US5190634A - Inhibition of coke formation during vaporization of heavy hydrocarbons - Google Patents

Inhibition of coke formation during vaporization of heavy hydrocarbons Download PDF

Info

Publication number
US5190634A
US5190634A US07/278,999 US27899988A US5190634A US 5190634 A US5190634 A US 5190634A US 27899988 A US27899988 A US 27899988A US 5190634 A US5190634 A US 5190634A
Authority
US
United States
Prior art keywords
hydrogen
feedstock
steam
convection section
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/278,999
Inventor
Jorge M. Fernandez-Baujin
Kandasmy M. Sundaram
Jo-Lung Chien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lummus Technology LLC
Original Assignee
Lummus Crest Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lummus Crest Inc filed Critical Lummus Crest Inc
Assigned to LUMMUS CREST INC., BLOOMFIELD, NEW JERSEY, A CORP. OF DE reassignment LUMMUS CREST INC., BLOOMFIELD, NEW JERSEY, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CHIEN, JO-LUNG
Priority to US07/278,999 priority Critical patent/US5190634A/en
Assigned to LUMMUS CREST INC., BLOOMFIELD, NJ, A CORP. OF DE. reassignment LUMMUS CREST INC., BLOOMFIELD, NJ, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CHIEN, JO-LUNG, FERNANDEZ-BAUJIN, JORGE M., SUNDARAM, KANDASMY M.
Priority to CA002003080A priority patent/CA2003080A1/en
Priority to ES90901194T priority patent/ES2045899T3/en
Priority to PCT/US1989/005183 priority patent/WO1990006351A1/en
Priority to EP90901194A priority patent/EP0397853B1/en
Priority to DE90901194T priority patent/DE68905333T2/en
Priority to BR898907217A priority patent/BR8907217A/en
Priority to KR1019900701683A priority patent/KR930004158B1/en
Priority to JP2501260A priority patent/JPH0641588B2/en
Priority to CN89109037.1A priority patent/CN1015903B/en
Publication of US5190634A publication Critical patent/US5190634A/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • This invention relates generally to a process for vaporizing a crude petroleum feedstock prior to the thermal or steam cracking of such feedstock to olefins and other petrochemicals. More particularly, it relates to the preheating of such a feedstock, preferably one boiling in the range of a vacuum gas oil or higher, in one or more stages, in the convection section of a conventional, tubular (steam) cracking or pyrolysis furnace.
  • the preheating of the heavy hydrocarbon feedstock is achieved by heating it in the convection section of the ordinary tubular pyrolysis or thermal cracking furnace to a temperature of about 200° C. to about 260° C., or, alternatively, by heating such a feedstock in indirect heat exchange relationship to about 225° C. to about 260° C.
  • the heated liquid is then mixed with superheated steam and externally flashed, i.e. outside the convection section, to 600° C.
  • U.S. Pat. No. 3,617,493 discloses the use of an external vaporization drum for the crude oil feedstock and recites the use of a first flash wherein the overhead vapor is naphtha and of a second flash in which the overhead vapor is a gas oil boiling between 230° C. and 600° C. Residual liquids are removed, stripped with steam, and used as fuel.
  • U.S. Pat. No. 3,718,709 discloses a pyrolysis process that is designed to minimize the coke deposition in the radiant coils. It specifically discusses the preheating of heavy oils to an extent of vaporization of about 50% with superheated steam and the separation of the residual liquid at temperatures approximating 300° C.-450° C. In column 3, lines 6-9 of this patent, it is expressly stated that:
  • composition of the feed (steam: hydrocarbon) is to be maintained within the limits (of 0.5-5.0) in order to avoid deposits of coke in the furnace tubes.”
  • the present invention offers an economically advantageous alternative to the external flash vaporization systems and methods to avoid convection section coking. It does not require increased equipment and piping costs, nor does it suffer from the dead space inherent in a flash drum design which promotes more than the usual amount of coke formation which, once formed, is a tarry material that is very difficult to remove from the drum and to discard.
  • U.S. Pat. No. 3,842,138 discloses a method of thermal cracking of hydrocarbons under pressure and in the presence of an excess of hydrogen.
  • the excess hydrogen is defined as a molar concentration of hydrogen in the effluents of at least 20% at a pressure between 5-70 bars, a temperature above 625° C., and a residence time of less than 0.5 second.
  • U.S. Pat. No. 3,898,299 describes a two-stage process for the production of olefins wherein residual oil feedstocks are catalytically hydrogenated prior to thermal cracking of a distillate fraction of the liquid phase separated from the hydrogenated product. Excess hydrogen, described as about 5 to 10 times the molar rate of the residual feedstock fed to the hydrogenation zone, is disclosed.
  • U.S. Pat. No. 3,907,920 discloses another two-stage process for producing ethylene comprising an integrated hydro-pyrolysis-cracking process wherein the preferable hydrogen/hydrocarbon oil mole ratio for the so-called hydropyrolysis is in the range of about 3/1 to 30/1.
  • U.S Pat. No. 3,919,074 discusses the conversion of hydrocarbonaceous black oils into distillate hydrocarbons wherein hydrogen is admixed with the black oil charge stock by compressive means in an amount generally less than about 20,000 SCFB, preferably in an amount of from about 1,000 to about 10,000 SCFB.
  • U.S. Pat. No. 4,285,804 discloses a catalytic hydrotreatment of hydrocarbon oils boiling above 350° C. which is conducted under a partial hydrogen pressure usually in the range of from 50-200 bars, preferably from 90-150 bars; a temperature between 350° C.-470° C., preferably between 380° C.-430° C.; and a residence time for the liquid charge within the reactor of between 0.1-4 hours, preferably between 0.5-2 hours.
  • the small amount of hydrogen required in the case of the present invention only has a very small impact on utilities consumption and investment costs because the hydrogen is not needed to reduce the vaporization temperature of the charge but only to inhibit the polymerization of the small amount of olefins created in the convection section and thus reduce the coke precursor.
  • little or no modification of the convection section is required in order to make use of the present invention, and such invention also makes it possible to eliminate the flash drum.
  • use of the present invention can decrease the fouling rate in the transfer line exchanger employed to quench the cracked effluent of the furnace, owing to the presence of a higher concentration of hydrogen in the furnace effluent.
  • the degree of improvement is dependent upon the amount of hydrogen added.
  • the present invention provides an efficacious process for inhibiting coke formation during the vaporization of heavy hydrocarbons by preheating such hydrocarbons in the presence of a small, critical amount of hydrogen in the convection section of a conventional tubular furnace.
  • the critical hydrogen level as practiced in this invention, is definable in terms of the hydrogen/hydrocarbon charge or feed ratio, and approximates about 0.01-0.15 wt. %.
  • Coke formation in the convection section normally occurs when the liquid portion of the hydrocarbon feedstock vaporizing in the heating coil of such section is exposed to excessively high tube wall temperatures.
  • feedstock has physical characteristics similar to those of petroleum fractions boiling in the vacuum gas oil region or above, the problems of coke deposition during the vaporization of the feedstock are exacerbated because, at high temperatures, the polymerization reactions which normally take place in the liquid phase on metal surfaces are promoted. As a result, some reactant and product molecules polymerize to form heavier molecules which are tarry materials that become deposited on the walls of the convection section coil and eventually become coke.
  • the present invention prevents this problem by utilizing a critical amount of hydrogen to inhibit the polymerization reaction of the hydrocarbon charge during its preheating in the convection section of a conventional tubular furnace.
  • FIG. 1 depicts a flow diagram of a conventional single-stage external vaporization system and process for heavy hydrocarbon feedstock pyrolysis
  • FIG. 2 depicts a flow diagram of one aspect of the present invention, and represents an alternative system and process to what is shown in FIG. 1. It illustrates a scheme in which the critical amount of hydrogen is added only to the secondary stream to inhibit coke in the mixer and downstream of the mixer; and
  • FIG. 3 shows another aspect of the present invention, and depicts a schematic flow diagram in which the critical amount of hydrogen is added to a mixture of the hydrocarbon feedstock and total dilution steam. It illustrates a pyrolysis furnace having a conventional convection section but no dilution steam superheating coil, no mixer, and no flash drum, since these are obviated by the use of the critical amount of hydrogen. For the sake of simplicity, other convection heating coils, a steam drum, and a transfer line exchanger are not shown in FIG. 3.
  • FIGS. 4 and 5 are graphs which illustrate the percent volume hydrogen in the feed gas verses the polymerization rate and the molecular weight.
  • a heavy crude petroleum feedstock is passed into the convection section of a conventional tubular furnace, indicated generally as 1, where it is preheated in the convection heating coil 2.
  • the feedstock after preheating, is then mixed with a small amount of dilution steam (a primary steam addition), and the mixed feed is then further preheated in another convection heating coil 3 to a temperature of about 400° C.-500° C.
  • the resultant heated mixed feed then exits from the convection section and is passed into a mixer 4.
  • the remainder of the dilution steam (a secondary steam addition) is superheated to about 650° C.-800° C.
  • the mixer 4 is provided to ensure intimate contact between the highly superheated steam and the partially vaporized feed.
  • the temperature of the steam is such that the final vaporization of the liquid feed takes place outside of the convection section, i.e. external vaporization, and in the mixer 4 and in the flash drum 6 (into which the mixture from the mixer 4 is passed and in which coke particles or tarry materials are separated from the vapor).
  • the effluent from the radiant coil 8 is then passed into a transfer line exchanger 9 for cooling therein.
  • FIG. I The boiler feed water coil 10 and the steam drum 11 are shown in FIG. I for purposes of showing waste heat recovery and usage, but no further discussion of their functions is necessary here in order to understand the operation of the present invention.
  • FIG. 2 depicts, as noted, one aspect of the present invention, showing the use of a small, critical amount of hydrogen to inhibit coke formation in the convection section.
  • a conventional source of hydrogen such as a hydrogen/methane stream is shown being added to the secondary steam addition to inhibit coke formation in the mixer 4 and downstream of the mixer.
  • the scheme illustrated in FIG. 2 shows the elimination of the flash drum 6, which would otherwise cause coke formation and removal problems.
  • the transfer line exchanger 9, the boiler feed water coil 10, and the steam drum 11, although includable in this system because they are common to all hydrocarbon vaporization schemes, are not shown since they are not part of the essence of this invention.
  • FIG. 3 depicts, as noted, another aspect of the present invention in which the hydrogen is added to the mixture of hydrocarbon feed and total dilution steam.
  • the convection section shown in this FIG. 3 is of conventional design. However, no dilution steam superheating coil 5, no mixer 4, and no flash drum 6 are required in this scheme because the use of the critical amount of hydrogen eliminates the need for this equipment. Preferably, however, this critical amount is increased somewhat to protect the mix preheat coil 3 from coking. For purposes of simplification, other convection heating coils, steam drum 11, and the transfer line exchanger 9 are not included in FIG. 3.
  • the amount of hydrogen to be used in this invention is a variable dependent upon the overall economics of the olefins plants, i.e. the cost increase of the external vaporization system vis-a-vis the extra cost of the associated equipment for hydrogen recovery and purification. It has been found that with the use of a hydrogen/hydrocarbon feed ratio of 0.01 to 0.15 wt %, the external vaporization system can be eliminated.
  • the olefins are formed in the high temperature region through a free radical mechanism, and the metallic surface of the tubes of the convection heating coils acts as a catalyst to accelerate the polymerization rate.
  • the polymer eventually gets further dehydrogenated, thereby forming coke.

Abstract

An improved process for vaporizing a crude petroleum feedstock, preferably one boiling in the vacuum gas oil range or higher, prior to thermal cracking to olefins, wherein such feedstock is preheated, in one or more stages, in the convection section of a tubular steam cracking furnace, characterized by conducting the preheating in the presence of a small amount of hydrogen, preferably at a hydrogen/feed ratio of from about 0.01 to about 0.15 wt. %, so as to inhibit coke formation.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a process for vaporizing a crude petroleum feedstock prior to the thermal or steam cracking of such feedstock to olefins and other petrochemicals. More particularly, it relates to the preheating of such a feedstock, preferably one boiling in the range of a vacuum gas oil or higher, in one or more stages, in the convection section of a conventional, tubular (steam) cracking or pyrolysis furnace.
2. Description of the Prior Art
Production of olefins in general and of ethylene in particular has been achieved in the past by thermal cracking of a crude petroleum hydrocarbon feedstock and rapidly quenching the cracked effluent, e.g. in a transfer line (heat) exchanger. During the last two decades or so, the trend has been to use heavier and heavier feedstocks than the ethane or naphtha feedstocks once used predominantly. However, the use of such heavy feedstocks, e.g. vacuum gas oils and those boiling higher, i.e. a heavy residuum fraction having an initial boiling point above 230° C., has led a variety of operating problems, the foremost one of which has been coke formation. It has been necessary to preheat the heavy oil or any liquid hydrocarbon feedstock to a reaction inlet temperature of about 600° C. Conventionally, the preheating of the heavy hydrocarbon feedstock is achieved by heating it in the convection section of the ordinary tubular pyrolysis or thermal cracking furnace to a temperature of about 200° C. to about 260° C., or, alternatively, by heating such a feedstock in indirect heat exchange relationship to about 225° C. to about 260° C. The heated liquid is then mixed with superheated steam and externally flashed, i.e. outside the convection section, to 600° C. from the vaporization mix temperature of 380° C., or it is separated from the vapor phase and vaporized externally in a flash drum by being contacted with superheated steam or a preheated mixture of steam and vapor phase feed. These methods of external flash vaporization have been done to avoid convection section coking, and have been well documented in U.S. Pat. No. 3,617,493; 3,718,709; and 4,264,432.
U.S. Pat. 4,264,432 specifically recites the features of external mixing of the preheated hydrocarbon feedstock with superheated steam followed by flashing.
U.S. Pat. No. 3,617,493 discloses the use of an external vaporization drum for the crude oil feedstock and recites the use of a first flash wherein the overhead vapor is naphtha and of a second flash in which the overhead vapor is a gas oil boiling between 230° C. and 600° C. Residual liquids are removed, stripped with steam, and used as fuel.
U.S. Pat. No. 3,718,709 discloses a pyrolysis process that is designed to minimize the coke deposition in the radiant coils. It specifically discusses the preheating of heavy oils to an extent of vaporization of about 50% with superheated steam and the separation of the residual liquid at temperatures approximating 300° C.-450° C. In column 3, lines 6-9 of this patent, it is expressly stated that:
"The composition of the feed (steam: hydrocarbon) is to be maintained within the limits (of 0.5-5.0) in order to avoid deposits of coke in the furnace tubes."
The solutions to the problem of coking formation and deposition through the measure of external flash vaporization, such as that proposed by the above three U.S. patents, are, however, quite costly in that they require increased costs of equipment and piping, owing to the fact that they have to be constructed of expensive alloys. Moreover, owing to the difficulties in controlling the flows of the hot vapor and liquid streams, an individual mixer flash drum system might have to be provided for each radiant heating coil used in the pyrolysis furnace. For a furnace with multiple radiant coils, this would substantially increase the investment cost of each furnace.
The present invention, however, offers an economically advantageous alternative to the external flash vaporization systems and methods to avoid convection section coking. It does not require increased equipment and piping costs, nor does it suffer from the dead space inherent in a flash drum design which promotes more than the usual amount of coke formation which, once formed, is a tarry material that is very difficult to remove from the drum and to discard.
The advantages of this invention are achieved through the use of a small, critical amount of hydrogen in the convection section to inhibit the polymerization reaction of the hydrocarbons preheated therein, thereby inhibiting coke formation in the convection section tubes resulting from such polymerization reaction. Such coke formation not only limits heat transfer in the convection section, it also increases the pressure drop throughout the whole system. The increased pressure drop causes premature shut-down of the furnace and, concomitant therewith, decreased production, thereby decreasing the profitability of the furnace operation.
Use of a small, critical amount of hydrogen in the convection section during the preheating of the crude (heavy) petroleum feedstock is not to be confused with hydrogenation, hydrocracking, or other downstream reactions in which extensive amounts of hydrogen are present, with or without a catalyst also present, to promote pyrolytic cracking of the feedstock to lower molecular weight hydrocarbons and/or to eliminate sulfur, nitrogen, asphaltenes, and metals such as Ni, V, Na, Fe, and Cu that may be present in the charge, and/or to hydrogenate the aromatic constituents present in the charge.
Thus, for example, U.S. Pat. No. 3,842,138; 3,898,299; 3,907,920; 3,919,074; and 4,285,804 all disclose the use of large excesses of hydrogen for the above purposes.
U.S. Pat. No. 3,842,138 discloses a method of thermal cracking of hydrocarbons under pressure and in the presence of an excess of hydrogen. The excess hydrogen is defined as a molar concentration of hydrogen in the effluents of at least 20% at a pressure between 5-70 bars, a temperature above 625° C., and a residence time of less than 0.5 second.
U.S. Pat. No. 3,898,299 describes a two-stage process for the production of olefins wherein residual oil feedstocks are catalytically hydrogenated prior to thermal cracking of a distillate fraction of the liquid phase separated from the hydrogenated product. Excess hydrogen, described as about 5 to 10 times the molar rate of the residual feedstock fed to the hydrogenation zone, is disclosed.
U.S. Pat. No. 3,907,920 discloses another two-stage process for producing ethylene comprising an integrated hydro-pyrolysis-cracking process wherein the preferable hydrogen/hydrocarbon oil mole ratio for the so-called hydropyrolysis is in the range of about 3/1 to 30/1.
U.S Pat. No. 3,919,074 discusses the conversion of hydrocarbonaceous black oils into distillate hydrocarbons wherein hydrogen is admixed with the black oil charge stock by compressive means in an amount generally less than about 20,000 SCFB, preferably in an amount of from about 1,000 to about 10,000 SCFB.
U.S. Pat. No. 4,285,804 discloses a catalytic hydrotreatment of hydrocarbon oils boiling above 350° C. which is conducted under a partial hydrogen pressure usually in the range of from 50-200 bars, preferably from 90-150 bars; a temperature between 350° C.-470° C., preferably between 380° C.-430° C.; and a residence time for the liquid charge within the reactor of between 0.1-4 hours, preferably between 0.5-2 hours.
All of these last-enumerated U.S. Pat. No. 3,842,138; 3,898,299; 3,907,920; 3,919,074; and 4,285,804 therefore have to deal with excessive amounts of circulating hydrogen that have a heavy impact on the utilities consumption and investment costs of the olefin plant in which they are used. For example, high hydrogen amounts involve the circulation of large volumes of a hydrogen-containing stream for which compression thereof between 20-40 bars is necessary for its fractionation, thus involving prohibitive costs. In contrast, the small amount of hydrogen required in the case of the present invention only has a very small impact on utilities consumption and investment costs because the hydrogen is not needed to reduce the vaporization temperature of the charge but only to inhibit the polymerization of the small amount of olefins created in the convection section and thus reduce the coke precursor. Furthermore, little or no modification of the convection section is required in order to make use of the present invention, and such invention also makes it possible to eliminate the flash drum. Furthermore, use of the present invention can decrease the fouling rate in the transfer line exchanger employed to quench the cracked effluent of the furnace, owing to the presence of a higher concentration of hydrogen in the furnace effluent. However, the degree of improvement is dependent upon the amount of hydrogen added.
SUMMARY OF THE INVENTION
The present invention provides an efficacious process for inhibiting coke formation during the vaporization of heavy hydrocarbons by preheating such hydrocarbons in the presence of a small, critical amount of hydrogen in the convection section of a conventional tubular furnace. The critical hydrogen level, as practiced in this invention, is definable in terms of the hydrogen/hydrocarbon charge or feed ratio, and approximates about 0.01-0.15 wt. %.
Coke formation in the convection section normally occurs when the liquid portion of the hydrocarbon feedstock vaporizing in the heating coil of such section is exposed to excessively high tube wall temperatures. When such feedstock has physical characteristics similar to those of petroleum fractions boiling in the vacuum gas oil region or above, the problems of coke deposition during the vaporization of the feedstock are exacerbated because, at high temperatures, the polymerization reactions which normally take place in the liquid phase on metal surfaces are promoted. As a result, some reactant and product molecules polymerize to form heavier molecules which are tarry materials that become deposited on the walls of the convection section coil and eventually become coke. The present invention, as noted, prevents this problem by utilizing a critical amount of hydrogen to inhibit the polymerization reaction of the hydrocarbon charge during its preheating in the convection section of a conventional tubular furnace.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other features and advantages of the present invention will become more readily apparent from the following description with reference to FIGS. 1-3 of the accompanying drawings.
FIG. 1 depicts a flow diagram of a conventional single-stage external vaporization system and process for heavy hydrocarbon feedstock pyrolysis;
FIG. 2 depicts a flow diagram of one aspect of the present invention, and represents an alternative system and process to what is shown in FIG. 1. It illustrates a scheme in which the critical amount of hydrogen is added only to the secondary stream to inhibit coke in the mixer and downstream of the mixer; and
FIG. 3 shows another aspect of the present invention, and depicts a schematic flow diagram in which the critical amount of hydrogen is added to a mixture of the hydrocarbon feedstock and total dilution steam. It illustrates a pyrolysis furnace having a conventional convection section but no dilution steam superheating coil, no mixer, and no flash drum, since these are obviated by the use of the critical amount of hydrogen. For the sake of simplicity, other convection heating coils, a steam drum, and a transfer line exchanger are not shown in FIG. 3.
FIGS. 4 and 5 are graphs which illustrate the percent volume hydrogen in the feed gas verses the polymerization rate and the molecular weight.
DESCRIPTION OF THE PREFERRED EMBODIMENT
With reference to FIG. 1, a heavy crude petroleum feedstock is passed into the convection section of a conventional tubular furnace, indicated generally as 1, where it is preheated in the convection heating coil 2. The feedstock, after preheating, is then mixed with a small amount of dilution steam (a primary steam addition), and the mixed feed is then further preheated in another convection heating coil 3 to a temperature of about 400° C.-500° C. The resultant heated mixed feed then exits from the convection section and is passed into a mixer 4. The remainder of the dilution steam (a secondary steam addition) is superheated to about 650° C.-800° C. in another convection heating coil 5 of the convection section and passed to the mixer 4 for mixing with the partially vaporized feedstock preheated by heating coil 3. The mixer 4 is provided to ensure intimate contact between the highly superheated steam and the partially vaporized feed. The temperature of the steam is such that the final vaporization of the liquid feed takes place outside of the convection section, i.e. external vaporization, and in the mixer 4 and in the flash drum 6 (into which the mixture from the mixer 4 is passed and in which coke particles or tarry materials are separated from the vapor).
The vapor from flash drum 6, which is at a temperature of about 450° C.-700° C., is passed in line 7 into the radiant section of the furnace where it enters the radiant coil 8 for subsequent pyrolysis. The effluent from the radiant coil 8 is then passed into a transfer line exchanger 9 for cooling therein.
The boiler feed water coil 10 and the steam drum 11 are shown in FIG. I for purposes of showing waste heat recovery and usage, but no further discussion of their functions is necessary here in order to understand the operation of the present invention. FIG. 1, as thus depicted and described, accordingly represents the current state of the art for attending to the problems of avoiding coke formation in the convection section.
FIG. 2 depicts, as noted, one aspect of the present invention, showing the use of a small, critical amount of hydrogen to inhibit coke formation in the convection section. In this FIG. 2, a conventional source of hydrogen such as a hydrogen/methane stream is shown being added to the secondary steam addition to inhibit coke formation in the mixer 4 and downstream of the mixer. Thus, the scheme illustrated in FIG. 2 shows the elimination of the flash drum 6, which would otherwise cause coke formation and removal problems. The transfer line exchanger 9, the boiler feed water coil 10, and the steam drum 11, although includable in this system because they are common to all hydrocarbon vaporization schemes, are not shown since they are not part of the essence of this invention.
FIG. 3 depicts, as noted, another aspect of the present invention in which the hydrogen is added to the mixture of hydrocarbon feed and total dilution steam. The convection section shown in this FIG. 3 is of conventional design. However, no dilution steam superheating coil 5, no mixer 4, and no flash drum 6 are required in this scheme because the use of the critical amount of hydrogen eliminates the need for this equipment. Preferably, however, this critical amount is increased somewhat to protect the mix preheat coil 3 from coking. For purposes of simplification, other convection heating coils, steam drum 11, and the transfer line exchanger 9 are not included in FIG. 3.
The amount of hydrogen to be used in this invention is a variable dependent upon the overall economics of the olefins plants, i.e. the cost increase of the external vaporization system vis-a-vis the extra cost of the associated equipment for hydrogen recovery and purification. It has been found that with the use of a hydrogen/hydrocarbon feed ratio of 0.01 to 0.15 wt %, the external vaporization system can be eliminated.
Since the molecular weight of hydrogen is low and the molecular weight of the heavy hydrocarbon feedstock is extremely high, addition of even small quantities of hydrogen leads to a high concentration of hydrogen in that section of the convection section where the vaporization of the hydrocarbon feedstock takes place. Specifically, the addition of 0.05 wt % of hydrogen to a hydrocarbon feed having a molecular weight of about 700 results in 15 vol. % in hydrogen/hydrocarbon mixture. Assuming that FIGS. 4 and 5 are accurate representations with respect to a particular feedstock at room temperature, this would correspond to a reduction in molecular weight of the polymer by a factor of 2 to 3 and to a reduction in the polymerization rate of 25%. At the higher temperatures encountered in the convection section, however, it is anticipated that the inhibition effect exhibited by the hydrogen would be considerably greater. Utilization of a level 0.05 wt % of hydrogen represents about 10% of the hydrogen yield achieved in the furnace effluent during pyrolysis. This would not have any significant impact on the downstream equipment size and utilities consumption.
Without wishing or desiring to be limited to any theoretical explanation for the salutary effects with respect to inhibition of coke formation in the vaporization of heavy hydrocarbons produced by hydrogen addition, it is nonetheless believed that coke deposition in the heating coils of the convection section results from some heavy hydrocarbons being cracked to form olefins at the high temperatures encountered in the convection section during vaporization. These olefins polymerize and eventually form coke. Addition of a small quantity of hydrogen in these coils suppresses the polymerization reactions and thus suppresses the coke deposition. It is believed that hydrogen acts on the polymer chain to terminate the polymer growth reaction. Should a catalyst be present, the hydrogen is believed to act on its active site so as also to terminate the polymerization reaction. Under the high temperature conditions prevailing in pyrolysis furnaces, the olefins are formed in the high temperature region through a free radical mechanism, and the metallic surface of the tubes of the convection heating coils acts as a catalyst to accelerate the polymerization rate. Thus, the polymer eventually gets further dehydrogenated, thereby forming coke.
In order to demonstrate that the hydrogen addition practiced in this invention to inhibit coke formation in the convection section does not have a deleterious effect on hydrogen recycle flow, and also on utilities consumption and investment costs of an ethylene plant, the following example is provided.
EXAMPLE 1 Hydrogen Recycle Flow
In this example, an ethylene plant having a 300,000 million ton per annum production capacity is used as a base plant and point of reference. For such a plant, assuming a hydrogen recycle rate of 0.05 wt. % of the total wt. of the hydrocarbon feedstock, the hydrogen recycle flow would be as follows:
______________________________________                                    
Total Hydrocarbon Feedstock                                               
                       139483 Kg/Hr                                       
H.sub.2 Recycle as 95% H.sub.2 Purity                                     
                       36.4 Kg Mo.sup.1 /Hr                               
Increase in Compression Power                                             
                       0.7%                                               
Energy Equivalent, Kcal/KgC.sup.- 2                                       
                       14                                                 
Saving in Dilution Steam                                                  
                       7                                                  
Expressed as Kcal/KgC.sup.- 2                                             
Net Increase in Energy Consumption                                        
                       7                                                  
in Kcal/KgC.sup.- 2                                                       
______________________________________                                    

Claims (3)

What is claimed is:
1. In a process for cracking a crude petroleum feedstock including preheating and vaporizing said feedstock and then cracking said feedstock at a temperature in excess of 560° C. inside the tubes of the radiant section of a pyrolysis heater to produce olefins wherein said feedstock is partially heated to a temperature of 100° C. to 500° C. and then further heated and mixed with steam to produce a mixture of feedstock and a steam at a temperature of 450° C. to 700° C. and wherein said mixture is fed to said cracking step wherein the improvement comprises the further step of mixing from 0.01 to 0.15 wt % hydrogen based on the weight of feedstock with said mixture of feedstock and steam prior to raising the temperature above about 500° C. whereby the formation of coke is reduced when said temperature is raised above about 500° C.
2. In a process according to claim 1 wherein said hydrogen and at least a portion of said steam are heated to 650° C. to 800° C. and then mixed with said partially heated feedstock to produce said mixture.
3. In a process according to claim 1 wherein said hydrogen and steam are mixed with said partially heated feedstock and then the mixture is heated to 450° C. to 700° C.
US07/278,999 1988-12-02 1988-12-02 Inhibition of coke formation during vaporization of heavy hydrocarbons Expired - Fee Related US5190634A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US07/278,999 US5190634A (en) 1988-12-02 1988-12-02 Inhibition of coke formation during vaporization of heavy hydrocarbons
CA002003080A CA2003080A1 (en) 1988-12-02 1989-11-16 Inhibition of coke formation during vaporization of heavy hydrocarbons
JP2501260A JPH0641588B2 (en) 1988-12-02 1989-11-20 Inhibition of coke formation during heavy hydrocarbon evaporation.
DE90901194T DE68905333T2 (en) 1988-12-02 1989-11-20 PREVENTING COCYSTACKING FROM EVAPORATING HEAVY CARBON HYDROGEN.
PCT/US1989/005183 WO1990006351A1 (en) 1988-12-02 1989-11-20 Inhibition of coke formation during vaporization of heavy hydrocarbons
EP90901194A EP0397853B1 (en) 1988-12-02 1989-11-20 Inhibition of coke formation during vaporization of heavy hydrocarbons
ES90901194T ES2045899T3 (en) 1988-12-02 1989-11-20 INHIBITION OF COKE FORMATION DURING EVAPORATION OF HEAVY OIL.
BR898907217A BR8907217A (en) 1988-12-02 1989-11-20 INHIBITION OF COKE FORMATION DURING HEAVY HYDROCARBON STEAM VAPORIZATION
KR1019900701683A KR930004158B1 (en) 1988-12-02 1989-11-20 Inhibition of coke formation during vaporizing of heavy hydrocarbon
CN89109037.1A CN1015903B (en) 1988-12-02 1989-12-01 Inhibition of coke formation during vaporization of heavy hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/278,999 US5190634A (en) 1988-12-02 1988-12-02 Inhibition of coke formation during vaporization of heavy hydrocarbons

Publications (1)

Publication Number Publication Date
US5190634A true US5190634A (en) 1993-03-02

Family

ID=23067260

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/278,999 Expired - Fee Related US5190634A (en) 1988-12-02 1988-12-02 Inhibition of coke formation during vaporization of heavy hydrocarbons

Country Status (10)

Country Link
US (1) US5190634A (en)
EP (1) EP0397853B1 (en)
JP (1) JPH0641588B2 (en)
KR (1) KR930004158B1 (en)
CN (1) CN1015903B (en)
BR (1) BR8907217A (en)
CA (1) CA2003080A1 (en)
DE (1) DE68905333T2 (en)
ES (1) ES2045899T3 (en)
WO (1) WO1990006351A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463159A (en) * 1994-03-22 1995-10-31 Phillips Petroleum Company Thermal cracking process
US5817226A (en) * 1993-09-17 1998-10-06 Linde Aktiengesellschaft Process and device for steam-cracking a light and a heavy hydrocarbon feedstock
US6303842B1 (en) 1997-10-15 2001-10-16 Equistar Chemicals, Lp Method of producing olefins from petroleum residua
EP1318187A1 (en) * 2001-12-06 2003-06-11 OMW Aktiengesellschaft Apparatus for cracking a hydrocarbon feed having a high saturates content
US6632351B1 (en) * 2000-03-08 2003-10-14 Shell Oil Company Thermal cracking of crude oil and crude oil fractions containing pitch in an ethylene furnace
US20040004027A1 (en) * 2002-07-03 2004-01-08 Spicer David B. Process for cracking hydrocarbon feed with water substitution
US20040004028A1 (en) * 2002-07-03 2004-01-08 Stell Richard C. Converting mist flow to annular flow in thermal cracking application
US20040004022A1 (en) * 2002-07-03 2004-01-08 Stell Richard C. Process for steam cracking heavy hydrocarbon feedstocks
WO2004005433A1 (en) * 2002-07-03 2004-01-15 Exxonmobil Chemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
US6908543B1 (en) 2000-10-23 2005-06-21 Chevron U.S.A. Inc. Method for retarding fouling of feed heaters in refinery processing
US20050209495A1 (en) * 2004-03-22 2005-09-22 Mccoy James N Process for steam cracking heavy hydrocarbon feedstocks
US20050261536A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Apparatus and process for controlling temperature of heated feed directed to a flash drum whose overhead provides feed for cracking
US20050261534A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Process and draft control system for use in cracking a heavy hydrocarbon feedstock in a pyrolysis furnace
US20050261531A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Process and apparatus for cracking hydrocarbon feedstock containing resid
US20050261533A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US20050261530A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Vapor/liquid separation apparatus for use in cracking hydrocarbon feedstock containing resid
US20050261532A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Process and apparatus for removing coke formed during steam cracking of hydrocarbon feedstocks containing resids
US20050261538A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Process for reducing vapor condensation in flash/separation apparatus overhead during steam cracking of hydrocarbon feedstocks
US20050261535A1 (en) * 2004-05-21 2005-11-24 David Beattie Steam cracking of light hydrocarbon feedstocks containing non-volatile components and/or coke precursors
US20050261537A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Steam cracking of hydrocarbon feedstocks containing non-volatile components and/or coke precursors
WO2005113719A2 (en) * 2004-05-21 2005-12-01 Exxonmobil Chemical Patents Inc. Steam cracking of hydrocarbon feedstocks containing non-volatile components and/or coke precursors
US20060014992A1 (en) * 2004-07-14 2006-01-19 Stell Richard C Process for reducing fouling from flash/separation apparatus during cracking of hydrocarbon feedstocks
US20060014994A1 (en) * 2004-07-16 2006-01-19 Keusenkothen Paul F Reduction of total sulfur in crude and condensate cracking
US20060014993A1 (en) * 2004-07-14 2006-01-19 Stell Richard C Process for reducing fouling from flash/separation apparatus during cracking of hydrocarbon feedstocks
US20060089519A1 (en) * 2004-05-21 2006-04-27 Stell Richard C Process and apparatus for cracking hydrocarbon feedstock containing resid to improve vapor yield from vapor/liquid separation
US20060094918A1 (en) * 2004-10-28 2006-05-04 Mccoy James N Steam cracking of hydrocarbon feedstocks containing salt and/or particulate matter
US20060129012A1 (en) * 2004-12-10 2006-06-15 Frye James M Vapor/liquid separation apparatus
US20070004952A1 (en) * 2005-06-30 2007-01-04 Mccoy James N Steam cracking of partially desalted hydrocarbon feedstocks
KR100818648B1 (en) * 2004-05-21 2008-04-02 엑손모빌 케미칼 패턴츠 인코포레이티드 Steam cracking of hydrocarbon feedstocks containing non-volatile components and/or coke precursors
WO2008131336A1 (en) * 2007-04-19 2008-10-30 Exxonmobil Chemical Patents Inc. Process for olefin production
US20090022635A1 (en) * 2007-07-20 2009-01-22 Selas Fluid Processing Corporation High-performance cracker
US20090050530A1 (en) * 2007-08-21 2009-02-26 Spicer David B Process and Apparatus for Steam Cracking Hydrocarbon Feedstocks
US20110144405A1 (en) * 2009-12-15 2011-06-16 William Arthur Larson Heavy feed mixer
US20120125813A1 (en) * 2010-11-23 2012-05-24 Bridges Robert S Process for Cracking Heavy Hydrocarbon Feed
US20120125811A1 (en) * 2010-11-23 2012-05-24 Bridges Robert S Process for Cracking Heavy Hydrocarbon Feed
US20120168348A1 (en) * 2010-12-29 2012-07-05 Coleman Steven T Process for cracking heavy hydrocarbon feed
US8658022B2 (en) * 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US9354183B2 (en) 2012-05-03 2016-05-31 Exxonmobil Research And Engineering Company Method to optimize run lengths and product quality in coking processes and system for performing the same
US10017702B2 (en) 2014-10-07 2018-07-10 Lummus Technology Inc. Thermal cracking of crudes and heavy feeds to produce olefins in pyrolysis reactor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043051C (en) * 1994-07-22 1999-04-21 国际壳牌研究有限公司 Process for producing a hydrowax
CN1062293C (en) * 1996-09-19 2001-02-21 北京燕山石油化工公司研究院 Method for producing olefines by steam cracking heavy gas oil or raffinate oil from solvent extraction
KR100338361B1 (en) * 2000-01-28 2002-05-30 유승렬 On-line coating method for retarding coke on the internal wall of hydrocarbon pyrolysis reactor tube
RU2537551C1 (en) * 2013-09-19 2015-01-10 Владимир Андреевич Золотухин Advanced hydrocarbon processing unit
EA032307B1 (en) * 2014-02-25 2019-05-31 Сауди Бейсик Индастриз Корпорейшн Process for increasing process furnaces energy efficiency
CN105623709B (en) * 2014-10-28 2017-06-30 中国石油化工股份有限公司 A kind of steam cracking method
CN110384944B (en) * 2019-08-28 2023-05-23 南通晨光石墨设备有限公司 Waste acid evaporation concentration equipment and waste acid treatment method
KR102266227B1 (en) * 2020-10-22 2021-06-17 (주)대주기계 Hydrogen gas generation device by shock wave
AT525775A1 (en) * 2021-12-27 2023-07-15 Wolfgang Bacher Arrangement, refinery and process for the production of hydrocarbons

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365387A (en) * 1966-04-29 1968-01-23 Exxon Research Engineering Co Off-stream decoking of a minor portion of on-stream thermal cracking tubes
US3579438A (en) * 1970-04-20 1971-05-18 Monsanto Co Thermal cracking
US4298457A (en) * 1978-09-11 1981-11-03 University Of Utah Hydropyrolysis process for upgrading heavy oils and solids into light liquid products
US4361478A (en) * 1978-12-14 1982-11-30 Linde Aktiengesellschaft Method of preheating hydrocarbons for thermal cracking
US4479869A (en) * 1983-12-14 1984-10-30 The M. W. Kellogg Company Flexible feed pyrolysis process
US4587011A (en) * 1983-06-30 1986-05-06 Mitsubishi Jukogyo Kabushiki Kaisha Thermal cracking process for selectively producing petrochemical products from hydrocarbons
US4599478A (en) * 1983-02-18 1986-07-08 Mitsubishi Jukogyo Kabushiki Kaisha Thermal cracking method for producing olefines from hydrocarbons
US4615795A (en) * 1984-10-09 1986-10-07 Stone & Webster Engineering Corporation Integrated heavy oil pyrolysis process
US4617109A (en) * 1985-12-23 1986-10-14 The M. W. Kellogg Company Combustion air preheating

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557241A (en) * 1968-10-16 1971-01-19 Exxon Research Engineering Co Decoking of onstream thermal cracking tubes with h20 and h2
US3617493A (en) * 1970-01-12 1971-11-02 Exxon Research Engineering Co Process for steam cracking crude oil
BE793036A (en) * 1971-12-21 1973-04-16 Pierrefitte Auby Sa HYDROGEN PRESSURE CRACKING PROCESS FOR THE PRODUCTION OF OLEFINS
JPS5531493Y2 (en) * 1973-06-13 1980-07-26
JPS5856099B2 (en) * 1978-02-09 1983-12-13 横河電機株式会社 force transducer
HU177681B (en) * 1979-10-26 1981-12-28 Magyar Asvanyolaj Es Foeldgaz Process for enhancing olephin-, first of all ethylene-yield with pirolysis of gas and/or liquide hydrocarbons with adding vapor and hydrogen and/or methan
JPS5913933A (en) * 1982-07-15 1984-01-24 Kyowa Dengiyou:Kk Load convertor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365387A (en) * 1966-04-29 1968-01-23 Exxon Research Engineering Co Off-stream decoking of a minor portion of on-stream thermal cracking tubes
US3579438A (en) * 1970-04-20 1971-05-18 Monsanto Co Thermal cracking
US4298457A (en) * 1978-09-11 1981-11-03 University Of Utah Hydropyrolysis process for upgrading heavy oils and solids into light liquid products
US4361478A (en) * 1978-12-14 1982-11-30 Linde Aktiengesellschaft Method of preheating hydrocarbons for thermal cracking
US4599478A (en) * 1983-02-18 1986-07-08 Mitsubishi Jukogyo Kabushiki Kaisha Thermal cracking method for producing olefines from hydrocarbons
US4587011A (en) * 1983-06-30 1986-05-06 Mitsubishi Jukogyo Kabushiki Kaisha Thermal cracking process for selectively producing petrochemical products from hydrocarbons
US4479869A (en) * 1983-12-14 1984-10-30 The M. W. Kellogg Company Flexible feed pyrolysis process
US4615795A (en) * 1984-10-09 1986-10-07 Stone & Webster Engineering Corporation Integrated heavy oil pyrolysis process
US4617109A (en) * 1985-12-23 1986-10-14 The M. W. Kellogg Company Combustion air preheating

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817226A (en) * 1993-09-17 1998-10-06 Linde Aktiengesellschaft Process and device for steam-cracking a light and a heavy hydrocarbon feedstock
US5463159A (en) * 1994-03-22 1995-10-31 Phillips Petroleum Company Thermal cracking process
US6303842B1 (en) 1997-10-15 2001-10-16 Equistar Chemicals, Lp Method of producing olefins from petroleum residua
US6632351B1 (en) * 2000-03-08 2003-10-14 Shell Oil Company Thermal cracking of crude oil and crude oil fractions containing pitch in an ethylene furnace
US6908543B1 (en) 2000-10-23 2005-06-21 Chevron U.S.A. Inc. Method for retarding fouling of feed heaters in refinery processing
EP1318187A1 (en) * 2001-12-06 2003-06-11 OMW Aktiengesellschaft Apparatus for cracking a hydrocarbon feed having a high saturates content
WO2004005433A1 (en) * 2002-07-03 2004-01-15 Exxonmobil Chemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
US20040004022A1 (en) * 2002-07-03 2004-01-08 Stell Richard C. Process for steam cracking heavy hydrocarbon feedstocks
US7090765B2 (en) 2002-07-03 2006-08-15 Exxonmobil Chemical Patents Inc. Process for cracking hydrocarbon feed with water substitution
US20040004028A1 (en) * 2002-07-03 2004-01-08 Stell Richard C. Converting mist flow to annular flow in thermal cracking application
CN100587030C (en) * 2002-07-03 2010-02-03 埃克森美孚化学专利公司 Process for steam cracking of heavy hydrocarbon raw material
US7578929B2 (en) 2002-07-03 2009-08-25 Exxonmoil Chemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
US20040004027A1 (en) * 2002-07-03 2004-01-08 Spicer David B. Process for cracking hydrocarbon feed with water substitution
US7138047B2 (en) 2002-07-03 2006-11-21 Exxonmobil Chemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
US20060249428A1 (en) * 2002-07-03 2006-11-09 Stell Richard C Process for steam cracking heavy hydrocarbon feedstocks
US7097758B2 (en) 2002-07-03 2006-08-29 Exxonmobil Chemical Patents Inc. Converting mist flow to annular flow in thermal cracking application
US20050209495A1 (en) * 2004-03-22 2005-09-22 Mccoy James N Process for steam cracking heavy hydrocarbon feedstocks
WO2005095548A1 (en) 2004-03-22 2005-10-13 Exxonmobil Chemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
US7820035B2 (en) 2004-03-22 2010-10-26 Exxonmobilchemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
US7544852B2 (en) 2004-05-21 2009-06-09 Exxonmobil Chemical Patents Inc. Process and draft control system for use in cracking a heavy hydrocarbon feedstock in a pyrolysis furnace
US20050261534A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Process and draft control system for use in cracking a heavy hydrocarbon feedstock in a pyrolysis furnace
WO2005113719A2 (en) * 2004-05-21 2005-12-01 Exxonmobil Chemical Patents Inc. Steam cracking of hydrocarbon feedstocks containing non-volatile components and/or coke precursors
WO2005113718A2 (en) 2004-05-21 2005-12-01 Exxonmobil Chemical Patents Inc. Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
WO2005113716A2 (en) 2004-05-21 2005-12-01 Exxonmobil Chemical Patents Inc. Process and draft control system for use in cracking a heavy hydrocarbon feedstock in a pyrolysis furnace
CN1957067B (en) * 2004-05-21 2012-02-22 埃克森美孚化学专利公司 Cracking hydrocarbon feedstock containing resid utilizing partial condensation vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US7993435B2 (en) 2004-05-21 2011-08-09 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid
CN1957064B (en) * 2004-05-21 2011-06-22 埃克森美孚化学专利公司 Process and apparatus for removing coke formed during steam cracking of hydrocarbon feedstocks containing resids
WO2005113719A3 (en) * 2004-05-21 2006-01-26 Exxonmobil Chem Patents Inc Steam cracking of hydrocarbon feedstocks containing non-volatile components and/or coke precursors
WO2005113721A3 (en) * 2004-05-21 2006-01-26 Exxonmobil Chem Patents Inc Process and apparatus for removing coke formed during steam cracking of hydrocarbon feedstocks containing resids
WO2005113718A3 (en) * 2004-05-21 2006-04-06 Exxonmobil Chem Patents Inc Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US20060089519A1 (en) * 2004-05-21 2006-04-27 Stell Richard C Process and apparatus for cracking hydrocarbon feedstock containing resid to improve vapor yield from vapor/liquid separation
US20050261536A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Apparatus and process for controlling temperature of heated feed directed to a flash drum whose overhead provides feed for cracking
US7767170B2 (en) 2004-05-21 2010-08-03 Exxonmobil Chemical Patents Inc. Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US20050261535A1 (en) * 2004-05-21 2005-11-24 David Beattie Steam cracking of light hydrocarbon feedstocks containing non-volatile components and/or coke precursors
US20050261538A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Process for reducing vapor condensation in flash/separation apparatus overhead during steam cracking of hydrocarbon feedstocks
US20060213810A1 (en) * 2004-05-21 2006-09-28 Stell Richard C Apparatus and process for controlling temperature of heated feed directed to a flash drum whose overhead provides feed for cracking
US20060226048A1 (en) * 2004-05-21 2006-10-12 Stell Richard C Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US20050261532A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Process and apparatus for removing coke formed during steam cracking of hydrocarbon feedstocks containing resids
US20050261530A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Vapor/liquid separation apparatus for use in cracking hydrocarbon feedstock containing resid
US7670573B2 (en) 2004-05-21 2010-03-02 Exxonmobil Chemical Patents Inc. Process and apparatus for removing coke formed during steam cracking of hydrocarbon feedstocks containing resids
US20070009407A1 (en) * 2004-05-21 2007-01-11 Stell Richard C Process and apparatus for cracking hydrocarbon feedstock containing resid
US20070006733A1 (en) * 2004-05-21 2007-01-11 Stell Richard C Process and apparatus for cracking hydrocarbon feedstock containing resid
US20070031307A1 (en) * 2004-05-21 2007-02-08 Stell Richard C Process and apparatus for removing coke formed during steam cracking of hydrocarbon feedstocks containing resids
US20070029160A1 (en) * 2004-05-21 2007-02-08 Stell Richard C Process for reducing vapor condensation in flash/separation apparatus overhead during steam cracking of hydrocarbon feedstocks
US20070031306A1 (en) * 2004-05-21 2007-02-08 Stell Richard C Process for reducing vapor condensation in flash/separation apparatus overhead during steam cracking of hydrocarbon feedstocks
US20070049783A1 (en) * 2004-05-21 2007-03-01 Stell Richard C Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US7193123B2 (en) 2004-05-21 2007-03-20 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid to improve vapor yield from vapor/liquid separation
US7220887B2 (en) 2004-05-21 2007-05-22 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid
US7235705B2 (en) 2004-05-21 2007-06-26 Exxonmobil Chemical Patents Inc. Process for reducing vapor condensation in flash/separation apparatus overhead during steam cracking of hydrocarbon feedstocks
US20070160513A1 (en) * 2004-05-21 2007-07-12 Stell Richard C Process and apparatus for cracking hydrocarbon feedstock containing resid to improve vapor yield from vapor/liquid separation
US7244871B2 (en) 2004-05-21 2007-07-17 Exxonmobil Chemical Patents, Inc. Process and apparatus for removing coke formed during steam cracking of hydrocarbon feedstocks containing resids
US7247765B2 (en) 2004-05-21 2007-07-24 Exxonmobil Chemical Patents Inc. Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US20070215524A1 (en) * 2004-05-21 2007-09-20 Stell Richard C Vapor/liquid separation apparatus for use in cracking hydrocarbon feedstock containing resid
US20050261537A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Steam cracking of hydrocarbon feedstocks containing non-volatile components and/or coke precursors
US7297833B2 (en) 2004-05-21 2007-11-20 Exxonmobil Chemical Patents Inc. Steam cracking of light hydrocarbon feedstocks containing non-volatile components and/or coke precursors
US7311746B2 (en) 2004-05-21 2007-12-25 Exxonmobil Chemical Patents Inc. Vapor/liquid separation apparatus for use in cracking hydrocarbon feedstock containing resid
US7312371B2 (en) 2004-05-21 2007-12-25 Exxonmobil Chemical Patents Inc. Steam cracking of hydrocarbon feedstocks containing non-volatile components and/or coke precursors
KR100813896B1 (en) * 2004-05-21 2008-03-19 엑손모빌 케미칼 패턴츠 인코포레이티드 Process and apparatus for removing coke formed during steam cracking of hydrocarbon feedstocks containing resids
US7351872B2 (en) 2004-05-21 2008-04-01 Exxonmobil Chemical Patents Inc. Process and draft control system for use in cracking a heavy hydrocarbon feedstock in a pyrolysis furnace
KR100818648B1 (en) * 2004-05-21 2008-04-02 엑손모빌 케미칼 패턴츠 인코포레이티드 Steam cracking of hydrocarbon feedstocks containing non-volatile components and/or coke precursors
US7588737B2 (en) 2004-05-21 2009-09-15 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid
US20050261531A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Process and apparatus for cracking hydrocarbon feedstock containing resid
US20080119679A1 (en) * 2004-05-21 2008-05-22 Stell Richard C Process And Draft Control System For Use In Cracking A Heavy Hydrocarbon Feedstock In A Pyrolysis Furnace
US7553460B2 (en) 2004-05-21 2009-06-30 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid to improve vapor yield from vapor/liquid separation
US20050261533A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US7413648B2 (en) * 2004-05-21 2008-08-19 Exxonmobil Chemical Patents Inc. Apparatus and process for controlling temperature of heated feed directed to a flash drum whose overhead provides feed for cracking
US7419584B2 (en) * 2004-05-21 2008-09-02 Exxonmobil Chemical Patents Inc. Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US7427381B2 (en) 2004-05-21 2008-09-23 Exxonmobil Chemical Patents Inc. Vapor/liquid separation apparatus for use in cracking hydrocarbon feedstock containing resid
US7431803B2 (en) 2004-05-21 2008-10-07 Exxonmobil Chemical Patents Inc. Process for reducing vapor condensation in flash/separation apparatus overhead during steam cracking of hydrocarbon feedstocks
US7488459B2 (en) 2004-05-21 2009-02-10 Exxonmobil Chemical Patents Inc. Apparatus and process for controlling temperature of heated feed directed to a flash drum whose overhead provides feed for cracking
US7470409B2 (en) 2004-05-21 2008-12-30 Exxonmobil Chemical Patents Inc. Process for reducing vapor condensation in flash/separation apparatus overhead during steam cracking of hydrocarbon feedstocks
US20060014992A1 (en) * 2004-07-14 2006-01-19 Stell Richard C Process for reducing fouling from flash/separation apparatus during cracking of hydrocarbon feedstocks
US20060014993A1 (en) * 2004-07-14 2006-01-19 Stell Richard C Process for reducing fouling from flash/separation apparatus during cracking of hydrocarbon feedstocks
US20080274023A1 (en) * 2004-07-14 2008-11-06 Stell Richard C Process for Reducing Fouling from Flash/Separation Apparatus during Cracking of Hydrocarbon Feedstocks
US7408093B2 (en) 2004-07-14 2008-08-05 Exxonmobil Chemical Patents Inc. Process for reducing fouling from flash/separation apparatus during cracking of hydrocarbon feedstocks
US7776286B2 (en) 2004-07-14 2010-08-17 Exxonmobil Chemical Patents Inc. Process for reducing fouling from flash/separation apparatus during cracking of hydrocarbon feedstocks
US20080118416A1 (en) * 2004-07-14 2008-05-22 Stell Richard C Process for Reducing Fouling From Flash/Separation Apparatus During Cracking of Hydrocarbon Feedstocks
US7358413B2 (en) 2004-07-14 2008-04-15 Exxonmobil Chemical Patents Inc. Process for reducing fouling from flash/separation apparatus during cracking of hydrocarbon feedstocks
US7641870B2 (en) 2004-07-14 2010-01-05 Exxonmobil Chemical Patents Inc. Process for reducing fouling from flash/separation apparatus during cracking of hydrocarbon feedstocks
US7285697B2 (en) 2004-07-16 2007-10-23 Exxonmobil Chemical Patents Inc. Reduction of total sulfur in crude and condensate cracking
US20060014994A1 (en) * 2004-07-16 2006-01-19 Keusenkothen Paul F Reduction of total sulfur in crude and condensate cracking
US20060094918A1 (en) * 2004-10-28 2006-05-04 Mccoy James N Steam cracking of hydrocarbon feedstocks containing salt and/or particulate matter
US7402237B2 (en) 2004-10-28 2008-07-22 Exxonmobil Chemical Patents Inc. Steam cracking of hydrocarbon feedstocks containing salt and/or particulate matter
US20060129012A1 (en) * 2004-12-10 2006-06-15 Frye James M Vapor/liquid separation apparatus
US7481871B2 (en) 2004-12-10 2009-01-27 Exxonmobil Chemical Patents Inc. Vapor/liquid separation apparatus
US8173854B2 (en) 2005-06-30 2012-05-08 Exxonmobil Chemical Patents Inc. Steam cracking of partially desalted hydrocarbon feedstocks
US20070004952A1 (en) * 2005-06-30 2007-01-04 Mccoy James N Steam cracking of partially desalted hydrocarbon feedstocks
WO2008131336A1 (en) * 2007-04-19 2008-10-30 Exxonmobil Chemical Patents Inc. Process for olefin production
US20090022635A1 (en) * 2007-07-20 2009-01-22 Selas Fluid Processing Corporation High-performance cracker
US20090050530A1 (en) * 2007-08-21 2009-02-26 Spicer David B Process and Apparatus for Steam Cracking Hydrocarbon Feedstocks
US20110144405A1 (en) * 2009-12-15 2011-06-16 William Arthur Larson Heavy feed mixer
US8496786B2 (en) 2009-12-15 2013-07-30 Stone & Webster Process Technology, Inc. Heavy feed mixer
US20120125813A1 (en) * 2010-11-23 2012-05-24 Bridges Robert S Process for Cracking Heavy Hydrocarbon Feed
US20120125811A1 (en) * 2010-11-23 2012-05-24 Bridges Robert S Process for Cracking Heavy Hydrocarbon Feed
US8658019B2 (en) * 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US8658022B2 (en) * 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US8663456B2 (en) * 2010-11-23 2014-03-04 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US20120168348A1 (en) * 2010-12-29 2012-07-05 Coleman Steven T Process for cracking heavy hydrocarbon feed
US8658023B2 (en) * 2010-12-29 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US9354183B2 (en) 2012-05-03 2016-05-31 Exxonmobil Research And Engineering Company Method to optimize run lengths and product quality in coking processes and system for performing the same
US10017702B2 (en) 2014-10-07 2018-07-10 Lummus Technology Inc. Thermal cracking of crudes and heavy feeds to produce olefins in pyrolysis reactor

Also Published As

Publication number Publication date
ES2045899T3 (en) 1994-01-16
JPH02503693A (en) 1990-11-01
JPH0641588B2 (en) 1994-06-01
EP0397853A1 (en) 1990-11-22
EP0397853B1 (en) 1993-03-10
BR8907217A (en) 1991-03-05
DE68905333D1 (en) 1993-04-15
CN1043154A (en) 1990-06-20
DE68905333T2 (en) 1993-10-14
KR910700321A (en) 1991-03-14
KR930004158B1 (en) 1993-05-21
WO1990006351A1 (en) 1990-06-14
CN1015903B (en) 1992-03-18
CA2003080A1 (en) 1990-06-02

Similar Documents

Publication Publication Date Title
US5190634A (en) Inhibition of coke formation during vaporization of heavy hydrocarbons
US3842138A (en) Method of cracking hydrocarbons under hydrogen pressure for the production of olefins
JP7417579B2 (en) Integrated pyrolysis and hydrocracking unit for crude oil to chemicals
US5580443A (en) Process for cracking low-quality feed stock and system used for said process
US4797197A (en) Delayed coking process
US4495060A (en) Quenching hydrocarbon effluent from catalytic reactor to avoid precipitation of asphaltene compounds
US4732740A (en) Integrated heavy oil pyrolysis process
CN103210061B (en) Process for cracking heavy hydrocarbon feed
JPS6160879B2 (en)
TWI265195B (en) Method for the preparation of lower olefins by steam cracking
TW202104564A (en) A process for conversion of crudes and condensates to chemicals utilizing a mix of hydrogen addition and carbon rejection
US4599480A (en) Sequential cracking of hydrocarbons
US4268375A (en) Sequential thermal cracking process
US4267031A (en) Coking process
US4309272A (en) Sequential thermal cracking process
US4351803A (en) Hydrocarbon heating apparatus
US2130596A (en) Method for treating a plurality of heavy hydrocarbon oils for subsequent cracking
US2079359A (en) Process and apparatus for desulphurization and conversion of oils of different characteristics into lower boiling point hydrocarbon products
EP0204410A2 (en) Method of supplying heat to high temperature process streams
US2217587A (en) Process for conversion of hydrocarbons
SU1012605A1 (en) Method of hydrofining diesel fuel
CN117487587A (en) Method and system for producing olefin by steam cracking of heavy hydrocarbon
JPS58108293A (en) Conversion of hydrocarbon fraction

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUMMUS CREST INC., BLOOMFIELD, NEW JERSEY, A CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHIEN, JO-LUNG;REEL/FRAME:004981/0533

Effective date: 19881115

AS Assignment

Owner name: LUMMUS CREST INC., BLOOMFIELD, NJ, A CORP. OF DE.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:FERNANDEZ-BAUJIN, JORGE M.;SUNDARAM, KANDASMY M.;CHIEN, JO-LUNG;REEL/FRAME:005030/0852

Effective date: 19890309

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19970305

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362