US5458640A - Cannula valve and seal system - Google Patents

Cannula valve and seal system Download PDF

Info

Publication number
US5458640A
US5458640A US08/238,475 US23847594A US5458640A US 5458640 A US5458640 A US 5458640A US 23847594 A US23847594 A US 23847594A US 5458640 A US5458640 A US 5458640A
Authority
US
United States
Prior art keywords
cannula
seal
seal means
internal
lips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/238,475
Inventor
Carmen J. Gerrone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/010,769 external-priority patent/US5312351A/en
Priority claimed from US08/042,488 external-priority patent/US5320608A/en
Application filed by Individual filed Critical Individual
Priority to US08/238,475 priority Critical patent/US5458640A/en
Application granted granted Critical
Publication of US5458640A publication Critical patent/US5458640A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3462Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3494Trocars; Puncturing needles with safety means for protection against accidental cutting or pricking, e.g. limiting insertion depth, pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3474Insufflating needles, e.g. Veress needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B2017/3445Cannulas used as instrument channel for multiple instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3462Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals
    • A61B2017/3464Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals with means acting on inner surface of valve or seal for expanding or protecting, e.g. inner pivoting fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/347Locking means, e.g. for locking instrument in cannula
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3482Means for supporting the trocar against the body or retaining the trocar inside the body inside
    • A61B2017/3484Anchoring means, e.g. spreading-out umbrella-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3492Means for supporting the trocar against the body or retaining the trocar inside the body against the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/062Measuring instruments not otherwise provided for penetration depth

Definitions

  • This invention relates to medical instruments and, in particular, to a cannula valve and seal system for use with an instrument such as a trocar.
  • the valving system employed with the cannula that holds and guides the trocar is very important.
  • the valving system must prevent the loss of insufflation gas leaking out of the abdominal cavity whether or not instruments are present within the cannula lumen.
  • the valving system must pose little or no resistance to the advancing of instruments or the withdrawal of tissues through the valving system.
  • the trocars be operatable using just one hand. In particular, it is desirable that only one hand be necessary to advance the instrument into the patient and to withdraw the instrument with tissues on it without stripping the tissues off or causing the tissues to hang up in the valve and seal system.
  • U.S. Pat. Nos. 4,654,030; 4,931,042; and 5,030,206 describe a swinger flapper valve that swings closed when instruments are not present and a gasket/seal located proximally to the valve to seal the lumen when instruments are present.
  • U.S. Pat. Nos. 4,535,773 and 4,972,827 describe a trumpet type valve or slide valve which is spring-loaded to close the lumen when instruments are not present and includes a gasket/seal similarly located proximally to seal the lumen when instruments are present.
  • These devices and others currently known in the prior art typically require a manual movement and the use of two hands to open and close the valve. Additionally, this prior art is mechanically more complicated, and thereby more costly and more difficult to clean when re-sterilization and reuse are intended. They do not provide for the easy passage of irregularly shaped instruments, and most importantly, are not adapted for the easy passage of tissue. Further, the changing of seal/gaskets is cumbersome, and because they are separate components, they become loose making them difficult to account for during use.
  • U.S. Pat. No. 4,960,412 describes the application of a duckbill valve having a concave design but differing from other prior art designs in that bosses on the valve acting on inner surfaces of the valve holding chamber, rather than gas pressure, keep the valve closed.
  • This type of valve would be particularly adverse to passing tissue in the opposite direction because the opposing bosses, designed for the purpose of maintaining closure of the lips by blood pressure, is contrary to the concept of allowing easy passage of tissues or irregularly shaped instruments that can "hang up” or "catch on” the valve and be difficult to remove.
  • U.S. Pat. No. 5,122,122 describes a duckbill valve having a spherical design.
  • the lips have a deliberately thin design, which causes them to fold back on themselves, thereby turning inside out. They exhibit unacceptably high withdrawal resistance and further are not able to adequately seal. Additionally, due to the delicate nature of the lip edge, the valves are easily damaged by tears and/or cuts made by sharp instruments passing through them. This wear ultimately makes the valve difficult to seal.
  • U.S. Pat. No. 5,242,412 describes a valve having converging sealing lips which generally operates according to the principles of commercially available duckbill valves such as described in U.S. Pat. No. 5,010,925.
  • This includes internal converging walls and an associated slit which terminates at the apex of a "V". It creates one set of delicate valve lips which are easily damaged. Further, they are not conducive to passing tissues and instruments through without high forces of resistance. When all is considered, it exhibits the same disadvantages common with all the prior art designs. Further, by nature of the valve design, additional diverging lip extensions are needed to prevent the inward collapse of the sealing lips. It appears that the lip extensions could potentially interfere with consistent, reliable valve closure.
  • valves which are easily removable and/or replaceable as required in reusable device applications.
  • the invention comprises a surgical apparatus that efficiently prevents the leakage of gas from a patient's abdominal cavity. It substantially eliminates resistance as instruments and tissues are withdrawn through it. It can also be automatically operated with one hand or can be manually operated as well.
  • the invention includes three embodiments of a cannula subassembly. Each embodiment includes a converging lip valve seal which is universal to trocars and instruments ranging in size from 3 mm to 12 mm in diameter.
  • the invention further comprises a reducer subassembly having a fixed seal means and an attachment means to remove and replace interchangeable end seals sized for instruments of varying outside diameters.
  • the separability of the cannula and reducer subassemblies make it possible to discard the disposable reducer subassembly and to replace the converging lip valve seal when the cannula subassembly is to be resterilized between operative procedures.
  • receptacle or storage stations located either on the reducer or cannula subassemblies provide a means to attach and manage otherwise loose interchangeable end seals when smaller or larger instruments are needed. After use, rather than removing them from the field which requires extra accountable management, they are attached to the receptacle stations. This provides for accountable, safe and convenient storage of the seals which remain in a standby position for reuse or are discarded when the surgical procedure has been completed.
  • the converging lip valve seal is preferably made of a flexible, resilient material with high tear resistance. It has high lubricity characteristics which can be further enhanced with a silicone lubricant coating to reduce frictional resistance of instruments.
  • the valve has a circular cross section at its proximal end and thereafter progresses to a "V" or “chisel” shaped cross section towards its distal end such that the inside lumen provides a large pathway for easy access with minimal interference due to stiffness. This maintains the distal extension of the lip edges so they do not fold back inside out.
  • the outside surface of the "V" cross section is such that when instruments are not present, abdominal pressure acting on the "V", closes the converging lips sealing the lumen.
  • each opposing face has a set of lip internal and external edges separated by a width of approximately 1/2 X.
  • prior art valves normally comprise just one set of lip edges.
  • the internal lip edges of the present invention absorb cuts and/or tears from sharp devices entering and passing through into the abdominal cavity. The internal lip edges move the external lip edges out of the path of the leading points of sharp instruments such as trocars thereby avoiding damage to the external lip edges.
  • a spring-loaded tubular structure acts in a dual role to either automatically or manually open and close the valve seal.
  • a spring is compressed and the valve automatically moves outward.
  • the valve lips pass over an interior tubular structure thereby opening the valve.
  • the tubular structure then becomes the pathway out of the cavity thereby eliminating resistance to withdrawal.
  • the spring returns the valve to its original position away from the tubular structure thereby closing the valve seal.
  • a tubular structure is located concentrically in a fixed relationship with respect to the internal walls of the "V" shape of the converging lip valve seal such that when tissues or instruments are withdrawn, the tube does not allow the lips to fold inward.
  • the lips in this position are supported by the tube which then becomes the pathway in and out and which results in a lower force of resistance to instruments during withdrawal.
  • the reducer subassembly comprises a fixed seal means and an attachment means for interchangeable end seal means of varying diameters. It also includes a receptacle for storage of the interchangeable end seal means.
  • FIG. 1 is a perspective view of the assembled cannula and reducer subassemblies according to the preferred embodiment of the invention.
  • FIG. 2 is a perspective view of the assembled cannula and reducer subassemblies according to a second embodiment of the invention.
  • FIG. 3 is a perspective view of the assembled cannula and reducer subassemblies according to a third embodiment of the invention.
  • FIG. 4 is a cross-sectional illustration of the preferred embodiment of the invention as illustrated in FIG. 1.
  • FIG. 4A is a cross-sectional illustration of the preferred embodiment illustrated in FIG. 1 with the valve in an automatically opened position.
  • FIG. 4B is a cross-sectional illustration of the preferred embodiment illustrated in FIG. 1 with the valve in a manually opened position.
  • FIG. 5 is a cross-sectional illustration of the second alternative embodiment illustrated in FIG. 2.
  • FIG. 6 is a cross-sectional illustration of the third alternative embodiment illustrated in FIG. 3.
  • FIG. 7 is a cross-sectional illustration of the cannula subassembly of the embodiments illustrated in FIGS. 1, 2, and 3.
  • FIG. 8A is a cross-sectional illustration of the reducer subassembly of the preferred embodiment illustrated in FIGS. 1, 4, 4A, and 4B.
  • FIG. 8B is a cross-sectional illustration of the reducer subassembly of the second embodiment illustrated in FIGS. 2 and 5.
  • FIG. 8C is a cross-sectional illustration of the reducer subassembly of the third embodiment illustrated in FIGS. 3 and 6.
  • FIG. 9 is a cross-sectional illustration of the interchangeable second or permanent seal.
  • FIG. 10 is a side perspective view of the converging lip valve seal in the normally closed position.
  • FIG. 11 is a side perspective view of the converging lip valve seal illustrating the application of a force F.
  • FIG. 12 is a cross-sectional illustration of the converging lip valve seal illustrating the two internal and external lip edges of the valve seal.
  • FIG. 13 is a cross-sectional illustration of the converging lip valve seal illustrating the deformation of valve lips as a sharp trocar is passed through the valve seal.
  • FIG. 14 is a front view of the converging lip valve seal illustrating the valve lips in the full opened position.
  • the invention comprises a converging lip valve seal 120 illustrated in FIG. 10 and three embodiments of the apparatus illustrated in FIGS. 1, 2, and 3 that enhance its use and effectiveness.
  • the dual operational, converging lip valve seal opening means, 12, either automatic (FIG. 4A) or manual (FIG. 4B) is incorporated with the same modular components in a second embodiment 112 illustrated in FIGS. 2, 5 and 8B and a third embodiment 114 illustrated in FIGS. 3, 6 and 8C.
  • FIG. 10 illustrates the converging lip valve 120 in a normally closed position.
  • the valve or valve seal 120 is preferably made of a flexible, resilient material having a high resistance to cutting or tearing as well as high lubricity characteristics such as synthetic polyisopilene or a medical grade silicone.
  • the converging lip valve 120 is comprised of a cylindrical body 1 which fits axially into the bore of cannula housing 20 in a slight press fit.
  • Interlocking means 2 fits into corresponding recesses in the cannula housing 20, restricting axial movement during use and providing for easy removal for replacement with a reusable cannula.
  • the inner lumen 3 begins as a circular shape parallel to the central axis for a distance to provide a large pathway for easy access by irregular and sharp instruments. Thereafter, it tapers to a "V-chisel" cross section 8 converging inward to a truncated flat surface 4 of exterior width "X" perpendicular to the central axis at the distal end.
  • the opposing lips have a thickness "1/2 X".
  • the flat external leading surface 5 has a width "X" perpendicular to the central axis of the cannula 31 and parallel to surface 4.
  • a slit 6 creates a first set of individually sealable internal converging valve lip edges 9 located on internal surface 4 and oppositely a second set of external valve lip edges 10 on surface 5 that are maintained closed when gas pressure exerts force on walls 7.
  • Walls 7 are truncated and run parallel and opposite to internal surface 8 and are of the same thickness "1/2 X" as surfaces 4 and 5.
  • FIG. 13 illustrates in cross section the "V-chisel” and perpendicular wall shape that provides stiffness and a pathway for sharp devices to pass freely through slit 6.
  • the first set of internal lip edges 9 absorb cuts or tears.
  • the external surface 5 with external lip edges 10 moves outward such that contact cannot be made by sharp edges due to thickness "1/2 X". Therefore, the external lip edges 10 of surface 5 are protected from cuts thereby ensuring a consistent leak-proof closure.
  • the "V-chisel" cross section and wall thickness provide important stiffness by maintaining lips extended at their distal end.
  • FIG. 11 illustrates how stiffness causes the cylindrical walls to bend inward creating an opening as the slit 6 expands, instead of folding inward when a force, indicated by the arrow F, is applied.
  • Force F is experienced in the prior art when tissues and/or instruments are withdrawn from the abdominal cavity.
  • the preferred embodiment 110 of the invention provides for a dual operation to open converging lip valve 19. There must be absolutely no resistance, when the operative procedure demands single-handed operation of instruments through the trocar. Also, when special instruments are used, because of their irregular shape and sharpness, such as articulated stapling devices, it is important that they do not catch on the lips of the valve. If they do catch, they can be difficult to remove and can possibly create a tear in the valve.
  • a slidable tubular structure 12 is located concentrically within the reducer subassembly 11A.
  • a slidable retainer 17 in which the converging lip valve 19 is contained, is located in the cannula housing 20.
  • a spring means 14 surrounds the tubular structure 12 and is held between a recess 12C provided at its proximal end, and a slidable disc 18 at its distal end.
  • Disc 18 is contained in the recess by a retention means 13 which is part of the tubular structure 12.
  • Spring 14 acts to bias the two slidable structures away from each other.
  • the disc 18 slides along tubular structure 12.
  • the converging lip valve 19 and retaining means 17 are slidable within cannula housing 20 and the tubular structure 12 is slidable within reducer subassembly 11A. Reducer subassembly 11A, when assembled with cannula housing 20, as shown in FIG.
  • a fixed or permanent second seal 21 is located concentrically within tubular structure 12.
  • An interchangeable end seal attachment mechanism 15 containing a downsized interchangeable seal 21A can accommodate the use of a smaller instrument with a smaller outside diameter. The smaller outside diameter instrument can be sealed by fixed or permanent seal 21 and is shown attached to reducer subassembly 11A via attachment structure 16A.
  • FIGS. 2 and 5 illustrate a second embodiment 112 of the invention. It comprises a cannula housing 20, illustrated in FIG. 7, which is attachable and removable with respect to a reducer subassembly 11B, illustrated in FIG. 8B, which in turn is attachable and removable with respect to a reducer interchangeable second seal subassembly 15, illustrated in FIG. 9.
  • a tubular structure 12A is located concentrically within reducer subassembly 11B. When assembled with cannula housing 20, the tubular structure 12A is positioned in a fixed relationship concentrically within converging lip valve 19 just short of making contact with internal walls 8. Therefore, when tissues and instruments are withdrawn from the cavity, any force felt by the valve lips 5 will not result in said lips folding inward.
  • the tubular structure 12A located within subassembly 11B, as shown in FIG. 5, contains within its central bore, a fixed second seal subassembly 16.
  • the seal subassembly 16 comprises a second seal means 21 and an attachment means 16A.
  • a reducer interchangeable end seal subassembly 15 attached to subassembly 16 further includes an interchangeable end seal 21A.
  • FIGS. 3 and 6 illustrate a third embodiment 114 of the invention.
  • the third embodiment 114 comprises a cannula housing 20, such as illustrated in FIG. 7, which is attachable and removable with respect to a reducer subassembly 11C, such as illustrated in FIG. 6, which is attachable and removable with respect to a reducer interchangeable second or end seal subassembly 15, such as illustrated in FIG. 9. Because the third embodiment 114 does not contain a valve opening mechanism, the converging lip valve 19 is preferably coated with a silicone lubricant to reduce frictional resistance.
  • Reducer subassembly 11C contains within its central bore a fixed second seal subassembly 16 comprising second seal 21, and an attachment structure 16A, to which reducer interchangeable second seal subassembly 15 is attachable and which further includes an interchangeable end seal 21A.
  • Reducer interchangeable seal subassembly 15 is attachable to seal subassembly 16 by seal subassembly grooves 16A and corresponding recesses in the reducer interchangeable seal 15.
  • Grooves 16A in the tubular structure 12 of the preferred embodiment 110 are shown in FIGS. 1 and 4.
  • FIGS. 2 and 5 In the second embodiment 112, they are shown in FIGS. 2 and 5.
  • FIGS. 3 and 6 In the third embodiment 114, they are shown in FIGS. 3 and 6 as a component of the reducer subassembly 11C.
  • the reducer interchangeable end seal subassembly 15 can be stored in a standby position by attaching the reducer interchangeable end seal subassembly 15 to corresponding attachment recesses 11D.
  • Attachment recesses 11D are located along walls of reducer housing 11A, 11B, or 11C shown in FIGS. 8A, 8B, and 8C. Alternatively, they can be located on cannula housing 20 as shown in FIG. 1. This provides for the safe and accountable keeping of the seals for later reuse, or for the discarding of the seals when the procedure has been completed.

Abstract

A surgical cannula includes a first valve seal for preventing insufflation gas from escaping from a patient's abdomen when an instrument is inserted or removed through the cannula. The valve seal has a V-shaped cross section and includes two opposing lips which face each other across a slit. Each lip has an internal and external edge separated by an intermediate section. The front surface of the first seal is relatively flat and has a width X. The preferred distance between the internal and external edges is preferably one-half X. This permits the internal edges to absorb the shock and damage from the introduction of a sharp instrument such as a trocar into the cannula without destroying the sealing capability of the external edges. A spring-loaded tubular member is located within the cannula housing and a reducer subassembly and is normally biased away from the interior surface of the first seal. When an instrument is introduced into the tubular member, it opens the first seal in such a way as to avoid damage to the first seal and, further, permits the withdrawal of tissues without interference. A second fixed or permanent seal located at the rear end of the tubular means also helps to prevent gas loss. Moreover, a plurality of interchangeable end seals can be selectively attached to the end of the instrument. The end seals provide opening apertures that match instruments, such as trocars, having various different outside diameters.

Description

CROSS REFERENCES TO RELATED APPLICATIONS
This application is a continuation in part of my U.S. patent application Ser. No. 08/010,769 filed on Jan. 29, 1993 now U.S. Pat. No. 5,312,351 and entitled, "Combined Pneumo-Needle and Trocar Apparatus" and my U.S. patent application Ser. No. 08/042,488 filed on Apr. 2, 1993 now U.S. Pat. No. 5,320,608 and entitled, "Combined Pneumo-Needle and Trocar Apparatus." The entire contents of both co-pending applications are hereby incorporated by reference into this disclosure.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to medical instruments and, in particular, to a cannula valve and seal system for use with an instrument such as a trocar.
2. Description of Related Art
During the performance of laparoscopic surgery, it is not uncommon to use as many as five trocars in a single procedure in order to advance operating instruments into the abdominal cavity of a patient. The valving system employed with the cannula that holds and guides the trocar is very important. First, the valving system must prevent the loss of insufflation gas leaking out of the abdominal cavity whether or not instruments are present within the cannula lumen. Second, the valving system must pose little or no resistance to the advancing of instruments or the withdrawal of tissues through the valving system. Third, given the fact that many different trocars of varying outside diameters are available for use and because space is limited around the operating table, it is desirable that the trocars be operatable using just one hand. In particular, it is desirable that only one hand be necessary to advance the instrument into the patient and to withdraw the instrument with tissues on it without stripping the tissues off or causing the tissues to hang up in the valve and seal system.
In the prior art, it was common to seal off gas leaks by using a two-component valve employing a gasket/seal arrangement. The first valve is typically located in the cannula housing and seals when the trocar or other instrument is not present. A second gasket/seal, which is removable and exchangeable and sized for instruments of varying diameters, is located proximally with respect to the first seal thereby sealing the cannula as the trocar is introduced into it or removed from it. One of the major problems with such prior art systems is that they require two hands for operation and do not satisfactorily seal the cannula from the loss of insufflation gas.
For example, U.S. Pat. Nos. 4,654,030; 4,931,042; and 5,030,206, describe a swinger flapper valve that swings closed when instruments are not present and a gasket/seal located proximally to the valve to seal the lumen when instruments are present.
U.S. Pat. Nos. 4,535,773 and 4,972,827 describe a trumpet type valve or slide valve which is spring-loaded to close the lumen when instruments are not present and includes a gasket/seal similarly located proximally to seal the lumen when instruments are present. These devices and others currently known in the prior art typically require a manual movement and the use of two hands to open and close the valve. Additionally, this prior art is mechanically more complicated, and thereby more costly and more difficult to clean when re-sterilization and reuse are intended. They do not provide for the easy passage of irregularly shaped instruments, and most importantly, are not adapted for the easy passage of tissue. Further, the changing of seal/gaskets is cumbersome, and because they are separate components, they become loose making them difficult to account for during use.
There have been several attempts to solve such problems in the prior art. Several devices use commercial duckbill-type check valves such as described in U.S. Pat. No. 5,010,925 and similar to those commonly used in automotive, appliance, medical and specialty applications. Such prior art duckbill valves are slit at one end to create one set of converging lips. While these prior art valves are effective for liquids and gases, they are not effective for use in laparoscopic surgical procedures because they do not allow for the easy withdrawal of tissues. Sample tissue is easily dislodged from devices grasping them as strong resistance from the valve is encountered during the withdrawal process. Occasionally, the resistance is large enough to cause the unintended withdrawal of the cannula from the patient's abdominal cavity.
U.S. Pat. No. 4,960,412 describes the application of a duckbill valve having a concave design but differing from other prior art designs in that bosses on the valve acting on inner surfaces of the valve holding chamber, rather than gas pressure, keep the valve closed. This type of valve would be particularly adverse to passing tissue in the opposite direction because the opposing bosses, designed for the purpose of maintaining closure of the lips by blood pressure, is contrary to the concept of allowing easy passage of tissues or irregularly shaped instruments that can "hang up" or "catch on" the valve and be difficult to remove.
U.S. Pat. No. 5,122,122 describes a duckbill valve having a spherical design. The lips have a deliberately thin design, which causes them to fold back on themselves, thereby turning inside out. They exhibit unacceptably high withdrawal resistance and further are not able to adequately seal. Additionally, due to the delicate nature of the lip edge, the valves are easily damaged by tears and/or cuts made by sharp instruments passing through them. This wear ultimately makes the valve difficult to seal.
U.S. Pat. No. 5,242,412 describes a valve having converging sealing lips which generally operates according to the principles of commercially available duckbill valves such as described in U.S. Pat. No. 5,010,925. This includes internal converging walls and an associated slit which terminates at the apex of a "V". It creates one set of delicate valve lips which are easily damaged. Further, they are not conducive to passing tissues and instruments through without high forces of resistance. When all is considered, it exhibits the same disadvantages common with all the prior art designs. Further, by nature of the valve design, additional diverging lip extensions are needed to prevent the inward collapse of the sealing lips. It appears that the lip extensions could potentially interfere with consistent, reliable valve closure.
Finally, the prior art does not disclose valves which are easily removable and/or replaceable as required in reusable device applications.
SUMMARY OF THE INVENTION
Briefly described, the invention comprises a surgical apparatus that efficiently prevents the leakage of gas from a patient's abdominal cavity. It substantially eliminates resistance as instruments and tissues are withdrawn through it. It can also be automatically operated with one hand or can be manually operated as well.
The invention includes three embodiments of a cannula subassembly. Each embodiment includes a converging lip valve seal which is universal to trocars and instruments ranging in size from 3 mm to 12 mm in diameter. The invention further comprises a reducer subassembly having a fixed seal means and an attachment means to remove and replace interchangeable end seals sized for instruments of varying outside diameters. The separability of the cannula and reducer subassemblies make it possible to discard the disposable reducer subassembly and to replace the converging lip valve seal when the cannula subassembly is to be resterilized between operative procedures.
Several receptacle or storage stations located either on the reducer or cannula subassemblies provide a means to attach and manage otherwise loose interchangeable end seals when smaller or larger instruments are needed. After use, rather than removing them from the field which requires extra accountable management, they are attached to the receptacle stations. This provides for accountable, safe and convenient storage of the seals which remain in a standby position for reuse or are discarded when the surgical procedure has been completed.
The converging lip valve seal is preferably made of a flexible, resilient material with high tear resistance. It has high lubricity characteristics which can be further enhanced with a silicone lubricant coating to reduce frictional resistance of instruments. The valve has a circular cross section at its proximal end and thereafter progresses to a "V" or "chisel" shaped cross section towards its distal end such that the inside lumen provides a large pathway for easy access with minimal interference due to stiffness. This maintains the distal extension of the lip edges so they do not fold back inside out. The outside surface of the "V" cross section is such that when instruments are not present, abdominal pressure acting on the "V", closes the converging lips sealing the lumen. The "V" cross section is truncated at its distal end thereby creating a transverse leading front surface of width "X" perpendicular to the central axis of the seal. When the end is slit, each opposing face has a set of lip internal and external edges separated by a width of approximately 1/2 X. In contrast, prior art valves normally comprise just one set of lip edges. The internal lip edges of the present invention absorb cuts and/or tears from sharp devices entering and passing through into the abdominal cavity. The internal lip edges move the external lip edges out of the path of the leading points of sharp instruments such as trocars thereby avoiding damage to the external lip edges.
In the preferred embodiment of the invention, a spring-loaded tubular structure acts in a dual role to either automatically or manually open and close the valve seal. In the automatic mode, as force from withdrawal of tissue and instruments is felt by the converging lips of the valve, a spring is compressed and the valve automatically moves outward. The valve lips pass over an interior tubular structure thereby opening the valve. The tubular structure then becomes the pathway out of the cavity thereby eliminating resistance to withdrawal. When the force is removed after withdrawal, the spring returns the valve to its original position away from the tubular structure thereby closing the valve seal.
When it is desired to manually open the valve, this can be accomplished by manually pushing the tubular structure inward. This compresses the spring, and the tube then passes into and through the converging valve lips, opening them and thereby creating a non-interfering pathway into the abdominal cavity. It simultaneously desuflates or evacuates the cavity of smoke when present, and also acts to move the converging valve lips away from contact with sharp instruments that would otherwise damage the lips and render them unsealable. When the tubular structure is manually released, the spring returns the tubular structure to its original position thereby closing the valve.
In a second embodiment of the invention, a tubular structure is located concentrically in a fixed relationship with respect to the internal walls of the "V" shape of the converging lip valve seal such that when tissues or instruments are withdrawn, the tube does not allow the lips to fold inward. The lips in this position are supported by the tube which then becomes the pathway in and out and which results in a lower force of resistance to instruments during withdrawal.
In a third embodiment, in which there is no tubular structure present, the reducer subassembly comprises a fixed seal means and an attachment means for interchangeable end seal means of varying diameters. It also includes a receptacle for storage of the interchangeable end seal means.
These and other features of the invention will be more fully understood by reference to the following drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of the assembled cannula and reducer subassemblies according to the preferred embodiment of the invention.
FIG. 2 is a perspective view of the assembled cannula and reducer subassemblies according to a second embodiment of the invention.
FIG. 3 is a perspective view of the assembled cannula and reducer subassemblies according to a third embodiment of the invention.
FIG. 4 is a cross-sectional illustration of the preferred embodiment of the invention as illustrated in FIG. 1.
FIG. 4A is a cross-sectional illustration of the preferred embodiment illustrated in FIG. 1 with the valve in an automatically opened position.
FIG. 4B is a cross-sectional illustration of the preferred embodiment illustrated in FIG. 1 with the valve in a manually opened position.
FIG. 5 is a cross-sectional illustration of the second alternative embodiment illustrated in FIG. 2.
FIG. 6 is a cross-sectional illustration of the third alternative embodiment illustrated in FIG. 3.
FIG. 7 is a cross-sectional illustration of the cannula subassembly of the embodiments illustrated in FIGS. 1, 2, and 3.
FIG. 8A is a cross-sectional illustration of the reducer subassembly of the preferred embodiment illustrated in FIGS. 1, 4, 4A, and 4B.
FIG. 8B is a cross-sectional illustration of the reducer subassembly of the second embodiment illustrated in FIGS. 2 and 5.
FIG. 8C is a cross-sectional illustration of the reducer subassembly of the third embodiment illustrated in FIGS. 3 and 6.
FIG. 9 is a cross-sectional illustration of the interchangeable second or permanent seal.
FIG. 10 is a side perspective view of the converging lip valve seal in the normally closed position.
FIG. 11 is a side perspective view of the converging lip valve seal illustrating the application of a force F.
FIG. 12 is a cross-sectional illustration of the converging lip valve seal illustrating the two internal and external lip edges of the valve seal.
FIG. 13 is a cross-sectional illustration of the converging lip valve seal illustrating the deformation of valve lips as a sharp trocar is passed through the valve seal.
FIG. 14 is a front view of the converging lip valve seal illustrating the valve lips in the full opened position.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION
During the course of this description, like numbers will be used to identify like elements according to the different views that illustrate the invention.
The invention comprises a converging lip valve seal 120 illustrated in FIG. 10 and three embodiments of the apparatus illustrated in FIGS. 1, 2, and 3 that enhance its use and effectiveness. According to the preferred embodiment 110 illustrated in FIGS. 1, 4, 4A, 4B and 8A, the dual operational, converging lip valve seal opening means, 12, either automatic (FIG. 4A) or manual (FIG. 4B), is incorporated with the same modular components in a second embodiment 112 illustrated in FIGS. 2, 5 and 8B and a third embodiment 114 illustrated in FIGS. 3, 6 and 8C.
FIG. 10 illustrates the converging lip valve 120 in a normally closed position. The valve or valve seal 120 is preferably made of a flexible, resilient material having a high resistance to cutting or tearing as well as high lubricity characteristics such as synthetic polyisopilene or a medical grade silicone. As illustrated in FIGS. 10 and 12, the converging lip valve 120 is comprised of a cylindrical body 1 which fits axially into the bore of cannula housing 20 in a slight press fit. Interlocking means 2 fits into corresponding recesses in the cannula housing 20, restricting axial movement during use and providing for easy removal for replacement with a reusable cannula. The inner lumen 3 begins as a circular shape parallel to the central axis for a distance to provide a large pathway for easy access by irregular and sharp instruments. Thereafter, it tapers to a "V-chisel" cross section 8 converging inward to a truncated flat surface 4 of exterior width "X" perpendicular to the central axis at the distal end. The opposing lips have a thickness "1/2 X". The flat external leading surface 5 has a width "X" perpendicular to the central axis of the cannula 31 and parallel to surface 4. A slit 6 creates a first set of individually sealable internal converging valve lip edges 9 located on internal surface 4 and oppositely a second set of external valve lip edges 10 on surface 5 that are maintained closed when gas pressure exerts force on walls 7. Walls 7 are truncated and run parallel and opposite to internal surface 8 and are of the same thickness "1/2 X" as surfaces 4 and 5.
FIG. 13 illustrates in cross section the "V-chisel" and perpendicular wall shape that provides stiffness and a pathway for sharp devices to pass freely through slit 6. The first set of internal lip edges 9 absorb cuts or tears. The external surface 5 with external lip edges 10 moves outward such that contact cannot be made by sharp edges due to thickness "1/2 X". Therefore, the external lip edges 10 of surface 5 are protected from cuts thereby ensuring a consistent leak-proof closure. The "V-chisel" cross section and wall thickness provide important stiffness by maintaining lips extended at their distal end.
FIG. 11 illustrates how stiffness causes the cylindrical walls to bend inward creating an opening as the slit 6 expands, instead of folding inward when a force, indicated by the arrow F, is applied. Force F is experienced in the prior art when tissues and/or instruments are withdrawn from the abdominal cavity.
The preferred embodiment 110 of the invention provides for a dual operation to open converging lip valve 19. There must be absolutely no resistance, when the operative procedure demands single-handed operation of instruments through the trocar. Also, when special instruments are used, because of their irregular shape and sharpness, such as articulated stapling devices, it is important that they do not catch on the lips of the valve. If they do catch, they can be difficult to remove and can possibly create a tear in the valve. In the preferred embodiment 110 illustrated in FIGS. 1, 4, 4A, 4B, and 8A, a slidable tubular structure 12, is located concentrically within the reducer subassembly 11A. A slidable retainer 17 in which the converging lip valve 19 is contained, is located in the cannula housing 20. A spring means 14 surrounds the tubular structure 12 and is held between a recess 12C provided at its proximal end, and a slidable disc 18 at its distal end. Disc 18 is contained in the recess by a retention means 13 which is part of the tubular structure 12. Spring 14 acts to bias the two slidable structures away from each other. The disc 18 slides along tubular structure 12. The converging lip valve 19 and retaining means 17 are slidable within cannula housing 20 and the tubular structure 12 is slidable within reducer subassembly 11A. Reducer subassembly 11A, when assembled with cannula housing 20, as shown in FIG. 4, is such that the tubular structure 12 is located just short of contact with the internal wall 8 of valve 19 such that the lip edges located on surfaces 4 and 5 are closed and no gas is allowed to pass outward from the abdominal cavity. A fixed or permanent second seal 21 is located concentrically within tubular structure 12. An interchangeable end seal attachment mechanism 15 containing a downsized interchangeable seal 21A can accommodate the use of a smaller instrument with a smaller outside diameter. The smaller outside diameter instrument can be sealed by fixed or permanent seal 21 and is shown attached to reducer subassembly 11A via attachment structure 16A.
During an operative procedure, force from withdrawal of tissue and irregular shaped instruments is exerted by the converging lip valve edges 5. The converging lip valve 19 and retention means 17 in which it is contained, will move outward and spring 14 will be compressed by movement of disc 18. The valve lips 4 and 5 will then pass over tubular structure 12 thereby opening valve 19 as shown in FIG. 4A. The tubular structure 12 then becomes the pathway to permit non-resisted withdrawal of tissue or instruments through the tube 12. When the force is removed and withdrawal of the instrument, such as a trocar, is completed, spring 14 returns to its original position. The valve 19 within valve retainer 17 also returns to its original position passing through valve lips 4 and 5 of the tubular structure 12. The valve then closes to seal the lumen.
In certain procedures, when it is desirous to manually open the valve, this is accomplished by pushing the fixed seal subassembly 16 inward. The spring 14 compresses and the tubular structure 12 passes inwardly through the valve lip edges 9 and 10 of converging lip valve 19 as shown in FIG. 4B. The valve lips open such that they are removed from potential contact and a pathway within tubular structure 12 is created through which surgical instruments or tissue can readily pass without contact or damage to the valve 19. Release of spring 14 causes the tubular structure 12 to return to its outwardly biased original position and the valve lips 9 and 10 close and seal the lumen of the cannula.
FIGS. 2 and 5 illustrate a second embodiment 112 of the invention. It comprises a cannula housing 20, illustrated in FIG. 7, which is attachable and removable with respect to a reducer subassembly 11B, illustrated in FIG. 8B, which in turn is attachable and removable with respect to a reducer interchangeable second seal subassembly 15, illustrated in FIG. 9. A tubular structure 12A is located concentrically within reducer subassembly 11B. When assembled with cannula housing 20, the tubular structure 12A is positioned in a fixed relationship concentrically within converging lip valve 19 just short of making contact with internal walls 8. Therefore, when tissues and instruments are withdrawn from the cavity, any force felt by the valve lips 5 will not result in said lips folding inward. They can only move rearward a short distance until contact of inner walls 8 is made and support is provided by the tubular structure 12. The base of tubular structure 12 then becomes the exiting pathway for withdrawal for instruments and tissue thereby reducing the force of resistance to the withdrawn instruments or tissue. The tubular structure 12A located within subassembly 11B, as shown in FIG. 5, contains within its central bore, a fixed second seal subassembly 16. The seal subassembly 16 comprises a second seal means 21 and an attachment means 16A. A reducer interchangeable end seal subassembly 15 attached to subassembly 16 further includes an interchangeable end seal 21A.
FIGS. 3 and 6 illustrate a third embodiment 114 of the invention. The third embodiment 114 comprises a cannula housing 20, such as illustrated in FIG. 7, which is attachable and removable with respect to a reducer subassembly 11C, such as illustrated in FIG. 6, which is attachable and removable with respect to a reducer interchangeable second or end seal subassembly 15, such as illustrated in FIG. 9. Because the third embodiment 114 does not contain a valve opening mechanism, the converging lip valve 19 is preferably coated with a silicone lubricant to reduce frictional resistance. Reducer subassembly 11C contains within its central bore a fixed second seal subassembly 16 comprising second seal 21, and an attachment structure 16A, to which reducer interchangeable second seal subassembly 15 is attachable and which further includes an interchangeable end seal 21A.
In all of the foregoing embodiments of the invention, when varying interchangeable end seals 21A and 21B are required, they can be easily removed and exchanged for the right size. Reducer interchangeable seal subassembly 15 is attachable to seal subassembly 16 by seal subassembly grooves 16A and corresponding recesses in the reducer interchangeable seal 15. Grooves 16A in the tubular structure 12 of the preferred embodiment 110 are shown in FIGS. 1 and 4. In the second embodiment 112, they are shown in FIGS. 2 and 5. In the third embodiment 114, they are shown in FIGS. 3 and 6 as a component of the reducer subassembly 11C. In all three embodiments, after interchangeable second seals 21A, 21B, located within reducer interchangeable second seal subassembly 15 have been used and are no longer needed, the reducer interchangeable end seal subassembly 15 can be stored in a standby position by attaching the reducer interchangeable end seal subassembly 15 to corresponding attachment recesses 11D. Attachment recesses 11D are located along walls of reducer housing 11A, 11B, or 11C shown in FIGS. 8A, 8B, and 8C. Alternatively, they can be located on cannula housing 20 as shown in FIG. 1. This provides for the safe and accountable keeping of the seals for later reuse, or for the discarding of the seals when the procedure has been completed.
Although the embodiments illustrated in the drawings and described herein demonstrate several possible variations within the framework of the invention, it will be apparent to those skilled in the art that other alternate constructions or modifications may be made by one having ordinary skill in the art without necessarily departing from the spirit or scope of the invention as a whole.

Claims (10)

I claim:
1. A surgical apparatus for introducing an instrument into a patient comprising:
a cannula having a long central axis, a first end, a second end and a lumen running therethrough;
a cannula housing removably attached to said cannula;
a first seal means located within said cannula housing for preventing the leakage of insufflation gas from said patient when said cannula is located in said patient, said first seal means including two opposed lips which contact each other across a slit located between them, wherein said first seal means has a normally closed state and an open state when an instrument is introduced into said lumen of said cannula, said two lips of said first seal means each including an internal and an external edge and a substantially flat intermediate section between said internal and external edges, wherein said internal and external edges of said substantially flat intermediate sections of said lips are in substantial contact with each other when said first seal means is in said closed state, said first seal means further including a distal end having a relatively flat external surface which is perpendicular to said long central axis of said cannula, said relatively flat surface having a width X, said first seal means having walls with a generally V-shaped cross-section and further including a proximal end and an inner and outer surface which define the sidewalls of said first seal means, said first seal means further including an internal, relatively flat surface extending between the inner edges of said lips and said sidewalls, wherein the distance between said internal and external edges of said two lips is approximately 1/2 X;
a reducer subassembly removably attached to said cannula housing, said reducer subassembly including an internal lumen; and,
a hollow tubular means having an interior bore therethrough and located within the lumen of said reducer subassembly and concentrically aligned with the long central axis of said cannula, said tubular means having a first end located near the inner surface of said first seal means which restricts the inward movement and collapse of said lips of said first seal means when an instrument is withdrawn through the lumen of said cannula,
wherein when an instrument passes through said lumen of said cannula it first comes into contact with the internal edge of said two lips which absorbs the trauma of said contact and parts thereby protecting said external edges so that said first seal means will form a substantially gas-leakproof seal after said instrument is removed.
2. A surgical apparatus for introducing an instrument into a patient comprising:
a cannula having a long central axis, a first end, a second end and a lumen running therethrough;
a cannula housing removably attached to said cannula;
a first seal means located within said cannula housing for preventing the leakage of insufflation gas from said patient when said cannula is located in said patient, said first seal means including two opposed lips which contact each other across a slit located between them, wherein said first seal means has a normally closed state and an open state when an instrument is introduced into said lumen of said cannula, said two lips of said first seal means each including an internal and an external edge and a substantially flat intermediate section between said internal and external edges, wherein said internal and external edges and said substantially flat intermediate sections of said lips are in substantial contact with each other when said first seal means is in said closed state, said first seal means including a distal end having a relatively flat external surface which is perpendicular to said long central axis of said cannula, said relatively flat external surface having a width X, said first seal means further having a generally V-shaped cross-section and further including a proximal end and an inner and outer surface which define the sidewalls of said first seal means, said first seal means further including a relatively flat internal surface extending from said internal edges of said lips to said internal sidewalls of said first seal means, wherein the distance between said internal and external edges of said two lips is approximately 1/2 X, and further wherein said first seal means is removably attached to said cannula housing;
a reducer subassembly attachable to said cannula housing, said reducer subassembly including an internal lumen and further comprising a hollow, movable tubular means having an internal bore therethrough and located within the lumen of said reducer subassembly and concentrically aligned with the long central axis of said cannula, and a spring means located within said reducer subassembly for normally biasing said tubular means away from said first seal means; and,
a hollow tubular means having an internal bore therethrough and located within the lumen of said reducer subassembly and concentrically aligned with the long central axis of said cannula, said hollow tubular means having a first end located near the inner surface of said first seal means which restricts the inward movement and collapse of said lips of said first seal means when an instrument is withdrawn through the lumen of said cannula,
wherein when an instrument passes through said lumen of said cannula it first comes into contact with the internal edge of said two lips which absorbs the trauma of said contact and parts thereby protecting said external edges so that said first seal means will form a substantially gas-leakproof seal after said instrument is removed and,
wherein when force is applied to said tubular means against said bias of said spring means, the tubular means contacts the inner surface of said first seal means and opens said first seal means creating a pathway through said first seal means so that an instrument can pass through said hollow interior bore of said tubular means without contacting said first seal means and without interfering with removal of tissues through said cannula.
3. The apparatus of claim 2 further comprising:
a permanent second seal means located concentrically within the bore of said tubular means for preventing the leakage of gas from the abdominal cavity of said patient when an instrument is present in the bore of said tubular means.
4. The apparatus of claim 3 further comprising:
interchangeable seal attachment means connected to said tubular means, and,
a plurality of interchangeable seal means each having an aperture therethrough of a different diameter,
wherein instruments of different outside diameters can be introduced into said tubular means and can be selectively matched with an interchangeable seal having an aperture that seals and matches said outside diameter of said instrument.
5. The apparatus of claim 4 further comprising:
external seal storage means connected to and located on the exterior of said apparatus for storing one or more of said interchangeable seal means.
6. The apparatus of claim 2 further comprising: interchangeable secondary seal attachment means connected to said reducer subassembly and concentrically aligned with the long central axis of said cannula; and,
a plurality of interchangeable secondary seal means each having an aperture therethrough of a different diameter,
wherein instruments of different outside diameters can be introduced into said cannula and selectively matched with an interchangeable secondary seal having an aperture that seals and matches said outside diameter of said instrument.
7. The apparatus of claim 2 further comprising:
a silicone lubricant coating on at least said internal edge of said two lips of said first seal means.
8. The apparatus of claim 2 wherein the slit in said first seal means is openable between at least 3 mm to 12 mm, and,
wherein instruments having an outside diameter in the range of 3 mm to 12 mm can pass through said first seal means without significant frictional resistance through said first seal means.
9. The apparatus of claim 2 wherein said instrument comprises a trocar.
10. A surgical apparatus for introducing an instrument into a patient comprising:
a cannula having a long central axis, a first end, a second end and a lumen running therethrough;
a cannula housing removably attached to said cannula;
a first seal means located within said cannula housing for preventing the leakage of insufflation gas from said patient when said cannula is located in said patient, said first seal means including two opposed lips which contact each other across a slit located between them, wherein said first seal means has a normally closed state and an open state when an instrument is introduced into said lumen of said cannula, the two lips of said first seal means each including an internal and an external edge and a substantially flat intermediate section between said internal and external edges, wherein said internal and external edges and said substantially flat intermediate sections of said lips are in substantial contact with each other when said first seal means is in said closed state, said first seal means including a distal end having a relatively flat external surface which is perpendicular to said long central axis of said cannula, said relatively flat external surface having a width X, said first seal means having a generally V-shaped cross-section and further including a proximal end and an inner and outer surface which define the sidewalls of said first seal means, said first seal means further including a relatively flat internal surface extending from said internal edges of said lips to said internal sidewalls of said first seal means, wherein the distance between the internal and external edges of said two lips is approximately 1/2 X;
a reducer subassembly removably attached to said cannula housing, said reducer subassembly including an internal lumen;
a hollow tubular means having an internal bore therethrough and located within the lumen of said subassembly and concentrically aligned with the long central axis of said cannula, said hollow tubular means having a first end located near the inner surface of said first seal which restricts the inward movement and collapse of said lips of said first seal means when an instrument is withdrawn through the lumen of said cannula; and,
external seal storage means connected to and located on the exterior of said apparatus for storing one or more seal means,
wherein when an instrument passes through said lumen of said cannula it first comes into contact with the internal edge of said two lips which absorbs the trauma of said contact and parts thereby protecting said external edges so that said first seal means will form a substantially gas-leakproof seal after said instrument is removed.
US08/238,475 1993-01-29 1994-05-05 Cannula valve and seal system Expired - Fee Related US5458640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/238,475 US5458640A (en) 1993-01-29 1994-05-05 Cannula valve and seal system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/010,769 US5312351A (en) 1993-01-29 1993-01-29 Combined pneumo-needle and trocar apparatus
US08/042,488 US5320608A (en) 1993-01-29 1993-04-02 Combined pneumo-needle and trocar apparatus
US08/238,475 US5458640A (en) 1993-01-29 1994-05-05 Cannula valve and seal system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US08/010,769 Continuation-In-Part US5312351A (en) 1993-01-29 1993-01-29 Combined pneumo-needle and trocar apparatus
US08/042,488 Continuation-In-Part US5320608A (en) 1993-01-29 1993-04-02 Combined pneumo-needle and trocar apparatus

Publications (1)

Publication Number Publication Date
US5458640A true US5458640A (en) 1995-10-17

Family

ID=46248518

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/238,475 Expired - Fee Related US5458640A (en) 1993-01-29 1994-05-05 Cannula valve and seal system

Country Status (1)

Country Link
US (1) US5458640A (en)

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613954A (en) * 1994-11-21 1997-03-25 Stryker Corporation Laparoscopic surgical Y-tube cannula
WO1998009671A3 (en) * 1996-09-06 1998-04-23 Gore Enterprise Holdings Inc Medical evacuation and irrigation system
US5779697A (en) * 1997-05-28 1998-07-14 Linvatec Corporation Arthroscopic cannula with fluid seals
US5858007A (en) * 1996-07-03 1999-01-12 C. R. Bard, Inc. Hemostatic catheter introducer
US5911710A (en) * 1997-05-02 1999-06-15 Schneider/Namic Medical insertion device with hemostatic valve
US5957898A (en) 1997-05-20 1999-09-28 Baxter International Inc. Needleless connector
US6261282B1 (en) 1997-05-20 2001-07-17 Baxter International Inc. Needleless connector
WO2001062167A1 (en) * 2000-02-26 2001-08-30 Karl Storz Gmbh & Co. Kg Trocar sleeve with variable seal opening
US6331176B1 (en) * 1999-03-11 2001-12-18 Advanced Cardiovascular Systems, Inc. Bleed back control assembly and method
US20020128604A1 (en) * 2001-03-12 2002-09-12 Hiroaki Nakajima Indwelling catheter
US6458103B1 (en) 1998-10-23 2002-10-01 Scimed Life Systems, Inc. Axially activated hemostasis valve with lumen size selection
US20030108454A1 (en) * 1996-11-12 2003-06-12 Brockwell Timothy Graham Sample vial and vial closure device for use in gas analysis and method of using the same
DE10214551A1 (en) * 2002-04-02 2003-10-16 Pajunk Ohg Besitzverwaltung trocar
JP2004177254A (en) * 2002-11-27 2004-06-24 Fujirebio Inc Cap for reagent vessel, and method of preventing evaporation or the like of reagent
US20040138626A1 (en) * 1996-11-18 2004-07-15 Cote Andrew L. Luer-activated valve
US20040236347A1 (en) * 1999-03-12 2004-11-25 Olympus Optical Co., Ltd. Trocar sheath tube
US20040255958A1 (en) * 1999-02-01 2004-12-23 Adiana, Inc. Method and apparatus for tubal occlusion
US20050043684A1 (en) * 2003-08-18 2005-02-24 Medical Components, Inc. Needle with sealing valve
US20050085789A1 (en) * 2003-08-26 2005-04-21 Khan Mazhar M. Haemostasis device
US20070044807A1 (en) * 2005-08-25 2007-03-01 Kimberly-Clark Worldwide, Inc. Multilumen tracheal catheter with rinse lumen
US20070089748A1 (en) * 2005-10-26 2007-04-26 Madsen Edward B Tracheal catheter with closeable suction lumen
US20070113855A1 (en) * 2005-11-18 2007-05-24 Kimberly-Clark Worldwide, Inc. Respiratory apparatus with improved seal
US20070191775A1 (en) * 2006-02-16 2007-08-16 Medex, Inc. Sealing Catheter Hub Attachment
US7335182B1 (en) * 1998-11-18 2008-02-26 Arthesys Valved connector with closure operated by axial movement of the valve
WO2008067266A1 (en) * 2006-11-28 2008-06-05 Cytyc Corporation Side-arm port introducer
US20090018508A1 (en) * 2007-06-22 2009-01-15 Medical Components, Inc. Tearaway Sheath Assembly with Hemostasis Valve
US20090143739A1 (en) * 2007-09-18 2009-06-04 Medical Components, Inc Tearaway sheath assembly with split hemostasis valve
US20090177162A1 (en) * 2008-01-09 2009-07-09 Tyco Healthcare Group Lp Access assembly with adjustable seal member
US20090234290A1 (en) * 2008-03-14 2009-09-17 Medical Components, Inc. Tearaway Introducer Sheath with Hemostasis Valve
US20090270681A1 (en) * 2008-04-28 2009-10-29 Ethicon Endo-Surgery, Inc. Scraping fluid removal in a surgical access device
US20090270686A1 (en) * 2008-04-29 2009-10-29 Ethicon Endo-Surgery, Inc. Methods and devices for maintaining visibility during surgical procedures
US20090270817A1 (en) * 2008-04-28 2009-10-29 Ethicon Endo-Surgery, Inc. Fluid removal in a surgical access device
US20100010310A1 (en) * 2008-07-14 2010-01-14 Ethicon Endo-Surgery, Inc. Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures
US20100022958A1 (en) * 2008-04-28 2010-01-28 Ethicon Endo-Surgery, Inc. Surgical access devices with sorbents
US20100030160A1 (en) * 2006-12-13 2010-02-04 Arzeimittel Gmbh Apotheker Vetter & Co. Ravensburg Attachment for a syringe or a cartridge
US7713250B2 (en) 2001-12-07 2010-05-11 Becton, Dickinson And Company Needleless luer access connector
US7736339B2 (en) 2002-07-04 2010-06-15 B.Braun Melsungen Ag Catheter insertion device
US20100193516A1 (en) * 2009-02-02 2010-08-05 Labean Robert J Dual sealing system for use with a probe
US7815168B2 (en) 2006-04-11 2010-10-19 Nypro Inc. Medical valve with rotating member and method
US7837658B2 (en) 2001-11-13 2010-11-23 Nypro Inc. Anti-drawback medical valve
USD634006S1 (en) * 2007-01-17 2011-03-08 Erblan Surgical, Inc. Double-cone sphincter introducer assembly and integrated valve assembly
US7905880B2 (en) 1997-06-05 2011-03-15 Cytyc Corporation Method and apparatus for tubal occlusion
US7914502B2 (en) 2003-07-31 2011-03-29 Nypro Inc. Anti-drawback medical valve
KR101027728B1 (en) 2010-08-13 2011-04-12 (주)다림써지넷 Multi-sealing
US20110137265A1 (en) * 2007-06-27 2011-06-09 Tyco Healthcare Group Lp Positive Displacement Fluid Lock Port
JP2011115630A (en) * 2011-03-15 2011-06-16 Medikit Kk Indwelling catheter
US20110160679A1 (en) * 2008-09-01 2011-06-30 Jms Co., Ltd. Medical port
US7981092B2 (en) 2008-05-08 2011-07-19 Ethicon Endo-Surgery, Inc. Vibratory trocar
US8100869B2 (en) 2006-08-11 2012-01-24 Nypro Inc. Medical valve with expandable member
US8192405B2 (en) * 1997-05-02 2012-06-05 Tyco Healthcare Group Lp Trocar seal system
US8231619B2 (en) 2010-01-22 2012-07-31 Cytyc Corporation Sterilization device and method
US8308691B2 (en) 2006-11-03 2012-11-13 B. Braun Melsungen Ag Catheter assembly and components thereof
US8353874B2 (en) 2010-02-18 2013-01-15 Covidien Lp Access apparatus including integral zero-closure valve and check valve
US20130030372A1 (en) * 2006-10-11 2013-01-31 Franer Paul T Trocar Seal with Retraction Induced Hinge
US20130096598A1 (en) * 2008-11-03 2013-04-18 Erblan Surgical, Inc. Universal closure and method of lubrication
US8430851B2 (en) 2005-10-14 2013-04-30 Applied Medical Resources Corporation Surgical access port
US8486024B2 (en) 2011-04-27 2013-07-16 Covidien Lp Safety IV catheter assemblies
US8550086B2 (en) 2010-05-04 2013-10-08 Hologic, Inc. Radiopaque implant
US8568371B2 (en) 2009-06-22 2013-10-29 Np Medical Inc. Medical valve with improved back-pressure sealing
US8579807B2 (en) 2008-04-28 2013-11-12 Ethicon Endo-Surgery, Inc. Absorbing fluids in a surgical access device
US20130304026A1 (en) * 2006-03-23 2013-11-14 Luther Needlesafe Products, Inc. Flush entrance hemostasis valve with unobstructed passageway
US8628497B2 (en) 2011-09-26 2014-01-14 Covidien Lp Safety catheter
US8636686B2 (en) 2008-04-28 2014-01-28 Ethicon Endo-Surgery, Inc. Surgical access device
US8652104B2 (en) 2010-06-25 2014-02-18 Smiths Medical Asd, Inc. Catheter assembly with seal member
USD700326S1 (en) 2008-04-28 2014-02-25 Ethicon Endo-Surgery, Inc. Trocar housing
US8690831B2 (en) 2008-04-25 2014-04-08 Ethicon Endo-Surgery, Inc. Gas jet fluid removal in a trocar
US8702727B1 (en) 1999-02-01 2014-04-22 Hologic, Inc. Delivery catheter with implant ejection mechanism
US8715250B2 (en) 2011-09-26 2014-05-06 Covidien Lp Safety catheter and needle assembly
US8834422B2 (en) 2011-10-14 2014-09-16 Covidien Lp Vascular access assembly and safety device
US8939938B2 (en) 2006-10-12 2015-01-27 Covidien Lp Needle tip protector
EP2764885A4 (en) * 2011-10-05 2015-06-24 Nipro Corp Indwelling catheter
US9138572B2 (en) 2010-06-24 2015-09-22 Np Medical Inc. Medical valve with fluid volume alteration
US20150305863A1 (en) * 2014-04-28 2015-10-29 Edwards Lifesciences Corporation Intravascular introducer devices
US20160106460A1 (en) * 2012-05-09 2016-04-21 EON Surgical Ltd. Laparoscopic port
US9320507B2 (en) 2012-03-26 2016-04-26 Covidien Lp Cannula valve assembly
US9358041B2 (en) 2008-04-28 2016-06-07 Ethicon Endo-Surgery, Llc Wicking fluid management in a surgical access device
US9545495B2 (en) 2010-06-25 2017-01-17 Smiths Medical Asd, Inc. Catheter assembly with seal member
USD794779S1 (en) * 2012-10-12 2017-08-15 Magnolia Medical Technologies, Inc. Bodily-fluid sampling device
US9750920B2 (en) * 2013-03-18 2017-09-05 Becton, Dickinson And Company Multiple-use intravenous catheter assembly septum and septum actuator
CN109247908A (en) * 2018-09-04 2019-01-22 刘来杰 A kind of stomach laparoscope clamshell converter
EP3459477A1 (en) * 2017-09-26 2019-03-27 Ethicon LLC Trocar seal assemblies
CN109771004A (en) * 2019-01-15 2019-05-21 朱晓峰 A kind of thoracic surgery drain pleural effusion sting device
US20190380742A1 (en) * 2018-06-15 2019-12-19 Ethicon Llc Asymmetric shaft seal
US11026764B2 (en) * 2016-05-26 2021-06-08 Covidien Lp Cannula assemblies for use with robotic surgical systems
US11045222B1 (en) * 2020-11-09 2021-06-29 ClearCam Inc. Method of reducing insufflation gas leakage from a trocar
US11071849B2 (en) 2015-08-18 2021-07-27 B. Braun Melsungen Ag Catheter devices with valves and related methods
WO2021240492A1 (en) * 2020-05-27 2021-12-02 Palliare Limited An attachment for a trocar
US11219705B2 (en) 2014-07-08 2022-01-11 Becton, Dickinson And Company Antimicrobial coating forming kink resistant feature on a vascular access device
US11235111B2 (en) 2008-04-28 2022-02-01 Ethicon Llc Surgical access device
US20220087725A1 (en) * 2009-09-04 2022-03-24 Nuvasive Specialized Orthopedics, Inc. Bone growth device and method
US11357965B2 (en) 2014-04-23 2022-06-14 Becton, Dickinson And Company Antimicrobial caps for medical connectors
US11357962B2 (en) * 2013-02-13 2022-06-14 Becton, Dickinson And Company Blood control IV catheter with stationary septum activator
IT202100008168A1 (en) * 2021-04-01 2022-10-01 Gicastart S R L PNEUMOPERITONEUM INDUCTION INSTRUMENT AND ASSEMBLY INCLUDING THE INSTRUMENT
US11523842B2 (en) * 2019-09-09 2022-12-13 Covidien Lp Reusable surgical port with disposable seal assembly
US20230248956A1 (en) * 2022-02-10 2023-08-10 St. Jude Medical, Cardiology Division, Inc. Integrated Hemostasis Bypass Valve
US11850377B2 (en) 2018-12-17 2023-12-26 B. Braun Melsungen Ag Catheter assemblies and related methods
US11904114B2 (en) 2015-10-28 2024-02-20 Becton, Dickinson And Company Extension tubing strain relief

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781702A (en) * 1986-06-20 1988-11-01 Contempo Products, P. Herrli Three-way connector for liquid exchange
US4917668A (en) * 1988-03-18 1990-04-17 B.. Braun Melsungen Ag Valve for permanent venous cannulae or for catheter insertion means
US4935010A (en) * 1986-11-20 1990-06-19 Pharmacia Limited Devices for sampling, drainage or infusion of liquids from or to the human or animal body
US5156596A (en) * 1991-02-04 1992-10-20 Menlo Care, Inc. Catheter with changeable number of lumens
US5322518A (en) * 1991-04-27 1994-06-21 B. Braun Melsungen Ag Valve device for a catheter
US5330437A (en) * 1993-11-12 1994-07-19 Ethicon Endo-Surgery Self sealing flexible elastomeric valve and trocar assembly for incorporating same
US5350393A (en) * 1992-01-06 1994-09-27 Inbae Yoon Safety trocar penetrating instrument
US5354280A (en) * 1993-02-19 1994-10-11 Habley Medical Technology Corporation Trocar and seal arrangement

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781702A (en) * 1986-06-20 1988-11-01 Contempo Products, P. Herrli Three-way connector for liquid exchange
US4935010A (en) * 1986-11-20 1990-06-19 Pharmacia Limited Devices for sampling, drainage or infusion of liquids from or to the human or animal body
US4917668A (en) * 1988-03-18 1990-04-17 B.. Braun Melsungen Ag Valve for permanent venous cannulae or for catheter insertion means
US5156596A (en) * 1991-02-04 1992-10-20 Menlo Care, Inc. Catheter with changeable number of lumens
US5322518A (en) * 1991-04-27 1994-06-21 B. Braun Melsungen Ag Valve device for a catheter
US5350393A (en) * 1992-01-06 1994-09-27 Inbae Yoon Safety trocar penetrating instrument
US5354280A (en) * 1993-02-19 1994-10-11 Habley Medical Technology Corporation Trocar and seal arrangement
US5330437A (en) * 1993-11-12 1994-07-19 Ethicon Endo-Surgery Self sealing flexible elastomeric valve and trocar assembly for incorporating same

Cited By (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613954A (en) * 1994-11-21 1997-03-25 Stryker Corporation Laparoscopic surgical Y-tube cannula
US5858007A (en) * 1996-07-03 1999-01-12 C. R. Bard, Inc. Hemostatic catheter introducer
WO1998009671A3 (en) * 1996-09-06 1998-04-23 Gore Enterprise Holdings Inc Medical evacuation and irrigation system
US7374054B2 (en) 1996-11-12 2008-05-20 Micromass Uk Limited Sample vial and vial closure device for use in gas analysis
US6715624B2 (en) * 1996-11-12 2004-04-06 Micromass Uk Limited Sample vial and vial closure device for use in gas analysis and method of using same
US20040108293A1 (en) * 1996-11-12 2004-06-10 Brockwell Timothy Graham Sample vial and vial closure device for use in gas analysis and method of using the same
US20030108455A1 (en) * 1996-11-12 2003-06-12 Brockwell Timothy Graham Sample vial and vial closure device for use in gas analysis and method of using the same
US20030108454A1 (en) * 1996-11-12 2003-06-12 Brockwell Timothy Graham Sample vial and vial closure device for use in gas analysis and method of using the same
US20040138626A1 (en) * 1996-11-18 2004-07-15 Cote Andrew L. Luer-activated valve
US7789864B2 (en) 1996-11-18 2010-09-07 Nypro Inc. Luer-activated valve
US5911710A (en) * 1997-05-02 1999-06-15 Schneider/Namic Medical insertion device with hemostatic valve
US8192405B2 (en) * 1997-05-02 2012-06-05 Tyco Healthcare Group Lp Trocar seal system
US5957898A (en) 1997-05-20 1999-09-28 Baxter International Inc. Needleless connector
USRE43142E1 (en) 1997-05-20 2012-01-24 Baxter International, Inc. Needleless connector
US6344033B1 (en) 1997-05-20 2002-02-05 Baxter International, Inc. Needleless connector
US6669681B2 (en) 1997-05-20 2003-12-30 Baxter International Inc. Needleless connector
US6261282B1 (en) 1997-05-20 2001-07-17 Baxter International Inc. Needleless connector
US5779697A (en) * 1997-05-28 1998-07-14 Linvatec Corporation Arthroscopic cannula with fluid seals
US7905880B2 (en) 1997-06-05 2011-03-15 Cytyc Corporation Method and apparatus for tubal occlusion
US6458103B1 (en) 1998-10-23 2002-10-01 Scimed Life Systems, Inc. Axially activated hemostasis valve with lumen size selection
US7335182B1 (en) * 1998-11-18 2008-02-26 Arthesys Valved connector with closure operated by axial movement of the valve
US8702727B1 (en) 1999-02-01 2014-04-22 Hologic, Inc. Delivery catheter with implant ejection mechanism
US20040255958A1 (en) * 1999-02-01 2004-12-23 Adiana, Inc. Method and apparatus for tubal occlusion
US8226645B2 (en) 1999-02-01 2012-07-24 Cytyc Corporation Apparatus for tubal occlusion
US7842035B2 (en) 1999-02-01 2010-11-30 Cytyc Corporation Method and apparatus for tubal occlusion
US6331176B1 (en) * 1999-03-11 2001-12-18 Advanced Cardiovascular Systems, Inc. Bleed back control assembly and method
US6695820B1 (en) 1999-03-11 2004-02-24 Advanced Cardiovascular Systems, Inc. Bleed back control assembly
US20040236347A1 (en) * 1999-03-12 2004-11-25 Olympus Optical Co., Ltd. Trocar sheath tube
US6945983B2 (en) * 2000-02-26 2005-09-20 Karl Storz Gmbh & Co. Kg Trocar sleeve with a variable sealing opening
WO2001062167A1 (en) * 2000-02-26 2001-08-30 Karl Storz Gmbh & Co. Kg Trocar sleeve with variable seal opening
US20040010230A1 (en) * 2000-02-26 2004-01-15 Horst Dittrich Trocar sleeve with a variable sealing opening
US7008404B2 (en) 2001-03-12 2006-03-07 Medikit Co., Ltd. Indwelling catheter
US20020128604A1 (en) * 2001-03-12 2002-09-12 Hiroaki Nakajima Indwelling catheter
JP2002263197A (en) * 2001-03-12 2002-09-17 Medikit Kk Indwelling catheter
EP1240916A1 (en) * 2001-03-12 2002-09-18 Medikit Co., Ltd. Valve structure of indwelling catheter
US7837658B2 (en) 2001-11-13 2010-11-23 Nypro Inc. Anti-drawback medical valve
US8876784B2 (en) 2001-11-13 2014-11-04 Np Medical Inc. Anti-drawback medical valve
US7713250B2 (en) 2001-12-07 2010-05-11 Becton, Dickinson And Company Needleless luer access connector
US7947032B2 (en) 2001-12-07 2011-05-24 Becton, Dickinson And Company Needleless luer access connector
DE10214551A1 (en) * 2002-04-02 2003-10-16 Pajunk Ohg Besitzverwaltung trocar
US9149625B2 (en) 2002-07-04 2015-10-06 B. Braun Melsungen Ag Catheter insertion device
US9149626B2 (en) 2002-07-04 2015-10-06 B. Braun Melsungen Ag Catheter insertion device
US20100249707A1 (en) * 2002-07-04 2010-09-30 Kevin Woehr Catheter insertion device
US8333735B2 (en) 2002-07-04 2012-12-18 B. Braun Melsungen Ag Catheter insertion device
US8328762B2 (en) 2002-07-04 2012-12-11 B. Braun Melsungen Ag Catheter insertion device
US10166370B2 (en) 2002-07-04 2019-01-01 B. Braun Melsungen Ag Catheter insertion device
US10080869B2 (en) 2002-07-04 2018-09-25 B. Braun Melsungen Ag Catheter insertion device
US8540728B2 (en) 2002-07-04 2013-09-24 B. Braun Melsungen Ag Catheter insertion device
US8337463B2 (en) 2002-07-04 2012-12-25 B. Braun Melsungen Ag Catheter insertion device
US7736339B2 (en) 2002-07-04 2010-06-15 B.Braun Melsungen Ag Catheter insertion device
JP2004177254A (en) * 2002-11-27 2004-06-24 Fujirebio Inc Cap for reagent vessel, and method of preventing evaporation or the like of reagent
US7914502B2 (en) 2003-07-31 2011-03-29 Nypro Inc. Anti-drawback medical valve
US9604047B2 (en) 2003-07-31 2017-03-28 Np Medical Inc. Anti-drawback medical valve
US7470254B2 (en) * 2003-08-18 2008-12-30 Medical Components, Inc. Needle with sealing valve
US20050043684A1 (en) * 2003-08-18 2005-02-24 Medical Components, Inc. Needle with sealing valve
US7976503B2 (en) 2003-08-26 2011-07-12 Vascular Solutions Zerusa Limited Haemostasis device
US20050085789A1 (en) * 2003-08-26 2005-04-21 Khan Mazhar M. Haemostasis device
US20070044807A1 (en) * 2005-08-25 2007-03-01 Kimberly-Clark Worldwide, Inc. Multilumen tracheal catheter with rinse lumen
US9833259B2 (en) 2005-10-14 2017-12-05 Applied Medical Resources Corporation Surgical access port
US8430851B2 (en) 2005-10-14 2013-04-30 Applied Medical Resources Corporation Surgical access port
US11504157B2 (en) 2005-10-14 2022-11-22 Applied Medical Resources Corporation Surgical access port
US10478219B2 (en) 2005-10-14 2019-11-19 Applied Medical Resources Corporation Surgical access port
US8968250B2 (en) 2005-10-14 2015-03-03 Applied Medical Resources Corporation Surgical access port
US20070089748A1 (en) * 2005-10-26 2007-04-26 Madsen Edward B Tracheal catheter with closeable suction lumen
US20070113855A1 (en) * 2005-11-18 2007-05-24 Kimberly-Clark Worldwide, Inc. Respiratory apparatus with improved seal
US7736337B2 (en) 2006-02-16 2010-06-15 Smiths Medical, Asd, Inc. Sealing catheter hub attachment
WO2007098359A1 (en) * 2006-02-16 2007-08-30 Smiths Medical Asd, Inc. Sealing catheter hub attachment
US20070191775A1 (en) * 2006-02-16 2007-08-16 Medex, Inc. Sealing Catheter Hub Attachment
US20130304026A1 (en) * 2006-03-23 2013-11-14 Luther Needlesafe Products, Inc. Flush entrance hemostasis valve with unobstructed passageway
US7879012B2 (en) 2006-04-11 2011-02-01 Nypro Inc. Medical valve with resilient sealing member
US8002755B2 (en) 2006-04-11 2011-08-23 Nypro Inc. Anti-drawback medical valve and method
US7857284B2 (en) 2006-04-11 2010-12-28 Nypro Inc. Medical valve with movable member
US8968261B2 (en) 2006-04-11 2015-03-03 Np Medical Inc. Medical valve with resilient biasing member
US7815168B2 (en) 2006-04-11 2010-10-19 Nypro Inc. Medical valve with rotating member and method
US8100869B2 (en) 2006-08-11 2012-01-24 Nypro Inc. Medical valve with expandable member
US20170189062A1 (en) * 2006-10-11 2017-07-06 Ethicon Llc Trocar seal with retraction induced image
US10265095B2 (en) * 2006-10-11 2019-04-23 Ethicon Llc Trocar seal with retraction induced image
US11123104B2 (en) 2006-10-11 2021-09-21 Cilag Gmbh International Trocar seal with retraction induced image
US20130030372A1 (en) * 2006-10-11 2013-01-31 Franer Paul T Trocar Seal with Retraction Induced Hinge
US8939938B2 (en) 2006-10-12 2015-01-27 Covidien Lp Needle tip protector
US10682500B2 (en) 2006-11-03 2020-06-16 B. Braun Melsungen Ag Catheter assembly and components thereof
US9370641B2 (en) 2006-11-03 2016-06-21 B. Braun Melsungen Ag Catheter assembly and components thereof
US8460247B2 (en) 2006-11-03 2013-06-11 B Braun Melsungen Ag Catheter assembly and components thereof
US8597249B2 (en) 2006-11-03 2013-12-03 B. Braun Melsungen Ag Catheter assembly and components thereof
US8591468B2 (en) 2006-11-03 2013-11-26 B. Braun Melsungen Ag Catheter assembly and components thereof
US8308691B2 (en) 2006-11-03 2012-11-13 B. Braun Melsungen Ag Catheter assembly and components thereof
WO2008067266A1 (en) * 2006-11-28 2008-06-05 Cytyc Corporation Side-arm port introducer
US20100030160A1 (en) * 2006-12-13 2010-02-04 Arzeimittel Gmbh Apotheker Vetter & Co. Ravensburg Attachment for a syringe or a cartridge
US8152772B2 (en) * 2006-12-13 2012-04-10 Arzneimittel Gmbh Apotheker Vetter & Co. Ravensburg Attachment for a syringe or a cartridge
USD634006S1 (en) * 2007-01-17 2011-03-08 Erblan Surgical, Inc. Double-cone sphincter introducer assembly and integrated valve assembly
US8298189B2 (en) 2007-06-22 2012-10-30 Medical Components, Inc. Hemostasis valve
US7744571B2 (en) 2007-06-22 2010-06-29 Medical Components, Inc. Tearaway sheath assembly with hemostasis valve
US20090018508A1 (en) * 2007-06-22 2009-01-15 Medical Components, Inc. Tearaway Sheath Assembly with Hemostasis Valve
US20100234807A1 (en) * 2007-06-22 2010-09-16 Medical Components, Inc. Hemostasis valve
US20100241083A1 (en) * 2007-06-22 2010-09-23 Medical Components, Inc. Hub for tearaway sheath assembly
US8147456B2 (en) 2007-06-22 2012-04-03 Medical Components, Inc. Hub for tearaway sheath assembly
US8382741B2 (en) * 2007-06-27 2013-02-26 Covidien Lp Positive displacement fluid lock port
US20110137265A1 (en) * 2007-06-27 2011-06-09 Tyco Healthcare Group Lp Positive Displacement Fluid Lock Port
US8523822B2 (en) 2007-09-18 2013-09-03 Medical Components, Inc. Tearaway sheath assembly with split hemostasis valve seal
US20100292646A1 (en) * 2007-09-18 2010-11-18 Medical Components, Inc. Tearaway Sheath Assembly with Split Hemostasis Valve Seal
US8382715B2 (en) 2007-09-18 2013-02-26 Medical Components, Inc. Tearaway sheath assembly with split hemostasis valve seal
US20090143739A1 (en) * 2007-09-18 2009-06-04 Medical Components, Inc Tearaway sheath assembly with split hemostasis valve
US8273059B2 (en) 2007-09-18 2012-09-25 Medical Components, Inc. Tearaway sheath assembly with split hemostasis valve seal
US20100292647A1 (en) * 2007-09-18 2010-11-18 Medical Components, Inc. Valve-Retaining Cap for Tearaway Sheath Assembly and Method of Assembly
US20090177162A1 (en) * 2008-01-09 2009-07-09 Tyco Healthcare Group Lp Access assembly with adjustable seal member
US8292855B2 (en) 2008-01-09 2012-10-23 Tyco Healthcare Group Lp Access assembly with adjustable seal member
US7988672B2 (en) 2008-01-09 2011-08-02 Tyco Healthcare Group Lp Access assembly with adjustable seal member
US20090234290A1 (en) * 2008-03-14 2009-09-17 Medical Components, Inc. Tearaway Introducer Sheath with Hemostasis Valve
US7938806B2 (en) 2008-03-14 2011-05-10 Medical Components, Inc. Tearaway introducer sheath with hemostasis valve
US20100331784A1 (en) * 2008-03-14 2010-12-30 Medical Components, Inc. Tearaway Introducer Sheath with Hemostasis Valve
US8105287B2 (en) 2008-03-14 2012-01-31 Medical Components, Inc. Tearaway introducer sheath with hemostasis valve
US8690831B2 (en) 2008-04-25 2014-04-08 Ethicon Endo-Surgery, Inc. Gas jet fluid removal in a trocar
US20090270817A1 (en) * 2008-04-28 2009-10-29 Ethicon Endo-Surgery, Inc. Fluid removal in a surgical access device
US8870747B2 (en) 2008-04-28 2014-10-28 Ethicon Endo-Surgery, Inc. Scraping fluid removal in a surgical access device
US8636686B2 (en) 2008-04-28 2014-01-28 Ethicon Endo-Surgery, Inc. Surgical access device
USD736926S1 (en) 2008-04-28 2015-08-18 Ethicon Endo-Sugery, Inc. Trocar housing
USD700326S1 (en) 2008-04-28 2014-02-25 Ethicon Endo-Surgery, Inc. Trocar housing
US20090270681A1 (en) * 2008-04-28 2009-10-29 Ethicon Endo-Surgery, Inc. Scraping fluid removal in a surgical access device
USD878606S1 (en) 2008-04-28 2020-03-17 Ethicon Llc Fluid remover
US11235111B2 (en) 2008-04-28 2022-02-01 Ethicon Llc Surgical access device
US20100022958A1 (en) * 2008-04-28 2010-01-28 Ethicon Endo-Surgery, Inc. Surgical access devices with sorbents
USD735852S1 (en) 2008-04-28 2015-08-04 Ethicon Endo-Surgery, Inc. Fluid remover
US9358041B2 (en) 2008-04-28 2016-06-07 Ethicon Endo-Surgery, Llc Wicking fluid management in a surgical access device
US9033929B2 (en) 2008-04-28 2015-05-19 Ethicon Endo-Surgery, Inc. Fluid removal in a surgical access device
US9827383B2 (en) 2008-04-28 2017-11-28 Ethicon Llc Surgical access device
US8579807B2 (en) 2008-04-28 2013-11-12 Ethicon Endo-Surgery, Inc. Absorbing fluids in a surgical access device
US8568362B2 (en) 2008-04-28 2013-10-29 Ethicon Endo-Surgery, Inc. Surgical access device with sorbents
US8273060B2 (en) 2008-04-28 2012-09-25 Ethicon Endo-Surgery, Inc. Fluid removal in a surgical access device
US20090270686A1 (en) * 2008-04-29 2009-10-29 Ethicon Endo-Surgery, Inc. Methods and devices for maintaining visibility during surgical procedures
US7981092B2 (en) 2008-05-08 2011-07-19 Ethicon Endo-Surgery, Inc. Vibratory trocar
US8915842B2 (en) 2008-07-14 2014-12-23 Ethicon Endo-Surgery, Inc. Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures
US20100010310A1 (en) * 2008-07-14 2010-01-14 Ethicon Endo-Surgery, Inc. Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures
US20110160679A1 (en) * 2008-09-01 2011-06-30 Jms Co., Ltd. Medical port
US9283366B2 (en) * 2008-09-01 2016-03-15 Jms Co., Ltd. Medical port
US20130096598A1 (en) * 2008-11-03 2013-04-18 Erblan Surgical, Inc. Universal closure and method of lubrication
US20100193516A1 (en) * 2009-02-02 2010-08-05 Labean Robert J Dual sealing system for use with a probe
US8628056B2 (en) 2009-02-02 2014-01-14 Aptargroup, Inc. Dual sealing system for use with a probe
US9849274B2 (en) 2009-06-22 2017-12-26 Np Medical Inc. Medical valve with improved back-pressure sealing
US10744314B2 (en) 2009-06-22 2020-08-18 Np Medical Inc. Medical valve with improved back-pressure sealing
US8568371B2 (en) 2009-06-22 2013-10-29 Np Medical Inc. Medical valve with improved back-pressure sealing
US9259565B2 (en) 2009-06-22 2016-02-16 Np Medical Inc. Medical valve with improved back-pressure sealing
US20220087725A1 (en) * 2009-09-04 2022-03-24 Nuvasive Specialized Orthopedics, Inc. Bone growth device and method
US8231619B2 (en) 2010-01-22 2012-07-31 Cytyc Corporation Sterilization device and method
US8353874B2 (en) 2010-02-18 2013-01-15 Covidien Lp Access apparatus including integral zero-closure valve and check valve
US8550086B2 (en) 2010-05-04 2013-10-08 Hologic, Inc. Radiopaque implant
US9138572B2 (en) 2010-06-24 2015-09-22 Np Medical Inc. Medical valve with fluid volume alteration
US9545495B2 (en) 2010-06-25 2017-01-17 Smiths Medical Asd, Inc. Catheter assembly with seal member
US11738173B2 (en) 2010-06-25 2023-08-29 Smiths Medical Asd, Inc. Catheter assembly with seal member
US8652104B2 (en) 2010-06-25 2014-02-18 Smiths Medical Asd, Inc. Catheter assembly with seal member
US10080867B2 (en) 2010-06-25 2018-09-25 Smiths Medical Asd, Inc. Method of making catheter assembly with seal member
US9399116B2 (en) 2010-06-25 2016-07-26 Smiths Medical Asd, Inc. Method of making catheter assembly with seal member
US11617856B2 (en) 2010-06-25 2023-04-04 Smiths Medical Asd, Inc. Catheter assembly with seal member
US11207495B2 (en) 2010-06-25 2021-12-28 Smiths Medical Asd, Inc. Catheter assembly with seal member
KR101027728B1 (en) 2010-08-13 2011-04-12 (주)다림써지넷 Multi-sealing
JP2011115630A (en) * 2011-03-15 2011-06-16 Medikit Kk Indwelling catheter
US8926563B2 (en) 2011-04-27 2015-01-06 Covidien Lp Safety IV catheter assemblies
US8486024B2 (en) 2011-04-27 2013-07-16 Covidien Lp Safety IV catheter assemblies
US9375552B2 (en) 2011-09-26 2016-06-28 Covidien Lp Safety needle assembly
US8628497B2 (en) 2011-09-26 2014-01-14 Covidien Lp Safety catheter
US8715250B2 (en) 2011-09-26 2014-05-06 Covidien Lp Safety catheter and needle assembly
US9101749B2 (en) 2011-10-05 2015-08-11 Nipro Corporation Indwelling catheter
EP2764885A4 (en) * 2011-10-05 2015-06-24 Nipro Corp Indwelling catheter
US8834422B2 (en) 2011-10-14 2014-09-16 Covidien Lp Vascular access assembly and safety device
US9320507B2 (en) 2012-03-26 2016-04-26 Covidien Lp Cannula valve assembly
US10136918B2 (en) 2012-05-09 2018-11-27 EON Surgical Ltd. Laparoscopic port
US9615852B2 (en) * 2012-05-09 2017-04-11 Eon Sugical Ltd. Laparoscopic port
US10856903B2 (en) 2012-05-09 2020-12-08 EON Surgical Ltd. Laparoscopic port
US20160106460A1 (en) * 2012-05-09 2016-04-21 EON Surgical Ltd. Laparoscopic port
USD841151S1 (en) 2012-10-12 2019-02-19 Magnolia Medical Technologies, Inc. Bodily-fluid sampling device
USD794779S1 (en) * 2012-10-12 2017-08-15 Magnolia Medical Technologies, Inc. Bodily-fluid sampling device
US11357962B2 (en) * 2013-02-13 2022-06-14 Becton, Dickinson And Company Blood control IV catheter with stationary septum activator
US11478610B2 (en) 2013-03-18 2022-10-25 Becton, Dickinson And Company Multiple-use intravenous catheter assembly septum and septum actuator
US9750920B2 (en) * 2013-03-18 2017-09-05 Becton, Dickinson And Company Multiple-use intravenous catheter assembly septum and septum actuator
US11357965B2 (en) 2014-04-23 2022-06-14 Becton, Dickinson And Company Antimicrobial caps for medical connectors
CN109758280A (en) * 2014-04-28 2019-05-17 爱德华兹生命科学公司 Intravascular guide equipment
EP3964254A1 (en) * 2014-04-28 2022-03-09 Edwards Lifesciences Corporation Intravascular introducer devices
JP2020014887A (en) * 2014-04-28 2020-01-30 エドワーズ ライフサイエンシーズ コーポレイションEdwards Lifesciences Corporation Intravascular introducer devices
US20150305863A1 (en) * 2014-04-28 2015-10-29 Edwards Lifesciences Corporation Intravascular introducer devices
CN105407953A (en) * 2014-04-28 2016-03-16 爱德华兹生命科学公司 Intravascular introducer devices
EP3137146A4 (en) * 2014-04-28 2018-04-25 Edwards Lifesciences Corporation Intravascular introducer devices
US10154904B2 (en) * 2014-04-28 2018-12-18 Edwards Lifesciences Corporation Intravascular introducer devices
CN105407953B (en) * 2014-04-28 2019-03-08 爱德华兹生命科学公司 Intravascular guide equipment
JP2022027794A (en) * 2014-04-28 2022-02-14 エドワーズ ライフサイエンシーズ コーポレイション Intravascular introducer devices
US11123188B2 (en) 2014-04-28 2021-09-21 Edwards Lifesciences Corporation Intravascular introducer devices
US11219705B2 (en) 2014-07-08 2022-01-11 Becton, Dickinson And Company Antimicrobial coating forming kink resistant feature on a vascular access device
US11883614B2 (en) 2015-08-18 2024-01-30 B. Braun Melsungen Ag Catheter devices with valves and related methods
US11141569B2 (en) 2015-08-18 2021-10-12 B. Braun Melsungen Ag Catheter devices with valves and related methods
US11071849B2 (en) 2015-08-18 2021-07-27 B. Braun Melsungen Ag Catheter devices with valves and related methods
US11684757B2 (en) * 2015-08-18 2023-06-27 B. Braun Melsungen Ag Valved catheter assemblies and related methods
US11904114B2 (en) 2015-10-28 2024-02-20 Becton, Dickinson And Company Extension tubing strain relief
US11026764B2 (en) * 2016-05-26 2021-06-08 Covidien Lp Cannula assemblies for use with robotic surgical systems
WO2019064142A1 (en) * 2017-09-26 2019-04-04 Ethicon Llc Trocar seal assemblies
US20190090905A1 (en) * 2017-09-26 2019-03-28 Ethicon Llc Trocar seal assemblies
CN111132627A (en) * 2017-09-26 2020-05-08 爱惜康有限责任公司 Trocar seal assembly
EP3459477A1 (en) * 2017-09-26 2019-03-27 Ethicon LLC Trocar seal assemblies
CN111132627B (en) * 2017-09-26 2023-09-01 爱惜康有限责任公司 Trocar Seal Assembly
US10792069B2 (en) * 2017-09-26 2020-10-06 Ethicon Llc Trocar seal assemblies
US10820924B2 (en) * 2018-06-15 2020-11-03 Ethicon Llc Asymmetric shaft seal
US20190380742A1 (en) * 2018-06-15 2019-12-19 Ethicon Llc Asymmetric shaft seal
CN109247908A (en) * 2018-09-04 2019-01-22 刘来杰 A kind of stomach laparoscope clamshell converter
US11850377B2 (en) 2018-12-17 2023-12-26 B. Braun Melsungen Ag Catheter assemblies and related methods
CN109771004A (en) * 2019-01-15 2019-05-21 朱晓峰 A kind of thoracic surgery drain pleural effusion sting device
US11523842B2 (en) * 2019-09-09 2022-12-13 Covidien Lp Reusable surgical port with disposable seal assembly
WO2021240492A1 (en) * 2020-05-27 2021-12-02 Palliare Limited An attachment for a trocar
US11045222B1 (en) * 2020-11-09 2021-06-29 ClearCam Inc. Method of reducing insufflation gas leakage from a trocar
IT202100008168A1 (en) * 2021-04-01 2022-10-01 Gicastart S R L PNEUMOPERITONEUM INDUCTION INSTRUMENT AND ASSEMBLY INCLUDING THE INSTRUMENT
US20230248956A1 (en) * 2022-02-10 2023-08-10 St. Jude Medical, Cardiology Division, Inc. Integrated Hemostasis Bypass Valve

Similar Documents

Publication Publication Date Title
US5458640A (en) Cannula valve and seal system
US5397335A (en) Trocar assembly with improved adapter seals
JP2741830B2 (en) Valve assembly for introducing an instrument into a body cavity
CA2080767C (en) Trocar method and apparatus
US5405328A (en) Trocar with replaceable obturator
US6159182A (en) Reusable cannula with disposable seal
EP0638290B1 (en) Seal assembly for accommodating introduction of surgical instruments
US5256147A (en) Reusable trocar with easily replaceable obturator
CA2123956C (en) Seal assembly for accommodating introduction of surgical instruments
US5391154A (en) Trocar seal system
US5843040A (en) Surgical sleeve or cannula with rotating reducer
US6569120B1 (en) Seal assembly
US6981966B2 (en) Valve assembly for introducing instruments into body cavities
US5554151A (en) Specimen retrieval container
AU2005244553B2 (en) Duckbill seal protector
US5531758A (en) Sliding reducer seal for surgical trocar
US20050096605A1 (en) Valve assembly for introducing instruments into body cavities
US5879368A (en) Gas-tight seal for surgical trocars
EP2233090A1 (en) Articulating surgical portal apparatus with spring
EP0567141A2 (en) Valve assembly for introducing instruments into body cavities
MXPA05014059A (en) Trocar seal assembly.
JP2009131716A (en) Valve assembly for receiving elongated object in sealed state
WO1996004946A1 (en) Combination introducer cannula and reducer and reducer for use therein
JP2010227561A (en) Surgical access assembly including shield member
KR20180083722A (en) Sealing assembly for a troca and a medical troca comprising the same

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 19991017

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362