US5049146A - Blood/gas separator and flow system - Google Patents

Blood/gas separator and flow system Download PDF

Info

Publication number
US5049146A
US5049146A US07/359,178 US35917889A US5049146A US 5049146 A US5049146 A US 5049146A US 35917889 A US35917889 A US 35917889A US 5049146 A US5049146 A US 5049146A
Authority
US
United States
Prior art keywords
blood
flexible bag
cardiotomy
lower compartment
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/359,178
Inventor
Richard L. Bringham
R. Scott Bell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jostra Bentley Inc
Original Assignee
Baxter International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxter International Inc filed Critical Baxter International Inc
Assigned to BAXTER INTERNATIONAL INC., A CORP. OF DE reassignment BAXTER INTERNATIONAL INC., A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BELL, R. SCOTT, BRINGHAM, RICHARD L.
Priority to US07/359,178 priority Critical patent/US5049146A/en
Assigned to BAXTER INTERNATIONAL INC., A CORP. OF DE reassignment BAXTER INTERNATIONAL INC., A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BELL, R. SCOTT, BRINGHAM, RICHARD L.
Priority to CA002017460A priority patent/CA2017460C/en
Priority to JP2143251A priority patent/JPH0661359B2/en
Priority to DE69007860T priority patent/DE69007860T4/en
Priority to EP90305935A priority patent/EP0401016B1/en
Priority to EP93202622A priority patent/EP0587251B1/en
Priority to DE69032137T priority patent/DE69032137T2/en
Priority to DE90305935A priority patent/DE69007860D1/en
Priority to DE0587251T priority patent/DE587251T1/en
Publication of US5049146A publication Critical patent/US5049146A/en
Application granted granted Critical
Assigned to EDWARDS LIFESCIENCES CORPORATION reassignment EDWARDS LIFESCIENCES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAXTER INTERNATIONAL INC.
Assigned to JOSTRA BENTLEY INC. reassignment JOSTRA BENTLEY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EDWARDS LIFESCIENCES CORPORATION
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/32Oxygenators without membranes
    • A61M1/322Antifoam; Defoaming
    • A61M1/325Surfactant coating; Improving wettability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • A61M1/3632Combined venous-cardiotomy reservoirs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/03Heart-lung

Definitions

  • the present invention is concerned with blood reservoirs, and in particular venous and cardiotomy blood reservoirs.
  • Extracorporeal circuits generally include devices for performing various tasks on the blood, e.g. oxygenation, filtration, and storage. Other procedures requiring the routing of blood through an extracorporeal circuit include extracorporeal membrane oxygenation (long term support) and autotransfusion.
  • Extracorporeal circuits are typically set up by an individual known as a perfusionist.
  • the perfusionist controls the rate of blood flow and operates the various devices connected in the circuit.
  • Extracorporeal circuits generally include oxygenators, heat exchangers, and filters, which are interconnected by surgical tubing. These circuits also include reservoirs.
  • a blood reservoir is an enclosure into which blood is temporarily stored. The storage of blood in reservoirs allows regulation of the patient's blood volume and pressure.
  • reservoirs also include various elements to filter and defoam the blood.
  • a first type of reservoir is one which is formed from a generally flexible bag or container. Blood will expand this type of reservoir as it enters the reservoir. The air to blood interface is limited by the lack of empty space in the reservoir prior to filling with blood. Generally such reservoirs are sealed from the external environment. Closed reservoirs have numerous advantages. Such reservoirs isolate the blood from air thus limiting the extent of the blood to air interface which is detrimental to blood components. Flexible containers collapse and expand as the quantity of blood varies without delivering large quantities of air downstream into the extracorporeal circuit. This reduces potential injury to the patient from air embolism, particularly when all of the blood is removed from the reservoir.
  • closed reservoirs One disadvantage with closed reservoirs is the inability to separate gross amounts of incoming air. The separation of small amounts of air from the blood is also difficult with closed reservoirs absent screen filters. It is also difficult to remove any entrapped air from the reservoir without physically compressing the bag, or by sucking or pumping the air out of the bag with a syringe or similar device.
  • a second type of reservoir is known as an open reservoir, and is formed from a rigid or hardshell container.
  • the reservoir is filled with air which is pushed out by the entering blood.
  • air is removed during the priming process, but a small volume of the reservoir remains filled with air during the operation of the reservoir. This provides for an air to blood interface, which as stated may lead to the damage of various blood components.
  • open reservoirs One major advantage with open reservoirs is the establishment of the air to blood interface. Any air present in the incoming blood normally rises upwards through the blood passing across the blood to air interface. Such reservoirs typically include filters and defoaming elements which further enhance the release of entrapped gas across the blood to air interface. The released air is vented to atmosphere.
  • open reservoirs allow for a precise measurement of the blood volume. That is, unlike the expanding and contracting closed reservoirs, open hardshell reservoirs allow for visual inspection of the quantity of blood flowing through the reservoir. By providing the hardshell reservoir with visually readable volume markings the precise amount of blood can be ascertained during the surgical procedure.
  • Open reservoirs also tend to impose a lower back pressure on the extracorporeal circuit. That is, blood flow through the reservoir will not increase the back pressure in the upstream portion of the circuit. Closed reservoirs induce a greater back pressure in the upstream portion of the circuit which may increase the amount of blood forced into the heart.
  • Examples of flexible shell reservoirs are disclosed in many of the above patent references, while examples of hardshell reservoirs are found in some commercially available oxygenators, such as the BCM-7, a product manufactured and sold by the Baxter Healthcare Corporation, Deerfield, Ill., Capiox E. an oxygenator sold by Terumo Corporation, Tokyo, Japan; and the CML, an oxygenator sold by Cobe Corporation, Boulder, Colo.
  • BCM-7 a product manufactured and sold by the Baxter Healthcare Corporation, Deerfield, Ill.
  • Capiox E an oxygenator sold by Terumo Corporation, Tokyo, Japan
  • CML an oxygenator sold by Cobe Corporation, Boulder, Colo.
  • Screens have also been positioned in filtering bags. These bags are usually positioned at the upstream end of extracorporeal circuits, and filter out denatured blood components. Entrapped gas bubbles would be broken down passing through this filter bag assembly.
  • An example of such a bag is disclosed in U.S. Pat. No. 4,035,304, issued to Watanabe on July 12, 1977.
  • Foam is highly undesirable. While the foam may be merely removed from the circuit, it is the usual practice to separate any blood from the foam first. This is usually accomplished by passing the foam through a porous element which is at least partially coated with a defoaming substance, such as silicone antifoam.
  • Reservoirs have been designed to include fiber or equivalent elements which are coated with this antifoam material. Silicone antifoam or a derivative compound, breaks foam down into blood and gas. The gas is usually vented to the environment.
  • An example of such a reservoir is seen in U.S. Pat. No. 4,466,888, issued to Verkaart on Aug. 21, 1984.
  • silicone antifoam or equivalent substance
  • This material can become dislodged and shed into the blood.
  • the shed antifoam material can become lodged in the patient's vascular system disrupting blood flow.
  • Some researchers have suggested a mechanism for limiting the potential exposure of blood with silicone antifoam.
  • a reservoir in combination with an oxygenator, is disclosed in U.S. patent application Ser. No. 338,347 filed Apr. 12, 1989, which is a continuation of U.S. Ser. No. 885,963, and assigned to the same assignee as the instant application.
  • This application also discloses a reservoir having a defoaming material generally positioned above the maximum blood level. As stated in this application, the positioning of the defoaming material above this maximum blood level reduces the potential contact between the blood and the material.
  • the reservoir of the invention includes a hardshell housing which defines at least one blood compartment. This compartment remains substantially open to the atmosphere.
  • a flexible bag is fixed in this compartment, and is connected to the blood inlet.
  • the flexible bag is fixed in the compartment to allow for limited expansion.
  • a first end of the bag is formed with a microporous screen and is situated in the hardshell to lie partially below a minimum blood level.
  • a second bag end is formed to remain substantially open, and is positioned to lie above a maximum blood level in the hard shell.
  • a porous body or mat is positioned at least partially in the bag second end. This body or mat is partially coated with a defoaming substance.
  • the blood entering the reservoir flows into and expands the flexible bag.
  • the blood flows downward through and out the microporous screen in the lower end.
  • the placement of the lower end below the minimum blood level ensures that blood exiting the screen will not excessively mix with any air.
  • Foam entering the bag rises upward and is brought into contact with the defoaming material coated porous body.
  • the placement of this body above the maximum blood level reduces the potential of contact between the blood and defoaming substance.
  • the reservoir of the invention thus possesses the advantages of a flexible shell, while retaining the advantages of a hardshell.
  • the reservoir includes two separate blood reservoir compartments.
  • One compartment is formed as described above and functions as a venous reservoir.
  • a second compartment functions as a cardiotomy reservoir.
  • This reservoir is situated above the venous reservoir to allow for gravity flow from the cardiotomy to venous reservoirs.
  • This latter compartment includes inlet and outlet ports, and a multilayered filter assembly through which passes the blood.
  • This filter assembly includes a defoaming substance coated body or mat which is surrounded by a microporous filter. This assembly breaks down both small air bubbles and foam.
  • Still other preferred embodiments include an assembly for connecting the cardiotomy reservoir compartment to the venous reservoir compartment which reduces the passage of air from the former to the latter, and a design for the venous reservoir hardshell which is formed to provide easy reading and measurement of the quantity of blood in the venous reservoir compartment.
  • FIG. 1 is a prospective view of a reservoir mounted upon a stand in accordance with a preferred embodiment of the invention
  • FIG. 2 is a side view of the reservoir of FIG. 1 additionally illustrating an oxygenator releasably connected to the bottom of the reservoir;
  • FIG. 3 is a cross-sectional view of the reservoir of FIG. 1 along line 3--3;
  • FIG. 4 is a rear prospective view of a flexible bag assembly of the reservoir of the invention.
  • FIG. 5 is a side view of a Y-shaped connector in accordance with an embodiment of the invention.
  • FIG. 6 is a side view of a connector assembly in accordance with an embodiment of the invention.
  • the present invention is directed to open reservoirs, and specifically to open venous reservoirs.
  • the venous reservoir is incorporated in a housing also having a cardiotomy reservoir.
  • the reservoir of the invention provides the benefits of both hard and soft shell reservoirs by mounting a flexible bag in a hardshell.
  • the bags flexibility ensures that the blood does not excessively mix with air.
  • This aspect of the invention is provided by designing the flexible bag so that the blood is directed downward through a lower microscreen portion that is positioned to discharge the blood partially below the minimum blood level in the reservoir.
  • the flexible bag is further designed to include a defoamer coated membrane positioned above the maximum blood level in the reservoir.
  • minimum blood level it is meant the lowest level in the reservoir to which the blood will normally rise under normal blood flow and operating conditions for the particular reservoir.
  • maximum blood level it is meant the highest level in the reservoir to which the blood will normally rise under normal blood flow and operating conditions for the particular reservoir.
  • the importance of providing for the downward flow of blood out through the screen below the minimum blood level is to minimize the contact between flowing blood and air.
  • the turbulence caused by the blood flowing out from the screen would, if the screen is exposed to the air, cause a mixing action between the blood and air. This is an unwanted occurrence.
  • the reservoir of the invention is useful as a venous or cardiotomy blood reservoir, and may have any suitable shape or configuration.
  • the invention will be described with reference to a venous reservoir upon which is positioned a cardiotomy reservoir.
  • a venous and cardiotomy reservoir assembly is seen generally at 10.
  • the venous and cardiotomy reservoir assembly 10 is seen mounted upon a stand 12.
  • Stand 12 includes a base portion 14 up from which extends a rod 16.
  • the stand 12 further includes an arm assembly 18.
  • the arm assembly 18 is formed to allow the reservoir assembly 10 to be positioned by the perfusionist at any desired height.
  • Venous and cardiotomy reservoir assembly 10 is formed to be releasably mounted upon the arm assembly 18, with assembly 18 being formed to slide and lock down upon the rod 16.
  • Arm assembly 18 is formed from an L-shaped member 20.
  • One side of member 20 includes two upwardly extending posts 22 and 24. These posts 22 and 24 are fixed to the member 20 to be snuggly positioned at opposite sides of the assembly 18.
  • the posts 22 and 24 are dimensioned to slide in respective guides 26 and 28 formed on the side walls of the assembly 18. In this arrangement the reservoir assembly 10 is easily mounted to the arm assembly 18.
  • the arm assembly 18 is mounted to the L-shaped member 20 by two brackets 30 and 32.
  • the two brackets 30 and 32 are formed with apertures 31 and 33 which slidingly fit about the member 20.
  • Each bracket 30 and 32 also includes a slot 34 and 36, respectively. These slots 34 and 36 fit about the rod 16. Tightening screws 38 and 40 are threadably fit through the brackets 30 and 32 to engage and tighten down onto the rod 16.
  • the reservoir assembly 10 includes two separate reservoirs, cardiotomy reservoir and venous reservoir seen generally at 42 and 44, respectively.
  • the cardiotomy reservoir 42 is formed to fit atop the venous reservoir 44. It should be noted that the two reservoirs 42 and 44 may be formed as a single integral unit, or as two completely separate devices.
  • Cardiotomy reservoir 42 includes multiple inlet ports 46. These ports 46 direct blood through a filter assembly seen generally at 48. Blood passing through the filter assembly 48 will fill the lower portion of the reservoir 42, seen generally at 52, which is formed with a well shaped region 100. As seen in FIG. 1, this portion of the reservoir 42 includes a gradient scale 54. The gradient scale 54 allows the perfusionist to determine the quantity of blood in the reservoir 42. Blood exits this reservoir 42 through outlet port 50.
  • Venous reservoir 44 includes a single inlet port 56 and a single outlet port 58.
  • a flexible bag 60 is fixed in the venous reservoir 44 to a plate 62.
  • This bag 60 includes a lower end 64 fitted with a microporous screen 66.
  • the screen 66 has a porosity of from about forty to about two hundred microns, preferably one hundred microns. The small openings of the screen 66 ensure that small gas bubbles will not pass through the screen.
  • the opposite other end, not seen in FIG. 1, of the bag 60 is fitted with a porous element, also not seen in FIG. 1.
  • the porous element is a foamed polyurethane structure.
  • the desired porosity of this porous element is from about four hundred to about eighteen hundred microns.
  • At least part of the porous element is coated with a defoaming substance, usually silicone antifoam.
  • Connector assembly 70 is mounted to the inlet port 56 and includes two tube connection stubs 72 and 74.
  • the inlet port 56 is actually fitted into the side of the flexible bag 60. Blood enters the flexible bag 60 through the inlet port 56.
  • the connector assembly 70 functions to deliver venous blood from the patient, via the tube 68, and cardiotomy blood from the cardiotomy reservoir 42, via another flexible tube 76 to the flexible bag 60 mounted in the venous reservoir 44.
  • the connector assembly 70 is seen in greater detail in FIG. 6. This assembly 70 is coupled directly onto the inlet port 56.
  • the assembly 70 defines a fluid pathway by an internal chamber, seen in phantom at 82.
  • This chamber 82 is subdivided into two chambers by an internal wall, seen in phantom at 84. One half of the divided chamber 82 communicates with stub 72, while the other half with stub 74.
  • the flexible tube 76 is further coupled to one arm 86 of a Y-connector 78, seen in FIG. 5.
  • the Y-connector 78 includes a second arm 88 coupled to a further flexible tube 90, which is coupled to the outlet port 50 of the cardiotomy reservoir 42.
  • Y-shaped connector 78 further includes two access ports 92 and 94. These ports 92 and 94 allow either for the withdrawal of blood or access into the blood pathway by the connection of various devices to one of these ports.
  • the Y-connector 78 is formed with an internal fluid pathway 80. This pathway 80 is generally Y-shaped.
  • the Y-connector 78 is coupled to the flexible tubes 90 and 76 to be positioned at an angle to impede the passage of gas.
  • the purpose of providing the Y-shaped connector 78 is to limit the ability of gas passing through any of the tubes from entering the venous reservoir 44.
  • the positioning of the cardiotomy reservoir 42 above the venous reservoir 44 allows for gravity flow.
  • the use of the flexible tubing to interconnect the outlet ports of the cardiotomy reservoir 42 to the inlet ports of the venous reservoir 44 provides a mechanism for interrupting and controlling the flow of blood between the reservoirs 42 and 44. Blood flow to the venous reservoir 44 can be interrupted by clamping off the associated flexible tubings 90 or 76. This allows for control of the flow of cardiotomy blood to the venous reservoir 44.
  • the reservoir assembly 10, and specifically reservoir 44 is formed with hooks, one of which is seen generally at 96. These hooks 96 are disposed at the lower underside of the reservoir 44.
  • An oxygenator of the type more fully described in co-pending U.S. patent application Ser. No. 260,164 filed Oct. 20, 1988, may be hung from these hooks 96.
  • the outlet port 58 of the reservoir 44 may then be coupled to the inlet port of the oxygenator, not shown, to provide for transfer of the blood to the oxygenator.
  • the reservoir assembly 10 includes two separate reservoirs, venous reservoir 44 and cardiotomy reservoir 42. These reservoirs 42 and 44 may either be integrally formed, or as illustrated, two separate housings assembled together.
  • the cardiotomy reservoir 42 is situated on top of the venous reservoir 44.
  • the cardiotomy reservoir 42 contains the cardiotomy filter assembly 48 which is situated in a portion of the internal chamber defined in the cardiotomy reservoir 42. This internal chamber, seen generally at 98, is accessed via the cardiotomy inlet ports 46. Blood entering through these ports 46 travels first through the cardiotomy filter assembly 48 and then temporarily accumulates in the internal chamber 98.
  • the cardiotomy filter assembly 48 includes a porous filter element 100, a defoamer element 102, and a grid housing 104.
  • the grid housing 104 is fixed to the cardiotomy filter assembly 48 to hang downward in the internal chamber 9B.
  • the defoamer element 102 and porous filter element 100 are respectively secured about the grid housing 104.
  • the defoamer element 102 and porous filter membrane 100 are fixed about the grid housing 104 by a strap or band.
  • This grid housing 104 defines an internal region or inner blood receiving space, seen generally at 106, into which blood enters from the cardiotomy inlet ports 46. Numerous openings 108 are formed in the grid housing 104 through which blood passes into the defoamer element 102. Blood will then pass through the defoamer element 102 and then the porous filter element 100.
  • the defoamer element 102 is any suitable biocompatible material, typically a porous polyurethane foam.
  • the porosity of this material is generally in the range of from about four hundred to about eighteen hundred microns.
  • Cardiotomy blood typically contains blood components, bone and tissue fragments, entrapped gas bubbles and foam, which is a mixture of blood and gas bubbles.
  • a defoamer coating is applied to the defoamer membrane 102. This defoaming coating, not shown, is usually silicone antifoam.
  • the blood components and fragments become entrapped within the defoamer element 102. Larger gas bubbles are broken down as the blood passes through the defoamer element 102. Foam passing through the defoamer element 102 is at least partially broken down into gas and blood.
  • the porous filter element 100 is generally prepared from a polyester felt material, and is mounted about the defoamer filter 102.
  • Blood exiting the porous filter membrane 100 travels down into a well 110 formed at the bottom of the cardiotomy reservoir 42.
  • the cardiotomy outlet port 50 communicates with this well 110.
  • the cardiotomy outlet port 50 is coupled through various tubes and connectors to the inlet port 56 of the venous reservoir 44.
  • the arrangement of these various tubes and connectors, and particularly the design of Y-connector 78 minimizes the passage of gas bubbles into the venous reservoir 44.
  • the inlet port 56 is connected directly into the flexible bag 60, which is mounted to the bag support plate 62 in the venous reservoir 44.
  • the bag is sealed below and partially around the inlet port 56 as seen in FIG. 4 at 55.
  • This seal 55 which is generally linear in form, inhibits the backflow of air or blood through the inlet port 56.
  • An illustration of a preferred design for the flexible bag 60 is seen in FIG. 4.
  • Flexible bag 60 is an elongated two walled structure formed by sealing the side edges of the two overlapping sheets of flexible material forming the flexible bag 60.
  • the material from which the flexible bag 60 may be formed includes, polyvinyl chloride (PVC) and urethane.
  • PVC polyvinyl chloride
  • the flexible bag 60 is further formed with an open slot 114.
  • This open slot 114 is positioned contiguous to the first open end 112. This open slot 114 will function as an overflow drain if the flexible bag 60 becomes filled with blood.
  • the inlet port 56 is fitted into the midpoint of the flexible bag 60.
  • the inlet port 56 is formed by sealing a small tube between the two sheets of material forming the flexible bag 60. A small portion of the tube forming the inlet port 56 is positioned outside the flexible bag 60 to allow connection with the connector assembly 70.
  • a microporous screen 66 is formed by folding a sheet of screen material and sealing this folded over sheet between the overlaid sheets forming the flexible bag 60.
  • a rectangular shaped cut-away is formed at this end of the overlaid sheets forming the flexible bag 60 to define two strips 116 and 117.
  • the folded over screen material is positioned and sealed between these strips 116 and 117.
  • the remainder of the folded over screen material is then sealed to the sheets to define a lower accessible end of the flexible bag 60.
  • the microporous screen 66 Blood entering the flexible bag 60 through the inlet port 56 travels downward and exits through the microporous screen 66.
  • the porosity of this microporous screen 66 filters out the majority of any remaining gas bubbles.
  • the microporous screen 66 is formed from a material having a porosity of from about forty to about two hundred microns, with the preferred material having a porosity of one hundred microns.
  • the flexible bag 60 is mounted in the venous reservoir 44 to the bag support plate 62. This is accomplished by forming the flexible bag 60 with a plurality of connector holes 118. These holes 118 are arranged so that when the flexible bag 60 is fixed to the bag support plate 62 the upper end of the flexible bag 60 is positioned higher than the microporous screen 66. The placement of the holes 118 also ensures that the first open end 112 is securely fixed to the bag support plate 62 in an open arrangement.
  • the flexible bag 60 is fixed to the bag support plate 62 by pins, one of which is seen at 128.
  • the mid region of the flexible bag 60 is mounted to the bag support plate 62 at a location contiguous to the microporous screen 66.
  • the flexible bag 60 which is fixed to the bag support plate 62, expands and contracts by the flowing blood. In this manner the blood is directed through the bag to the lower end defined by the microporous screen 66, while minimizing excessive mixing between the blood and the air.
  • the porosity of the microporous screen 66 restricts the passage of the blood into the remainder of the reservoir, causing the blood to fill a portion of the flexible bag 60 under normal blood flow rates, typically from about one to about seven liters per minute. Any foam entering the flexible bag 60 will rise upward towards the first open end 112. Further, any gas released from the blood travels upward and out of the flexible bag 60 through the first open end 112.
  • the venous reservoir 44 also includes a porous element which is at least partially coated with a defoamer coating, i.e. silicone antifoam. Preferrably, the entire porous element is coated with the antifoam substance.
  • a porous membrane is seen generally at 120, and may be formed from any suitable material, but typically is a polyurethane foam which has a porosity of from about four hundred to about eighteen hundred microns, preferably eight hundred fifty microns.
  • porous membrane 120 is multilayered, with two layers 122 and 124, situated inside the flexible bag 60, and one layer 126 positioned outside. All three layers 122, 124, and 126 are arranged above the inlet port 56.
  • the external layer 126 may be formed by folding over a single sheet of the material forming the porous element 120, and placing a portion inside and outside of the flexible bag 60.
  • the two inner layers 122 and 124 may be a single layer.
  • the various layers 122, 124 and 126 of the porous element 120 will also be positioned to cover the open slot 114.
  • the porous element 120 is coated at a position below the open slot 114 to ensure that the rising blood foam will be brought in contact with the antifoam material. As the blood foam level rises in the flexible bag 60 it passes into the porous element 120.
  • gas entrapped in the blood is released. This gas exits the flexible bag 60 through the first open end 112, and exits the venous reservoir 44 through one or more gas vents, one of which is seen at 130.
  • the bag support plate 62 in the venous reservoir 44 ensures a snug fit of the flexible bag 60. As seen in FIG. 3, the bag support plate 62 is positioned farther from the walls of the venous reservoir 44 at its upper end than at its lower end. This, in addition to the attachment of the flexible bag 60 to the bag support plate 62 allows for minimal expansion of the flexible bag 60. This also ensures that any foam entering the flexible bag 60 will rise upward and be brought into contact with the coated portion of the porous element 120. It is thus paramount that the flexible bag 60 be dimensioned to ensure adequate volume for blood below the coated porous element 120 under normal flow conditions. This establishes the defined maximum blood level in the particular venous reservoir 44.
  • the flexible bag 60 is fixed to the bag support plate 62 to position the microporous screen 66 at least partially below the minimum blood level for the particular venous reservoir 44. Further, the distance between the bag support plate 62 and the walls of the venous reservoir 44 ensure a tight fit for this section of the flexible bag 60. The positioning of the microporous screen 66 partially below the minimum blood level limits contact between blood and air.
  • the constraining of the expansion of the flexible bag 60 by placement of the bag support plate 62 in the venous reservoir 44 limits turbulence of the blood exiting through the microporous screen 66, which reduces excessive mixing between the blood and air, and also constrains excessive expansion of the bag limiting the volume of blood held with the bag during normal circulation. Blood exiting the microporous screen 66 flows into the bottom of the venous reservoir 44 and exits out of the venous reservoir outlet port 5B.
  • the placement of the bag support plate 62 and the bag 60 lower end limits the formation of vortex blood flow exiting through the screen 66.
  • the reduction of contact and mixing between the blood and air reduces the potential of blood component damage in the form of red blood cell destruction (hemolysis), platelet depletion and/or activation and protein denaturation.
  • the venous reservoir 44 is formed with a gradient scale, not shown, which is visible from the front of the venous reservoir 44, seen generally at 132.
  • the bag support plate 62 of this preferred embodiment is white to provide for better visibility of the gradient scale and level of blood.
  • a still further preferred embodiment is one in which the front face or forward wall 132 of the venous reservoir 44 is arranged at an angle to the floor to position the gradient scale and reservoir level for easy viewing by the perfusionist.
  • the rearward wall 133 of the reservoir 144 is closest to the forward wall 132 near the bottom and thereof and the forward wall 132 and rearward wall 133 become progressively further apart as they emanate upwardly from the bottom end of the reservoir 144.
  • This placement of the venous reservoir 44 is accomplished by mounting the venous reservoir 44, and more particularly the reservoir assembly 10 to the stand 12 to position the front face 132 of the venous reservoir 44 at an angle of from about 60° to about 85°, preferably 70° to the floor.
  • a still further modification is to provide the cardiotomy reservoir 42 with a gradient scale upon its front face, seen generally at 134.
  • the grid housing 104 includes a plate assembly 136.
  • This plate assembly 136 extends out from the grid housing 104 and angles downward to provide a solid surface behind the gradient scale disposed on the front face 134. Again, it is preferable if this plate assembly 136 be white.

Abstract

A blood reservoir is formed with a hard outer shell housing defining at least one blood compartment. A flexible bag is mounted in the outer shell and is connected to the reservoir inlet port to allow blood to directly enter the flexible bag. The bag includes two oppositely positioned ends, one of which includes a mircoporous screen and is situated to lie partially below a minimum level attained by blood in the reservoir. The second bag end is substantially open, and includes a porous element partially coated with an antifoaming agent. The coated portion of the element is positioned above a maximum level attained by the blood in the hard shell. The potential of excessive mixing between the blood and air is reduced by controlling the expansion of the bag during blood flow.

Description

BACKGROUND OF THE INVENTION
The present invention is concerned with blood reservoirs, and in particular venous and cardiotomy blood reservoirs.
Many surgical procedures require that the patient's blood be diverted outside the body. For example, during open heart surgery the patient's blood must be directed around the heart and lungs. This usually involves the set up of an extracorporeal circuit. Extracorporeal circuits generally include devices for performing various tasks on the blood, e.g. oxygenation, filtration, and storage. Other procedures requiring the routing of blood through an extracorporeal circuit include extracorporeal membrane oxygenation (long term support) and autotransfusion.
Extracorporeal circuits are typically set up by an individual known as a perfusionist. The perfusionist controls the rate of blood flow and operates the various devices connected in the circuit. Extracorporeal circuits generally include oxygenators, heat exchangers, and filters, which are interconnected by surgical tubing. These circuits also include reservoirs. A blood reservoir is an enclosure into which blood is temporarily stored. The storage of blood in reservoirs allows regulation of the patient's blood volume and pressure. Typically, reservoirs also include various elements to filter and defoam the blood.
Blood flowing through an extracorporeal circuit, and particularly through the oxygenator and filters, may entrap air in the form of fine bubbles. Any gas bubbles must be removed from the blood prior to reintroduction into the patient.
Reservoirs are generally of two types. A first type of reservoir, known as a closed reservoir, is one which is formed from a generally flexible bag or container. Blood will expand this type of reservoir as it enters the reservoir. The air to blood interface is limited by the lack of empty space in the reservoir prior to filling with blood. Generally such reservoirs are sealed from the external environment. Closed reservoirs have numerous advantages. Such reservoirs isolate the blood from air thus limiting the extent of the blood to air interface which is detrimental to blood components. Flexible containers collapse and expand as the quantity of blood varies without delivering large quantities of air downstream into the extracorporeal circuit. This reduces potential injury to the patient from air embolism, particularly when all of the blood is removed from the reservoir.
The use of a flexible shell is also a benefit with oxygenators. For example, see U.S. Pat. No. 3,545,937, issued to Rozhold et al on Dec. 8, 1970; U.S. Pat. No. 3,827,860, issued to Burlis on Aug. 6, 1974; U.S. Pat. No. 3,853,479, issued to Talonn et al on Dec. 10, 1974; U.S. Pat. No. 3,892,534, issued to Leonard on July 1, 1975; U.S. Pat. No. 3,915,650, issued to Talonn et al on Oct. 28, 1975; and U.S. Pat. No. 3,918,912, issued to Talonn et al on Nov. 11, 1975.
One disadvantage with closed reservoirs is the inability to separate gross amounts of incoming air. The separation of small amounts of air from the blood is also difficult with closed reservoirs absent screen filters. It is also difficult to remove any entrapped air from the reservoir without physically compressing the bag, or by sucking or pumping the air out of the bag with a syringe or similar device.
A second type of reservoir is known as an open reservoir, and is formed from a rigid or hardshell container. The reservoir is filled with air which is pushed out by the entering blood. Usually a large portion of the air is removed during the priming process, but a small volume of the reservoir remains filled with air during the operation of the reservoir. This provides for an air to blood interface, which as stated may lead to the damage of various blood components.
One major advantage with open reservoirs is the establishment of the air to blood interface. Any air present in the incoming blood normally rises upwards through the blood passing across the blood to air interface. Such reservoirs typically include filters and defoaming elements which further enhance the release of entrapped gas across the blood to air interface. The released air is vented to atmosphere. Unlike closed reservoirs, open reservoirs allow for a precise measurement of the blood volume. That is, unlike the expanding and contracting closed reservoirs, open hardshell reservoirs allow for visual inspection of the quantity of blood flowing through the reservoir. By providing the hardshell reservoir with visually readable volume markings the precise amount of blood can be ascertained during the surgical procedure.
Open reservoirs also tend to impose a lower back pressure on the extracorporeal circuit. That is, blood flow through the reservoir will not increase the back pressure in the upstream portion of the circuit. Closed reservoirs induce a greater back pressure in the upstream portion of the circuit which may increase the amount of blood forced into the heart.
As stated, entrapped gas bubbles will rise in the reservoir and pass across the air to blood interface. Even though less efficient than open reservoirs, some entrapped air passes across this interface in closed reservoirs. To facilitate the removal of this gas, reservoirs have been designed with air vents. The air escapes to the environment through these vents. An example of a blood reservoir having an air vent is disclosed in U.S. Pat. No. 4,643,713, issued to Viitala on Feb. 7, 1987.
Examples of flexible shell reservoirs are disclosed in many of the above patent references, while examples of hardshell reservoirs are found in some commercially available oxygenators, such as the BCM-7, a product manufactured and sold by the Baxter Healthcare Corporation, Deerfield, Ill., Capiox E. an oxygenator sold by Terumo Corporation, Tokyo, Japan; and the CML, an oxygenator sold by Cobe Corporation, Boulder, Colo.
Blood passing through an extracorporeal circuit will usually entrap smaller air bubbles which normally will not pass through the air to blood interface. Some reservoirs have been designed to promote the breakdown of these smaller gas bubbles by incorporating screens in the blood pathway. For examples of such reservoirs see U.S. Pat. No. 4,493.705, issued to Gordon et al on Jan. 15, 1985, and U.S. Pat. No. 4,734,269, issued to Clarke et al on Mar. 29, 1988. These reservoirs include 100 to 250 microns and 50 to 300 microns, respectively.
Screens have also been positioned in filtering bags. These bags are usually positioned at the upstream end of extracorporeal circuits, and filter out denatured blood components. Entrapped gas bubbles would be broken down passing through this filter bag assembly. An example of such a bag is disclosed in U.S. Pat. No. 4,035,304, issued to Watanabe on July 12, 1977.
It is also known that during the oxygenation process, particularly with bubble oxygenators, the mixing of gas and blood forms foam. Foam is highly undesirable. While the foam may be merely removed from the circuit, it is the usual practice to separate any blood from the foam first. This is usually accomplished by passing the foam through a porous element which is at least partially coated with a defoaming substance, such as silicone antifoam.
Reservoirs have been designed to include fiber or equivalent elements which are coated with this antifoam material. Silicone antifoam or a derivative compound, breaks foam down into blood and gas. The gas is usually vented to the environment. An example of such a reservoir is seen in U.S. Pat. No. 4,466,888, issued to Verkaart on Aug. 21, 1984.
One disadvantage with the use of silicone antifoam, or equivalent substance, is the detrimental effect on blood. This material can become dislodged and shed into the blood. The shed antifoam material can become lodged in the patient's vascular system disrupting blood flow. Some researchers have suggested a mechanism for limiting the potential exposure of blood with silicone antifoam. Specifically, a reservoir, in combination with an oxygenator, is disclosed in U.S. patent application Ser. No. 338,347 filed Apr. 12, 1989, which is a continuation of U.S. Ser. No. 885,963, and assigned to the same assignee as the instant application. This application also discloses a reservoir having a defoaming material generally positioned above the maximum blood level. As stated in this application, the positioning of the defoaming material above this maximum blood level reduces the potential contact between the blood and the material.
It is thus apparent that both flexible and hard shell reservoirs provide distinct advantages, but also possess separate and distinct disadvantages.
SUMMARY OF THE INVENTION
The present invention overcomes the above discussed disadvantages by providing an open reservoir incorporating the benefits of both hard and flexible shells. Specifically, the reservoir of the invention includes a hardshell housing which defines at least one blood compartment. This compartment remains substantially open to the atmosphere. A flexible bag is fixed in this compartment, and is connected to the blood inlet.
The flexible bag is fixed in the compartment to allow for limited expansion. A first end of the bag is formed with a microporous screen and is situated in the hardshell to lie partially below a minimum blood level. A second bag end is formed to remain substantially open, and is positioned to lie above a maximum blood level in the hard shell. A porous body or mat is positioned at least partially in the bag second end. This body or mat is partially coated with a defoaming substance.
The blood entering the reservoir flows into and expands the flexible bag. The blood flows downward through and out the microporous screen in the lower end. The placement of the lower end below the minimum blood level ensures that blood exiting the screen will not excessively mix with any air. Foam entering the bag rises upward and is brought into contact with the defoaming material coated porous body. The placement of this body above the maximum blood level reduces the potential of contact between the blood and defoaming substance. The reservoir of the invention thus possesses the advantages of a flexible shell, while retaining the advantages of a hardshell.
In another preferred embodiment, the reservoir includes two separate blood reservoir compartments. One compartment is formed as described above and functions as a venous reservoir. A second compartment functions as a cardiotomy reservoir. This reservoir is situated above the venous reservoir to allow for gravity flow from the cardiotomy to venous reservoirs. This latter compartment includes inlet and outlet ports, and a multilayered filter assembly through which passes the blood. This filter assembly includes a defoaming substance coated body or mat which is surrounded by a microporous filter. This assembly breaks down both small air bubbles and foam.
Still other preferred embodiments include an assembly for connecting the cardiotomy reservoir compartment to the venous reservoir compartment which reduces the passage of air from the former to the latter, and a design for the venous reservoir hardshell which is formed to provide easy reading and measurement of the quantity of blood in the venous reservoir compartment.
DESCRIPTION OF THE DRAWINGS
The present invention may be better understood and the advantages will become apparent to those skilled in the art by reference to the accompanying drawings, wherein like reference numerals refer to like elements in the several figures, and wherein:
FIG. 1 is a prospective view of a reservoir mounted upon a stand in accordance with a preferred embodiment of the invention;
FIG. 2 is a side view of the reservoir of FIG. 1 additionally illustrating an oxygenator releasably connected to the bottom of the reservoir;
FIG. 3 is a cross-sectional view of the reservoir of FIG. 1 along line 3--3;
FIG. 4 is a rear prospective view of a flexible bag assembly of the reservoir of the invention;
FIG. 5 is a side view of a Y-shaped connector in accordance with an embodiment of the invention, and
FIG. 6 is a side view of a connector assembly in accordance with an embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is directed to open reservoirs, and specifically to open venous reservoirs. In accordance with one preferred embodiment, the venous reservoir is incorporated in a housing also having a cardiotomy reservoir.
The reservoir of the invention provides the benefits of both hard and soft shell reservoirs by mounting a flexible bag in a hardshell. The bags flexibility ensures that the blood does not excessively mix with air. This aspect of the invention is provided by designing the flexible bag so that the blood is directed downward through a lower microscreen portion that is positioned to discharge the blood partially below the minimum blood level in the reservoir. The flexible bag is further designed to include a defoamer coated membrane positioned above the maximum blood level in the reservoir.
By "minimum blood level" it is meant the lowest level in the reservoir to which the blood will normally rise under normal blood flow and operating conditions for the particular reservoir.
By "maximum blood level" it is meant the highest level in the reservoir to which the blood will normally rise under normal blood flow and operating conditions for the particular reservoir.
The importance of providing for the downward flow of blood out through the screen below the minimum blood level is to minimize the contact between flowing blood and air. The turbulence caused by the blood flowing out from the screen would, if the screen is exposed to the air, cause a mixing action between the blood and air. This is an unwanted occurrence.
The positioning of the defoamer coated membrane above the maximum blood level reduces the potential of contact between the blood and the defoamer coating. The positioning of defoamer coating above the maximum blood level is more fully described in co-pending U.S. patent application Ser. No. 338,347 filed 4/12/89, which is a continuation of U.S. Ser. No. 885,963, both of which are assigned to the same assignee of this application, with the disclosure pertaining to the positioning of defoaming substances above the maximum blood level being incorporated herein by reference.
The reservoir of the invention is useful as a venous or cardiotomy blood reservoir, and may have any suitable shape or configuration. For illustrative purposes the invention will be described with reference to a venous reservoir upon which is positioned a cardiotomy reservoir.
Referring now to FIGS. 1 and 2, a venous and cardiotomy reservoir assembly is seen generally at 10. The venous and cardiotomy reservoir assembly 10 is seen mounted upon a stand 12. Stand 12 includes a base portion 14 up from which extends a rod 16. The stand 12 further includes an arm assembly 18. The arm assembly 18 is formed to allow the reservoir assembly 10 to be positioned by the perfusionist at any desired height. Venous and cardiotomy reservoir assembly 10 is formed to be releasably mounted upon the arm assembly 18, with assembly 18 being formed to slide and lock down upon the rod 16.
Arm assembly 18 is formed from an L-shaped member 20. One side of member 20 includes two upwardly extending posts 22 and 24. These posts 22 and 24 are fixed to the member 20 to be snuggly positioned at opposite sides of the assembly 18. The posts 22 and 24 are dimensioned to slide in respective guides 26 and 28 formed on the side walls of the assembly 18. In this arrangement the reservoir assembly 10 is easily mounted to the arm assembly 18.
The arm assembly 18 is mounted to the L-shaped member 20 by two brackets 30 and 32. The two brackets 30 and 32 are formed with apertures 31 and 33 which slidingly fit about the member 20. Each bracket 30 and 32 also includes a slot 34 and 36, respectively. These slots 34 and 36 fit about the rod 16. Tightening screws 38 and 40 are threadably fit through the brackets 30 and 32 to engage and tighten down onto the rod 16.
As will be described more fully, the reservoir assembly 10 includes two separate reservoirs, cardiotomy reservoir and venous reservoir seen generally at 42 and 44, respectively. The cardiotomy reservoir 42 is formed to fit atop the venous reservoir 44. It should be noted that the two reservoirs 42 and 44 may be formed as a single integral unit, or as two completely separate devices.
Cardiotomy reservoir 42 includes multiple inlet ports 46. These ports 46 direct blood through a filter assembly seen generally at 48. Blood passing through the filter assembly 48 will fill the lower portion of the reservoir 42, seen generally at 52, which is formed with a well shaped region 100. As seen in FIG. 1, this portion of the reservoir 42 includes a gradient scale 54. The gradient scale 54 allows the perfusionist to determine the quantity of blood in the reservoir 42. Blood exits this reservoir 42 through outlet port 50.
Venous reservoir 44 includes a single inlet port 56 and a single outlet port 58. As will be described more fully herein, a flexible bag 60 is fixed in the venous reservoir 44 to a plate 62. This bag 60 includes a lower end 64 fitted with a microporous screen 66. The screen 66 has a porosity of from about forty to about two hundred microns, preferably one hundred microns. The small openings of the screen 66 ensure that small gas bubbles will not pass through the screen.
The opposite other end, not seen in FIG. 1, of the bag 60 is fitted with a porous element, also not seen in FIG. 1. The porous element is a foamed polyurethane structure. The desired porosity of this porous element is from about four hundred to about eighteen hundred microns. At least part of the porous element is coated with a defoaming substance, usually silicone antifoam.
Blood enters the venous reservoir through the inlet port 56, via a flexible tube 68 and connector assembly 70. Connector assembly 70 is mounted to the inlet port 56 and includes two tube connection stubs 72 and 74. The inlet port 56 is actually fitted into the side of the flexible bag 60. Blood enters the flexible bag 60 through the inlet port 56.
The connector assembly 70 functions to deliver venous blood from the patient, via the tube 68, and cardiotomy blood from the cardiotomy reservoir 42, via another flexible tube 76 to the flexible bag 60 mounted in the venous reservoir 44.
The connector assembly 70 is seen in greater detail in FIG. 6. This assembly 70 is coupled directly onto the inlet port 56. The assembly 70 defines a fluid pathway by an internal chamber, seen in phantom at 82. This chamber 82 is subdivided into two chambers by an internal wall, seen in phantom at 84. One half of the divided chamber 82 communicates with stub 72, while the other half with stub 74.
The flexible tube 76 is further coupled to one arm 86 of a Y-connector 78, seen in FIG. 5. The Y-connector 78 includes a second arm 88 coupled to a further flexible tube 90, which is coupled to the outlet port 50 of the cardiotomy reservoir 42. As seen in FIG. 5, Y-shaped connector 78 further includes two access ports 92 and 94. These ports 92 and 94 allow either for the withdrawal of blood or access into the blood pathway by the connection of various devices to one of these ports.
The Y-connector 78 is formed with an internal fluid pathway 80. This pathway 80 is generally Y-shaped. The Y-connector 78 is coupled to the flexible tubes 90 and 76 to be positioned at an angle to impede the passage of gas. The purpose of providing the Y-shaped connector 78 is to limit the ability of gas passing through any of the tubes from entering the venous reservoir 44.
The positioning of the cardiotomy reservoir 42 above the venous reservoir 44 allows for gravity flow. The use of the flexible tubing to interconnect the outlet ports of the cardiotomy reservoir 42 to the inlet ports of the venous reservoir 44 provides a mechanism for interrupting and controlling the flow of blood between the reservoirs 42 and 44. Blood flow to the venous reservoir 44 can be interrupted by clamping off the associated flexible tubings 90 or 76. This allows for control of the flow of cardiotomy blood to the venous reservoir 44.
As seen in FIG. 2, the reservoir assembly 10, and specifically reservoir 44 is formed with hooks, one of which is seen generally at 96. These hooks 96 are disposed at the lower underside of the reservoir 44. An oxygenator of the type more fully described in co-pending U.S. patent application Ser. No. 260,164 filed Oct. 20, 1988, may be hung from these hooks 96. The outlet port 58 of the reservoir 44 may then be coupled to the inlet port of the oxygenator, not shown, to provide for transfer of the blood to the oxygenator.
Referring now to FIG. 3, the components forming the reservoirs 42 and 44 will now be described in more detail. As stated, the reservoir assembly 10 includes two separate reservoirs, venous reservoir 44 and cardiotomy reservoir 42. These reservoirs 42 and 44 may either be integrally formed, or as illustrated, two separate housings assembled together. The cardiotomy reservoir 42 is situated on top of the venous reservoir 44.
The cardiotomy reservoir 42 contains the cardiotomy filter assembly 48 which is situated in a portion of the internal chamber defined in the cardiotomy reservoir 42. This internal chamber, seen generally at 98, is accessed via the cardiotomy inlet ports 46. Blood entering through these ports 46 travels first through the cardiotomy filter assembly 48 and then temporarily accumulates in the internal chamber 98.
The cardiotomy filter assembly 48 includes a porous filter element 100, a defoamer element 102, and a grid housing 104. The grid housing 104 is fixed to the cardiotomy filter assembly 48 to hang downward in the internal chamber 9B. The defoamer element 102 and porous filter element 100 are respectively secured about the grid housing 104. Generally the defoamer element 102 and porous filter membrane 100 are fixed about the grid housing 104 by a strap or band.
This grid housing 104 defines an internal region or inner blood receiving space, seen generally at 106, into which blood enters from the cardiotomy inlet ports 46. Numerous openings 108 are formed in the grid housing 104 through which blood passes into the defoamer element 102. Blood will then pass through the defoamer element 102 and then the porous filter element 100.
The defoamer element 102 is any suitable biocompatible material, typically a porous polyurethane foam. The porosity of this material is generally in the range of from about four hundred to about eighteen hundred microns. Cardiotomy blood typically contains blood components, bone and tissue fragments, entrapped gas bubbles and foam, which is a mixture of blood and gas bubbles. A defoamer coating is applied to the defoamer membrane 102. This defoaming coating, not shown, is usually silicone antifoam. The blood components and fragments become entrapped within the defoamer element 102. Larger gas bubbles are broken down as the blood passes through the defoamer element 102. Foam passing through the defoamer element 102 is at least partially broken down into gas and blood.
The smaller gas bubbles, generally in the range of twenty to one hundred microns, entrapped in the blood passing through the restricted passageways of the porous filter element 100 become broken down. The porous filter element 100 is generally prepared from a polyester felt material, and is mounted about the defoamer filter 102.
Blood exiting the porous filter membrane 100 travels down into a well 110 formed at the bottom of the cardiotomy reservoir 42. The cardiotomy outlet port 50 communicates with this well 110.
As stated above, the cardiotomy outlet port 50 is coupled through various tubes and connectors to the inlet port 56 of the venous reservoir 44. The arrangement of these various tubes and connectors, and particularly the design of Y-connector 78 minimizes the passage of gas bubbles into the venous reservoir 44.
The inlet port 56 is connected directly into the flexible bag 60, which is mounted to the bag support plate 62 in the venous reservoir 44. The bag is sealed below and partially around the inlet port 56 as seen in FIG. 4 at 55. This seal 55, which is generally linear in form, inhibits the backflow of air or blood through the inlet port 56. An illustration of a preferred design for the flexible bag 60 is seen in FIG. 4.
Flexible bag 60 is an elongated two walled structure formed by sealing the side edges of the two overlapping sheets of flexible material forming the flexible bag 60. The material from which the flexible bag 60 may be formed includes, polyvinyl chloride (PVC) and urethane. One end of the bag, seen at 112, remains unsealed and open. As will be described, this first open end 112 will be positioned at the upper end of the venous reservoir 44.
The flexible bag 60 is further formed with an open slot 114. This open slot 114 is positioned contiguous to the first open end 112. This open slot 114 will function as an overflow drain if the flexible bag 60 becomes filled with blood.
The inlet port 56 is fitted into the midpoint of the flexible bag 60. Typically, the inlet port 56 is formed by sealing a small tube between the two sheets of material forming the flexible bag 60. A small portion of the tube forming the inlet port 56 is positioned outside the flexible bag 60 to allow connection with the connector assembly 70.
As stated, that end of the flexible bag 60 opposite the first open end 112 includes a microporous screen 66. This screen is formed by folding a sheet of screen material and sealing this folded over sheet between the overlaid sheets forming the flexible bag 60. Generally, a rectangular shaped cut-away is formed at this end of the overlaid sheets forming the flexible bag 60 to define two strips 116 and 117. The folded over screen material is positioned and sealed between these strips 116 and 117. The remainder of the folded over screen material is then sealed to the sheets to define a lower accessible end of the flexible bag 60.
Blood entering the flexible bag 60 through the inlet port 56 travels downward and exits through the microporous screen 66. The porosity of this microporous screen 66 filters out the majority of any remaining gas bubbles. Generally, the microporous screen 66 is formed from a material having a porosity of from about forty to about two hundred microns, with the preferred material having a porosity of one hundred microns.
The flexible bag 60 is mounted in the venous reservoir 44 to the bag support plate 62. This is accomplished by forming the flexible bag 60 with a plurality of connector holes 118. These holes 118 are arranged so that when the flexible bag 60 is fixed to the bag support plate 62 the upper end of the flexible bag 60 is positioned higher than the microporous screen 66. The placement of the holes 118 also ensures that the first open end 112 is securely fixed to the bag support plate 62 in an open arrangement. The flexible bag 60 is fixed to the bag support plate 62 by pins, one of which is seen at 128.
The mid region of the flexible bag 60 is mounted to the bag support plate 62 at a location contiguous to the microporous screen 66. The flexible bag 60, which is fixed to the bag support plate 62, expands and contracts by the flowing blood. In this manner the blood is directed through the bag to the lower end defined by the microporous screen 66, while minimizing excessive mixing between the blood and the air.
The porosity of the microporous screen 66 restricts the passage of the blood into the remainder of the reservoir, causing the blood to fill a portion of the flexible bag 60 under normal blood flow rates, typically from about one to about seven liters per minute. Any foam entering the flexible bag 60 will rise upward towards the first open end 112. Further, any gas released from the blood travels upward and out of the flexible bag 60 through the first open end 112.
The venous reservoir 44 also includes a porous element which is at least partially coated with a defoamer coating, i.e. silicone antifoam. Preferrably, the entire porous element is coated with the antifoam substance. Referring to FIG. 3, this porous membrane is seen generally at 120, and may be formed from any suitable material, but typically is a polyurethane foam which has a porosity of from about four hundred to about eighteen hundred microns, preferably eight hundred fifty microns.
As illustrated, porous membrane 120 is multilayered, with two layers 122 and 124, situated inside the flexible bag 60, and one layer 126 positioned outside. All three layers 122, 124, and 126 are arranged above the inlet port 56. The external layer 126 may be formed by folding over a single sheet of the material forming the porous element 120, and placing a portion inside and outside of the flexible bag 60. The two inner layers 122 and 124 may be a single layer.
The various layers 122, 124 and 126 of the porous element 120 will also be positioned to cover the open slot 114. In the preferred embodiment the porous element 120 is coated at a position below the open slot 114 to ensure that the rising blood foam will be brought in contact with the antifoam material. As the blood foam level rises in the flexible bag 60 it passes into the porous element 120.
The placement in the venous reservoir 44 of the inlet port 56, open slot 114 and first open end 112, in combination with the porous element 120 provides that the portion of the porous element 120 which is coated with a defoaming coating will lie above the maximum blood level in the flexible bag 60. This positioning, and the added benefit of providing the flexible bag 60 with the open slot 114 ensures minimal contact between the blood and the defoaming coating. The advantages of providing for minimal contact between the defoaming coating and the blood are discussed more fully in co-pending U.S. patent application Ser. No. 338,347 filed Apr. 12, 1989, which is a continuation of U.S. Ser No. 885,963, both of which are assigned to the same assignee of this application. The description in this reference to the desired positioning of the defoaming coating is incorporated herein by reference. Any blood exiting through the open slot 114 flows downward along the inside of the reservoir housing 132. Again, excessive mixing of the blood with air is avoided.
As the blood and foam passes through the porous element 120, including the coated portion, gas entrapped in the blood is released. This gas exits the flexible bag 60 through the first open end 112, and exits the venous reservoir 44 through one or more gas vents, one of which is seen at 130.
The placement of the bag support plate 62 in the venous reservoir 44 ensures a snug fit of the flexible bag 60. As seen in FIG. 3, the bag support plate 62 is positioned farther from the walls of the venous reservoir 44 at its upper end than at its lower end. This, in addition to the attachment of the flexible bag 60 to the bag support plate 62 allows for minimal expansion of the flexible bag 60. This also ensures that any foam entering the flexible bag 60 will rise upward and be brought into contact with the coated portion of the porous element 120. It is thus paramount that the flexible bag 60 be dimensioned to ensure adequate volume for blood below the coated porous element 120 under normal flow conditions. This establishes the defined maximum blood level in the particular venous reservoir 44.
The flexible bag 60 is fixed to the bag support plate 62 to position the microporous screen 66 at least partially below the minimum blood level for the particular venous reservoir 44. Further, the distance between the bag support plate 62 and the walls of the venous reservoir 44 ensure a tight fit for this section of the flexible bag 60. The positioning of the microporous screen 66 partially below the minimum blood level limits contact between blood and air.
Additionally the constraining of the expansion of the flexible bag 60 by placement of the bag support plate 62 in the venous reservoir 44 limits turbulence of the blood exiting through the microporous screen 66, which reduces excessive mixing between the blood and air, and also constrains excessive expansion of the bag limiting the volume of blood held with the bag during normal circulation. Blood exiting the microporous screen 66 flows into the bottom of the venous reservoir 44 and exits out of the venous reservoir outlet port 5B. The placement of the bag support plate 62 and the bag 60 lower end limits the formation of vortex blood flow exiting through the screen 66.
The reduction of contact and mixing between the blood and air reduces the potential of blood component damage in the form of red blood cell destruction (hemolysis), platelet depletion and/or activation and protein denaturation.
In accordance with a preferred embodiment, the venous reservoir 44 is formed with a gradient scale, not shown, which is visible from the front of the venous reservoir 44, seen generally at 132. The bag support plate 62 of this preferred embodiment is white to provide for better visibility of the gradient scale and level of blood.
A still further preferred embodiment is one in which the front face or forward wall 132 of the venous reservoir 44 is arranged at an angle to the floor to position the gradient scale and reservoir level for easy viewing by the perfusionist. As shown in FIG. 3, the rearward wall 133 of the reservoir 144 is closest to the forward wall 132 near the bottom and thereof and the forward wall 132 and rearward wall 133 become progressively further apart as they emanate upwardly from the bottom end of the reservoir 144. This placement of the venous reservoir 44 is accomplished by mounting the venous reservoir 44, and more particularly the reservoir assembly 10 to the stand 12 to position the front face 132 of the venous reservoir 44 at an angle of from about 60° to about 85°, preferably 70° to the floor.
A still further modification is to provide the cardiotomy reservoir 42 with a gradient scale upon its front face, seen generally at 134. To improve the visibility of this scale the grid housing 104 includes a plate assembly 136. This plate assembly 136 extends out from the grid housing 104 and angles downward to provide a solid surface behind the gradient scale disposed on the front face 134. Again, it is preferable if this plate assembly 136 be white.
While the preferred embodiments have been described, various modifications and substitutions may be made thereto without departing from the scope of the invention. Accordingly, it is to be understood that the invention has been described by way of illustration and not limitation.

Claims (59)

What is claimed is:
1. A venous and cardiotomy blood reservoir comprising:
a housing defining at least two separate compartments, with a second of said compartments being positioned above the first of said compartments, said housing including separate inlet and outlet ports communicating respectively with each of said compartments;
connecting means coupled to said inlet ports of a first of said compartments and said outlet ports of a second of said compartments;
a flexible bag means positioned in said housing first compartment for receiving blood through said inlet ports of said first compartment, said bag means being securely mounted in said compartment to restrict expansion of said bag means as said blood enters through said inlet ports, said bag means having a first end including a porous screen through which blood flows out of said bag means, and a second opposite end including a porous defoamer means which is at least partially coated with an antifoam material, with said partially coated portion being positioned above a maximum blood level in said reservoir;
a porous element positioned in said second compartment between said inlet and outlet ports, said porous element being coated with an antifoaming material;
a plate mounted in said housing to which said bag means is securely mounted along its edges;
said first bag means end being positioned at a level to lie partially below a minimum blood level in said reservoir;
said bag means being an elongated flexible bag which is mounted in said housing with said first end being positioned horizontally below said second end;
said screen having a porosity of from about forty to about two hundred microns;
said porous defoamer means having a porosity of from about four hundred to about eighteen hundred microns; and
said connecting means comprising a tube fitting means which connects to said inlet port of said first compartment and a flexible tubing connected to said tube fitting means and said outlet port of said second compartment.
2. The blood reservoir of claim 1 wherein said tube fitting means is positioned in relation to said first compartment inlet means to limit the introduction of air into said first compartment.
3. The reservoir of claim 2 wherein bag means is fixed in said compartment to define a blood flow path traversing downward from said inlet to said outlet, whereby blood entering through said inlet travels under the influence of gravity to said outlet.
4. The reservoir of claim 3 further including means for mounting the reservoir to a stand, said mounting means orientating a forward facing wall of said reservoir at an angle to the floor upon which said stand rests allowing for examination of the contents of the reservoir.
5. The reservoir of claim 4 wherein said reservoir is mounted to a stand to position a forward wall of the reservoir at an angle of from about 60° to about 85° to said floor.
6. The reservoir of claim 4 wherein said reservoir is mounted to a stand to position a forward wall of the reservoir at an angle of about 70° to said floor.
7. A cardiotomy and venous blood reservoir device comprising:
a rigid housing defining an upper compartment and a lower compartment therewithin;
said upper compartment having a cardiotomy blood inlet, a cardiotomy blood outlet and a cardiotomy blood filter element disposed therein between the cardiotomy blood inlet and the cardiotomy blood outlet such that cardiotomy blood entering the upper compartment through the cardiotomy blood inlet will pass through said cardiotomy filter element prior to exiting the upper compartment through the cardiotomy blood outlet;
said lower compartment having a flexible bag positioned therewithin, said flexible bag having a top end, a bottom end, a blood inlet, a blood outlet and a microporous screen element positioned between the blood inlet and the blood outlet such that blood entering the flexible bag through the blood inlet will pass through the microporous screen element prior to exiting the flexible bag through the blood outlet;
the blood outlet of the flexible bag positioned within the lower compartment being located such that blood passing out of said blood outlet will collect inside of said lower compartment outside of said flexible bag;
a blood outlet port formed in the bottom of the lower compartment below the bottom of said flexible bag to permit blood passing out of the flexible to subsequently drain out of the lower compartment.
8. The device of claim 7 wherein the cardiotomy filter element disposed within said upper compartment comprises:
a porous filter element formed around and defining an inner blood receiving space adjacent said cardiotomy inlet such that blood flowing in the cardiotomy inlet will enter the inner blood receiving space and will subsequently pass outwardly through said porous filter element.
9. The device of claim 8 wherein said porous filter element comprises a polyester felt material.
10. The device of claim 7 further comprising:
a defoamer element mounted within the upper chamber and interposed between the cardiotomy blood inlet and the cardiotomy blood outlet such that cardiotomy blood entering the upper chamber through the cardiotomy inlet will pass through the defoamer element prior to exiting the upper chamber through the cardiotomy blood outlet.
11. The device of claim 10 wherein said defoamer element comprises a quantity of porous foam material containing a chemical antifoam agent.
12. The device of claim 10 wherein said defoamer element and said porous filter element are both configured and disposed about an inner blood receiving space adjacent said cardiotomy blood inlet such that cardiotomy blood flowing in the cardiotomy blood inlet will initially pass into said inner blood receiving space and will subsequently pass outwardly through the defoamer element and the porous filter element.
13. The device of claim 10 wherein said defoamer element has a pore size of approximately 400-1800 microns.
14. The device of claim 10 wherein said defoamer element is formed of porous polyurethane foam.
15. The device of claim 7 wherein the flexible bag is positioned within the lower compartment such that blood exiting the outlet of the flexible bag will enter the lower compartment, outside of the flexible bag prior to passing out of the lower compartment through said blood outlet port.
16. The device of claim 7 wherein a minimum operational blood level in the lower compartment is known and wherein:
the flexible bag is positioned within the lower compartment such that the blood outlet of the flexible bag is beneath the minimum blood level in said lower compartment.
17. The device of claim 7 further comprising a plate mounted in the lower compartment to which said flexible bag is mounted.
18. The device of claim 17 wherein said plate is positioned in spaced relation to a first portion of said rigid housing and wherein said flexible bag is positioned between said plate and said first portion of the rigid housing such that expansion of said flexible bag is limited to the space existing between said plate and said portion of said rigid housing.
19. The device of claim 18 wherein the first portion of the rigid housing is the rearward wall of the lower compartment such that the bag is disposed between said plate and said rearward wall.
20. The device of claim 7 wherein the microporous screen element has a pore size of approximately 40-200 microns.
21. The device of claim 7 wherein:
the top end of said flexible bag is open; and
a second porous defoamer element is disposed within the top end of flexible bag such that foam rising within the flexible bag will contact said defoamer element prior to flowing out of the open top end of the flexible bag.
22. The device of claim 21 wherein said second porous defoamer element comprises:
at least a first mass of porous foam material positioned inside the flexible bag, adjacent the open top end thereof.
23. The device of claim 21 wherein said second porous defoamer element further comprises:
at least a second mass of porous foam material disposed outside of said flexible bag near the open top end thereof.
24. The device of claim 7 wherein the portion of said rigid housing defining said lower compartment comprises a forward wall and a rearward wall, opposing said forward wall, said forward wall and said rearward wall being closest to one another at the bottom end of said lower compartment and diverging away from one another thereabove.
25. The device of claim 24 wherein said device is mountable on a stand above a generally horizontal underlying floor such that the forward wall of the lower compartment is disposed at an angle of about 60-85 degrees relative to the underlying floor.
26. The device of claim 25 wherein the forward wall of the lower compartment is disposed at an angle of approximately 70 degrees relative to the underlying floor.
27. The device of claim 7 wherein said rigid housing is formed of clear plastic.
28. The device of claim 27 wherein a gradient scale is formed on the forward wall of the lower compartment to permit measurement of the level of blood within said lower compartment.
29. The device of claim 7 further comprising:
a connector for concomitantly fluidly connecting the blood inlet of the flexible bag within the lower compartment to (a) the cardiotomy blood outlet of the upper compartment and (b) a separate venous return source, thereby permitting filtered cardiotomy blood from the upper compartment to combine with venous return blood passing into said flexible bag.
30. The device of claim 7 further comprising:
a first tube connecting the cardiotomy blood outlet of the upper compartment to the blood inlet of the flexible bag such that filtered cardiotomy blood will flow from the upper compartment into the flexible bag within said lower compartment.
31. The device of claim 7 wherein said flexible bag comprises an elongate bag and wherein said blood inlet is formed below the top end of the bag and said blood outlet is formed near the bottom end of the bag.
32. The device of claim 31 wherein a minimum operational blood level within the lower compartment is known and wherein said flexible bag is positioned within the lower compartment such that the blood outlet of the flexible bag is below the known minimum operational blood level within the lower compartment.
33. A blood reservoir device for receiving, filtering and combining cardiotomy blood and venous return blood in an extracorporeal blood oxygenation circuit, said device comprising:
a rigid housing defining an upper compartment and a lower compartment therewithin;
a cardiotomy blood inlet and a cardiotomy blood outlet formed in the upper compartment;
a cardiotomy blood filter disposed within the upper compartment between the cardiotomy blood inlet and cardiotomy blood outlet such that blood entering the cardiotomy blood inlet will pass through the filter prior to exiting the upper compartment through the cardiotomy blood outlet;
a flexible bag disposed within the lower compartment, said flexible bag having a top end, a bottom end, a blood inlet, a blood outlet and a microporous screen element positioned between the blood inlet and the blood outlet such that blood entering the flexible bag through the blood inlet will pass through the microporous screen element prior to exiting the flexible bag through the blood outlet;
the blood inlet of the flexible bag being fluidly connected to the cardiotomy blood outlet of the upper compartment and concurrently fluidly connectable to a source of venous return blood such that filtered cardiotomy blood from the upper compartment may combine with venous return blood within the flexible bag; and
a blood outlet port formed in said lower compartment to permit blood which exits the flexible bag and collects outside of said flexible bag to subsequently pass out of said lower compartment.
34. The device of claim 33 wherein the cardiotomy filter element disposed within said upper compartment comprises:
a porous filter element formed around and defining an inner blood receiving space adjacent said cardiotomy inlet such that blood flowing in the cardiotomy inlet will enter the inner blood receiving space and will subsequently pass outwardly through said porous filter element.
35. The device of claim 34 wherein said porous filter element comprises a polyester felt material.
36. The device of claim 33 further comprising:
a defoamer element mounted within the upper chamber and interposed between the cardiotomy blood inlet and the cardiotomy blood outlet such that cardiotomy blood entering the upper chamber through the cardiotomy inlet will pass through the defoamer element prior to exiting the upper chamber through the cardiotomy blood outlet.
37. The device of claim 36 wherein said defoamer element comprises a quantity of porous foam material containing a chemical antifoam agent.
38. The device of claim 36 wherein said defoamer element and said porous filter element are both configured and disposed about an inner blood receiving space adjacent said cardiotomy blood inlet such that cardiotomy blood flowing in the cardiotomy blood inlet will initially pass into said inner blood receiving space and will subsequently pass outwardly through the defoamer element and through the porous filter element.
39. The device of claim 36 wherein said defoamer element has a pore size of approximately 400-1800 microns.
40. The device of claim 36 wherein said defoamer element is formed of porous polyurethane foam.
41. The device of claim 33 wherein the flexible bag is positioned within the lower compartment such that blood exiting the outlet of the flexible bag will enter the lower compartment, outside of the flexible bag prior to passing out of the lower compartment through said blood outlet port.
42. The device of claim 33 wherein a minimum operational blood level in the lower compartment is known and wherein:
the flexible bag is positioned within the lower compartment such that the blood outlet of the flexible bag is beneath the minimum blood level in said lower compartment.
43. The device of claim 33 further comprising a plate mounted in the lower compartment to which said flexible bag is mounted.
44. The device of claim 43 wherein said plate is positioned in spaced relation to a first portion of said rigid housing and wherein said flexible bag is positioned between said plate and said first portion of the rigid housing such that expansion of said flexible bag is limited to the space existing between said plate and said portion of said rigid housing.
45. The device of claim 44 wherein the first portion of the rigid housing is the rearward wall of the lower compartment such that the bag is disposed between said plate and said rearward wall.
46. The device of claim 33 wherein the microporous screen element has a pore size of approximately 40-200 microns.
47. The device of claim 33 wherein:
the top end of said flexible bag is open; and
a second porous defoamer element is disposed within the top end of flexible bag such that foam rising within the flexible bag will contact said defoamer element prior to flowing out of the open top end of the flexible bag.
48. The device of claim 47 wherein said second porous defoamer element comprises:
at least a first mass of porous foam material positioned inside the flexible bag, adjacent the open top end thereof.
49. The device of claim 47 wherein said second porous defoamer element further comprises:
at least a second mass of porous foam material disposed outside of said flexible bag near the open top end thereof.
50. The device of claim 33 wherein the portion of said rigid housing defining said lower compartment comprises a forward wall and a rearward wall, opposing said forward wall, said forward wall and said rearward wall being closest to one another at the bottom end of said lower compartment and diverging away from one another thereabove.
51. The device of claim 50 wherein said device is mountable on a stand above a generally horizontal underlying floor such that the forward wall of the lower compartment is disposed at an angle of about 60-85 degrees relative to the underlying floor.
52. The device of claim 51 wherein the forward wall of the lower compartment is disposed at an angle of approximately 70 degrees relative to the underlying floor.
53. The device of claim 33 wherein said rigid housing is formed of clear plastic.
54. The device of claim 53 wherein a gradient scale is formed on the forward wall of the lower compartment to permit measurement of the level of blood within said lower compartment.
55. The device of claim 33 wherein said flexible bag comprises an elongate bag and wherein said blood inlet is formed below the top end of the bag and said blood outlet is formed near the bottom end of the bag.
56. The device of claim 26 wherein:
the blood outlet of the flexible bag is located such that blood passing out of said blood outlet will collect inside of said lower compartment and outside of said flexible bag.
57. The device of claim 56 wherein a minimum operational blood level within the lower compartment is known and wherein said flexible bag is positioned within the lower compartment such that the blood outlet of the flexible bag is below the known minimum operational blood level within the lower compartment.
58. The device of claim 33 wherein a bifurcated connector assembly having a first tubular portion and a second tubular portion is fluidly connected to the blood inlet of the flexible bag and wherein the first tubular portion of the bifurcated connector assembly is fluidly connected to the cardiotomy blood outlet of the upper chamber and wherein the second tubular portion of the bifurcated connector assembly is connected to a venous blood return tube.
59. The device of claim 58 wherein said connector assembly comprises:
a central hub portion having a hollow inner bore and an inner wall formed therewithin to divide said inner bore into a first inner chamber and a second inner chamber;
said first inner chamber being in fluid communication with said first tubular portion and said second tubular portion being in fluid communication with said second inner chamber; and
both the first and second inner chambers of the connector assembly being fluidly connected to the inlet of the flexible bag so that cardiotomy blood and venous return blood may separately enter the flexible bag through the respective first and second inner chambers of the connector assembly.
US07/359,178 1989-05-31 1989-05-31 Blood/gas separator and flow system Expired - Fee Related US5049146A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US07/359,178 US5049146A (en) 1989-05-31 1989-05-31 Blood/gas separator and flow system
CA002017460A CA2017460C (en) 1989-05-31 1990-05-24 Blood/gas separator and flow system
DE0587251T DE587251T1 (en) 1989-05-31 1990-05-31 Blood / gas separation and flow system.
EP93202622A EP0587251B1 (en) 1989-05-31 1990-05-31 Blood/gas separator and flow system
DE69007860T DE69007860T4 (en) 1989-05-31 1990-05-31 Blood / gas separation and flow system.
EP90305935A EP0401016B1 (en) 1989-05-31 1990-05-31 Blood/gas separator and flow system
JP2143251A JPH0661359B2 (en) 1989-05-31 1990-05-31 Blood reservoir
DE69032137T DE69032137T2 (en) 1989-05-31 1990-05-31 Blood / gas separation and flow system
DE90305935A DE69007860D1 (en) 1989-05-31 1990-05-31 Blood / gas separation and flow system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/359,178 US5049146A (en) 1989-05-31 1989-05-31 Blood/gas separator and flow system

Publications (1)

Publication Number Publication Date
US5049146A true US5049146A (en) 1991-09-17

Family

ID=23412664

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/359,178 Expired - Fee Related US5049146A (en) 1989-05-31 1989-05-31 Blood/gas separator and flow system

Country Status (5)

Country Link
US (1) US5049146A (en)
EP (2) EP0401016B1 (en)
JP (1) JPH0661359B2 (en)
CA (1) CA2017460C (en)
DE (4) DE587251T1 (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352218A (en) * 1990-06-15 1994-10-04 Cobe Laboratories, Inc. Venous reservoir bag assembly
US5372593A (en) * 1986-02-18 1994-12-13 Boehringer Laboratories Process and apparatus for collecting blood of a patient for autotransfusion
US5411705A (en) * 1994-01-14 1995-05-02 Avecor Cardiovascular Inc. Combined cardiotomy and venous blood reservoir
US5695489A (en) * 1991-09-30 1997-12-09 Baxter International Inc. Blood filtering container
US5738645A (en) * 1996-04-30 1998-04-14 Medtronic, Inc. Soft tip blood reservoir for heart-lung machines
US5770073A (en) * 1996-03-15 1998-06-23 Minntech Corporation Combined cardiotomy and venous reservoir
US5858015A (en) * 1993-09-29 1999-01-12 Dideco S.P.A. Container for blood
US5871693A (en) * 1996-06-07 1999-02-16 Minnesota Mining And Manufacturing Company Modular blood treatment cartridge
US5935093A (en) * 1997-09-29 1999-08-10 Medtronic, Inc. Softshell reservoir with integrated cardiotomy reservoir
US6017493A (en) * 1997-09-26 2000-01-25 Baxter International Inc. Vacuum-assisted venous drainage reservoir for CPB systems
US6050968A (en) * 1997-09-29 2000-04-18 Medtronic, Inc. Two-chambered softshell reservoir
USRE36774E (en) 1989-10-01 2000-07-11 Baxter Healthcare Corporation Cylindrical blood heater/oxygenator
US6105912A (en) * 1997-11-07 2000-08-22 Terumo Cardiovascular Systems Corporation Reservoir mounting bracket
US6113575A (en) * 1998-05-14 2000-09-05 Terumo Cardiovascular Systems Corporation Volume control apparatus for a flexible venous reservoir
US6287270B1 (en) 1996-07-22 2001-09-11 Dideco, S.P.A. Combined device comprising a venous blood reservoir and a cardiotomy reservoir in an extracorporeal circuit
US6337049B1 (en) 1998-08-28 2002-01-08 Yehuda Tamari Soft shell venous reservoir
US6364864B1 (en) 1999-06-03 2002-04-02 Baxter International Inc. Plastic containers having inner pouches and methods for making such containers
US6367634B1 (en) 1993-12-22 2002-04-09 Baxter International Inc. Blood collection systems including an integral, flexible filter
US6422397B1 (en) 1993-12-22 2002-07-23 Baxter International, Inc. Blood collection systems including an integral, flexible filter
US6565802B1 (en) 1999-06-03 2003-05-20 Baxter International Inc. Apparatus, systems and methods for processing and treating a biological fluid with light
US6601710B2 (en) 1999-04-20 2003-08-05 Baxter International Inc. Filter assembly having a flexible housing
US20030146162A1 (en) * 1999-06-03 2003-08-07 Metzel Peyton S. Fluid processing sets and organizers for the same
US20030165398A1 (en) * 1999-06-03 2003-09-04 Waldo Jeffrey M. Apparatus, systems and methods for processing and treating a biological fluid with light
US20030209479A1 (en) * 2000-07-10 2003-11-13 Lynn Daniel R Blood filters, blood collection and processing systems, and methods therefore
US20040195178A1 (en) * 2003-01-14 2004-10-07 Carpenter Walter L. Extracorporeal blood circuit priming system and method
US20040197223A1 (en) * 2003-01-14 2004-10-07 Olsen Robert W. Active air removal system operating modes of an extracorporeal blood circuit
US20040217054A1 (en) * 2003-01-14 2004-11-04 Olsen Robert W. Extracorporeal blood circuit air removal system and method
US20040220509A1 (en) * 2003-01-14 2004-11-04 Olsen Robert W. Active air removal from an extracorporeal blood circuit
US20050063860A1 (en) * 2003-01-14 2005-03-24 Carpenter Walter L. Disposable, integrated, extracorporeal blood circuit
US20050077225A1 (en) * 2003-10-10 2005-04-14 Usher Kathryn M. Apparatus and method for removing gasses from a liquid
US20050131333A1 (en) * 2002-02-08 2005-06-16 Astra Tech Ab Apparatus for reducing fat content of blood
US6908446B2 (en) 2000-11-30 2005-06-21 Termo Kabushiki Kaisha Blood reservoir
US6918887B1 (en) 1999-02-17 2005-07-19 Medtronic, Inc. Venous filter for assisted venous return
US7025877B1 (en) 1999-06-03 2006-04-11 Baxter International Inc. Processing set for processing and treating a biological fluid
US20060095014A1 (en) * 2003-05-08 2006-05-04 Novo Nordisk A/S External inserter for transcutaneous device
US20060093527A1 (en) * 2004-03-30 2006-05-04 Genesis Biosystems, Inc. Autologus tissue harvesting and irrigation device
US20070225686A1 (en) * 2005-03-23 2007-09-27 Shippert Ronald D Tissue transplantation method and apparatus
US20080154240A1 (en) * 2005-03-23 2008-06-26 Shippert Ronald D Tissue transplantation method and apparatus
US20090062778A1 (en) * 2006-03-13 2009-03-05 Novo Nordisk A/S Medical System Comprising Dual-Purpose Communication Means
US20090069868A1 (en) * 2006-03-11 2009-03-12 Henrik Bengtsson Secure Pairing of Electronic Devices using Dual Means of Communication
US7591812B1 (en) 2004-01-22 2009-09-22 Yehuda Tamari Passive venous air purging chamber with vent/sucker blood handling capabilities
US20100030125A1 (en) * 2004-01-22 2010-02-04 Yehuda Tamari Blood reservoir incorporating a vapor trap
US20100130957A1 (en) * 2008-11-21 2010-05-27 Smisson-Cartledge Biomedical Llc Collapsible Fluid Reservoir
US7789872B2 (en) 2005-03-23 2010-09-07 Shippert Ronald D Tissue transplantation method and apparatus
US7794449B2 (en) 2005-03-23 2010-09-14 Shippert Ronald D Tissue transplantation method and apparatus
US7922462B2 (en) 2004-03-30 2011-04-12 Novo Nordisk A/S Actuator system comprising lever mechanism
US7955297B2 (en) 2003-08-01 2011-06-07 Novo Nordisk A/S Retraction means for transcutaneous device
US7981085B2 (en) 2003-05-08 2011-07-19 Novo Nordisk A/S Internal needle inserter
US8167841B2 (en) 2005-01-24 2012-05-01 Novo Nordisk A/S Transcutaneous device assembly
US20130012909A1 (en) * 2011-07-08 2013-01-10 Pinto Giovanni Device for medical use for collecting and transit of blood, blood derivatives and/or filler fluids, and an extracorporeal circuit comprising the device
US8500673B2 (en) 2010-04-20 2013-08-06 Sorin Group Italia S.R.L. Blood reservoir with level sensor
US8506513B2 (en) 2010-04-20 2013-08-13 Sorin Group Italia S.R.L. Blood reservoir with ultrasonic volume sensor
US8557179B2 (en) 2007-10-31 2013-10-15 Novo Nordisk A/S Non-porous material as sterilization barrier
US8622997B2 (en) 2005-03-23 2014-01-07 Ronald D. Shippert Tissue transfer method and apparatus
US8740851B2 (en) 2003-05-08 2014-06-03 Novo Nordisk A/S Integrated package
US8882696B2 (en) 2005-01-24 2014-11-11 Yehuda Tamari Blood reservoir with a separate vent and a sucker chambers
US8887770B1 (en) 2011-03-17 2014-11-18 Ronald D. Shippert Vessel fill control method and apparatus
US9011769B2 (en) 2011-07-12 2015-04-21 Sorin Group Italia S.R.L. Dual chamber blood reservoir
US20150157836A1 (en) * 2008-01-28 2015-06-11 Peter Mats Forsell Implantable drainage device
USD746470S1 (en) * 2014-01-31 2015-12-29 Nipro Corporation Holder for blood reservoir
USD749739S1 (en) * 2014-01-31 2016-02-16 Nipro Corporation Blood reservoir
US9399094B2 (en) 2006-06-06 2016-07-26 Novo Nordisk A/S Assembly comprising skin-mountable device and packaging therefore
US9409128B2 (en) 2009-10-23 2016-08-09 Fenwal, Inc. Methods for storing red blood cell products
US9452250B2 (en) 2009-06-25 2016-09-27 Sorin Group Deutschland Gmbh Device for pumping blood in an extracorporeal circuit
US9468709B2 (en) 2012-11-12 2016-10-18 Shippert Enterprises, Llc Syringe fill method and apparatus
WO2016196584A1 (en) 2015-06-02 2016-12-08 Terumo Cardiovascular Systems, Inc. Filters with gradient porosities
US9581942B1 (en) 2005-03-23 2017-02-28 Shippert Enterprises, Llc Tissue transfer method and apparatus
US10458833B2 (en) 2014-05-16 2019-10-29 Sorin Group Italia S.R.L. Blood reservoir with fluid volume measurement based on pressure sensor
US10772997B2 (en) 2014-05-15 2020-09-15 Ronald D. Shippert Tissue parcelization method and apparatus
US11229729B2 (en) 2009-05-29 2022-01-25 Livanova Deutschland Gmbh Device for establishing the venous inflow to a blood reservoir of an extracorporeal blood circulation system

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578070A (en) * 1992-04-30 1996-11-26 Medisystems Technology Corporation Blow molded venous drip chamber for hemodialysis
US5573526A (en) * 1995-05-08 1996-11-12 Minntech Corporation Soft shell reservoir
CA2177442A1 (en) * 1995-05-29 1996-11-30 Massimo Fini Cardiotomy reservoir with internal filter
US6123519A (en) * 1995-10-03 2000-09-26 Terumo Kabushiki Kaisha Delivery blood storing member-equipped blood reservoir tank and blood delivery instrument for extracorporeal circulation circuit
US5800721A (en) * 1996-08-30 1998-09-01 Baxter International Inc. Combined cardiotomy fluid and venous blood reservoir
US6117342A (en) * 1996-11-26 2000-09-12 Medisystems Technology Corporation Bubble trap with directed horizontal flow and method of using
US5983947A (en) 1997-03-03 1999-11-16 Medisystems Technology Corporation Docking ports for medical fluid sets
US6051134A (en) * 1997-03-28 2000-04-18 Medisystems Technology Corporation Bubble trap having common inlet/outlet tube
DE69830533T2 (en) * 1997-04-08 2006-05-11 Terumo K.K. Blood container, storage and dispensing device, and drive unit
US6010623A (en) * 1997-08-01 2000-01-04 Medisystems Technology Corporation Bubble trap with flat side
US5951508A (en) * 1997-09-29 1999-09-14 Medtronic, Inc. Bilaterally connectable softshell reservoir
EP0987035A3 (en) * 1998-08-07 2000-12-20 Terumo Kabushiki Kaisha Blood oxygenating apparatus having blood delivery mechanism-equipped blood reservoir, bubble remover for blood oxygenating circuit, bubble remover-equipped blood oxygenating circuit and blood delivery mechanism-equipped blood reservoir
US6325788B1 (en) 1998-09-16 2001-12-04 Mckay Douglas William Treatment of wound or joint for relief of pain and promotion of healing
EP1053760A3 (en) * 1999-05-21 2001-08-16 Medtronic, Inc. Fully constrained soft shell reservoir
JP4485707B2 (en) * 2001-05-07 2010-06-23 テルモ株式会社 Blood reservoir
WO2004009158A2 (en) 2002-07-19 2004-01-29 Baxter International Inc. Systems and methods for performing peritoneal dialysis
US7871462B2 (en) 2007-10-01 2011-01-18 Baxter International Inc. Dialysis systems having air separation chambers with internal structures to enhance air removal
US7892331B2 (en) 2007-10-01 2011-02-22 Baxter International Inc. Dialysis systems having air separation chambers with internal structures to enhance air removal
US8444587B2 (en) 2007-10-01 2013-05-21 Baxter International Inc. Fluid and air handling in blood and dialysis circuits
US7892332B2 (en) 2007-10-01 2011-02-22 Baxter International Inc. Dialysis systems having air traps with internal structures to enhance air removal
US8123947B2 (en) 2007-10-22 2012-02-28 Baxter International Inc. Priming and air removal systems and methods for dialysis
US8114276B2 (en) 2007-10-24 2012-02-14 Baxter International Inc. Personal hemodialysis system
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
CN102176935B (en) * 2008-10-09 2014-08-06 尼普洛株式会社 Blood storage tank
US8382711B2 (en) 2010-12-29 2013-02-26 Baxter International Inc. Intravenous pumping air management systems and methods
JP6101110B2 (en) * 2013-02-27 2017-03-22 株式会社ジェイ・エム・エス Blood reservoir tank holder
US9486590B2 (en) 2014-09-29 2016-11-08 Fenwal, Inc. Automatic purging of air from a fluid processing system
CA2985719C (en) 2015-06-25 2024-03-26 Gambro Lundia Ab Medical device system and method having a distributed database
US10625009B2 (en) 2016-02-17 2020-04-21 Baxter International Inc. Airtrap, system and method for removing microbubbles from a fluid stream
AU2017381172A1 (en) 2016-12-21 2019-06-13 Gambro Lundia Ab Medical device system including information technology infrastructure having secure cluster domain supporting external domain
GB2584875B (en) * 2019-06-18 2021-09-15 Charles Devlin West Jonathan Flow metering insert and/or device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT193071B (en) * 1955-11-08 1957-11-25 Friedrich Dr Schuerer-Waldheim Device for the preservation of biological fluids - such as blood, sera, infusion solutions, etc. Like - in a plastic bag
US3545937A (en) * 1966-02-02 1970-12-08 Chirana Z Vdravotnickej Techni Blood oxygenation apparatus
US3765537A (en) * 1970-11-10 1973-10-16 Pall Corp Dual blood filter
US3827860A (en) * 1972-06-15 1974-08-06 Sherwood Medical Ind Inc Blood oxygenation device
US3853479A (en) * 1972-06-23 1974-12-10 Sherwood Medical Ind Inc Blood oxygenating device with heat exchanger
US3892534A (en) * 1974-01-02 1975-07-01 Baxter Laboratories Inc Rigidly mounted bubble-type blood oxygenator having flexible flow channels
US3915650A (en) * 1973-10-15 1975-10-28 Sherwood Medical Ind Inc Blood oxygenator defoaming means
US3918912A (en) * 1973-10-15 1975-11-11 Sherwood Medical Ind Inc Blood oxygenator
US3993461A (en) * 1973-07-20 1976-11-23 Baxter Laboratories, Inc. Cardiotomy reservoir
DE2654725A1 (en) * 1975-12-02 1977-06-08 Bioveta N P UNIVERSAL SEPARATION BLOOD BAG FOR THE STERILE PREPARATION OF BLOOD SERUM FOR SINGLE USE
US4033345A (en) * 1975-11-13 1977-07-05 Sorenson Research Co., Inc. Autologous transfusion filter system and method
US4035304A (en) * 1974-07-05 1977-07-12 Terumo Corporation Blood filtering bag
DE2730420A1 (en) * 1976-07-30 1978-02-23 Wallace Ltd H G BODY FLUID BAG AND HANGING FRAME FOR IT
US4466888A (en) * 1980-05-20 1984-08-21 Haemonetics Corporation Suction liquid collection assembly and flexible collecting bag therefor
US4493705A (en) * 1982-08-10 1985-01-15 Bentley Laboratories, Inc. Blood reservoir
US4643713A (en) * 1984-11-05 1987-02-17 Baxter Travenol Laboratories, Inc. Venous reservoir
US4705497A (en) * 1985-05-31 1987-11-10 Terumo Kabushiki Kaisha Blood reservoir
EP0253467A2 (en) * 1986-07-14 1988-01-20 BAXTER INTERNATIONAL INC. (a Delaware corporation) Liquid and gas separation system
US4734269A (en) * 1985-06-11 1988-03-29 American Hospital Supply Corporation Venous reservoir bag with integral high-efficiency bubble removal system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0122748B1 (en) * 1983-04-08 1987-12-23 Shiley Incorporated Blood filter
JPS60103968A (en) * 1983-11-11 1985-06-08 テルモ株式会社 Blood reservoir
JPS6145770A (en) * 1984-08-07 1986-03-05 テルモ株式会社 Blood storage tank
JPS61103451A (en) * 1984-10-27 1986-05-21 テルモ株式会社 Blood storage tank
JPS62258673A (en) * 1986-04-22 1987-11-11 株式会社 日本メデイカル・サプライ Blood storage tank

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT193071B (en) * 1955-11-08 1957-11-25 Friedrich Dr Schuerer-Waldheim Device for the preservation of biological fluids - such as blood, sera, infusion solutions, etc. Like - in a plastic bag
US3545937A (en) * 1966-02-02 1970-12-08 Chirana Z Vdravotnickej Techni Blood oxygenation apparatus
US3765537A (en) * 1970-11-10 1973-10-16 Pall Corp Dual blood filter
US3827860A (en) * 1972-06-15 1974-08-06 Sherwood Medical Ind Inc Blood oxygenation device
US3853479A (en) * 1972-06-23 1974-12-10 Sherwood Medical Ind Inc Blood oxygenating device with heat exchanger
US3993461A (en) * 1973-07-20 1976-11-23 Baxter Laboratories, Inc. Cardiotomy reservoir
US3915650A (en) * 1973-10-15 1975-10-28 Sherwood Medical Ind Inc Blood oxygenator defoaming means
US3918912A (en) * 1973-10-15 1975-11-11 Sherwood Medical Ind Inc Blood oxygenator
US3892534A (en) * 1974-01-02 1975-07-01 Baxter Laboratories Inc Rigidly mounted bubble-type blood oxygenator having flexible flow channels
US4035304A (en) * 1974-07-05 1977-07-12 Terumo Corporation Blood filtering bag
US4033345A (en) * 1975-11-13 1977-07-05 Sorenson Research Co., Inc. Autologous transfusion filter system and method
DE2654725A1 (en) * 1975-12-02 1977-06-08 Bioveta N P UNIVERSAL SEPARATION BLOOD BAG FOR THE STERILE PREPARATION OF BLOOD SERUM FOR SINGLE USE
DE2730420A1 (en) * 1976-07-30 1978-02-23 Wallace Ltd H G BODY FLUID BAG AND HANGING FRAME FOR IT
US4466888A (en) * 1980-05-20 1984-08-21 Haemonetics Corporation Suction liquid collection assembly and flexible collecting bag therefor
US4493705A (en) * 1982-08-10 1985-01-15 Bentley Laboratories, Inc. Blood reservoir
US4643713A (en) * 1984-11-05 1987-02-17 Baxter Travenol Laboratories, Inc. Venous reservoir
US4705497A (en) * 1985-05-31 1987-11-10 Terumo Kabushiki Kaisha Blood reservoir
US4734269A (en) * 1985-06-11 1988-03-29 American Hospital Supply Corporation Venous reservoir bag with integral high-efficiency bubble removal system
EP0253467A2 (en) * 1986-07-14 1988-01-20 BAXTER INTERNATIONAL INC. (a Delaware corporation) Liquid and gas separation system

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372593A (en) * 1986-02-18 1994-12-13 Boehringer Laboratories Process and apparatus for collecting blood of a patient for autotransfusion
USRE36774E (en) 1989-10-01 2000-07-11 Baxter Healthcare Corporation Cylindrical blood heater/oxygenator
US5352218A (en) * 1990-06-15 1994-10-04 Cobe Laboratories, Inc. Venous reservoir bag assembly
US5693039A (en) * 1990-06-15 1997-12-02 Cobe Laboratories, Inc. Venous reservoir bag assembly
US5720741A (en) * 1990-06-15 1998-02-24 Cobe Laboratories, Inc. Venous reservoir bag assembly
US5695489A (en) * 1991-09-30 1997-12-09 Baxter International Inc. Blood filtering container
US5858015A (en) * 1993-09-29 1999-01-12 Dideco S.P.A. Container for blood
US6688476B2 (en) 1993-12-22 2004-02-10 Baxter International Inc. Filter assembly having a flexible housing and method of making same
US6367634B1 (en) 1993-12-22 2002-04-09 Baxter International Inc. Blood collection systems including an integral, flexible filter
US6422397B1 (en) 1993-12-22 2002-07-23 Baxter International, Inc. Blood collection systems including an integral, flexible filter
US7278541B2 (en) 1993-12-22 2007-10-09 Fenwal, Inc. Method of making a filter assembly having a flexible housing
US20040149646A1 (en) * 1993-12-22 2004-08-05 Baxter International Inc. Blood collection systems including a flexible filter
US20040154974A1 (en) * 1993-12-22 2004-08-12 Baxter International Inc. Method of making a filter assembly having a flexible housing
US6745902B2 (en) 1993-12-22 2004-06-08 Baxter International Inc. Blood collection systems including an integral, flexible filter
US7353956B2 (en) 1993-12-22 2008-04-08 Fenwal, Inc. Blood collection systems including a flexible filter
US5411705A (en) * 1994-01-14 1995-05-02 Avecor Cardiovascular Inc. Combined cardiotomy and venous blood reservoir
WO1995019192A1 (en) * 1994-01-14 1995-07-20 Avecor Cardiovascular Inc. Combined cardiotomy and venous blood reservoir
US5770073A (en) * 1996-03-15 1998-06-23 Minntech Corporation Combined cardiotomy and venous reservoir
US5738645A (en) * 1996-04-30 1998-04-14 Medtronic, Inc. Soft tip blood reservoir for heart-lung machines
US6180058B1 (en) 1996-06-07 2001-01-30 Terumo Cardiovascular Systems Corporation Blood treatment system
US5871693A (en) * 1996-06-07 1999-02-16 Minnesota Mining And Manufacturing Company Modular blood treatment cartridge
US6770048B2 (en) 1996-07-22 2004-08-03 Dideco S.P.A. Combined device comprising a venous blood reservoir and a cardiotomy reservoir in an extracorporeal circuit
US7147614B2 (en) 1996-07-22 2006-12-12 Sorin Group Italia S.R.L. Combined device comprising a venous blood reservoir and a cordiotomy reservoir in an extracorporeal circuit
US6475176B2 (en) 1996-07-22 2002-11-05 Dideco, S.P.A. Combined device comprising a venous blood reservoir and a cardiotomy reservoir in an extracorporeal circuit
US6287270B1 (en) 1996-07-22 2001-09-11 Dideco, S.P.A. Combined device comprising a venous blood reservoir and a cardiotomy reservoir in an extracorporeal circuit
US6537495B1 (en) 1997-09-26 2003-03-25 Edwards Lifesciences Llc Vacuum-assisted venous drainage system with rigid housing and flexible reservoir
US6017493A (en) * 1997-09-26 2000-01-25 Baxter International Inc. Vacuum-assisted venous drainage reservoir for CPB systems
US6050968A (en) * 1997-09-29 2000-04-18 Medtronic, Inc. Two-chambered softshell reservoir
US5935093A (en) * 1997-09-29 1999-08-10 Medtronic, Inc. Softshell reservoir with integrated cardiotomy reservoir
US6105912A (en) * 1997-11-07 2000-08-22 Terumo Cardiovascular Systems Corporation Reservoir mounting bracket
US6113575A (en) * 1998-05-14 2000-09-05 Terumo Cardiovascular Systems Corporation Volume control apparatus for a flexible venous reservoir
US6337049B1 (en) 1998-08-28 2002-01-08 Yehuda Tamari Soft shell venous reservoir
US6773426B2 (en) 1998-08-28 2004-08-10 Yehuda Tamari Soft shell venous reservoir with improved air handling
US6918887B1 (en) 1999-02-17 2005-07-19 Medtronic, Inc. Venous filter for assisted venous return
US6601710B2 (en) 1999-04-20 2003-08-05 Baxter International Inc. Filter assembly having a flexible housing
US6565802B1 (en) 1999-06-03 2003-05-20 Baxter International Inc. Apparatus, systems and methods for processing and treating a biological fluid with light
US20030165398A1 (en) * 1999-06-03 2003-09-04 Waldo Jeffrey M. Apparatus, systems and methods for processing and treating a biological fluid with light
US7601298B2 (en) 1999-06-03 2009-10-13 Fenwal, Inc. Method for processing and treating a biological fluid with light
US7459695B2 (en) 1999-06-03 2008-12-02 Fenwal, Inc. Apparatus, and systems for processing and treating a biological fluid with light
US7445756B2 (en) 1999-06-03 2008-11-04 Fenwal, Inc. Fluid processing sets and organizers for the same
US7425304B2 (en) 1999-06-03 2008-09-16 Fenwal, Inc. Processing set and methods for processing and treating a biological fluid
US20060197031A1 (en) * 1999-06-03 2006-09-07 De Gheldere Serge Processing set and methods for processing and treating a biological fluid
US6364864B1 (en) 1999-06-03 2002-04-02 Baxter International Inc. Plastic containers having inner pouches and methods for making such containers
US7068361B2 (en) 1999-06-03 2006-06-27 Baxter International Apparatus, systems and methods for processing and treating a biological fluid with light
US7105093B2 (en) 1999-06-03 2006-09-12 Baxter International Inc. Processing set and methods for processing and treating a biological fluid
US20050258109A1 (en) * 1999-06-03 2005-11-24 Hanley Kathleen A Apparatus, systems and methods for processing and treating a biological fluid with light
US6986867B2 (en) 1999-06-03 2006-01-17 Baxter International Inc. Apparatus, systems and methods for processing and treating a biological fluid with light
US7025877B1 (en) 1999-06-03 2006-04-11 Baxter International Inc. Processing set for processing and treating a biological fluid
US20030146162A1 (en) * 1999-06-03 2003-08-07 Metzel Peyton S. Fluid processing sets and organizers for the same
US20030209479A1 (en) * 2000-07-10 2003-11-13 Lynn Daniel R Blood filters, blood collection and processing systems, and methods therefore
US6908446B2 (en) 2000-11-30 2005-06-21 Termo Kabushiki Kaisha Blood reservoir
US7914508B2 (en) * 2002-02-08 2011-03-29 Estr Engstrom Scientific And Technical Research Aktiebolag Apparatus for reducing fat content of blood
US20050131333A1 (en) * 2002-02-08 2005-06-16 Astra Tech Ab Apparatus for reducing fat content of blood
US20070140898A1 (en) * 2003-01-14 2007-06-21 Olsen Robert W Extracorporeal blood circuit air removal system and method
US20040195178A1 (en) * 2003-01-14 2004-10-07 Carpenter Walter L. Extracorporeal blood circuit priming system and method
US7189352B2 (en) 2003-01-14 2007-03-13 Medtronic, Inc. Extracorporeal blood circuit priming system and method
US7198751B2 (en) 2003-01-14 2007-04-03 Medtronic, Inc. Disposable, integrated, extracorporeal blood circuit
US7201870B2 (en) 2003-01-14 2007-04-10 Medtronic, Inc. Active air removal system operating modes of an extracorporeal blood circuit
US7204958B2 (en) 2003-01-14 2007-04-17 Medtronic, Inc. Extracorporeal blood circuit air removal system and method
US20070140899A1 (en) * 2003-01-14 2007-06-21 Olsen Robert W Active air removal system operating modes of an extracorporeal blood circuit
US7829018B2 (en) 2003-01-14 2010-11-09 Medtronic, Inc. Active air removal from an extracorporeal blood circuit
US7740800B2 (en) 2003-01-14 2010-06-22 Medtronic, Inc. Extracorporeal blood circuit air removal system and method
US7704455B2 (en) 2003-01-14 2010-04-27 Medtronic, Inc. Active air removal system operating modes of an extracorporeal blood circuit
US20070258856A1 (en) * 2003-01-14 2007-11-08 Olsen Robert W Active air removal from an extracorporeal blood circuit
US7335334B2 (en) 2003-01-14 2008-02-26 Medtronic, Inc. Active air removal from an extracorporeal blood circuit
US20040197223A1 (en) * 2003-01-14 2004-10-07 Olsen Robert W. Active air removal system operating modes of an extracorporeal blood circuit
US20040217054A1 (en) * 2003-01-14 2004-11-04 Olsen Robert W. Extracorporeal blood circuit air removal system and method
US20050063860A1 (en) * 2003-01-14 2005-03-24 Carpenter Walter L. Disposable, integrated, extracorporeal blood circuit
US20040220509A1 (en) * 2003-01-14 2004-11-04 Olsen Robert W. Active air removal from an extracorporeal blood circuit
US20060095014A1 (en) * 2003-05-08 2006-05-04 Novo Nordisk A/S External inserter for transcutaneous device
US8740851B2 (en) 2003-05-08 2014-06-03 Novo Nordisk A/S Integrated package
US8029469B2 (en) 2003-05-08 2011-10-04 Novo Nordisk A/S External inserter for transcutaneous device
US7981085B2 (en) 2003-05-08 2011-07-19 Novo Nordisk A/S Internal needle inserter
US7955297B2 (en) 2003-08-01 2011-06-07 Novo Nordisk A/S Retraction means for transcutaneous device
US20050077225A1 (en) * 2003-10-10 2005-04-14 Usher Kathryn M. Apparatus and method for removing gasses from a liquid
US7097690B2 (en) 2003-10-10 2006-08-29 Scimed Life Systems, Inc. Apparatus and method for removing gasses from a liquid
US7591812B1 (en) 2004-01-22 2009-09-22 Yehuda Tamari Passive venous air purging chamber with vent/sucker blood handling capabilities
US20100030125A1 (en) * 2004-01-22 2010-02-04 Yehuda Tamari Blood reservoir incorporating a vapor trap
US8147440B2 (en) 2004-01-22 2012-04-03 Yehuda Tamari Blood reservoir incorporating a vapor trap
US7588732B2 (en) * 2004-03-30 2009-09-15 Genesis Biosystems, Inc. Autologus tissue harvesting and irrigation device
US8202493B2 (en) 2004-03-30 2012-06-19 Genesis Biosystems, Inc. Autologous tissue harvesting and irrigation device
US20060093527A1 (en) * 2004-03-30 2006-05-04 Genesis Biosystems, Inc. Autologus tissue harvesting and irrigation device
US20090239299A1 (en) * 2004-03-30 2009-09-24 Genesis Biosystems, Inc. Autologous tissue harvesting and irrigation device
US7922462B2 (en) 2004-03-30 2011-04-12 Novo Nordisk A/S Actuator system comprising lever mechanism
US8882696B2 (en) 2005-01-24 2014-11-11 Yehuda Tamari Blood reservoir with a separate vent and a sucker chambers
US8167841B2 (en) 2005-01-24 2012-05-01 Novo Nordisk A/S Transcutaneous device assembly
US20070225686A1 (en) * 2005-03-23 2007-09-27 Shippert Ronald D Tissue transplantation method and apparatus
US20080154240A1 (en) * 2005-03-23 2008-06-26 Shippert Ronald D Tissue transplantation method and apparatus
US7780649B2 (en) 2005-03-23 2010-08-24 Shippert Ronald D Tissue transplantation method and apparatus
US8062286B2 (en) 2005-03-23 2011-11-22 Shippert Ronald D Tissue transplantation method and apparatus
US8622997B2 (en) 2005-03-23 2014-01-07 Ronald D. Shippert Tissue transfer method and apparatus
US7794449B2 (en) 2005-03-23 2010-09-14 Shippert Ronald D Tissue transplantation method and apparatus
US7789872B2 (en) 2005-03-23 2010-09-07 Shippert Ronald D Tissue transplantation method and apparatus
US9581942B1 (en) 2005-03-23 2017-02-28 Shippert Enterprises, Llc Tissue transfer method and apparatus
US20090069868A1 (en) * 2006-03-11 2009-03-12 Henrik Bengtsson Secure Pairing of Electronic Devices using Dual Means of Communication
US20090062778A1 (en) * 2006-03-13 2009-03-05 Novo Nordisk A/S Medical System Comprising Dual-Purpose Communication Means
US9173992B2 (en) 2006-03-13 2015-11-03 Novo Nordisk A/S Secure pairing of electronic devices using dual means of communication
US9399094B2 (en) 2006-06-06 2016-07-26 Novo Nordisk A/S Assembly comprising skin-mountable device and packaging therefore
US8557179B2 (en) 2007-10-31 2013-10-15 Novo Nordisk A/S Non-porous material as sterilization barrier
US20150157836A1 (en) * 2008-01-28 2015-06-11 Peter Mats Forsell Implantable drainage device
US9694165B2 (en) * 2008-01-28 2017-07-04 Peter Mats Forsell Implantable drainage device
US8425486B2 (en) * 2008-11-21 2013-04-23 Smisson-Cartledge Biomedical Llc Collapsible fluid reservoir
US20100130957A1 (en) * 2008-11-21 2010-05-27 Smisson-Cartledge Biomedical Llc Collapsible Fluid Reservoir
US11844892B2 (en) 2009-05-29 2023-12-19 Livanova Deutschland Gmbh Device for establishing the venous inflow to a blood reservoir of an extracorporeal blood circulation system
US11229729B2 (en) 2009-05-29 2022-01-25 Livanova Deutschland Gmbh Device for establishing the venous inflow to a blood reservoir of an extracorporeal blood circulation system
US9452250B2 (en) 2009-06-25 2016-09-27 Sorin Group Deutschland Gmbh Device for pumping blood in an extracorporeal circuit
US9943077B2 (en) 2009-10-23 2018-04-17 Fenwal, Inc. Methods for storing red blood cell products
US9409128B2 (en) 2009-10-23 2016-08-09 Fenwal, Inc. Methods for storing red blood cell products
US8500673B2 (en) 2010-04-20 2013-08-06 Sorin Group Italia S.R.L. Blood reservoir with level sensor
US8506513B2 (en) 2010-04-20 2013-08-13 Sorin Group Italia S.R.L. Blood reservoir with ultrasonic volume sensor
US8887770B1 (en) 2011-03-17 2014-11-18 Ronald D. Shippert Vessel fill control method and apparatus
US8900175B2 (en) * 2011-07-08 2014-12-02 Giovanni PINTO Device for medical use for collecting and transit of blood, blood derivatives and/or filler fluids, and an extracorporeal circuit comprising the device
US20130012909A1 (en) * 2011-07-08 2013-01-10 Pinto Giovanni Device for medical use for collecting and transit of blood, blood derivatives and/or filler fluids, and an extracorporeal circuit comprising the device
US10213541B2 (en) 2011-07-12 2019-02-26 Sorin Group Italia S.R.L. Dual chamber blood reservoir
US9011769B2 (en) 2011-07-12 2015-04-21 Sorin Group Italia S.R.L. Dual chamber blood reservoir
US11389580B2 (en) 2011-07-12 2022-07-19 Sorin Group Italia S.R.L. Dual chamber blood reservoir
US9468709B2 (en) 2012-11-12 2016-10-18 Shippert Enterprises, Llc Syringe fill method and apparatus
USD749739S1 (en) * 2014-01-31 2016-02-16 Nipro Corporation Blood reservoir
USD746470S1 (en) * 2014-01-31 2015-12-29 Nipro Corporation Holder for blood reservoir
US10772997B2 (en) 2014-05-15 2020-09-15 Ronald D. Shippert Tissue parcelization method and apparatus
US10458833B2 (en) 2014-05-16 2019-10-29 Sorin Group Italia S.R.L. Blood reservoir with fluid volume measurement based on pressure sensor
WO2016196584A1 (en) 2015-06-02 2016-12-08 Terumo Cardiovascular Systems, Inc. Filters with gradient porosities
EP3302624A4 (en) * 2015-06-02 2018-12-26 Terumo Cardiovascular Systems Corporation Filters with gradient porosities

Also Published As

Publication number Publication date
DE69007860T2 (en) 1994-11-10
EP0401016A1 (en) 1990-12-05
EP0587251B1 (en) 1998-03-11
DE587251T1 (en) 1994-10-06
EP0587251A1 (en) 1994-03-16
DE69007860T4 (en) 1995-05-11
CA2017460A1 (en) 1990-11-30
DE69032137T2 (en) 1998-11-12
JPH0373165A (en) 1991-03-28
JPH0661359B2 (en) 1994-08-17
EP0401016B1 (en) 1994-04-06
CA2017460C (en) 1998-07-14
DE69007860D1 (en) 1994-05-11
DE69032137D1 (en) 1998-04-16

Similar Documents

Publication Publication Date Title
US5049146A (en) Blood/gas separator and flow system
US3527572A (en) Apparatus for treating blood
JP3230240B2 (en) Gathering device
US5573526A (en) Soft shell reservoir
US7591812B1 (en) Passive venous air purging chamber with vent/sucker blood handling capabilities
WO2010041604A1 (en) Blood storage tank
US4336224A (en) Bubble oxygenator
US8147440B2 (en) Blood reservoir incorporating a vapor trap
JP2002165878A (en) Blood storage tank
CA1128827A (en) Bubble oxygenator
WO1999016483A1 (en) Softshell reservoir with integrated cardiotomy reservoir
US5601714A (en) Device for filtration and collection of blood
JP3231077B2 (en) Blood reservoir
JP3373252B2 (en) Blood reservoir
US8882696B2 (en) Blood reservoir with a separate vent and a sucker chambers
JPS6328624B2 (en)
US11357898B1 (en) Hybrid venous reservoir
JPH027667B2 (en)
JP4485707B2 (en) Blood reservoir
JPS6360674B2 (en)
JPS6040299B2 (en) Blood defoaming purification reservoir
JPS6359339B2 (en)
JPS6336261B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAXTER INTERNATIONAL INC., DEERFIELD, ILLINOIS A C

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BRINGHAM, RICHARD L.;BELL, R. SCOTT;REEL/FRAME:005086/0593

Effective date: 19890531

AS Assignment

Owner name: BAXTER INTERNATIONAL INC., A CORP. OF DE, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BRINGHAM, RICHARD L.;BELL, R. SCOTT;REEL/FRAME:005232/0381;SIGNING DATES FROM 19900124 TO 19900130

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: EDWARDS LIFESCIENCES CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAXTER INTERNATIONAL INC.;REEL/FRAME:010901/0274

Effective date: 20000609

AS Assignment

Owner name: JOSTRA BENTLEY INC., PUERTO RICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EDWARDS LIFESCIENCES CORPORATION;REEL/FRAME:011190/0824

Effective date: 20000831

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20030917