Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5620579 A
Publication typeGrant
Application numberUS 08/435,993
Publication date15 Apr 1997
Filing date5 May 1995
Priority date5 May 1995
Fee statusPaid
Also published asCA2170660A1, CA2170660C, DE69615909D1, EP0741186A2, EP0741186A3, EP0741186B1, US5653863
Publication number08435993, 435993, US 5620579 A, US 5620579A, US-A-5620579, US5620579 A, US5620579A
InventorsMarvin A. Genshaw, Dijia Huang, Matthew K. Musho, Kin F. Yip
Original AssigneeBayer Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for reduction of bias in amperometric sensors
US 5620579 A
Abstract
Apparatus and method are provided for determining the concentration of an analyte in a fluid test sample by applying the fluid test sample to the surface of a working electrode which is electrochemically connected to a reference electrode which surface bears a composition comprising an enzyme specific for the analyte. A mediator is reduced in response to a reaction between the analyte and the enzyme. An oxidizing potential is applied between the electrodes to return at least a portion of the mediator back to its oxidized form before determining the concentration of the analyte to thereby increase the accuracy of the analyte determination. Following this initially applied potential, the circuit is switched to an open circuit or to a potential that substantially reduces the current to minimize the rate of electrochemical potential at the working electrode. A second potential is applied between the electrodes and the current generated in the fluid test sample is measured to determine analyte concentration. Optionally, the accuracy of the analyte determination is further enhanced algorithmically.
Images(3)
Previous page
Next page
Claims(5)
What is claimed is:
1. Apparatus for analyte determination in a test sample comprising:
amperometric sensor means for receiving the test sample;
timer means for identifying a burnoff time interval, a delay time interval, and a read time interval; said read time interval following said delay time interval;
voltage potential means responsive to said timer means for applying a first voltage potential which is a burnoff voltage potential to said amperometric sensor means during said burnoff time interval and for applying a second voltage potential which is a read voltage potential to said amperometric sensor means during said read time interval; said burnoff voltage potential and said read voltage potential having a common polarity;
means responsive to said timer means and said voltage potential means for measuring a first current i1 resulting from said applied burnoff voltage potential and a second current i2 resulting from said applied read voltage potential; and
means responsive to said current measuring means for determining an analyte value of the test sample.
2. Apparatus of claim 1 further includes means for storing predetermined characteristic parameter values relating to said amperometric sensor means and means responsive to said first current i1 and second current i2 measuring means for calculating a bias correction value.
3. Apparatus of claim 2 wherein said analyte value determining means is responsive to said bias correction value calculating means for determining said analyte value.
4. Apparatus of claim 3 wherein said calculated bias correction value is defined by means for calculating: ##EQU8## where i1 represents said first current resulting from said burnoff voltage potential, i2 represents said second current resulting from said read voltage potential and Int, slope, i1-lo, i2-lo and s1 represent said predetermined characteristic parameter values relating to said amperometric sensor means, Int being the intercept of current i2, slope being the slope of current i2, i1-lo being the average current i1 at the low analyte calibration level, i2-lo being the average current i2 at the low analyte calibration level and s1 being the slope current i1.
5. Apparatus of claim 4 wherein said analyte is glucose and said determined analyte value is represented by: ##EQU9## where k represents a selected bias scaling factor having a value between 0 and 1.
Description
FIELD OF THE INVENTION

The present invention generally relates to a biosensor, and, more particularly, to a new and improved method and apparatus for reducing bias in amperometric sensors.

BACKGROUND OF THE INVENTION

The quantitative determination of analytes in body fluids is of great importance in the diagnoses and maintenance of certain physiological abnormalities. For example lactate, cholesterol and bilirubin should be monitored in certain individuals. In particular, the determination of glucose in body fluids is of great importance to diabetic individuals who must frequently check the level of glucose in their body fluids as a means of regulating the glucose intake in their diets. While the remainder of the disclosure herein will be directed towards the determination of glucose, it is to be understood that the procedure and apparatus of this invention can be used for the determination of other analytes upon selection of the appropriate enzyme. The ideal diagnostic device for the detection of glucose in fluids must be simple, so as not to require a high degree of technical skill on the part of the technician administering the test. In many cases, these tests are administered by the patient which lends further emphasis to the need for a test which is easy to carry out. Additionally, such a device should be based upon elements which are sufficiently stable to meet situations of prolonged storage.

Methods for determining analyte concentration in fluids can be based on the electrochemical reaction between the analyte and an enzyme specific to the analyte and a mediator which maintains the enzyme in its initial oxidation state. Suitable redox enzymes include oxidases, dehydrogenases, catalase and peroxidase. For example, in the case where glucose is the analyte, the reaction with glucose oxidase and oxygen is represented by equation (A). ##STR1##

In a colorimetric assay, the released hydrogen peroxide, in the presence of a peroxidase, causes a color change in a redox indicator which color change is proportional to the level of glucose in the test fluid. While colorimetric tests can be made semi-quantitative by the use of color charts for comparison of the color change of the redox indicator with the color change obtained using test fluids of known glucose concentration, and can be rendered more highly quantitative by reading the result with a spectrophotometric instrument, the results are generally not as accurate nor are they obtained as quickly as those obtained using a biosensor. As used herein, the term biosensor is intended to refer to an analytical device that responds selectively to analytes in an appropriate sample and converts their concentration into an electrical signal via a combination of a biological recognition signal and a physico-chemical transducer. Aside from its greater accuracy, a biosensor is an instrument which generates an electrical signal directly thereby facilitating a simplified design. In principle, all the biosensor needs to do is measure the time and read the current. Furthermore, a biosensor offers the advantage of low material cost since a thin layer of chemicals is deposited on the electrodes and little material is wasted.

Referring to the above equation (A), a suitable electrode can measure the formation H2 O2 due to its introduction of electrons into the test fluid according to equation B: ##STR2## The electron flow is then converted to the electrical signal which directly correlates to the glucose concentration.

In the initial step of the reaction represented by equation (A), glucose present in the test sample converts the oxidized flavin adenine dinucleotide (FAD) center of the enzyme into its reduced form, (FADH2). Because these redox centers are essentially electrically insulated within the enzyme molecule, direct electron transfer to the surface of a conventional electrode does not occur to any measurable degree in the absence of an unacceptably high cell voltage. An improvement to this system involves the use of a nonphysiological redox coupling between the electrode and the enzyme to shuttle electrons between the (FADH2) and the electrode. This is represented by the following scheme in which the redox coupler, typically referred to as a mediator, is represented by M: ##STR3##

In the scheme, GO(FAD) represents the oxidized form of glucose oxidase and GO(FADH2) indicates its reduced form. The mediating species MOX /Mred shuttles electrons from the reduced enzyme to the electrode thereby oxidizing the enzyme causing its regeneration in situ which, of course, is desirable for reasons of economy. The main purpose for using a mediator is to reduce the working potential of the sensor. An ideal mediator would be reoxidized at the electrode at a low potential under which impurity in the chemical layer and interfering substances in the sample would not be oxidized thereby minimizing interference.

Many compounds are useful as mediators due to their ability to accept electrons from the reduced enzyme and transfer them to the electrode. Among the mediators known to be useful as electron transfer agents in analytical determinations are the substituted benzo- and naphthoquinones disclosed in U.S. Pat. No. 4,746,607; the N-oxides, nitroso compounds, hydroxylamines and oxines specifically disclosed in EP 0 354 441; the flavins, phenazines, phenothiazines, indophenols, substituted 1,4-benzoquinones and indamins disclosed in EP 0 330 517 and the phenazinium/phenoxazinium salts described in U.S. Pat. No. 3,791,988. A comprehensive review of electrochemical mediators of biological redox systems can be found in Analytica Clinica Acta. 140 (1982), Pp 1-18.

Among the more venerable mediators is hexacyanoferrate, also known as ferricyanide, which is discussed by Schlapfer et al in Clinica Chimica Acta., 57 (1974), Pp. 283-289. In U.S. Pat. No. 4,929,545 there is disclosed the use of a soluble ferricyanide compound in combination with a soluble ferric compound in a composition for enzymatically determining an analyte in a sample. Substituting the iron salt of ferricyanide for oxygen in equation (A) provides: ##STR4## since the ferricyanide is reduced to ferrocyanide by its acceptance of electrons from the glucose oxidase enzyme.

Another way of expressing this reaction is by use of the following equation (C): ##STR5## The electrons released are directly equivalent to the amount of glucose in the test fluid and can be related thereto by measurement of the current which is produced through the fluid upon the application of a potential thereto. Oxidation of the ferrocyanide at the anode renews the cycle.

As is apparent from the above description, a necessary attribute of a mediator is the ability to remain in the oxidized state under the conditions present on the electrode surface prior to the use of the sensor. Any reduction of the mediator will increase the background current resulting in the biosensor reading being biased. It has been discovered that these mediators do tend to be reduced over time, especially under conditions of stress, thereby diminishing the usefulness of the sensors to which they are applied.

In published international patent application PCT/US92/01659 there is disclosed the use of potassium dichromate as an oxidizing agent in a colorimetric reagent strip. The purpose of the oxidizing agent is to oxidize impurities in other reagent components to improve the colorimetric sensor's stability. This publication mentions U.S. Ser. No. 07/451,671 (now U.S. Pat. No. 5,288,636) and characterizes it as describing a system in which a reduced mediator is re-oxidized by the application of a potential and measuring the current after a specific time to determine the concentration of the analyte. More specifically, the '636 patent requires the complete oxidation of the glucose by glucose oxidase. As the enzyme is reduced by the glucose, the ferricyanide reacts with enzyme to produce ferrocyanide. The ferrocyanide produced by this enzymatic reaction is combined with ferrocyanide produced during storage. This latter ferrocyanide is the result of a reaction between ferricyanide and impurities found in materials deposited with the glucose oxidase and ferricyanide. The '636 patent makes no distinction between ferrocyanide produced between these two sources.

It would be desirable, and it is an object of the present invention to provide a method whereby the undesired reduction of mediator compounds stored on an electrodes surface can be reversed to minimize its effect on estimating the analyte values in fluid test samples with very low analyte concentrations.

It is a further object to provide such a method in which the accuracy of the analyte determination is enhanced.

It is a further object to provide such a method wherein the analyte is glucose.

An additional object is to provide a mathematical means for further enhancement of the accuracy of the analyte determination.

It is a further object to provide apparatus for accurately determining analyte values.

It is a further object to provide such apparatus that is simple and economical to manufacture.

SUMMARY OF THE INVENTION

The present invention involves a method for determining the concentration of an analyte in a fluid test sample by applying the test sample to the surface of a working electrode. The electrode has on its surface a composition comprising an enzyme specific for the analyte, a mediator which is reduced as a result of a reaction between the analyte and the enzyme, which mediator has undergone partial reduction to its reduced state as a result of having been exposed to ambient conditions. There is disclosed herein an improvement to the method which involves the steps of:

a) applying a positive potential pulse to the electrode to oxidize at least a portion of the mediator to its oxidized form. This step reduces background bias in the electrode. The background bias can be further reduced by:

a) determining the current (i1) during the application of the positive pulse and the current (i2) at the end of the read time, and

b) calculating the corrected analyte level G by solving equation (1): ##EQU1## where Int and slope are the intercept and slope of i2 and Δ(i1, i2) is an error correction term proportional to the background bias calculated as: ##EQU2## where s1 =slope of i1 i1-lo =i1 at a low analyte level,

i2-lo =i2 at a low analyte level, and

k=a selected scaling factor.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention together with the above and other objects and advantages may best be understood from the following detailed description of the preferred embodiments of the invention illustrated in the drawings, wherein:

FIGS. 1A and 1B are charts illustrating potential and current relative to time respectively in accordance with the method of the invention;

FIG. 2 is a block diagram representation of a device for determining analyte values employed to perform the method of the invention; and

FIG. 3 is a flow chart illustrating the sequential steps performed by a processor of FIG. 2 in accordance with the method of the invention.

DESCRIPTION OF THE INVENTION

The present invention is a method that reduces the background bias due to oxidizable impurities in an amperometric sensor used for measuring a specific analyte, such as glucose, in blood. The background current of such a sensor will increase if it is stored over a long period of time or under stress (heat, moisture, etc.) due to the increased presence of reduced mediator or other reduced impurity present in the sensor such as enzyme stabilizers, e.g. glutamate, and surfactants having reducing equivalents. For example, in a ferricyanide based amperometric sensor, the background bias is related to the presence of ferrocyanide (from the reduction of ferricyanide) near the electrode surface. This accumulated ferrocyanide, as opposed to the ferrocyanide produced during use of the sensor (fresh ferrocyanide), is oxidized back to ferricyanide to reduce the background bias it causes and thereby extend the sensor shelf life. To achieve this objective, the method uses an electrochemical approach. The background bias is further reduced when the electrochemical approach is augmented with an algorithmic correction.

Referring to FIGS. 1A and 1B, the method of our invention involves first applying a positive potential pulse (called the "burn-off" pulse) which precedes the normal potential profile during use of the sensor. This is typically accomplished by applying a positive potential of from 0.1 to 0.9 volt (preferably 0.3 to 0.7 volt) between the working and reference electrodes of the sensor for a period of from 1 to 15 seconds (preferably 5 to 10 seconds). The burn-off pulse oxidizes the initial ferrocyanide (or other oxidizable impurity), so that the sensor can begin the assay with a clean background. Typically, the background is not perfectly clean since only a portion of the oxidizable impurity is oxidized by the burn-off pulse. This is the case because the chemical layer covers both the working and the reference electrodes. The initial ferrocyanide exists in the chemical layer since it comes from ferricyanide. When sample fluid is applied and the chemical layer re-hydrates, the ferrocyanide near the working electrode is re-oxidized. The rest of the ferrocyanide diffuses into the sample fluid and is mixed with the glucose. That portion of the initial ferrocyanide cannot be re-oxidized without affecting the glucose. The initial ferrocyanide is near the electrode for a very short time (a few seconds) after the fluid test sample is applied. The reason for this is that the chemicals (enzyme and ferricyanide, etc.) are deposited as a thin layer on the working and reference electrodes. The burn-off technique takes advantage of this since a significant amount of the initial ferrocyanide can be burned off without noticeable reduction of the analyte concentration in the fluid test sample most of which does not come into direct contact with the electrode. Experiments have demonstrated that the background bias of a stressed sensor can be reduced by 40% with proper application of the burn-off pulse.

The background bias can be further reduced by the use of a background correction algorithm which works in conjunction with the burn-off pulse. The algorithm is based on the taking of two current readings. The first reading (i1) is taken during the burn-off pulse and the second (i2) at the end of the read time, i.e. the time elapsed from the moment when the second potential pulse is applied to the moment when the current i2 is measured. The length of the read time is t3 -t2, as shown in FIG. 1. The analyte concentration is then calculated from the two current readings, i1 and i2. Tests on sensors have shown that the background correction algorithm is able to remove at least 80% of the remaining background bias, and, as a result, the sensor stability can be improved to provide a significant extension in shelf life.

An amperometric glucose sensor of the type useful in the practice of the present invention is constructed as follows: Two carbon electrodes are printed on a polymer substrate. Next a layer of chemical components is deposited on the electrodes and dried. A preferred chemical composition is 5 μL of a medium containing 55 mM ferricyanide (potassium salt), 8.5 units of glucose oxidase, 0.53% of poly(ethylene oxide), 0.40% of cremophor as surfactant and 83 mM phosphate buffer at pH 7.2. During the glucose assay, a potential profile consisting of three consecutive time periods is applied to the sensor. These time periods are, in sequence, the burn-off time (typically 0.4 volt for 10 seconds); delay period (open circuitry for 15 seconds) and read time (0.4 volts, 5 seconds). The exact time of the delay period is not critical but is normally in the range of 10 to 40 seconds. This delay period allows sufficient time for the reaction to build up sufficient ferrocyanide to allow the current resulting from the reoxidation of the ferrocyanide to be measured without difficulty. These time periods are illustrated in FIGS. 1A and 1B which plots potential and current against time. Current measurements are taken at the end of the burn-off period (i1) and read time (i2) whereupon the corresponding glucose concentration is calculated using equation 1. The constants in the equation, e.g. slopes and intercepts are predetermined values.

The following discussion relates to a fluid test sample in which glucose is the analyte to be detected and involves a sensor in which ferricyanide is the mediator. However, the discussion is equally applicable to systems for the determination of other analytes and in which the oxidizable species is something other than ferrocyanide.

The burn-off technique, i.e. application of a positive potential pulse to the electrode to oxidize at least a portion of the mediator back to its oxidized form, is illustrated by FIGS. 1A and 1B. In FIGS. 1A and 1B, in which the potential and current profiles are plotted, the timing is as follows:

t0 --sample is detected, burnoff period begins. Sample is detected by inserting the sensor into the instrument which causes the immediate application of a 0.4 volt potential. The current is continuously checked to see if a larger than predetermined. threshold (e.g. 250 nA) is measured. When a larger current than the threshold value is detected, a sample has been detected to begin the burnoff time period.

t1 --end of burn-off period and current i1 is measured. The length of the burnoff period, t1 -t0, is usually 5 to 10 seconds. The potential is 0.4 volt at t1 but switches to an open circuit or to a potential that substantially reduces the current to minimize the rate of electrochemical reaction at the working electrode for a set delay period after the burnoff period.

t2 --end of set delay period. The length of the wait period, t2 -t1, is normally 10 to 40 seconds. A read potential of 0.4 volt is applied at t2.

t3 --end of read time when current i2 is measured. The length of the read time, t3 -t2, is 5 to 10 seconds.

The burn-off pulse, i.e. application of the 0.4 volt potential from t0 to t1, is designed to eliminate part of initial ferrocyanide (accumulated ferro) or other oxidizable interferents in the enzyme layer.

The burn-off algorithm calculates glucose concentration from two current measurements i1 and i2 using equation 1: ##EQU3##

Equation 1 is a partial correction algorithm which is intended to achieve a compromise between reducing stress-related background bias and preserving system precision. The basic scheme is to use i2 as a glucose reading ##EQU4## where int and slope are the intercept and slope of i2 respectively. The term Δ(i1,i2) is the estimated background increase, due to stress or other causes, derived from the current i1 and i2. For fresh sensors, this term is close to zero. The parameter k is selectively provided or set to a value from 0 to 1. There will be no background correction if k is set at zero. On the other hand a full correction can be achieved if k is 1. In the following examples k is set at 0.8 for partial correction because it has been found that the variation of i1 is larger than that of i2 when multiple sensors are tested under the same glucose concentration. Compared with the glucose value calculated from i2 alone, k=0 in equation (1), the glucose value calculated from i1 and i2 jointly will be slightly lower in precision (a larger standard deviation) and, of course, a much smaller background bias. The tradeoff between the precision and bias can be achieved by choosing the proper k value. If k=0, there is no background correction and i1 is not used. In this case, the highest precision can be obtained, but it is accompanied by a high background bias. If k=1, the full background correction is applied whereupon the lowest bias can be achieved but at the cost of precision. The k value is set at 0.8 in the example to achieve a compromise between precision and bias.

The parameters in these equations are:

Int--intercept of read current i2,nA.

slope--slope of read current i2,nA.dL/mg.

i1.sbsb.--lo --average burn-off current i1,nA, at the low glucose calibration level, i.e. 50 mg/dL.

i2.sbsb.--lo --average read time current i2,nA, at the low glucose calibration level. Actually, i2.sbsb.--lo is not an independent parameter. It can be calculated from Int and slope:

i2.sbsb.--lo =Int+slope·50.

s1 --slope of burn-off currently, nA·dL/mg.

k--set to 0.8 for partial correction.

Int, slope, i1.sbsb.--lo, and s1 are local parameters; each sensor lot has its own parameter values which values are determined experimentally. The algorithm needs two known current values, one for i1 and one for i2 for normal (unstressed) sensors. The i1.sbsb.--lo and i2.sbsb.--lo are available since they are used in determining the intercept (Int) and slopes (s1 and slope). Of course, current at other glucose levels can be used in the algorithm. This would however introduce the extra step of adding two additional independent parameters. The procedure of the present invention is demonstrated in the following examples:

EXAMPLE I

The following steps are taken to determine the lot parameter values necessary in the algorithm:

A. Test 16 sensors from the lot at the low calibration level, 50 mg/dL, and obtain the average currents i1.sbsb.--lo and i2.sbsb.--lo of the burn-off current and read time current, respectively. It is found that i1.sbsb.--lo =1951.2 nA and i2.sbsb.--lo =1952.3 nA.

B. Test 16 sensors at the high calibration level, 400 mg/dL, and obtain the average current i1.sbsb.--hi and i2.sbsb.--hi. It is found that i1.sbsb.--hi =6003.3 nA and i2.sbsb.--hi =8831.7 nA.

C. Calculate the parameter values: ##EQU5## Therefore, equation (1) becomes: ##EQU6##

EXAMPLE II

It has been discovered that the burn-off pulse alone will significantly reduce the background bias even without the use of the background correction algorithm.

In this experiment, ten sensors were stressed under 30° C. and 91% humidity for 3 hours. Aqueous glucose at 50 mg/dL was used as sample. Five stressed sensors were tested with a 10 second burn-off pulse and five without the pulse. In addition, ten unstressed sensors were tested as control (five with the 10 second burn-off and five without) and the bias calculated using the following equation (3): ##EQU7## It was found that the bias was 30.6% without the burn-off pulse and 18.0% with it which data demonstrate that the burn-off pulse alone reduces the background bias by about 40%.

EXAMPLE III

This example explains how the algorithm corrects for background bias:

Eight sensors were stored at below -20° C. for two weeks and another eight sensors were stressed at 50° C. for four weeks. All sixteen sensors were tested using whole blood having a 100 mg/dL glucose concentration. The parameter values were determined from fresh sensors. The glucose readings, G, were calculated as follows:

A. No background bias correction algorithm: Equation 1 with k=0.

B. Partial correction: Equation 1 with k=0.8.

The bias in percent is calculated using Equation 4 with the results being listed in Table 1.

              TABLE 1______________________________________ ##STR6##                      (4)Bias at 100 mg/dL              no burn-off                        Partial correction              algorithm (k = 0.8)______________________________________-20° C., 2 weeks              3.8%      5.3%50° C., 4 weeks              64.7%     15.0%______________________________________

A device capable of carrying out the invention is represented by FIG. 2. Referring to FIG. 2, there is shown a block diagram representation of a device for accurately determining analyte values designated as a whole by the reference character 10 and arranged in accordance with principles of the present invention. Device 10 includes a microprocessor 12 together with a memory device 14. Microprocessor 12 is suitably programmed to perform the method of the invention as illustrated in FIG. 3. Various commercially available devices, such as a DS5000 microcontroller manufactured by Dallas Semiconductor, can be used for the microprocessor 12 and memory 14. Memory 14 can be included within the microprocessor 12 or separately provided as illustrated in FIG. 2.

Digital data from the microprocessor 12 is applied to a digital-to-analog (D/A) converter 16. D/A converter 16 converts the digital data to an analog signal. An amplifier 18 coupled to the D/A converter 16 amplifies the analog signal. The amplified analog signal output of amplifier 18 is applied to a sensor 20.

Sensor 20 is coupled to an amplifier 22. The amplified sensed signal is applied to an analog-to-digital (A/D) converter 24 that converts the amplified, analog sensor signal to a digital signal. The digital signal is applied to the microprocessor 12.

Various commercially available devices can be used for D/A converter 16, amplifiers 18 and 20 and A/D converter 24. For example, a device type PM-752F4FS manufactured by PMI can be used for D/A converter 16. Operational amplifier device type TL074AC manufactured and sold by Linear Technology can be used for amplifiers 18 and 22. A device type MAX 135 CWI manufactured and sold by Maxum can be used for the A/D converter 24.

Referring also to FIG. 3, there are shown the sequential steps for accurate analyte determination of the invention. Initially microprocessor 12 applies a burnoff pulse, for example a potential of 0.4 volts, to the sensor 20 as indicated at a block 300. Then the microprocessor checks to identify a sample corresponding to a detected sensor threshold current value as indicated at a decision block 302. When a sample is detected at block 302, a predetermined burnoff time interval, such as 10 seconds is identified at a decision block 304. Next the current i1 is measured as indicated at a block 306 and an open circuit is applied to the sensor 20 as indicated at a block 308. Then a set delay or predetermined wait time interval, such as fifteen (15) seconds is identified at a decision block 310. After the set delay, a read pulse or potential of 0.4 volts is applied to the sensor 20 as indicated at a block 312. Then a predetermined read time interval for the read pulse, such as 5 seconds is identified at a decision block 314 and the current i2 is measured as indicated at a block 316. Next microprocessor 12 gets the stored parameters for a particular sensor 20 including Int, slope, i1.sbsb.--lo, i2.sbsb.--lo, S1 and k, as indicated at a block 320. The correction term Delta (i1, i2) is calculated utilizing the stored parameters and measured burn-off current i1 and read current i2 as indicated block 322. Next the analyte value, such as glucose reading G, is calculated utilizing the read current i2 and the calculated correction term Delta (i1, i2) multiplied by the selected scaling value k, as indicated at a block 324.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4496454 *19 Oct 198329 Jan 1985Hewlett-Packard CompanyHigh performance liquid chromatography
US4746607 *7 Feb 198524 May 1988Eastman Kodak CompanyUse of substituted quinone electron transfer agents in analytical determinations
US4853091 *26 Apr 19881 Aug 1989Siemens AktiengesellschaftMethod and apparatus for the electrochemical determination of oxygen concentration
US4929545 *14 Apr 198929 May 1990Boehringer Mannheim CorporationMethod and reagent for determination of an analyte via enzymatic means using a ferricyanide/ferric compound system
US5112455 *20 Jul 199012 May 1992I Stat CorporationMethod for analytically utilizing microfabricated sensors during wet-up
US5288387 *10 Jun 199122 Feb 1994Daikin Industries, Ltd.Apparatus for maintaining the activity of an enzyme electrode
US5288636 *14 Dec 199022 Feb 1994Boehringer Mannheim CorporationEnzyme electrode system
US5456811 *11 Aug 199410 Oct 1995Eastman Kodak CompanyMethod and apparatus for measuring silver ion activity
EP0330517A2 *27 Feb 198930 Aug 1989Solarcare Technologies CorporationMethod, system and devices for the assay and detection of biochemical molecules
EP0354441A2 *1 Aug 198914 Feb 1990Boehringer Mannheim GmbhMethod for the colorimetric determination of analyte using enzymatic oxydation
Non-Patent Citations
Reference
1 *Analytica Chimica Acta. 140 (1982) month unavailable 1 18, Fultz et al. Mediator Compounds for the Electrochemical Study of Biological Redox Systems: A Compilation .
2Analytica Chimica Acta. 140 (1982) month unavailable 1-18, Fultz et al. "Mediator Compounds for the Electrochemical Study of Biological Redox Systems: A Compilation".
3 *Clinica Chimica Acta., 57 (1974) month unavailable 283 289, Schl a pfer et al Electrochemical Measurement of Glucose Using Various Electron Acceptors .
4Clinica Chimica Acta., 57 (1974) month unavailable 283-289, Schlapfer et al "Electrochemical Measurement of Glucose Using Various Electron Acceptors".
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5863400 *12 Apr 199526 Jan 1999Usf Filtration & Separations Group Inc.Electrochemical cells
US5942102 *7 May 199724 Aug 1999Usf Filtration And Separations Group Inc.Electrochemical method
US5980709 *11 Apr 19969 Nov 1999Usf Filtration And Separations GroupMethod of defining an electrode area
US617997915 Nov 199630 Jan 2001Usf Filtration & Separations Group, Inc.Electrochemical cell
US628412519 Jun 19964 Sep 2001Usf Filtration And Separations Group, Inc.Electrochemical biosensor for determining the concentration of an analyte in a carrier such as concentration of glucose in blood
US632591711 Feb 20004 Dec 2001Usf Filtration And Separations Group, Inc.Applying potential between electrodes that are sufficiently close so that reaction products formed at each electrode diffuse to the other, measuring
US641341018 Jul 20002 Jul 2002Lifescan, Inc.Biosensor determination of analyte concentration in a carrier, for example glucose in blood; close spacing of electrodes; diffusion controlled; independant of temperature, solution viscosity and haematocrit content; diabetes
US644411514 Jul 20003 Sep 2002Lifescan, Inc.Useful in applications where it is desirable to follow the progress of a chemical reaction, particularly in sensor applications where the progress of the reaction of an analyte can be useful in determining the analyte concentration.
US647536011 Sep 20005 Nov 2002Lifescan, Inc.Heated electrochemical cell
US652111010 Nov 200018 Feb 2003Lifescan, Inc.Electrochemical cell
US68522122 Oct 20018 Feb 2005Lifescan, Inc.Method and apparatus for automatic analysis
US686380123 Apr 20018 Mar 2005Lifescan, Inc.Biosensor such as for determining glucose concentration in blood
US687825119 Feb 200212 Apr 2005Lifescan, Inc.Heated electrochemical cell
US696028921 Dec 20011 Nov 2005Lifescan, Inc.Using a biosensor for quantitative analysis of a reduced (or oxidised) form of a redox species in a cell having a working electrode and a counter electrode spaced about 10-500 microns; measuring a charge of the depleted redox species
US702221715 Jul 20024 Apr 2006Lifescan, Inc.Electrochemical method for measuring chemical reaction rates
US71320412 Feb 20047 Nov 2006Bayer Healthcare LlcMethods of determining the concentration of an analyte in a fluid test sample
US717589712 Nov 200313 Feb 2007Avery Dennison CorporationAdhesive articles which contain at least one hydrophilic or hydrophobic layer, method for making and uses for same
US734792622 Oct 200225 Mar 2008Arkray, Inc.Method and apparatus for measuring specific component
US741643019 Aug 200526 Aug 2008Bayer Healthcare LlcContact connector assembly for a sensor-dispensing instrument
US743181412 May 20047 Oct 2008Lifescan, Inc.Electrochemical cell
US74318201 Oct 20027 Oct 2008Lifescan, Inc.Determination concentration; controlling diffusion; redox systems
US7537684 *23 Jul 200326 May 2009Arkray, Inc.Sample analyzing method and sample analyzing device
US7547381 *26 Sep 200316 Jun 2009Agency For Science, Technology And Research And National University Of SingaporeSensor array integrated electrochemical chip, method of forming same, and electrode coating
US757545731 Jul 200818 Aug 2009Bayer Healthcare LlcContact connector assembly for a sensor-dispensing instrument
US760472222 Jul 200320 Oct 2009Lifescan, Inc.Electrochemical cell
US760817522 Jul 200327 Oct 2009Lifescan, Inc.Electrochemical cell
US772311330 Jul 200225 May 2010Bayer Healthcare LlcPackaging system for test sensors
US772746718 Jun 20041 Jun 2010Roche Diagnostics Operations, Inc.Reagent stripe for test strip
US774943718 Jun 20046 Jul 2010Roche Diagnostics Operations, Inc.Method and reagent for producing narrow, homogenous reagent stripes
US77812227 Aug 200824 Aug 2010Bayer Healthcare Llcdetermines analyte concentration from an output signal generated by an oxidation/reduction reaction of the analyte; provide accurate and precise analyte concentrations at a reference temperature
US780704322 Feb 20055 Oct 2010Oakville Hong Kong Company Limiteddetermining the concentration of the analyte in the fluid sample; manufacturing the devices; using a biosensor and calculates the glucose concentration in the patient's blood; monitoring by diabetic patient
US782902318 Jun 20049 Nov 2010Roche Diagnostics Operations, Inc.Test strip with vent opening
US7862695 *4 Feb 20054 Jan 2011Bayer Healthcare, LlcElectrochemical biosensor
US786269610 Sep 20074 Jan 2011Bayer Healthcare Llcelectrochemical sensor strips; By reducing the amount of mediator and/or enzyme used on the sensor strip, the long-term stability of the reagent composition may be increased in relation to conventional biosensors and reagent compositions
US787961829 Jan 20091 Feb 2011Roche Diagnostics Operations, Inc.Preparing biosensors from webbing of substrate; depositing continuous stripe of reagent onto webbing in shear thinning form using slot-die-coating head, dry coated reagent stripe on solid support; test strips
US794539416 Jun 200517 May 2011Bayer Healthcare LlcDetecting incomplete fill of biosensors
US796685915 Oct 200828 Jun 2011Bayer Healthcare LlcUnderfill detection system for a biosensor
US80029657 Apr 200623 Aug 2011Bayer Healthcare LlcOxidizable species as an internal reference in control solutions for biosensors
US800765622 Oct 200430 Aug 2011Bayer Healthcare LlcEnzymatic electrochemical biosensor
US807103018 Jun 20046 Dec 2011Roche Diagnostics Operations, Inc.Test strip with flared sample receiving chamber
US807576016 Sep 200913 Dec 2011Lifescan, Inc.Electrochemical cell
US809714731 Jan 201117 Jan 2012Panasonic CorporationMethod of measuring quantity of substrate
US810105625 Sep 200924 Jan 2012Lifescan, Inc.Electrochemical cell
US810106328 Jan 201124 Jan 2012Panasonic CorporationMethod of measuring quantity of substrate
US810106530 Dec 200924 Jan 2012Lifescan, Inc.Systems, devices, and methods for improving accuracy of biosensors using fill time
US810251712 Dec 200524 Jan 2012Bayer Healthcare, LlcMethod of differentiating between blood and control solutions containing a common analyte
US811941415 Sep 201021 Feb 2012Roche Diagnostics Operations, Inc.Test strip with slot vent opening
US813752918 Nov 201020 Mar 2012Bayer Healthcare LlcMethods of using an electrochemical biosensor
US814272123 Sep 201027 Mar 2012Roche Diagnostics Operations, Inc.Test strip with slot vent opening
US814767414 Nov 20083 Apr 2012Bayer Healthcare LlcRapid-read gated amperometry
US814816220 Jul 20103 Apr 2012Bayer Healthcare LlcTemperature-adjusted analyte determination for biosensor system
US821137920 Sep 20113 Jul 2012Roche Diagnostics Operations, Inc.Test strip with slot vent opening
US822204416 Nov 201117 Jul 2012Roche Diagnostics Operations, Inc.Test strip with flared sample receiving chamber
US823407617 Oct 200831 Jul 2012Bayer Healthcare LlcAbnormal output detection system for a biosensor
US8236165 *2 May 20077 Aug 2012Bionime CorporationMethod for operating measuring meter and measuring meter
US826289910 Jul 200911 Sep 2012Bayer Healthcare LlcSystems and methods including amperometric and voltammetric duty cycles
US828770325 Sep 200816 Oct 2012Roche Diagnostics Operations, Inc.Biosensor and method of making
US828771716 May 200516 Oct 2012Bayer Healthcare Llcfast scan rates to reduce the hematocrit effect with regard to a glucose analysis in blood; handheld measuring device; medical equipment
US829840022 Jun 201030 Oct 2012Panasonic CorporationMethod of measuring quantity of substrate
US831798811 Apr 200727 Nov 2012Bayer Healthcare LlcConcentration determination in a diffusion barrier layer
US833769110 Dec 200825 Dec 2012Bayer Healthcare LlcControl markers for auto-detection of control solution and method of use
US83888277 Feb 20125 Mar 2013Bayer Healthcare, LlcMethods of using an electrochemical biosensor
US841639821 Dec 20119 Apr 2013Bayer Healthcare, LlcMethod of differentiating between blood and control solutions containing a common analyte
US84452906 Mar 201221 May 2013Bayer Healthcare LlcTemperature-adjusted analyte determination for biosensor systems
US844974021 Jul 201028 May 2013Lifescan, Inc.Systems and methods for discriminating control solution from a physiological sample
US848624322 Aug 200816 Jul 2013Lifescan, Inc.Electrochemical cell
US852975131 Mar 200610 Sep 2013Lifescan, Inc.Systems and methods for discriminating control solution from a physiological sample
US855130825 Sep 20088 Oct 2013Roche Diagnostics Operations, Inc.Biosensor and method of making
US855132013 May 20098 Oct 2013Lifescan, Inc.System and method for measuring an analyte in a sample
US859748024 Jan 20123 Dec 2013Lifescan, Inc.Electrochemical cell
US86037686 Jan 200910 Dec 2013Lifescan, Inc.System and method for measuring an analyte in a sample
US861737030 Sep 201031 Dec 2013Cilag Gmbh InternationalSystems and methods of discriminating between a control sample and a test fluid using capacitance
US862319817 Dec 20107 Jan 2014Lifescan, Inc.Systems, devices, and methods for improving accuracy of biosensors using fill time
US866881922 Oct 201011 Mar 2014Bayer Healthcare LlcUnderfill recognition system for a biosensor
US8668820 *10 Jun 201011 Mar 2014Panasonic CorporationMethod of measuring quantity of substrate
US86798533 Jul 200725 Mar 2014Roche Diagnostics Operations, Inc.Biosensor with laser-sealed capillary space and method of making
US86813246 Mar 201325 Mar 2014Bayer Healthcare, LlcMethod of differentiating between blood and control solutions containing a common analyte
US869107322 Aug 20118 Apr 2014Bayer Healthcare LlcEnzymatic electrochemical biosensor
US86968804 Feb 200515 Apr 2014Bayer Healthcare LlcOxidizable species as an internal reference for biosensors and method of use
US870292611 Jul 201122 Apr 2014Bayer Healthcare LlcOxidizable species as an internal reference in control solutions for biosensors
US870296125 Feb 201322 Apr 2014Bayer Healthcare LlcMethods of using an electrochemical biosensor
US870296522 Nov 201022 Apr 2014Bayer Healthcare LlcBiosensor methods having enhanced stability and hematocrit performance
US870973914 Sep 201229 Apr 2014Lifescan, Inc.System and method for measuring an analyte in a sample
US871602420 Nov 20126 May 2014Bayer Healthcare LlcControl solution for use in testing an electrochemical system
US872829914 Nov 201320 May 2014Bayer Healthcare LlcBiosensor performance increasing methods having enhanced stability and hematocrit performance
US87447766 Jun 20113 Jun 2014Bayer Healthcare LlcMethod for determining analyte concentration based on complex index functions
US877148717 Mar 20068 Jul 2014Panasonic CorporationBiosensor, measuring instrument for biosensor, and method of quantifying substrate
US877816816 Sep 200815 Jul 2014Lifescan, Inc.Systems and methods of discriminating control solution from a physiological sample
US20080257063 *27 Jun 200823 Oct 2008Abbott Diabetes Care, Inc.Devices and methods for use in assessing a flow condition of a fluid
US200901840046 Jan 200923 Jul 2009Lifescan, Inc.System and method for measuring an analyte in a sample
USRE425676 Oct 201026 Jul 2011Lifescan, Inc.Electrochemical cell
USRE443304 May 20112 Jul 2013Lifescan Inc.Electrochemical cell
USRE4452123 Oct 20088 Oct 2013Bayer Healthcare LlcElectrochemical-sensor design
DE102004062051A1 *23 Dec 20046 Jul 2006Dräger Safety AG & Co. KGaAGas concentration determination for use in e.g. environmental analysis, involves classifying gas concentration corresponding to charge flowing through measuring electrode, after supplying voltage to electrode
DE102004062051B4 *23 Dec 200414 Jul 2011Dräger Safety AG & Co. KGaA, 23560Verfahren zur Bestimmung der Konzentration eines Gases mit einem elektrochemischen Gassensor
EP2017353A110 Feb 200421 Jan 2009Bayer Healthcare, LLCMethod of detecting bias in enzyme electrode measurements
EP2267150A17 Apr 200629 Dec 2010Bayer Healthcare LLCOxidizable species as an internal reference in control solutions for biosensors
EP2572632A123 Feb 200727 Mar 2013Bayer Healthcare LLCTemperature-adjusted analyte determination for biosensor systems
WO2010077660A18 Dec 20098 Jul 2010Bayer Healthcare LlcBiosensor system with signal adjustment
WO2011059670A122 Oct 201019 May 2011Bayer Healthcare LlcUnderfill recognition system for a biosensor
WO2011119533A122 Mar 201129 Sep 2011Bayer Healthcare LlcResidual compensation for a biosensor
WO2011156152A127 May 201115 Dec 2011Bayer Healthcare LlcSlope-based compensation including secondary output signals
WO2011156325A27 Jun 201115 Dec 2011Bayer Healthcare LlcUnderfill management system for a biosensor
WO2013043839A120 Sep 201228 Mar 2013Bayer Healthcare LlcBiosensor with error compensation
Classifications
U.S. Classification204/402, 204/403.15, 204/403.11, 205/777.5, 205/775, 204/403.14
International ClassificationG01N27/327, C12Q1/00, G01N33/66, G01N27/48, G01N33/483, G01N33/72, G01N33/92, G01N27/416
Cooperative ClassificationC12Q1/004
European ClassificationC12Q1/00B4
Legal Events
DateCodeEventDescription
15 Oct 2008FPAYFee payment
Year of fee payment: 12
15 Oct 2004FPAYFee payment
Year of fee payment: 8
13 Oct 2000FPAYFee payment
Year of fee payment: 4
5 May 1995ASAssignment
Owner name: BAYER CORPORATION, INDIANA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GENSHAW, MARVIN A.;HUANG, DIJIA;MUSHU, MATTHEW K.;AND OTHERS;REEL/FRAME:007537/0738
Effective date: 19950428