Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5474448 A
Publication typeGrant
Application numberUS 08/285,941
Publication date12 Dec 1995
Filing date4 Aug 1994
Priority date19 Jan 1990
Fee statusPaid
Also published asDE69517254D1, DE69517254T2, EP0695539A1, EP0695539B1
Publication number08285941, 285941, US 5474448 A, US 5474448A, US-A-5474448, US5474448 A, US5474448A
InventorsCraig A. Andreiko, Mark A. Payne
Original AssigneeOrmco Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Low profile orthodontic appliance
US 5474448 A
Abstract
A low profile orthodontic appliance and method of designing custom and standard low profile orthodontic appliances are provided. The archwire of the appliance is not parallel to the dental archform but converges toward the archform preferably in the vicinity of the incisors. Slotted brackets on either the laterals, the cuspids or the first bicuspids have mesially rotated slots to support the archwire in sloped relation to the teeth. For standardized appliances, the slot rotation may be provided only in brackets for the upper laterals and the lower cuspids. For Caucasians, the preferred rotation angles are 4.5 and 6 degrees respectively. For Asians, the rotation angles are preferably distributed over brackets for the laterals, cuspids and first bicuspids. Tooth to archwire spacing is not more than 0.05 inches for all teeth but the upper laterals. The archwire shape is designed in custom appliances by digitizing tooth shape of a patient, calculating ideal finish tooth positions and ideal bracket positioning, designing an optimally smooth archwire spaced optimally close to the teeth and manufacturing brackets with calculated slot rotations in most of the brackets. For standardized appliances, statistically average anatomy or appliance designs follow the custom appliance design method, except that only the most significant slot rotation angles are fabricated.
Images(3)
Previous page
Next page
Claims(16)
Therefore, the following is claimed:
1. A method of making an orthodontic appliance for straightening the teeth of a patient, the method comprising the steps of:
determining shapes of the teeth to be straightened;
determining finish positions, in a dental archform, to which the teeth of the patient are to be moved by the appliance;
determining bracket mounting points, one on each of the teeth of the patient;
deriving, from the determined tooth shapes, finish positions and mounting points, archwire geometry having a smooth arcuate shape designed to pass the center of the archwire within a distance that is not more than approximately 0.05 inches from each of the bracket mounting points of substantially all of the teeth on a dental arch of the patient when the teeth of the patient are in the determined finish positions, the arcuate shape converging with the archform adjacent an anterior one of the teeth;
fabricating a plurality of brackets, one for connection to each tooth at the bracket mounting point thereon, each bracket having a bracket base configured to connect to the bracket mounting point on the respective tooth and an archwire slot formed in the bracket extending to a slot bottom positioned to support the archwire in the slot within the distance of the bracket mounting surface of the bracket; and
the bracket fabricating step including the step of fabricating at least one bracket for a cuspid or tooth adjacent a cuspid that is sloped at an angle of rotation that is negative relative to the bracket base, to support therein an archwire so shaped to converge with the archform mesial thereto.
2. The method of claim 1 further comprising the steps of:
securing each of the fabricated brackets to a respective tooth on the lower arch of the patient at the bracket mounting point thereon; and
supporting the archwire in the slots of the fabricated brackets on the teeth of the patient.
3. The method of claim 1 wherein:
the bracket fabricating step includes the step of forming the slot bottom of at least one of the brackets to a negative rotation angle, to slope the slot bottom in a mesial direction toward the bracket base, of at least 4.
4. The method of claim 1 wherein:
the bracket fabricating step includes the steps of fabricating the brackets each having a base and then forming the slot in the bracket at the rotation angle relative to the base.
5. The method of claim 1 wherein:
the bracket fabricating step includes the steps of fabricating the brackets each having a slot therein and then forming the base of the bracket at the rotation angle relative to the slot.
6. The method of claim 1 wherein:
the bracket fabricating step includes the step of fabricating the brackets such that the spacing from the base thereof to the archwire of no bracket other than for an upper lateral is more than 0.05 inches.
7. An orthodontic appliance for straightening the teeth of a patient to relative finish positions, comprising:
an archwire having a smooth arcuate shape;
a plurality of brackets, one for connection to each of a plurality of the teeth of the patient at a bracket mounting point thereon, each bracket having a mounting surface configured to fit the respective tooth at the bracket mounting point and an archwire slot formed therein extending to a slot bottom positioned to support the archwire in the slot within a distance that is not more than approximately 0.06 inches of the mounting surface of a bracket for an upper lateral and not more than approximately 0.05 inches of the bracket mounting surfaces of brackets for teeth other than upper laterals; and
the slot bottom of at least one bracket for a cuspid or tooth adjacent a cuspid being sloped at an angle of rotation that is negative relative to the bracket base, to support an archwire so shaped to converge with the archform mesial thereto.
8. The appliance of claim 7 wherein:
the slot bottom of each of the brackets for the teeth within one tooth of a cuspid having rotation angles the sum of which is at least negative 4.
9. The appliance of claim 7 wherein:
the slot bottoms of the brackets for the lower cuspids each having a rotation angle that is at least negative 4.
10. The appliance of claim 7 wherein:
the slot bottoms of the brackets for the upper laterals each having a rotation angle of at least negative 3.
11. The appliance of claim 7 wherein:
slot bottoms of the brackets for the each tooth within one tooth of an upper cuspid having rotation angles, the algebraic sum of which is at least negative 4.
12. The appliance of claim 7 wherein:
each bracket for a lower tooth has the archwire slot therein formed to a slot bottom positioned to support the archwire in the slot within a distance that is not more than approximately 0.05 inches of the mounting surface of the bracket.
13. The appliance of claim 7 wherein:
each bracket for each tooth other than an upper lateral has the archwire slot therein formed to a slot bottom positioned to support the archwire in the slot within distance that is not more than approximately 0.05 inches of the mounting surface of the bracket.
14. The appliance of claim 7 wherein:
the brackets are dimensioned such that the average of the distances from the slot bottoms of the brackets to the respective mounting surfaces thereof average not more than 0.045 inches.
15. A set of orthodontic brackets for use in an orthodontic appliance for straightening the teeth of a patient to relative finish positions, comprising:
a plurality of brackets, one for connection to each of a plurality of the teeth of the patient at a bracket mounting point thereon, each bracket having:
a mounting surface configured to fit the respective tooth at the bracket mounting point, and
an archwire slot formed therein extending to a slot bottom, which, for the lower teeth, is positioned to support the archwire in the slot within distance that is not more than approximately 0.05 inches of the bracket mounting surface; and
the slot bottoms of at least one bracket for a cuspid or tooth adjacent thereto having a negative rotation angle.
16. The bracket set of claim 15 wherein:
the plurality of brackets includes brackets having mounting surfaces configured for connection at the bracket mounting points on the cuspids and teeth adjacent thereto, the algebraic sum of the rotation angles of the slot bottoms of which is between -4 and -10 C.
Description

This application is a continuation-in-part of pending U.S. patent application Ser. No. 07/973,973, filed Nov. 9, 1992, entitled Method and Apparatus for Designing and Forming a Custom Orthodontic Appliance and for the Straightening of Teeth Therewith, which is a continuation-in-part of abandoned U.S. application Ser. No. 07/775,589, filed Oct. 15, 1991, entitled Method of Forming Orthodontic Brace, and is also a continuation-in-part of U.S. patent application Ser. No. 07/875,663, filed 29 Apr. 1992, now abandoned, entitled Method of Forming Orthodontic Brace, which is a continuation of U.S. patent application Ser. No. 07/467,162, filed Jan. 19, 1990, now U.S. Pat. No. 5,139,419, all of which are commonly owned by the assignee of the present application and all are hereby expressly incorporated into this application by reference.

FIELD OF THE INVENTION

The present invention relates to orthodontic appliances for straightening teeth. More particularly, the present invention relates to arcuate orthodontic appliance designs for presenting the lowest profile or providing optimum proximity of the appliance, particularly the archwire of an appliance, relative to the faces of the individual teeth of the patient, and for maintaining an optimal smooth arcuate shape.

BACKGROUND OF THE INVENTION

One of the paramount goals of orthodontic treatment has been to have the mesial and distal contacts of the teeth of the patient in an arch that is parallel to the dental archform. In order to achieve this with a smoothly bent archwire, orthodontic appliances have been constructed using an archwire that is shaped to an archform that is mathematically similar, or parallel, to the dental archform of the patient. However, because the different teeth of the patient are of differing thicknesses, this goal has required the use of larger brackets on the smaller teeth of the patient and, conversely, smaller brackets on the thicker teeth of the patient, so as to provide a constant spacing between the archwire and dental archform.

Providing higher profile brackets on the smaller teeth is particularly troublesome on the lower anterior teeth, which are the smallest teeth of the patient. As a result of the use of the thickest brackets on these lower anterior teeth, the appliance presents a higher profile, that is, extends farther from the tooth in the labial-lingual direction. In such higher profile appliances, the archwire is supported in a position spaced away from the face of the tooth, compromising the performance of the appliance in many ways.

For example, increased spacing of the archwire from the tooth unfavorably increases the moments about the center of resistance of the tooth. In addition, the higher profile brackets often result in the need to compromise the placement of the brackets on rotated or otherwise misaligned teeth. Furthermore, the higher profile brackets place greater loads on the bracket-to-tooth adhesive, contributing to an increase in the likelihood of failure of the bond.

Additionally, the larger brackets interfere with oral hygiene, increasing enamel decalcification and compromising gingival health.

Therefore, it is desirable to provide orthodontic appliances with brackets that provide as low a profile as possible. In the prior art, however, the need to provide a minimum archwire spacing from the thicker teeth has prevented the use of lower profile brackets on the thinner teeth, while preserving other previously accepted requirements of orthodontic appliance design.

In providing appliances having archwires that are parallel to the dental archform, the brackets employed have had slots to receive the archwires, with slot bottoms that are parallel the archform. Such slot bottoms have been generally parallel to the bracket bases so that, when the brackets are mounted on the teeth of the patient, they support the archwire and maintain the archwire and the dental archform of the teeth in a parallel relationship. One exception to the traditional bracket configuration has been in what is known as the Roth line of treatment which calls for overcorrection of the teeth by imparting a rotation of the teeth relative to the archwire. This has entailed configuring certain of the brackets so that the slots are rotated, relative to the bracket bases and the mounting surfaces of the teeth, in a positive direction, that is in a direction that spaces the mesial end of the slot farther from the tooth than the distal end. This rotation nonetheless maintains the slot bottoms and archwire parallel to the archform of the teeth. This technique of positively sloping the bracket slots for overcorrection has been employed in brackets for the cuspids and the teeth distal thereto.

The orthodontic practices of the prior art have, nonetheless, produced appliances which, when installed on the teeth of patients, have profiles that are not optimally low, and, if modified by the replacement of smaller brackets to produce a lower profile, do not function effectively to position the teeth on a suitable archform. Unwanted tooth rotation during treatment, such as to the lower cuspid result in the prior art configurations, requiring first order bends in the archwire, for example, mesial to the cuspid bracket to prevent the cuspid rotation. For these and other reasons, it is apparent that there is a need for an orthodontic appliance having a low profile and simultaneously achieving the other orthodontic appliance design objectives.

SUMMARY OF THE INVENTION

Accordingly, it is a primary objective of the present invention to provide an orthodontic appliance that is of the lowest optimal profile with respect to each of the individual teeth of the patient.

It is a particular objective of the present invention to provide such a low profile appliance having minimum profile brackets on each of the teeth to support a smoothly curved archwire.

It is still a further objective of the present invention to provide a low profile orthodontic appliance properties that can be realized in custom as well as standardized orthodontic appliances.

Additional objectives of the present invention are to provide methods of designing optimally low profile appliances and of treating patients with optimally low profile appliances.

In accordance with the principles of the present invention there is provided an orthodontic appliance having an archform that is not necessarily mathematically similar or parallel to the dental archform, but which nonetheless functions to maintain the teeth in a desired relationship to the dental archform, such as by maintaining the mesial and distal contacts or other features of the teeth in an archform characteristic of the ideal finish positions of the teeth.

In the preferred embodiment of the present invention, an arcuate appliance is provided formed of an archwire that is not parallel to the dental archform at every point, but rather converges toward the dental archform near certain teeth. Preferably, such an archwire converges toward the dental archform in the vicinity of the incisors, particularly the lower incisors. Such an archwire is preferably designed in mathematically definable by segments having curvatures and foci that differ from those of corresponding segments that will define a dental archform for the patient.

Further in accordance with the preferred embodiment of the present invention, the appliance is provided with brackets having optimally low profiles, notwithstanding that the brackets are to be mounted on smaller ones of the teeth. As a result, low profile brackets are provided for the anterior teeth, particularly the lower anterior teeth, thereby supporting the archwire portion of the appliance so that it converges with the corresponding dental archform of the patient at the front of the patients mouth.

In the preferred embodiment of the invention, the convergence of the archwire and the dental archform of the patient is accompanied by the provision of brackets that may be positioned and oriented on the teeth to horizontally extend perpendicular to the dental archform of the patient, but not necessarily to extend perpendicular to the archwire where the archwire attaches to the brackets. Accordingly, there is provided an orthodontic appliance formed of an archwire, which is shaped to converge at various points along its length with the dental archform of the patient, particularly toward the front of the mouth. In combination with the archwire are provided low profile brackets, which have slot bottoms, some of which are sloped at angles, in the archwire plane, with respect to the bracket mounting surfaces that interface with the teeth. Such angles are referred to herein, as in the practice of orthodontics, as "rotation" angles of the archwire slots of the brackets. In particular, in the preferred embodiment of the invention, one or more slots, particularly in the brackets on the three teeth that are within one tooth of the cuspids, include at least one bracket having a generally mesial rotation, that is, a slot that is sloped such its front is closer to the tooth and the bracket base than the back of the slot.

For the use of the invention in a custom orthodontic appliance, it is preferred that slot rotation be employed in any or all of the brackets to maintain the optimally low profile archwire and appliance. Generally, such rotation will be predominantly in the mesial direction, so that the archwire, particularly the lower archwire, maintains a low profile adjacent the anterior teeth.

For the use of the invention in a standardized appliance, it is preferred that the net negative rotation at least three or four degrees be provided in the brackets for the laterals, cuspids and first bicuspids for each of the upper and lower arches. Generally, for the upper arch, such rotation may be provided entirely in the upper lateral brackets, and alternatively, particularly for Asian patients, in the upper cuspid brackets and preferably also in the upper first bicuspid brackets. For the lower arch, such rotation may be confined to the cuspid brackets. With such rotations, the spacing of the archwire center from the surfaces of the teeth are generally not more than 0.050 inches on all teeth but the upper lateral, where the spacing is less than 0.010 inches greater. With such spacings and rotations, the slots of the other brackets of a standardized set may be made with no slot rotation, particularly for the centrals and second bicuspids.

Further in accordance with the preferred embodiment of the present invention, particularly where the appliance is of custom appliance design, the slot bottoms in the bracket are not only formed at rotation angles, but are further curved in the archwire plane to conform to the curvature of the archwire along its length of its contact with each of the individual brackets.

According to the method of the present invention, the appliance is designed by determining the finish positions of the teeth, whether on an individual patient basis using digitized anatomical data derived from the individual patient's teeth as in the manufacture of custom orthodontic appliances, or on a based on statistical average data as in the manufacture of standardized orthodontic appliances. Then, upon consideration of shapes of the different teeth in the mouth, the appliance is designed with appropriately positioned brackets, that establish the spacing of the tooth face and the archwire within an optimum range or "window" of each other. Then, a smoothly contoured archwire shape is calculated or selected that places the archwire within the window adjacent each of the teeth. Then, a set of brackets is designed that have slot bottoms positioned to support the archwire within the window. Then, by considering the relative positions of the slot bottoms of brackets of different teeth of the patient, particularly of adjacent teeth of the patient, slot rotation angles are calculated and slots incorporating the calculated rotation angles are formed in brackets, as set forth above. Additionally, it is preferred, particularly with custom appliances, that the rotated slots be formed with a curved slot bottom conforming to the optimal curvature of the archwire at the point of contact with the bracket, preferably by cutting the slot with a computer controlled mill that is programmed to the calculated slot rotation and curvature.

In accordance with the present invention, the low profile appliance is assembled and installed on the patient to treat maloccluded teeth of the patient by placing brackets having slot bottoms that incorporate an rotation angle, and preferably are also curved, to allow a smoothly curved archwire to maintain variable spacing along its length with the dental archform of the patient, with the brackets positioned on the teeth to cooperate with the archwire to place the selected features of the teeth in an arch that is characteristic of the dental archform, and may be parallel to that archform.

The low profile appliance of the present invention, when used in accordance with the invention in the treatment of patients, prevents the unfavorable exertion by the appliance of increased moments on the teeth about the center of resistance of the tooth. The low profile brackets avoid the need to compromise the placement of the brackets on rotated or otherwise misaligned teeth. Furthermore, the low profile brackets place smaller loads on the bracket-to-tooth bond than do brackets of appliances of the prior art, decreasing the stress on adhesives, and thereby reducing the likelihood of failure of the bond. The rotation in the brackets to support the closely fitting archwire reduces adverse cuspid rotation during treatment, avoiding the need for first order bends in the archwire mesial to the cuspid bracket. Additionally, the smaller brackets promote oral hygiene.

These and other objectives and advantages of the present invention will be more readily apparent from the following detailed description of the drawings and preferred embodiments, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view of a dental arch of a patient diagrammatically illustrating a low profile orthodontic appliance embodying principles of the present invention.

FIG. 2 is a flowchart of the steps of a computerized method for the design of the low profile appliance of FIG. 1.

FIG. 3 is a geometric diagram illustrating parameters employed in the design method of FIG. 2.

FIG. 4 is a side elevational drawing of a bracket of the low profile appliance of FIG. 1 viewing, for example, a cuspid bracket from the mesial side.

FIG. 5 is a top view of one embodiment of the bracket of the low profile appliance of FIG. 4.

FIG. 6 is a top view of an alternative embodiment of the bracket of FIG. 5.

FIG. 7 is a top view of still another embodiment of the bracket of FIG. 5.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1, a lower dental arch 10 of a patient is illustrated, in which the individual teeth 12 of the patient are arranged in ideal finish positions. In such positions, the teeth 12 are in contact with adjacent teeth at a series of contact points 14, at which a mesial contact point 14M of each tooth is in contact with a distal contact point 14D of an adjacent tooth, except for the central incisors, which have their mesial contact points in mutual contact at the center 15 of the dental arch 10. In current orthodontic practice, it has been regarded as desirable that the teeth 12, in their finish positions, form a dental arch 10 in which the teeth 12 are in contact at their respective contact points 14. Such a dental arch may be defined by as an arcuate form such as the smooth curve 16. Such an archform is generally considered to be a stable archform into which the teeth are urged into mutual contact by forces exerted by adjacent facial anatomy, or by an orthodontic appliance. The curve 16, so defined, that may be said to represent the finish dental archform, is capable of being represented by a smooth, continuous mathematical equation in two dimensional coordinates in a horizontal plane.

To achieve tooth placement that may be defined as an archform 16, the practice has been to employ an archwire that lies on an archwire curve 18 that is generally parallel to the dental archform 16, the curve 18 being offset from the archform 16 by equal distances, for example D1 and D2, at various points along the length of the curve 18. Such an archwire, lying on the curve 18, is supported on each of the teeth 12 by a bracket 20. The brackets 20 are mounted on the surfaces of the teeth 12 on the side facing the archwire, where the surfaces of the teeth, when in their finish positions, will be spaced at different differences from the archform 16 and the archwire curve 18 due to the differing thicknesses of the teeth. As is illustrated in exaggerated proportions in FIG. 1, in order to support an archwire of curve 18, because the teeth are of differing thicknesses, brackets 20 of differing sizes are employed for each of the teeth. Typically, the smaller anterior teeth, particularly those on the lower dental arch, require brackets that have dimensions that place the slot bottoms at greater distances form the surface of the tooth, in order to support the archwire on the curve 18 that is parallel to the assumed dental archform 16. These brackets 20 may be referred to as higher profile brackets,

Referring still to FIG. 1, the dental archform 16 is preferably a more specific dental archform, which is the mandibular dental archform for the finish positions of the lower teeth that is a smooth continuous curve on which the mandibular teeth are positioned such that the incisal tips 24 of the anterior or single cusped teeth (incisors and cuspids), the buccal cusp tips 25 of the bicuspids, and the mesial buccal cusp tips 26 of the molars, are placed. For the upper teeth, a corresponding maxillary dental archform (not shown) defines the positions of marginal ridges and points on lingual surfaces of the anterior upper teeth that occlude with the points 24, 25 and 26 of the lower teeth. In addition to the mandibular dental archform 16 the upper teeth are placed on a corresponding maxillary dental archform (not shown) which represents corresponding finish tooth positions of the upper teeth (not shown). Because the archform 16 contains the points of occlusion of the lower and upper teeth, the curve 16 takes into account the stable dental archform that the forces of the occluding teeth tend to cause the teeth to assume.

Further illustrated in FIG. 1, according to the preferred embodiment of the present invention, is a low profile archwire curve 28 that defines the shape of an archwire for mounting on the teeth 12 by the use of a set of low profile brackets 30. The curve 28 for the archwire is determined so as to allow for the use of an archwire that is both smoothly curved and spaced optimally close to the surfaces of each of the individual teeth 12. Such an archwire is supported on the teeth 12 by a set of brackets 30 having optimally low profiles. The determinations of an archwire curve 28 that lies optimally close to the teeth as well as the brackets 30 and bracket geometries needed to support such an archwire are preferably achieved by the use of the method of applicants' U.S. patent application Ser. No. 07/973,973, filed Nov. 9, 1993, entitled Method and Apparatus for Designing and Forming a Custom Orthodontic Appliance and for the Straightening of Teeth Therewith, incorporated by reference above. Such application describes in detail a method by which custom orthodontic appliances are designed based on individual patient anatomy. However, for purposes of the present invention, the concepts described in that application for determining optimal archwire shape are applicable to the design of standardized orthodontic appliances based on average patient dental anatomy. The method for determining the shape of an archwire curve 28 for the design of an optimally low profile orthodontic appliance is set forth in the flowchart of FIG. 2.

In the flowchart of FIG. 2 there is illustrated a procedure (100) that can be performed in a general purpose digital computer programmed for establishing wire and bracket geometry for a low profile appliance. With such procedure (100), a mathematical equation defining the shape of the curve 28 for a low profile appliance archwire is derived, and the optimal spacing or tooth-to-archwire distances DTW (FIG. 5) are calculated that define the spacings of the archwire curve 28 from the surface of each tooth 12 on which the bracket 30 is to be mounted. Then a slot bottom rotation angle RA is calculated for each bracket. In addition, particularly for custom appliances where additional precision can be utilized, the archwire slot is formed with a bottom curvature, as represented by a radius R4 in FIG. 6. Such a curvature is calculated to conform the bracket slot to the curvature of the archwire at the points of contact between the archwire and the bracket.

Referring particularly to FIG. 2, the archwire shape design method of the present invention involves the operation of a digital computer programmed to execute the procedure (100) to determine a curve 28 for an archwire, for example the mandibular archwire illustrated in FIG. 1, by calculation of a tooth-to-wire dimension DTW for each bracket slot. This calculation involves, first, the step (102) of establishing digital data in the computer defining certain dimensions or shapes of the individual teeth of the patient and defining an equation for a dental archform, such as curve 16. The establishing of digital tooth shape data may be achieved by the techniques described in U.S. Pat. No. 5,139,419, expressly incorporated herein by reference, or by one of the other the method described in applicants' U.S. patent application Ser. No. 07/973,973, referred to above and incorporated by reference herein. The tooth shape data, so established, will contain digital information from which can be calculated the horizontal distance XD between a dental archform and a point 32 on the surface of the tooth at which a bracket 30 will be mounted. This distance is illustrated, for example, on the lower right cuspid in FIG. 1, as the distance between the point XD and, for example the curve 16, which is defined in relation to some prominence or other feature of the tooth, such as through the cusp tip 24 of the cuspid.

In the next step (104), an equation is developed for the dental archform 16, preferably in the form of a statistical best fit equation, preferably defined as a series of circle segments Ci, each defining a segment of the dental archform curve 16. A portion of such equation for the curve 16 is illustrated in FIG. 3 where two segments C1 and C2 define a portion of the curve 16 that spans the arch between the contact points 14M and 14D of a tooth 12. In FIG. 3, where two segments C1 and C2 respectively define the curve 16 between one of the contact points 14D, 14M of the tooth 12, an intermediate point IP represents the point on the archform curve 16 at which the two circle segments C1 and C2 intersect. Each segment C1 and C2, is defined respectively by a radius of curvature R1 or R2 from a respective circle center point CCP.sub., CCP2 and the respective arch length of the segment. The adjacent circle segments are tangent to each other at the point IP, and are tangent to the adjacent segments spanning adjacent teeth at the mesial and distal end points EPM and EPD where the radii R1, R2 which intersect points 14M, 14D intersect curve 16.

The next steps (105) are performed for each tooth, beginning with the central incisor and proceeding toward the most distal tooth on the side. In step (106), the circle segment of the curve 16 on which lies the mesial-distal center or midpoint of the tooth on which the bracket is to be mounted MDC is identified. For the cuspid, this is segment C2, as illustrated in FIG. 3. Then, in step (110), a center point plane CPP is created normal to the archwire plane and through the center CCP, in this case CCP2, of the circle segment C2 and the mesial-distal center MDC. This CPP is a line in the plan view of FIG. 3. Where the dental archform 16 is represented by the BFBCE curve as defined above, and where the tooth is, for example, an anterior tooth, the point MDC is the incisal tip 24 of the tooth which lies on the archform equation representing curve 16.

From the tooth shape data, in the next step (130), the labial distance XD is determined between the point MDC and the point 32, which is the intersection point of the line CPP with the surface of the tooth on which the bracket is to be mounted.

Still further along the line CPP from the circle segment center point CCP, two points LL and UL are defined. In step (135), the point LL is defined as a lower limit point that represents the minimum distance to be allowable between the tooth surface at point and the archwire centerline which will lie on the curve 28. In step (140), the point UL is defined as the upper limit point that represents the maximum distance to be allowable in order that the bracket satisfy the requirements of an optimally low profile appliance. Then, in step (150) the locations of these limit points LL and UL are calculated for each tooth, with (160) the coordinates of the locations of corresponding points on opposite sides of the arch being calculated and averaged to force archwire symmetry.

Preferably, the limits LL and UL are picked to establish the low profile of the appliance. For example, LL may be set at 0.036 inches and UL set at 0.052 inches. The 0.052 inches defines the maximum extension of the bracket slot in-out dimension DTW permitted, provided a sufficiently smooth curve can be constructed meeting the criteria. The 0.036 sets the minimum slot in-out dimension DTW needed for the wire to clear the teeth and for the bracket to provide adequate structural integrity. Since the dimensions of typical archwires of 0.017, 0.018 and 0.022 inch thickness, measured vertically are typically 0.025 inches thick measured horizontally, a DTW of 0.036 inches leaves about 0.026 inches from tooth to slot bottom, measured in the archwire plane. In that most brackets have mounting pads of about 0.013 inches thick for securing the bracket to the tooth, this leaves another 0.013 for structural support between the slot and the bracket base. Elimination of the pad will enable further reduction of DTW to 0.026 inches, which will leave 0.013 inches clearance between the wire and the tooth surface. The elimination of the pad in this way, where the structural requirements of the bracket can be met, is preferred.

Next, in step (161), the derivation of an equation for the smoothest curve 28 that will pass through points XP between the LL and UL points of all pairs, is begun, Preferably, as in step (166), the smoothest curve 28 is derived in the form of a cubic spline equation passing between these points on each of the teeth. To achieve the smoothest curve, the existence of any inflection points is determined and the equation is optimized until the number of inflection points is minimized. Preferably, no inflection points are permitted. The test for such points is made in step (167). To eliminate inflection points, it may be necessary to increase the upper limit UL. Determination of the smoothest curve is preferably made by (163) calculating the second derivative of the archwire archform equation at each of the bracket connection points with the archwire, and selecting the curve with smallest maximum second derivative at such points. The test may also be made by selecting the curve with the largest minimum radius of curvature at each of these connection points.

In accordance with one preferred method of determining the smoothest curve, the range from LL to UL is divided into increments, for example, 0.036, 0.040, 0.044, 0.048, and 0.052 inches. The lowest value, 0.036 is assigned to each bracket DTW, and the smoothness of the curve passing through each point at each bracket is determined. Then, (165) every combination of values of each of the brackets from central to first molar, is evaluated to determine the combination that can be satisfied by a wire of the smallest maximum second derivative. When determined, the smoothest archwire with the lowest profile is selected. This criteria may be modified to consider the curve to be the smoothest with the least variation in radius changes along the curve. In addition, instead of using the criteria of lowest profile to merely determine preferences between equally smooth curves, provided that the DTW values are between the limits LL and UL, weighting factors may be assigned to the low profile and smoothness criteria.

When the smoothest wire is selected, it is tested to insure it has no inflection points. As in step (167), if there are one or more inflection points, the process transfers to step (158), at which the points UL may be changed for one or more of the teeth based upon where the inflection occurred.

Then, the final equation for archwire shape is converted to NC machine code for producing the archwire and for cutting the brackets for the low profile appliance. For each tooth, (190) additional steps are performed. The in-out dimension DTW is determined as the distance along CPP from point 32 to the intersection point XP with curve 28 is calculated for each individual tooth, and all XP points are passed into a routine that converts the cubic spline equation to an equation of circle segment form, as used to define the dental archform equation for curve 16.

The archwire equation for the archwire curve 28 will be similar in form to the dental archform 16, defined as a series of circle segments corresponding to those of the equation for the archform 16, but with expanded and varying radii. The radii of the equation for the curve 28 will not be proportionately expanded along the curve length. Thus, the curves 16 and 28 are not everywhere parallel, and therefore many of the circle segments of the curve 28 will have different centers than those of the curve 16, as illustrated by the phantom lines in FIG. 3. The curve 28 will, in practice, normally converge toward the dental archform equation toward the front of the patient's mouth mesial of approximately the first bicuspids, for the lower arch at least. This convergence has been found to be, for example, as an angle CA which may equal approximately six degrees in the vicinity of the first bicuspid, in the example illustrated in FIG. 1. The curves 16 and 28 continue to converge as they approach the midline ML between the central incisors, about which line the curves 16 and 28 are preferably symmetrical.

Further in accordance with the present invention, to facilitate the convergence of the archwire curve 28 with the that of the dental archform 16 in the vicinity of the smaller teeth, while avoiding the imposition of unwanted rotational forces on the teeth and maintaining a smoothly contoured archwire, (190) the bottoms of the archwire slots in the brackets 30 are formed at an angle of rotation RA relative to the base of the bracket 30, as illustrated in FIG. 3. The angle RA for each bracket 30 can be calculated, as the angle between a line LP perpendicular to the line CPP and a line LW tangent to the archwire curve 28 at its intersection XP with the line CPP. This angle is also the angle between the line CPP and the radius of curvature RC of the archwire curve 28 at the point XP. Alteratively, the angle RA may be calculated precisely from the equation for the shape of the archwire curve 28 combined with the tooth shape data and information on the geometries of the bracket blanks in which the bracket slots are to be formed. Such angle RA is formed in the bracket as the angle between the bottom of the bracket slot with respect to the bracket base or the bracket mounting surface of the tooth, thereby accommodating the convergence angle between the archwire curve 28 and the dental archform. This provides a low profile archwire that is smoothly curved, which is facilitated by the provision of low profile brackets.

Referring to FIGS. 4 and 5, a low profile bracket 30 for a lower cuspid is illustrated, having an archwire slot 33 therein with a slot bottom 34 spaced a distance DTW from the bracket base surface 36 which attaches to the bracket mounting surface of the tooth 12, less one half of the diameter of the archwire to be mounted in the slot 33. A slot rotation angle RA is derived by the procedure set forth in the flowchart of FIG. 2 by calculating the slope of the archwire curve 28, represented by the line LW, relative to a line perpendicular to the line CPP at its intersection point with the archwire curve 28. This slot rotation angle RA calculated for each bracket, is formed in the brackets 30 in the fabrication of the low profile appliance.

With the present invention, the low profile appliances are provided with brackets for Caucasian and Asian patients as set forth in Table 1, in which the sign of the angle RA is defined as positive where the rotation on the facial side of the tooth is in the distal direction, and is defined as negative when such rotation is in the mesial direction.

              TABLE 1______________________________________     CAUCASIAN   ASIAN     PATIENTS    PATIENTS     DTW             DTW     (inches)             RA ()                     (inches)  RA ()______________________________________upper central       0.044     0       0.050    0upper lateral       0.057     -4.5    0.054   -3upper cuspid       0.037     0       0.037   -4upper 1st bic.       0.044     0       0.042   -2upper 2nd bic.       0.050     0       0.052    0upper 1st molar       0.041     15      0.041    15upper 2nd molar       0.041     15      0.041    15lower central       0.045     0       0.050    0lower lateral       0.045     0       0.050    1lower cuspid       0.045     -4.5    0.038   -6lower 1st bic.       0.046     0       0.045   -1lower 2nd bic.       0.049     0       0.050    0lower 1st molar       0.041     0       0.041    0lower 2nd molar       0.041     4       0.041    0______________________________________

As a further refinement that is particularly feasible when custom orthodontic appliances are being designed and manufactured, in step (190), the bottom 34 of the slot 33 of each bracket 30 is not only inclined at the rotation angle RA but is also curved to conform to the curvature of the archwire along the entire archwire slot 33 of the bracket 30. Such slot bottom curvature will be tangent to the archwire curve 28 and thus inclined at the rotation angle RA at its intersection with the line CPP, and will other wise conform to the curvature, represented by radii R3 and R4 of two circle segments C3 and C4 of the archwire curve 28, to the extent that these segments lie in the slot 33. Such a slot bottom 34a, having such a rotation angle and an archwire curve conforming shape, is illustrated, with an exaggerated curve, in FIG. 6.

The brackets of FIG. 5 are formed with the slots sloped relative to the bracket supports or wings 35, which are shown extending perpendicularly relative to the bracket base surface 36. In the embodiment of FIG. 7, the wings or supports 35a are inclined relative to the base 36 at the same angle as the slot 33a. From a fabrication point of view, the rotation is achieved by forming the base 36a, rather than the slot 33 of FIG. 5, at an angle relative to the supports 35a.

In order to treat patients with the low profile appliance, as described above, brackets are selected for mounting on the teeth of the patient to support an archwire at a spacing of not more than 0.06 inches from the mounting surface of the tooth, and preferably at not more than approximately 0.05 inches from the mounting surface of any of the teeth, measured from the center of the bracket base labially to the centerline of the archwire, for archwires generally in the range of standard diameters of 0.018 and 0.022 inches. The spacing for the upper lateral bracket is generally larger than that of the other brackets. Preferably, the tooth to archwire distance is in the range of 0.03 to 0.04 for several of the teeth, and therefore averages not much more than approximately 0.040 inches.

For custom appliances, the slot rotation angle is custom cut into each bracket, and is usually calculated to be one degree or more, more often in the negative or mesial direction. With standardized appliances, due to the compromising nature of standardized brackets, need not be provided in each of the brackets, but only in one bracket in the vicinity of the lateral, cuspid, or first bicuspid, as it has been found that a negative slot rotation of approximately 4 to 8 degrees on the upper lateral and on the lower cuspid are sufficient to cause more than adequate convergence of the archwire adjacent the incisors to produce an improved low profile appliance. Particularly in Asian patients, a negative rotation distributed over rotation that is distributed among the lateral, cuspid and first bicuspid is preferable.

To provide treatment with the low profile appliance, the brackets are preferably selected such that the archwire converges toward the dental archform adjacent the central teeth. As such, the slot bottom rotation angles may be approximately 0 adjacent the central teeth, and also adjacent one or more of the second bicuspids or molars, but will be generally negative (that is, inclined mesially on the labial side of the tooth) somewhere in the vicinity of the laterals, cuspids and first bicuspids, being inclined a total (algebraically) of 4 to 8 adjacent these three teeth on each side of a dental arch. Generally, and for the lower arch particularly, the lowest profile is obtained where the rotation angle is most negative proximate the cuspid, for example, -4.5 or 6, with additional rotation distributed over one or both of the teeth adjacent to the cuspid.

From the above detailed description of the preferred embodiments of the invention, those skilled in the art will appreciate that modifications and additions to that described above may be employed without departing from the principles of the present invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3477128 *22 Sep 196711 Nov 1969Andrews Lawrence FMethod and apparatus for improved orthodontic bracket and arch wire technique
US3660900 *10 Nov 19699 May 1972Lawrence F AndrewsMethod and apparatus for improved orthodontic bracket and arch wire technique
US3881252 *31 Jul 19736 May 1975Andrews Lawrence FOrthodontic bracket extraction
US4249897 *17 Jan 197810 Feb 1981Anderson Roland MModular cushioning orthodontic bracket structure
US5011405 *24 Jan 198930 Apr 1991Dolphin Imaging SystemsOn a malocclused tooth in a patient's jaw
US5139419 *19 Jan 199018 Aug 1992Ormco CorporationMethod of forming an orthodontic brace
Non-Patent Citations
Reference
1 *Catalog: 3M Unitek Orthodontic Product, pub. by 3M 1 1 to 1 55.
2Catalog: 3M Unitek Orthodontic Product, pub. by 3M 1-1 to 1-55.
3 *Catalog: Ormco Orthodontic Products, pub. by Ormco Corporation, 1990 Sec. 1, 2 & 3.
4 *Catalog: Orthodontics pub. by Dentaurum, Inc. pp. 1 58.
5Catalog: Orthodontics pub. by Dentaurum, Inc. pp. 1-58.
6Catalog: Rocky Mountain Orthodontics Cat. #4, pub. by RMO, Inc. E-1 to E-62.
7 *Catalog: Rocky Mountain Orthodontics Cat. 4, pub. by RMO, Inc. E 1 to E 62.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5820370 *7 Nov 199513 Oct 1998Ortho SpecialtiesPreadjusted orthodontic bracket system and method
US5931667 *14 Jul 19973 Aug 1999Papandreas; Samuel G.Orthodontic apparatus and method
US5971754 *30 Jul 199826 Oct 1999Sondhi; AnoopIndirect bonding method and adhesive for orthodontic treatment
US5975893 *8 Oct 19972 Nov 1999Align Technology, Inc.Method and system for incrementally moving teeth
US6053729 *2 Mar 199825 Apr 2000Ortho CorporationUnitary substantially nickel free alloy injection molded orthodontic bracket
US6210162 *14 May 19993 Apr 2001Align Technology, Inc.Creating a positive mold of a patient's dentition for use in forming an orthodontic appliance
US621732523 Apr 199917 Apr 2001Align Technology, Inc.Method and system for incrementally moving teeth
US62278497 Sep 19998 May 2001Ortho Organizers, Inc.Unitary substantially nickel free alloy injection molded orthodontic bracket
US622785013 May 19998 May 2001Align Technology, Inc.Teeth viewing system
US631899413 May 199920 Nov 2001Align Technology, IncTooth path treatment plan
US631899528 Apr 200020 Nov 2001Drametrix, Inc.Method and apparatus for bonding a bracket to a tooth
US638687816 Aug 200014 May 2002Align Technology, Inc.Systems and methods for removing gingiva from teeth
US640629213 May 199918 Jun 2002Align Technology, Inc.System for determining final position of teeth
US640950414 May 199925 Jun 2002Align Technology, Inc.Manipulating a digital dentition model to form models of individual dentition components
US641308428 Apr 20002 Jul 2002Ora Metrix, Inc.Method and system of scanning
US643187123 Aug 199913 Aug 2002Ralph G. LuthardtMethod for the computer-controlled production of dentures
US64508078 Oct 199817 Sep 2002Align Technology, Inc.System and method for positioning teeth
US645797220 Apr 20001 Oct 2002Align Technology, Inc.System for determining final position of teeth
US646449628 Apr 200015 Oct 2002Orametrix, Inc.Method and apparatus for determining and monitoring orthodontic treatment
US64715118 Oct 199829 Oct 2002Align Technology, Inc.Defining tooth-moving appliances computationally
US64975748 Sep 200024 Dec 2002Align Technology, Inc.Modified tooth positioning appliances and methods and systems for their manufacture
US651299428 Apr 200028 Jan 2003Orametrix, Inc.Method and apparatus for producing a three-dimensional digital model of an orthodontic patient
US651407414 May 19994 Feb 2003Align Technology, Inc.Digitally modeling the deformation of gingival
US653229913 Jul 200011 Mar 2003Orametrix, Inc.System and method for mapping a surface
US655461130 May 200229 Apr 2003Align Technology, Inc.Method and system for incrementally moving teeth
US655461328 Apr 200029 Apr 2003Ora Metrix, Inc.Method and apparatus for generating an orthodontic template that assists in placement of orthodontic apparatus
US657237214 Jul 20003 Jun 2003Align Technology, Inc.Embedded features and methods of a dental appliance
US660738221 Sep 200019 Aug 2003Align Technology, Inc.Methods and systems for concurrent tooth repositioning and substance delivery
US66266668 Jan 200130 Sep 2003Align Technology, Inc.Method and system for incrementally moving teeth
US662984021 Feb 20017 Oct 2003Align Technology, Inc.Method and system for incrementally moving teeth
US668234626 Aug 200227 Jan 2004Align Technology, Inc.Defining tooth-moving appliances computationally
US668546914 Jan 20023 Feb 2004Align Technology, Inc.System for determining final position of teeth
US668547024 Oct 20023 Feb 2004Align Technology, Inc.Digitally modeling the deformation of gingival tissue during orthodontic treatment
US668888528 Apr 200010 Feb 2004Orametrix, IncMethod and apparatus for treating an orthodontic patient
US6688886 *2 May 200110 Feb 2004Align Technology, Inc.System and method for separating three-dimensional models
US669903721 Feb 20012 Mar 2004Align Technology, Inc.Method and system for incrementally moving teeth
US672288014 Jan 200220 Apr 2004Align Technology, Inc.Method and system for incrementally moving teeth
US672647830 Oct 200027 Apr 2004Align Technology, Inc.Systems and methods for bite-setting teeth models
US672987629 Aug 20014 May 2004Align Technology, Inc.Tooth path treatment plan
US673663828 Apr 200018 May 2004Orametrix, Inc.Method and apparatus for orthodontic appliance optimization
US673850828 Apr 200018 May 2004Orametrix, Inc.Method and system for registering data
US674491428 Apr 20001 Jun 2004Orametrix, Inc.Method and system for generating a three-dimensional object
US674493228 Apr 20001 Jun 2004Orametrix, Inc.System and method for mapping a surface
US676720810 Jan 200227 Jul 2004Align Technology, Inc.System and method for positioning teeth
US677180928 Apr 20003 Aug 2004Orametrix, Inc.Method and system for registering data
US678336013 Dec 200031 Aug 2004Align Technology, Inc.Systems and methods for positioning teeth
US678672126 Apr 20027 Sep 2004Align Technology, Inc.System and method for positioning teeth
US679003528 Sep 200114 Sep 2004Align Technology, Inc.Having a closed concave trough which conforms to the teeth when the appliance is placed over the dentition and a location in the trough having height and width dimensions corresponding to the missing tooth
US680271322 Oct 200312 Oct 2004Align Technology, Inc.Defining tooth-moving appliances computationally
US685194928 Apr 20008 Feb 2005Orametrix, Inc.Method and apparatus for generating a desired three-dimensional digital model of an orthodontic structure
US691876114 Apr 200319 Jul 2005Orametrix, Inc.Method and apparatus for generating an orthodontic template that assists in placement of orthodontic apparatus
US694703827 Apr 200020 Sep 2005Align Technology, Inc.Systems and methods for generating an appliance with tie points
US694893122 Oct 200327 Sep 2005Align Technology, Inc.Digitally modeling the deformation of gingival tissue during orthodontic treatment
US694893624 Apr 200327 Sep 2005Align Technology, Inc.Methods and systems for modeling bite registration
US69637884 Mar 20038 Nov 2005Norbert AbelsHolography-aided orthodontic archwire bending
US696456426 Jul 200215 Nov 2005Align Technology, Inc.Systems and methods for varying elastic modulus appliances
US69718731 May 20026 Dec 2005Orametrix, Inc.Virtual bracket library and uses thereof in orthodontic treatment planning
US697919621 Jun 200227 Dec 2005Align Technology, Inc.Systems and methods for automated bite-setting of tooth models
US69888894 Mar 200324 Jan 2006Norbert AbelsCustom-fitted orthodontic bracket manufactured by computerized and selective removal of portions of a bracket
US703711118 Jul 20022 May 2006Align Technology, Inc.Modified tooth positioning appliances and methods and systems for their manufacture
US704089628 Feb 20029 May 2006Align Technology, Inc.Systems and methods for removing gingiva from computer tooth models
US705611517 Jun 20046 Jun 2006Align Technology, Inc.Systems and methods for fabricating a dental template
US70598501 Aug 200313 Jun 2006Align Technology, Inc.Attachment devices and methods for a dental appliance
US70635328 Mar 199920 Jun 2006Align Technology, Inc.Subdividing a digital dentition model
US70635331 May 200320 Jun 2006Align Technology, Inc.System and method for producing tooth movement
US706883628 Apr 200027 Jun 2006Orametrix, Inc.System and method for mapping a surface
US707403829 Dec 200011 Jul 2006Align Technology, Inc.Methods and systems for treating teeth
US707764722 Aug 200218 Jul 2006Align Technology, Inc.Systems and methods for treatment analysis by teeth matching
US709278428 Jul 200015 Aug 2006Align TechnologySystems and methods for forming an object
US710850827 May 200319 Sep 2006Align Technology, Inc.Manipulable dental model system for fabrication of a dental appliance
US711059412 Mar 200219 Sep 2006Align Technology, Inc.Manipulating a digital dentition model to form models of individual dentition components
US712182512 Mar 200417 Oct 2006Align Technology, Inc.Tooth positioning appliances and systems
US712376715 Oct 200217 Oct 2006Align Technology, Inc.Manipulating a digital dentition model to form models of individual dentition components
US712524812 Sep 200324 Oct 2006Align Technology, Inc.Attachment devices and methods for a dental appliance
US713304211 May 20057 Nov 2006Align Technology, Inc.Systems and methods for generating an appliance with tie points
US713487420 Nov 200314 Nov 2006Align Technology, Inc.Computer automated development of an orthodontic treatment plan and appliance
US71408777 Apr 200428 Nov 2006Align Technology, Inc.System and method for positioning teeth
US714231230 Dec 200328 Nov 2006D4D Technologies, LlcLaser digitizer system for dental applications
US715666112 Aug 20032 Jan 2007Align Technology, Inc.Systems and methods for treatment analysis by teeth matching
US718415019 Mar 200427 Feb 2007D4D Technologies, LlcLaser digitizer system for dental applications
US71922755 Jan 200420 Mar 2007Align Technology, Inc.Methods for correcting deviations in preplanned tooth rearrangements
US722012229 Apr 200422 May 2007Align Technology, Inc.Systems and methods for positioning teeth
US7223099 *4 Feb 200529 May 2007Andreas NiederwangerMethod of determining the selection of brackets which are to be used in the orthodontic treatment of teeth malposition
US724114219 Mar 200410 Jul 2007Align Technology, Inc.Root-based tooth moving sequencing
US724597720 Jul 200017 Jul 2007Align Technology, Inc.Systems and methods for mass customization
US724702115 Mar 200424 Jul 2007Align Technology, Inc.Subdividing a digital dentition model
US727336710 Nov 200325 Sep 2007Align Technology, Inc.System and method for separating three-dimensional models
US732059230 Aug 200422 Jan 2008Align Technology, Inc.Defining tooth-moving appliances computationally
US732605125 Aug 20045 Feb 2008Align Technology, Inc.Methods and systems for treating teeth
US733178327 Feb 200419 Feb 2008Align Technology, Inc.System and method for positioning teeth
US734266817 Sep 200411 Mar 2008D4D Technologies, LlcHigh speed multiple line three-dimensional digitalization
US73557215 May 20048 Apr 2008D4D Technologies, LlcOptical coherence tomography imaging
US73576345 Nov 200415 Apr 2008Align Technology, Inc.Systems and methods for substituting virtual dental appliances
US735763627 Jan 200615 Apr 2008Align Technology, Inc.Manipulable dental model system for fabrication of a dental appliance
US736102019 Nov 200322 Apr 2008Align Technology, Inc.Dental tray containing radiopaque materials
US737328621 Jun 200113 May 2008Align Technology, Inc.Efficient data representation of teeth model
US737777825 Oct 200227 May 2008Align Technology, Inc.System for determining final position of teeth
US738319824 Jul 20003 Jun 2008Align Technology, Inc.Delivery information systems and methods
US74284817 Feb 200323 Sep 2008Align Technology, Inc.Efficient data representation of teeth model
US743381023 Sep 20037 Oct 2008Align Technology, Inc.Efficient data representation of teeth model
US743508331 Mar 200514 Oct 2008Align Technology, Inc.Tooth path treatment plan
US745220725 Apr 200518 Nov 2008Align Technology, Inc.Methods and systems for modeling bite registration
US747430721 Dec 20006 Jan 2009Align Technology, Inc.Clinician review of an orthodontic treatment plan and appliance
US757867317 Jun 200425 Aug 2009Align Technology, Inc.System and methods for combination treatments of dental patients
US757867413 Mar 200625 Aug 2009Align Technology, Inc.Methods for correcting tooth movements midcourse in treatment
US76009994 Mar 200413 Oct 2009Align Technology, Inc.Systems and methods for fabricating a dental template
US76483601 Jul 200319 Jan 2010Align Technology, Inc.Dental appliance sequence ordering system and method
US76586104 Mar 20049 Feb 2010Align Technology, Inc.Systems and methods for fabricating a dental template with a 3-D object placement
US773614723 Apr 200315 Jun 2010Align Technology, Inc.Systems and methods for bite-setting teeth models
US77711959 Jun 200410 Aug 2010Align Technology, Inc.Polar attachment devices and method for a dental appliance
US780298718 Aug 200028 Sep 2010Align Technology, Inc.Methods and systems for lubricating dental appliances
US782664631 Jul 20032 Nov 2010Align Technology, Inc.Systems and methods for removing gingiva from computer tooth models
US783746931 Oct 200723 Nov 2010Align Technology, Inc.System for determining final position of teeth
US783790426 Feb 200823 Nov 2010Align Technology, Inc.Manipulable dental model system for fabrication of a dental appliance
US784185831 Oct 200730 Nov 2010Align Technology, Inc.Polar attachment devices and method for a dental appliance
US787483731 Oct 200725 Jan 2011Align Technology, Inc.Defining tooth-moving appliances computationally
US790572429 Sep 200815 Mar 2011Align Technology, Inc.Methods and systems for concurrent tooth repositioning and substance delivery
US790572531 Oct 200715 Mar 2011Align Technology, Inc.Clinician review of an orthodontic treatment plan and appliance
US804784631 Oct 20071 Nov 2011Align Technology, Inc.Preventing interference between tooth models
US807048522 Apr 20096 Dec 2011Dentsply International, Inc.Notched pontic and system for fabricating dental appliance for use therewith
US807048731 Oct 20076 Dec 2011Align Technology, Inc.System and method for positioning teeth
US80753068 Jun 200713 Dec 2011Align Technology, Inc.System and method for detecting deviations during the course of an orthodontic treatment to gradually reposition teeth
US810508024 Aug 200631 Jan 2012Align Technology, Inc.Computer automated development of an orthodontic treatment plan and appliance
US812351926 Jul 200528 Feb 2012Dentsply International Inc.Method and system for personalized orthodontic treatment
US826059129 Apr 20044 Sep 2012Align Technology, Inc.Dynamically specifying a view
US83266473 Aug 20094 Dec 2012Align Technology, Inc.Method and system for distributing patient referrals
US83486658 Dec 20108 Jan 2013Align Technology, Inc.Activatable dental appliance
US840168618 Dec 200819 Mar 2013Align Technology, Inc.Reduced registration bonding template
US843967230 Dec 200814 May 2013Align Technology, Inc.Method and system for optimizing dental aligner geometry
US84697068 Dec 201025 Jun 2013Align Technology, Inc.Activatable dental appliance
US849647431 Oct 200730 Jul 2013Align Technology, Inc.Computer automated development of an orthodontic treatment plan and appliance
US85623388 Jun 200722 Oct 2013Align Technology, Inc.Treatment progress tracking and recalibration
US856233913 Jul 200722 Oct 20133M Innovative Properties CompanyDigital orthodontic appliance coupling matrix
US859122512 Dec 200826 Nov 2013Align Technology, Inc.Tooth movement measurement by automatic impression matching
US86065988 Nov 201210 Dec 2013Align Technology, Inc.Method and system for distributing patient referrals
US86365099 Jan 200828 Jan 2014Align Technology, Inc.Methods and systems for treating teeth
US863651010 Nov 201128 Jan 2014Align Technology, Inc.System and method for detecting deviations during the course of an orthodontic treatment to gradually reposition teeth
US864141410 Oct 20114 Feb 2014Align Technology, Inc.Automatic placement of precision cuts
US865185911 Nov 201018 Feb 2014Align Technology, Inc.System for determining final position of teeth
US87086978 Dec 200929 Apr 2014Align Technology, Inc.Tactile objects for orthodontics, systems and methods
US873414914 Sep 201227 May 2014Align Technology, Inc.Systems and methods for fabricating a dental template
US20120015315 *23 Sep 201119 Jan 20123M Innovative Properties CompanyCustomized orthodontic bracket system
US20120258416 *6 Apr 201211 Oct 2012Hongsheng TongMethod to define, measure, and display mesiodistal angulation and faciolingual inclination of each whole tooth
EP1929974A219 Jun 199811 Jun 2008Align Technology, Inc.Method and system for incrementally moving teeth
EP2263598A119 Jun 199822 Dec 2010Align Technology, Inc.Method and system for incrementally moving teeth
EP2263599A119 Jun 199822 Dec 2010Align Technology, Inc.Method and system for incrementally moving teeth
EP2266492A229 Dec 200029 Dec 2010Ormco CorporationMethod and apparatus for forming a custom orthodontic appliance
EP2289458A28 Oct 19992 Mar 2011Align Technology, Inc.Computer automated development of an orthodontic treatment plan and appliance
EP2295003A119 Jun 199816 Mar 2011Align Technology, Inc.Method and system for incrementally moving teeth
EP2295004A119 Jun 199816 Mar 2011Align Technology, Inc.Method and system for incrementally moving teeth
EP2295005A119 Jun 199816 Mar 2011Align Technology, Inc.Method and system for incrementally moving teeth
EP2423338A123 Aug 201129 Feb 2012Ormco CorporationShape setting a shape memory alloy dental arch
WO1998058596A119 Jun 199830 Dec 1998Align Technology IncMethod and system for incrementally moving teeth
WO2000069356A18 Oct 199923 Nov 2000Align Technology IncTooth path treatment plan
WO2001047405A229 Dec 20005 Jul 2001Craig A AndreikoCustom orthodontic appliance forming method and apparatus
WO2009011959A1 *7 May 200822 Jan 20093M Innovative Properties CoDigital orthodontic appliance coupling matrix
Classifications
U.S. Classification433/24, 433/8
International ClassificationA61C7/20, A61C7/28, A61C7/16, A61C9/00, A61C13/00, A61C13/097, A61C7/14, A61C7/12, A61C7/00
Cooperative ClassificationA61C13/097, A61C7/146, A61C7/00, A61C7/12, A61C9/0046, A61C7/14, A61C7/20, A61C7/16, A61C13/0004, A61C7/002
European ClassificationA61C7/14, A61C7/00, A61C7/16, A61C7/14P, A61C7/20, A61C7/12
Legal Events
DateCodeEventDescription
12 Jun 2007FPAYFee payment
Year of fee payment: 12
25 Apr 2006ASAssignment
Owner name: ORMCO CORPORATION, CALIFORNIA
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE FIRST BOSTON (N/K/A CREDIT SUISSE, CAYMAN ISLANDS BRANCH);REEL/FRAME:017519/0456
Effective date: 20060323
20 May 2003FPAYFee payment
Year of fee payment: 8
13 Jun 2002ASAssignment
Owner name: CREDIT SUISSE FIRST BOSTON, NEW YORK
Free format text: SECURITY AGREEMENT;ASSIGNOR:ORMCO CORPORATION;REEL/FRAME:012958/0243
Effective date: 20020606
Owner name: ORMCO CORPORATION, CALIFORNIA
Free format text: SECURITY INTEREST;ASSIGNOR:ABN MARO BANK N.V.;REEL/FRAME:012946/0993
Owner name: CREDIT SUISSE FIRST BOSTON ELEVEN MADISON AVENUE N
Owner name: CREDIT SUISSE FIRST BOSTON ELEVEN MADISON AVENUENE
Free format text: SECURITY AGREEMENT;ASSIGNOR:ORMCO CORPORATION /AR;REEL/FRAME:012958/0243
Owner name: ORMCO CORPORATION C/O SYBRON DENTAL SPECIALTIES, I
Free format text: SECURITY INTEREST;ASSIGNOR:ABN MARO BANK N.V. /AR;REEL/FRAME:012946/0993
22 Dec 2000ASAssignment
Owner name: ABN AMRO BANK N.V., ILLINOIS
Free format text: SECURITY INTEREST;ASSIGNOR:ORMCO CORPORATION;REEL/FRAME:011400/0232
Effective date: 20001211
Owner name: ABN AMRO BANK N.V. 135 S. LASALLE ST. CHICAGO ILLI
1 Jun 1999FPAYFee payment
Year of fee payment: 4
17 Sep 1996CCCertificate of correction
4 Aug 1994ASAssignment
Owner name: ORMCO CORPORATION, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDREIKO, CRAIG A.;PAYNE, MARK A.;REEL/FRAME:007116/0810
Effective date: 19940729