container, thereby enabling its dispensation and disposal without requiring direct handling of the probe itself.
FIG. 3 shows a cross-sectional view of collar 34 comprising of two segments, a first segment 42 proximal to the cylindrical section (not shown) and a second segment 44 distal to the tube. Between the first and second segments is a locking mechanism capable of being engaged by the user. In one embodiment, the locking means can be engaged by a lever, not shown in this view. The lever extends laterally to the outside of the collar assembly, allowing articulation by the user. The lever engages the locking mechanism, causing it to slide laterally within a groove in segment 42 of the collar. In a preferred embodiment, the locking mechanism comprises a locking assembly, such as for example, a plate 48 having a keyhole shaped slot 50, both shown partially, and a pin-hole (not shown) capable of sliding over a pin 46 seated on a spring 52 that exerts a unidirectional force on the pin. Upon engaging the locking mechanism, for example with a lever, plate 48 is capable of sliding over pin 46 so as to align pin-hole in the plate with the pin, thereby rendering it capable of receiving the pin. The pin is forced into the pinhole by spring so as to “lock” the plate, rendering it incapable of further lateral movement since it is constrained within the collar assembly. The locking assembly, once engaged by the pin, is therefore prevented from retrograde articulation. The keyhole shaped slot 50 in the plates at the dispensing and disposal ends of the container are aligned inversely with respect to one another, so as to permit dispensation and disposal of the probe respectively, upon activation of the locking mechanisms at the respective ends, by engaging or disengaging groove 45 in the probe.
FIG. 4 shows, a used ultrasonic probe 18 (shown partially) that is still connected to probe handle 66 inserted into the disposal end of the container through collar 38 prior to its disposal within cylindrical section 32. Disposal of the probe is accomplished by depressing lever (not shown) that articulates locking assembly 48 within the collar assembly 34, causing said locking assembly to move to a irreversibly to a “locked” position wherein pin 46 is aligned with a slot in the locking assembly 48, further causing pin 46 to be forced into the slot by the unidirectional force exerted by a spring (not shown) on said pin. The locking action of assembly 48 engages a groove or set of grooves (not shown) in probe 18 located at the end proximal to probe handle 66, thereby causing said probe to be restrained irreversibly within container 31. The probe is subsequently disengaged from the handle 66 by turning the latter in a counter clockwise direction, thereby releasing the probe into container for safe disposal.
FIG. 5 shows container 31 and a cross-sectional view of collars 34 illustrating the locking assembly plates 48 connected to articulation handles 43 at disposal end 36 and dispensing end 38 of the container. The locking mechanism of container 31 at disposal end 36 is adapted to engage probe 18 in a specific manner to enable its disposal as shown, such as for example, by engaging one or more set of grooves in the probe proximal to the probe handle 66. Engaging the locking mechanism by depressing lever 43, causes plate 48 to slide laterally within the space defined by collar assembly over pin (not shown in this view), forcing the pin to align with and engage a pinhole in plate 48, thereby “locking” the plate. Rendering the plate “locked” further causes said locking mechanism to engage probe 18 in an irreversible manner, thereby preventing its re-dispensation. Upon disengagement of the probe from device handle (not shown in figure), the probe is deposited within container for disposal. The irreversible engagement of the locking mechanism, therefore, prevents access to the probe disposed within the container.
FIG. 6 shows sectional views of collar segment 42 at the disposal end 36 comprising of a central aperture 36 capable of communicating with the cylindrical section of container (not shown in this view). A locking assembly comprising plate 48 having a key hole shaped slot 50 is capable of being articulated by lever 43, thereby causing it to slide laterally over aperture 36. Plate 48 further comprises pinhole 54 capable of aligning with pin 46 seated on a spring (not shown in this view) within collar segment 42 such that it exerts a unidirectional force on pin 46, thereby causing the pin to remain in intimate contact with plate 48. When locking mechanism is in the non-locked position (FIG. 6a), the circular section of the key hole slot 50 in plate 48 is aligned with aperture 36, thereby enabling insertion of a used probe for disposal. Articulation of the locking mechanism by depressing lever 43 causes plate 48 to slide laterally over aperture 36, thereby causing the circular segment of keyhole shaped slot 50 to be displaced from aperture 36. The lateral movement of plate 48 further causes pinhole 54 to aligned with pin 46 such that pin 46 irreversibly enters pinhole 54 by action of the spring, thereby causing plate 48 to remain in the “locked” position, wherein the rectangular segment of keyhole slot 50 engages a groove or set of grooves on the probe at the end proximal to the device handle. The irreversible action of the locking mechanism, therefore, precludes subsequent retraction of the probe after its disposal into the container and activation said locking mechanism.
FIG. 7 shows sectional views of collar segment 42 at the dispensing end. The arrangement of components and articulation of the locking mechanism is identical to that at the disposal end illustrated in FIG. 6 as described in the foregoing section, with the exception of the orientation of key hole slot 50, which is inverse to that at the disposal end (FIG. 6). The inverse orientation of slot 50 causes an unused probe to be restrained in a non-retractable manner when the plate 48 of locking mechanism is in a non-locked position (FIG. 6a), and allows retraction of the said probe for dispensation upon moving plate 48 to a locked position by articulation of lever 43. Dispensation of the probe is accomplished by attachment of the probe handle of a medical device to the proximal end of the probe, following which engaging the locking assembly by articulation of lever 43 to cause plate 48 to move irreversibly into a “locked” position further causes alignment of aperture 38 with the circular segment of keyhole 50, thereby enabling retraction of probe from the container. The irreversible movement of plate 48 in a locked position precludes re-insertion of probe into container for re-dispensation.
Dispensation and disposal of an ultrasonic probe using the container of the invention is accomplished in the following manner. A new unused probe packaged in the container with the locking mechanism at the dispensation in the non-locked position so as to constrain the probe within said container is, dispensed by inserting probe handle into collar at dispensing end, affixing probe to the handle by clockwise rotation causing threads on the probe handle to engage complementary threads in the device handle, depressing the lever at that end results in articulation of the locking mechanism 48 thereby disengaging the said locking mechanism from the grooves on the probe and allowing the operator to withdraw the probe from the container. After the probe has been used and is ready for disposal, the operator inserts the probe at the disposal end of the container. Engaging the locking mechanism at the disposal end causes the used probe to be secured within the container, thereby enabling detachment of the probe handle by counter clockwise rotation to disengage the threads on the probe from the complementary threads on the handle. The used probe is permanently engaged by and contained within the container, and can be disposed of in compliance with the provisions governing the disposal of medical waste. Because the probe assembly is contained by the invention, the sharp probe tip does not present a safety hazard, and can be safely handled and disposed of as medical trash.
Materials useful for the present invention include any material rigid or semi-rigid materials that are substantially resistant to puncture from a sharp medical instrument, and capable of being sterilized by, for example, gamma irradiation or ethylene oxide gas (ETO), without losing their structural integrity. Such materials include but are not limited to, rubber, or plastics such as polytetrafluoroethylene (PTFE), polyethylene, polypropylene, silicone, polyetherimide or other similar plastics. Ceramic, metallic, and glassy materials can also be used, and have the added benefit being sterilizable by autoclaving. Where sterilization by ultraviolet irradiation is contemplated the materials for construction of the container must be substantially UV-transmissible. Combinations of the aforementioned materials can be used. The proportions of the device depend on the probe that will be contained within the device. A container that is designed to accommodate a probe of for example, eight inches long, would utilize a tube approximately the same length. The diameter of the tube must be sufficient to accommodate the probe, which will vary depending on the shape of the probe tip, for example, straight, rounded, curved, crescent, or “U” shaped, or the presence of a probe sheath. Glass or clear high-density plastic is preferred as the probe itself can be visualized in the container. The collar assembly has an inside diameter at least as wide as the tube, with an outside diameter greater than the inside diameter. In the preferred embodiment, the outside diameter of the collar is at least two to five times the inside diameter, and the inside surface tapers in width from the widest point at the terminus of the collar, and narrows proximally to the cylindrical section of the container. This taper provides a means to guide the probe into the tube, and it also provides clearance between the inside surface of the collar, allowing attachment to the ultrasonic medical device. A large outer diameter for the collar provides greater shielding capability to protect the hand of the operator from accidental pricks when a used probe is inserted into the container. The collar assembly may be manufactured out of any substantially rigid material that will not deform, crack, or shatter under the torsional forces generated from attaching or detaching the probe to the ultrasonic medical device, for example, high density plastic, metal, ceramic, or hard rubber, and the like.
It should be obvious to those of ordinary skill in the art that the individual features described herein may be combined. Variations, modifications, and other implementations of what is described herein will occur to those of ordinary skill in the art without departing from the spirit and scope of the invention as claimed. Accordingly, the invention is to be defined not by the preceding illustrative description but instead by the spirit and scope of the following claims.

Claims (22)

We claim:
1. A container for dispensation, storage, transportation and disposal of a medical device comprising:
a hollow cylindrical section comprising at least one open end comprising a closure assembly adapted to said open end, including means for mounting thereto, comprising an access opening adapted to dispense, receive and retain the medical device;
an access controlling means adapted to said closure assembly interacting with the container and said access opening;
said access control means comprising of at least one locking mechanism formed integrally with said closure assembly and movable under the action of an actuating means from a non-locked position to a locked position wherein said locking mechanism engages the medical device;
said actuation means further comprising an articulation apparatus whereby application of pressure on said apparatus results in movement of said locking mechanism from a non-locked to a locked position, and
means for positively retaining said locking mechanism in said locked position after movement thereto from said non-locked position.
2. The container of claim 1 wherein the closure assembly comprises a collar having at least two non-detachable segments, a first segment proximal to the cylindrical section of said container and a second segment distal to the said cylindrical section, said segments have access openings that communicate with the cylindrical section of said container, further having said locking mechanism disposed between said segments, and said articulation apparatus to activate said locking mechanism.
3. The container of claim 2 wherein the locking mechanism comprises a rectangular plate having a slot capable of moving over a pin attached to the collar segment proximal to the cylindrical section, said pin seated on a spring, said spring engaged to the first segment of the collar and said spring being capable of exerting a unidirectional force enabling said pin to make intimate contact with said plate, whereby movement of the said plate causes said pin to be forced into the slot in causing said mechanism to lock in an irreversible manner.
4. The container of claim 2 wherein the locking mechanism is attached to said articulation means extending externally from the collar, capable of moving said locking mechanism from a non-locked position to a locked position.
5. The container of claim 2 wherein the collar has an inside diameter that is greater than the inside diameter of said tube.
6. The container of claim 2 wherein the inner diameter collar is large at a terminal end of said container, and tapers to a smaller diameter approaching the access opening proximal to the cylindrical section of said container.
7. The container of claim 2 wherein the collar comprises an additional extended structural assembly positioned around said collar to provide a means of shielding the hand of a user from the medical device during its dispensation from or disposal into said container.
8. The container of claim 1 containing at least two locking mechanisms, a first locking mechanism capable of engaging the medical device in the locked position and disengaging from said probe in the unlocked position upon activation, and a second locking mechanism capable of engaging an ultrasonic probe in the unlocked position and disengaging from said medical device in the locked position upon activation.
9. The container of claim 1 comprising a single open end for disposal of the medical device.
10. A container for dispensation, storage, transportation or disposal of a medical device comprising:
a cylindrical section having a first open end and a second open end;
a first collar assembly engaging the first open end and a second collar assembly engaging the second open end wherein each of the first collar assembly and the second collar assembly further comprise an access opening adapted to dispense and receive the medical device;
a first locking mechanism engaging the first collar assembly and a second locking mechanism engaging the second collar assembly wherein the first locking mechanism and the second locking mechanism are capable of moving between a first unlocked position and a second locked position; and
an actuator capable of controlling the movement of the locking mechanism between the first unlocked position and the second locked position wherein the actuator extends externally from the collar assembly,
wherein the first locking mechanism is capable of engaging the medical device in the first unlocked position and disengaging from the medical device in the second locked position upon activation and the second locking mechanism capable of engaging the medical device in the second locked position and disengaging from the medical device in the first unlocked position upon activation; and
wherein the first locking mechanism and the second locking mechanism each comprise a rectangular plate having a slot capable of moving over a pin attached to the first non-detachable segment proximal to the cylindrical section of the container, engaging a spring, the spring engaging the first non-detachable segment proximal to the cylindrical section and the spring capable of exerting a force enabling the pin to engage the rectangular plate, whereby movement of the rectangular plate causes the pin to be forced into the slot and causes the locking mechanism to lock.
11. The container of claim 10 wherein the cylindrical section is hollow.
12. The container of claim 10 wherein the first collar assembly and the second collar assembly each comprise a first non-detachable segment proximal to the cylindrical section of the container and a second non-detachable segment distal to the cylindrical section of the container wherein the first non-detachable segment and the second non-detachable segment each have an access opening in communication with the cylindrical section of the container.
13. The container of claim 11 wherein the first locking mechanism is located between the first non-detachable segment proximal to the cylindrical section of the container and the second non-detachable segment distal to the cylindrical section of the container of the first collar assembly.
14. The container of claim 10 wherein the collar assembly has an inside diameter that is greater than an inside diameter of the cylindrical section.
15. The container of claim 10 wherein the collar assembly comprises a first inside diameter at a first end of the collar assembly proximal to the cylindrical section and a second inside diameter at a second end of the collar assembly distal to the cylindrical section wherein the first inside diameter is smaller than the second inside diameter.
16. The container of claim 10 further comprising a single open end for disposal of the medical device.
17. The container for dispensation, storage, transportation or disposal of a medical device comprising:
a cylindrical section wherein the cylindrical section comprises a first open end and a second open end;
a first collar assembly engaging the first open end and a second collar assembly engaging the second open end wherein the first collar assembly and the second collar assembly each have an access opening;
a first locking mechanism engaging the first collar assembly and a second locking mechanism engaging the second collar assembly wherein the first locking mechanism and the second locking mechanism are capable of moving between a first unlocked position and a second locked position; and
a first actuator engaging the first locking mechanism and a second actuator engaging the second locking mechanism wherein the first actuator is capable of controlling the movement of the first locking mechanism between the first unlocked position and the second locked position and the second actuator is capable of controlling the movement of the second locking mechanism between the first unlocked position and the second locked position.
18. The container of claim 17 wherein each of the first collar assembly and the second collar assembly comprises a first non-detachable segment proximal to the cylindrical section of the container and a second non-detachable segment distal to the cylindrical section of the container wherein the first non-detachable segment and the second non-detachable segment each have an access opening in communication with the cylindrical section of the container.
19. The container of claim 18 wherein the first locking mechanism is located between the first non-detachable segment proximal to the cylindrical section of the container and the second non-detachable segment distal to the cylindrical section of the container of the first collar assembly and the second locking assembly is located between the first non-detachable segment proximal to the cylindrical section of the container and the second non-detachable segment distal to the cylindrical section of the container of the second collar assembly.
20. The container of claim 18 wherein each of the first locking mechanism and the second locking mechanism comprise a rectangular plate having a slot capable of moving over a pin attached to the respective first non-detachable segment proximal to the cylindrical section, engaging a spring, the spring engaging the respective first non-detachable segment proximal to the cylindrical section and the spring capable of exerting a force enabling the pin to engage the rectangular plate, whereby movement of the rectangular plate causes the pin to be forced into the slot and causes the locking mechanism to lock.
21. The container of claim 17 wherein the first actuator extends externally from the first collar assembly and is capable of moving the first locking mechanism between the first unlocked position and the second locked position and the second actuator extends externally from the second collar assembly and is capable of moving the second locking mechanism between the first unlocked position and the second locked position.
22. The container of claim 17 wherein the cylindrical section is hollow.
US09/775,908 2001-02-02 2001-02-02 Dispensation and disposal container for medical devices Expired - Fee Related US6527115B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/775,908 US6527115B2 (en) 2001-02-02 2001-02-02 Dispensation and disposal container for medical devices
PCT/US2002/001885 WO2002062238A1 (en) 2001-02-02 2002-01-23 Dispensation and disposal container for medical devices
US10/351,665 US20030132131A1 (en) 2001-02-02 2003-01-27 Method for using dispensation and disposal container for medical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/775,908 US6527115B2 (en) 2001-02-02 2001-02-02 Dispensation and disposal container for medical devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/351,665 Division US20030132131A1 (en) 2001-02-02 2003-01-27 Method for using dispensation and disposal container for medical devices

Publications (2)

Publication Number Publication Date
US20020117412A1 US20020117412A1 (en) 2002-08-29
US6527115B2 true US6527115B2 (en) 2003-03-04

Family

ID=25105906

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/775,908 Expired - Fee Related US6527115B2 (en) 2001-02-02 2001-02-02 Dispensation and disposal container for medical devices
US10/351,665 Abandoned US20030132131A1 (en) 2001-02-02 2003-01-27 Method for using dispensation and disposal container for medical devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/351,665 Abandoned US20030132131A1 (en) 2001-02-02 2003-01-27 Method for using dispensation and disposal container for medical devices

Country Status (2)

Country Link
US (2) US6527115B2 (en)
WO (1) WO2002062238A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030062686A1 (en) * 2001-09-28 2003-04-03 Mitsubishi Heavy Industries Ltd. Shaft seal structure and turbine
US20030132131A1 (en) * 2001-02-02 2003-07-17 Omnisonics Medical Technologies, Inc. Method for using dispensation and disposal container for medical devices
US20040078049A1 (en) * 2002-03-26 2004-04-22 Marc Danchin Ophthalmic surgery device
US20040171916A1 (en) * 2001-08-10 2004-09-02 Pieter Brommersma Endoscope with a lockable optic system
US20050131301A1 (en) * 2003-12-12 2005-06-16 Michael Peszynski Ultrasound probe receptacle
US20050234295A1 (en) * 2004-04-16 2005-10-20 Gomez Ricardo A Method and apparatus for protecting the distal lens of endoscopes
US20080273955A1 (en) * 2007-05-02 2008-11-06 International Truck Intellectual Property Company, Llc. Refuse collection device and disposal method for public transportation vehicles
US20090118575A1 (en) * 2007-11-06 2009-05-07 Olympus Medical Systems Corp. Endoscopic system, treatment section operation check instrument for the same, and treatment section operation check method
US7794414B2 (en) 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US8790359B2 (en) 1999-10-05 2014-07-29 Cybersonics, Inc. Medical systems and related methods
US9103794B2 (en) 2001-08-27 2015-08-11 Platypus Technologies Llc Substrates, devices, and methods for quantitative liquid crystal assays
US9968935B2 (en) 2007-08-20 2018-05-15 Platypus Technologies, Llc Devices for cell assays
US10577165B2 (en) 2017-09-25 2020-03-03 SEE Forming L.L.C. Key retention system for product packaging
US11083841B2 (en) 2002-08-09 2021-08-10 Fenwal, Inc. Needle protector, needle assembly and fluid processing set including the same
US11155381B1 (en) 2018-10-08 2021-10-26 SEE Forming L.L.C. Joinable thermoform product packaging
US11344904B2 (en) * 2019-02-19 2022-05-31 Myra Hight Storage container and dispenser

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060241943A1 (en) * 2005-02-16 2006-10-26 Anuthep Benja-Athon Medical vocabulary templates in speech recognition
DE69921864T2 (en) * 1999-12-30 2005-10-27 Biotech International (S.A.R.L.) DEVICE FOR HANDLING AND IDENTIFYING SMALL IMPLANTS
EP2093565B1 (en) * 2002-05-22 2014-11-19 Platypus Technologies, Inc. Uses of devices and methods for cellular assays
US8268614B2 (en) 2002-05-22 2012-09-18 Platypus Technologies, Llc Method for assaying cell movement
CA2533659A1 (en) 2003-07-25 2005-03-10 Platypus Technologies, Llc Liquid crystal based analyte detection
US7842499B2 (en) * 2006-08-07 2010-11-30 Platypus Technologies, Llc Substrates, devices, and methods for cellular assays
US20100010393A1 (en) * 2008-07-08 2010-01-14 Medtronic Vascular, Inc. Treatment of Occlusions by External High Intensity Focused Ultrasound
EP2344879A4 (en) * 2008-09-15 2013-03-20 Platypus Technologies Llc Detection of vapor phase compounds by changes in physical properties of a liquid crystal
US8591585B2 (en) * 2010-04-12 2013-11-26 Globus Medical, Inc. Expandable vertebral implant
US8870880B2 (en) 2010-04-12 2014-10-28 Globus Medical, Inc. Angling inserter tool for expandable vertebral implant
US9277966B2 (en) 2010-09-24 2016-03-08 John Russell Seitz, III Multifunctional enclosure for medical probes and method of use
JP6021894B2 (en) * 2011-04-28 2016-11-09 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Dosing interface with lockout element
US11547277B2 (en) * 2018-04-12 2023-01-10 Endosound, Inc. Steerable ultrasound attachment for endoscope
US10363014B1 (en) * 2018-04-12 2019-07-30 Endosound, Llc Steerable ultrasound attachment for endoscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967621A (en) * 1974-07-16 1976-07-06 Lothar Schwarz Needle holder for medical syringes, vials, or the like
US4479585A (en) 1982-07-19 1984-10-30 Jeffrey Sandhaus Tamper resistant safety closure and closure-container combination
US4862573A (en) * 1987-10-13 1989-09-05 Kelson Lance P Medical sampling needle removal and disposal device
US5129914A (en) 1990-10-16 1992-07-14 Choi Jeung H Acupuncture needle container and insertion tube
US5323902A (en) * 1993-10-05 1994-06-28 Scientific Concepts, Inc. Safety device for holding and retaining hyposyringes and the like
US6062001A (en) * 1999-08-02 2000-05-16 Sharps Compliance, Inc. Sharps disposal container
USRE36693E (en) * 1994-03-16 2000-05-16 Syncor International Container and method for transporting a syringe containing radioactive material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273161A (en) * 1991-05-31 1993-12-28 Medical Safety Products, Inc. Needle disposal system comprised of blood collection holder and companion biohazard receptacle
IT1265322B1 (en) * 1993-01-29 1996-10-31 Claudio Latini DEVICE TO PREVENT ACCIDENTAL STINGS.
IN189561B (en) * 1996-06-21 2003-03-29 Bio Plexus Inc
US6036671A (en) * 1997-07-17 2000-03-14 Frey; William J. Breakaway syringe and disposal apparatus
US6279743B1 (en) * 2000-04-11 2001-08-28 Cambridge Marketing, Inc. Device for facilitating engagement and disengagement between needles and associated syringes and sheaths and for receiving sharps
US6527115B2 (en) * 2001-02-02 2003-03-04 Omnisonics Medical Technologies, Inc. Dispensation and disposal container for medical devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967621A (en) * 1974-07-16 1976-07-06 Lothar Schwarz Needle holder for medical syringes, vials, or the like
US4479585A (en) 1982-07-19 1984-10-30 Jeffrey Sandhaus Tamper resistant safety closure and closure-container combination
US4862573A (en) * 1987-10-13 1989-09-05 Kelson Lance P Medical sampling needle removal and disposal device
US5129914A (en) 1990-10-16 1992-07-14 Choi Jeung H Acupuncture needle container and insertion tube
US5323902A (en) * 1993-10-05 1994-06-28 Scientific Concepts, Inc. Safety device for holding and retaining hyposyringes and the like
USRE36693E (en) * 1994-03-16 2000-05-16 Syncor International Container and method for transporting a syringe containing radioactive material
US6062001A (en) * 1999-08-02 2000-05-16 Sharps Compliance, Inc. Sharps disposal container

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PCT International Search Report for International Application No. PCT/US02/01885 dated Jun. 11, 2002.

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8790359B2 (en) 1999-10-05 2014-07-29 Cybersonics, Inc. Medical systems and related methods
US20030132131A1 (en) * 2001-02-02 2003-07-17 Omnisonics Medical Technologies, Inc. Method for using dispensation and disposal container for medical devices
US20040171916A1 (en) * 2001-08-10 2004-09-02 Pieter Brommersma Endoscope with a lockable optic system
US9797843B2 (en) 2001-08-27 2017-10-24 Platypus Technologies, Llc Substrates, devices, and methods for quantitative liquid crystal assays
US9103794B2 (en) 2001-08-27 2015-08-11 Platypus Technologies Llc Substrates, devices, and methods for quantitative liquid crystal assays
US20030062686A1 (en) * 2001-09-28 2003-04-03 Mitsubishi Heavy Industries Ltd. Shaft seal structure and turbine
US6976680B2 (en) * 2001-09-28 2005-12-20 Mitsubishi Heavy Industries, Ltd. Shaft seal structure and turbine
US20040078049A1 (en) * 2002-03-26 2004-04-22 Marc Danchin Ophthalmic surgery device
US7278999B2 (en) * 2002-03-26 2007-10-09 Promepla S.A. Opthalmic surgery device
US11083841B2 (en) 2002-08-09 2021-08-10 Fenwal, Inc. Needle protector, needle assembly and fluid processing set including the same
US20050131301A1 (en) * 2003-12-12 2005-06-16 Michael Peszynski Ultrasound probe receptacle
US7794414B2 (en) 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US20050234295A1 (en) * 2004-04-16 2005-10-20 Gomez Ricardo A Method and apparatus for protecting the distal lens of endoscopes
US7803109B2 (en) * 2004-04-16 2010-09-28 Ricardo Alexander Gomez Method and apparatus for protecting the distal lens of endoscopes
US20080273955A1 (en) * 2007-05-02 2008-11-06 International Truck Intellectual Property Company, Llc. Refuse collection device and disposal method for public transportation vehicles
US9968935B2 (en) 2007-08-20 2018-05-15 Platypus Technologies, Llc Devices for cell assays
US20090118575A1 (en) * 2007-11-06 2009-05-07 Olympus Medical Systems Corp. Endoscopic system, treatment section operation check instrument for the same, and treatment section operation check method
US10577165B2 (en) 2017-09-25 2020-03-03 SEE Forming L.L.C. Key retention system for product packaging
US11155381B1 (en) 2018-10-08 2021-10-26 SEE Forming L.L.C. Joinable thermoform product packaging
US11344904B2 (en) * 2019-02-19 2022-05-31 Myra Hight Storage container and dispenser
US20220331822A1 (en) * 2019-02-19 2022-10-20 Myra Hight Storage container and dispenser

Also Published As

Publication number Publication date
WO2002062238A1 (en) 2002-08-15
US20020117412A1 (en) 2002-08-29
US20030132131A1 (en) 2003-07-17

Similar Documents

Publication Publication Date Title
US6527115B2 (en) Dispensation and disposal container for medical devices
JP4873793B2 (en) A hypodermic syringe with a selectively retractable needle
EP1178840B1 (en) Sterilization container
JP5693873B2 (en) Universal safety syringe
US4736844A (en) Container for the disposal of sharps
US4811847A (en) Urinary catheter package
EP0744183B1 (en) Hardpack shield for a pivoting needle guard
US4921491A (en) Disposable needle system with chemical disinfectant means
US9173813B2 (en) Medical tool and waste collection device
US8137332B2 (en) Container for introducing at least one non-sterile vessel in a sterile region
US6183449B1 (en) Safety caps for sharps
AU6916294A (en) Means for collection and transfer of fluids
RU2649526C2 (en) Storage device
CA2097329A1 (en) Device for destruction and storage of cannulas
US5138125A (en) Electrical needle destruction device with sterilizable assembly
RU2400257C2 (en) Device for protection against trauma by needle tip
WO2000035519A1 (en) Syringe and coordinated needle set for injections and more specifically for orthodental anesthesia
CA2322585C (en) Apparatus for the sterile transfer of fluids
CN216124970U (en) Hard pack safety needle device
US5848895A (en) Sleeve for dental instrument nozzle
WO2017185183A1 (en) Reusable syringe assembly including retractable protective shielding frame
US20230114891A1 (en) Retainer for Positioning of Medical Instruments for Sterilization
US11471238B2 (en) Medical waste container
AU774131B2 (en) Sterilization container
JPH1028739A (en) Medical puncturing instrument

Legal Events

Date Code Title Description
AS Assignment

Owner name: OMNISONICS MEDICAL TECHNOLOGIES, INC., MASSACHUSET

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RABINER, ROBERT;HARE, BRADLEY A.;REEL/FRAME:012055/0441

Effective date: 20010322

AS Assignment

Owner name: OMNISONICS MEDICAL TECHNOLOGIES, INC., MASSACHUSET

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOPER, JAMES;REEL/FRAME:012929/0239

Effective date: 20011217

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: R2552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: REFUND - 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: R2555); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: EMIGRANT BANK, N.A.,NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OMNISONICS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:024035/0138

Effective date: 20091118

Owner name: EMIGRANT BANK, N.A., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OMNISONICS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:024035/0138

Effective date: 20091118

FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

AS Assignment

Owner name: CYBERSONICS, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EMIGRANT BANK, N.A.;REEL/FRAME:025779/0820

Effective date: 20101201

AS Assignment

Owner name: EMIGRANT BANK, N.A., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:CYBERSONICS, INC.;REEL/FRAME:025879/0635

Effective date: 20101201

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150304